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Abstract

ractical encryption is an important tool in improving

the cybersecurity posture of vehicle data loggers and

engineering tools. However, low-cost embedded
systems struggle with reliably capturing and encrypting all
frames on the vehicle networks. In this paper, implementa-
tions of symmetric and asymmetric algorithms were used
to perform envelope encryption of session keys with
symmetric encryption algorithms while logging vehicle
controller area network (CAN) traffic. Maintaining deter-
minism and minimizing latency are primary considerations
when implementing cryptographic solutions in an embedded
system. To satisfy the timing requirements for vehicle
systems, the memory-mapped Cryptographic Acceleration
Unit (mmCAU) on the NXP K66 processor enabled 6.4Mb/

Introduction

istorically, passenger cars and heavy trucks have been

made of various mechanical and thermal systems that

convert energy from fuel to kinetic energy. However,
modern vehicles incorporate many Electronic Control Units
(ECUs) communicating over an internal vehicle network
called the Controller Area Network (CAN). These ECUs carry
commands, such as testing the brakes, produce more torque,
etc. The CAN also is used for sharing sensor data, such as
vehicle speed, engine speed, fuel levels, etc. While the addi-
tional electronic control systems have enabled increases in
fuel efficiency, vehicle reliability, and business effectiveness,
the added systems create new levels of complexity.

The National Motor Freight Traffic Association (NMFTA)
has published a whitepaper regarding the heavy vehicle cyber-
security [1]. The paper describes why the technologies on these
vehicles has progressed (the good), the flaws inherent with
such architectures (the bad), and how those flaws can be easily
exploited (the ugly).

With so many interconnected ECUs and integrated
sensors available in a modern vehicle, safety and comfort
features are more robust and well-implemented. Most vehicles
now have Anti-lock Braking System, Traction Control System,
Roll-over Stability Control, and Electronic Stability Control
as standard safety features that significantly improve the
driver ability to gain back vehicle control during times when
accidents are likely to happen. In addition, some heavy vehicles
even include an integrated airbag module to minimize
impacting damage on the driver if accidents do occur. The

sec symmetric encryption rates, which enables logging of
multiple channels at 100% bus load. Using AES-128 in Cipher
Block Chaining (CBC) mode provides the encryption for
data confidentiality. Errors and integrity checks are handled
by a Cyclic Redundancy Check (CRC) checksum withing the
data and digitally signed SHA256 hash values of the overall
encrypted record secured the integrity of the data. A
hardware security module (HSM) is utilized to store asym-
metric key pairs for key management. The HSM implements
Elliptic-Curve Cryptography (ECC) algorithms for key
exchanges and digital signatures. Secure collection and
secure data uploads to a central server are demonstrated.
This work and the source code are open source with the goal
of inspiring improved secure communications for
vehicle networks.

safety of vehicles has been greatly improved over the years,
and automotive companies continue to design and optimize
these systems.

In addition to safety, comfort is an important design
consideration. Depending on the consumer’s desires, different
models or trims now possess some features. Some basic
features include door ajar indicator, infotainment sound level
adjustment based on vehicle speed, automatic headlights, etc.
Higher levels of automation available today include complex
systems such as Adaptive Cruise Control, Lane Departure
Warning, Lane Keeping Assist, Automated Parking Assist, etc.

The automotive industry is heading toward connected
vehicles where Vehicle-to-Vehicle, Vehicle-to-Infrastructure,
or self-driving vehicles are being developed and tested. As a
result, safety, comfort, and automation are the key elements
in successful vehicle design, and the evolution in computeriza-
tion within vehicles has provided a big leap in the industry.

Heavy trucks and passenger cars use CAN for internal
network communications. Developed by Bosch in the early
1980s, CAN has been used by the automotive industry
progressively since then. The most common implementations
of CAN versions used are CAN 2.0A with 11-bit device identi-
fiers for passenger cars, and CAN 2.0B with 29-bit device
identifiers often found on heavy trucks, as specified by
J1939-21 Data Link Layer [2]. The CAN bus is made up of
multiple nodes, primarily ECUs, that communicate with
differential signaling through two wires: CAN high (CANH)
and CAN low (CANL). The CAN protocol is fundamentally
flawed from a data security perspective and has been heavily
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researched. The NMFTA whitepaper [1] lists some vulnerabili-
ties associated with the architecture of CAN protocol:

* Any node can listen, and any node can talk. There is no
order or permission required for a node to start
communicating, provided it is on the CAN bus.

* Any node can assert priority. CAN protocol handles
message collision with arbitration, in which the message
with highest priority wins.

* There is no encryption or validation within the CAN bus
communication. The messages are sent in clear text; all
received messages are assumed to have been sent from
an authorized sender.

* The limit of 8 bytes per CAN frame eliminates the use of
any modern block cipher to encrypt the data to
ensure confidentiality.

CAN is a high speed, robust communication protocol;
however, it was made in the time where cybersecurity was not
in the mindset and the vehicle connectivity was not consid-
ered. The only security in the CAN messages is through obscu-
rity which means each manufacturer designs its own propri-
etary message IDs and data fields without publishing it.
Nevertheless, as seen by the mentioned characteristics above,
data availability, integrity, and confidentiality can be easily
exploited. If the network or a node is compromised by an
attack, the vehicle safety mechanisms can malfunction.

There are a few common attacks that have been done,
either by actual hackers or in lab testing, as described in the
NMFTA whitepaper. These are considered pain-points for
engineering a secure system.

* Denial of Service- sending messages with the highest
priority as fast as possible will overtake other legitimate
messages with arbitration and hence, overwhelm the
CAN bus. This leads to ECUs being unable to
communicate with each other; as a result, the vehicle can
behave unpredictably and/or cannot function at all. This
is a basic attack that affects data availability.

* Middleperson- a malicious device is inserted between
two or more communicating parties where it can observe
and modify messages transmitting in between them.
Moreover, a CAN bus node can be taken over and
become the middleperson, where it sends out modified
messages to impersonate the original sender. Data
integrity and confidentiality can be exploited, and
commands can be changed.

¢ Diagnostic Packets- if attackers have access to the CAN
bus, they may also be able to access the diagnostic
functions that automotive technicians use for
troubleshooting. These functions are mainly intended to
be run in a controlled environment and may involve
important safety features. If they are exploited and used
incorrectly, they will do more harm than good.

* ECUs Firmware- the firmware is the memory and
commands for the brain of the vehicle operation.
Sometimes, it needs to be updated or debugged by the
manufacturer, and this process usually takes place
through the diagnostic port, which involves the CAN

bus. Hackers can download, reverse-engineer the
firmware to assembly level or an intermediate
representation and determine the proprietary data
structures designed by the manufacturers. They may
have enough information to creatively exploit the vehicle
or even rewrite their modified firmware back to

the ECUs.

® Fuzzing- this is a method where messages are injected
randomly into the CAN bus to determine how the
vehicle behaves. Different functions can be identified and
tied to message parameters using fuzzing techniques.
Therefore, proprietary information is at risk of being
exposed. Fuzzing and lead to unintended cyber-physical
reactions and even physical damage.

A good model against cybersecurity threats can
be measured by the CIA Triad: confidentiality, integrity, and
availability. Confidentiality means sensitive information
should be protected against unauthorized access. Enforcing
confidentiality usually involves cryptographic methods.
Integrity means that the data has not been altered by unau-
thorized users and the originator of the data can be verified.
Current methods to protect data integrity use cryptographic
hashing and digital signatures. Lastly, availability means
authorized users can access the data. Protecting data avail-
ability depends on the system infrastructure and models that
can quickly detect threats or failures and be resilient when
such circumstances occur. For CAN network systems, any
additional cryptographic implementations could be pursued
to increase the CIA triad benchmark for cybersecurity.

Objective

Automobiles have cybersecurity concerns based on the char-
acteristics of the CAN protocol as there are many attack
vectors and methods that can be implemented to exploit auto-
motive systems. However, heavy trucks or commercial vehicles
are exposed to cybersecurity risks differently comparing to
passenger vehicles due to some major factors. The primary
distinguishing feature is that heavy trucks follow the SAE
J1939 standard, which is a recommended practice for commu-
nication and diagnostics among vehicle components. The
manufacturers are not legally obligated to abide by the
standard; however, they do implement many parts of SAE
J1939 on a heavy vehicle network. The second difference is
that heavy trucks are built with accommodations for hori-
zontal integration to allow customers to customize the vehicles
based on their needs. This means that customers have many
options from which to choose for various components,
including engines, brake controllers, transmissions, telematics
units, infotainment systems. A unified communications
standard, such as SAE J1939, is necessary to support interoper-
ability and “plug and play” functionality between these dispa-
rate hardware systems. However, with open standards, heavy
vehicles are easy targets because hackers can easily look for
weaknesses within the network structure from the publicly
available information. The CAN protocol security through
obscurity strategy will continue to fail on top of its existing
vulnerability to some attacks.
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The last difference between passenger vehicles and heavy
trucks is the prevalent use of third-party telematics devices.
These telematics companies provide equipment that is
installed on the vehicle network to keep track of information
such as location, speed, fuel status, diagnostic trouble codes,
etc. Telematics units can be seen in big fleets where monitoring
hundreds or thousands of trucks is essential for business
operations and compliance with regulations. A cybersecurity
challenge is these telematics units are connected wirelessly,
which introduces a new attack vector to the previously air-
gapped vehicle network.

With these threats, heavy vehicles may be at high risk of
being exposed to cyber-attacks. Therefore, the heavy vehicle
industries should realize that increasing cybersecurity posture
and mitigating risk and potential threats are important objec-
tives in not only designing and building new commercial
vehicles, but also maintaining current trucks on the road.
Preventing attacks from occurring is always preferable to
mitigating an attack once it takes place. Thus, intrusion and
anomaly detection mechanisms need to be developed and
deployed in the CAN bus system. A large pool of data from
heavy vehicle CAN buses in the form of log files from normally
operating trucks is essential for development and testing of
vehicle network-based cybersecurity controls. This data will
consist of various types of CAN messages that take place on
the bus, which can be periodic from normal operation or
aperiodic from responding to special events.

The purpose of this paper is to report on a solution to
build such a data pool securely and efficiently.

Related Research

There are many public papers regarding different vehicle
hacking techniques that exploit the CAN security posture.
One of them is the infamous Jeep hack in 2015, performed by
Charlie Miller and Chris Valasek [3]. The authors were able
to find a way to gain access to deep level networks where sensi-
tive signals are transmitted via the infotainment system. The
firmware of this head unit was modified to execute malicious
commands to critical ECUs. The result was that the vehicle
was disabled. Data integrity and confidentiality have been
exploited with this technique.

In another paper, Subhojeet Mukherjee, et al. described
a denial of service attack on embedded networks in commer-
cial vehicles [4]. With his testbed consisting of a single, high-
speed CAN bus of 250 kbps, he has successfully shown that
by sending a large number of request messages for a specific
parameter, the number of regular messages dropped signifi-
cantly due to the high computational load. Understanding of
the limit of the system performance, Subhojeet exploited data
availability here.

In a different paper, Kyong-Tak Cho and Kang Shin took
advantage of the error handling feature of the CAN protocol
to shutdown ECU nodes from the network [5]. When an ECU
tried to communicate, they injected attack messages to trigger
the error flag to increase the victim Transmit Error Counter
(TEC). When the TEC is above 255, the node is forced to shut
down, hence the so-called bus-off mode. They can then send
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messages with forged ID and data to impersonate the node.
Again, data integrity has been violated using the CAN data
protocol. These attacks are no longer hard to implement, espe-
cially with the current publicly available information and
technology. This research motivated the inclusion of the error
counters in the CAN Logger data record.

Several CAN projects to gather or monitor vehicle data
have been pursued. A group of students from the University
of Michigan have attempted to build a standalone embedded
system to collect CAN messages, while filtering important
ones with the purpose of warning drivers [6]. Adnan Shaout,
Dhanush Mysuru, and Karthik Raghupathy described in the
paper that their setup consisted of Vector software CANoe
and Vector 1610 CAN hardware for CAN simulation, an
Arduino UNO with ATMega328p processor and a CAN Shield
hardware for CAN interface, a display for warning driver, and
a Teensy 3.6 with SD card slot for memory storage. During
the experiment, the Arduino UNO sniffed all the CAN
messages with the help of the CAN Shield. This processor
filtered out the messages with appropriate addresses and sent
a copy of the data to the Teensy 3.6 for storage on the SD card.
The display showed error messages if the messages contain
undesired sensor values. The design functioned as intended
but encountered computing power problems that caused the
system to drop messages that arrived with an interval less
than 50ms. Progress has been made on this problem, as stated
in the paper, where the modified system can handle up to inter
message time of 5ms. However, when a vehicle is under denial
of service attack, the messages can be injected at a much faster
rate, which can pose a challenging issue. If the system cannot
capture all messages, it will not meet the requirements of a
high fidelity CAN monitor. The system cybersecurity was
deemed to be out of scope and thus not addressed in the refer-
enced paper. However, if there is any cybersecurity threat, this
system will not likely to detect such attack and may even fail
to operate.

In another project, Manthias Johanson and Lennart
Karlsson discussed their wireless diagnostic system, where
CAN messages are captured and monitored over an Internet
connection [7]. This is interesting because the project involved
the Internet of Things (IoT), which led to more complications
in the system. The design was a wireless Diagnostic Read-out
(DRO) system, which consisted of the Vehicle Information
and Diagnostic for Aftersales (VIDA) device as a DRO system,
a custom-built dynamically linked library (DLL) for tunneling
CAN frames over the Internet, a mobile unit equipped with
an embedded Linux OS computer for CAN interface, an
Internet connection through a General Packet Radio Services
(GPRS) modem, and a server for dispatching requests. The
DRO process involved a manual initiation with a button on
the mobile device. An encrypted Transmission Control
Protocol (TCP) connection was established on the server, with
a public IP address reachable from the mobile unit. After that,
specific diagnostic CAN messages were sent to the mobile unit
from the server, where they were relayed onto the CAN bus.
The responses were captured and sent back to the server. Due
to the bandwidth limitation, the system could not relay all
messages on the CAN bus and, therefore, only filtered out
important ones. However, the paper did touch on the concerns
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of data integrity and confidentiality because an Internet
connection was used by employing encrypted TCP connection
along with RSA-based authentication mechanism.

Capturing all CAN data, particularly at high speeds, was
a common problem that impacted both referenced CAN
monitoring projects above. This is even harder to achieve when
cybersecurity measures and wireless connection are imple-
mented, because processing power and transmission band-
width are limited, respectively.

Current Approach

Due to the complexity and high cost of integrating a new
embedded system into the existing vehicle network compo-
nents, the best approach to collect CAN data is to design and
build an affordable standalone device that can be easily
connected to the vehicle CAN bus. Because the device is stand-
alone, the data should be stored on an external memory
storage, such as SD cards, for simple management. The device
must be able to capture all the data because missing abnormal
messages will defeat the purpose of the project. To do so, the
device needs to have a direct connection to the vehicle
networks. Data volume can grow, and thus, a cloud or server
platform may be useful to store and manage the logs from
many different uploading devices. Using third-party servers
accessed over the Internet poses a risk from a cybersecurity
aspect. Moreover, data integrity and confidentiality are two
important factors that need to be protected. The reasons for
encrypting the data are that enciphered data is useless and
some vehicle owners do not wish to publish their data. As a
result, security measures such as cryptographic algorithms
are utilized to encrypt, sign, and verify the data.

Organization

The paper provides the following contributions:

1. Detailed documentation regarding the hardware
design of the CAN logging device, such that some of
the example may provide inspiration with the
purpose of increasing cybersecurity posture.

2. Examples of end-to-end security with a hardware
security module (HSM) and cloud-based
encryption system.

3. Software reference design to implement a cloud-based
system with pre-provisioned security devices.

The paper discusses the system requirements, hardware
implementation, test and evaluation results, and overall
software design to include the middleware and cloud back-
end. All the source code for the tests and implementations is
available on Github [8].

Desigh Requirements

To carry out the objective, the CAN logger device must
securely capture all CAN data under both normal and
abnormal (i.e. 100% bus load or error frames) operating

conditions. Secondly, the data must be securely stored and
organized for easy retrieval and decoding by the data owner.
Lastly, the design and source code should be made available
to the public. A list of requirements for fulfilling the desired
goals follows. While some requirements have not been vetted
against industry standards, they have worked for laboratory
uses. Most requirements were focused on heavy vehicle
use cases.

1. The logger must connect to multiple vehicle networks
using industry standard connectors. The connector
should handle power, ground, CAN1-H, CANI-L,
CAN2-H, CAN2-L, CAN3-H, CAN3-L, J1708-H
and J1708L.

2. The logger needs to be inexpensive and easy to
manufacture because many devices are essential for
efficiently collecting data from various locations. The
desired cost per device should not exceed $200.

3. The logger must be able to capture all CAN messages,
even at 100% bus load. This ensures the device’s
reliable functionality to prevent losing any
information that may be critical for data analysis.

4. In addition to the normal CAN messages, the logger
must also capture error frames in order to help detect
abnormal activity on the CAN bus.

5. The logger should use the vehicle battery line from the
connector as a source for power to minimize cost
associated with adding extra self-power components.

6. The logger must not lose data in the event of a power
failure. Power failures could occur if the device is
disconnected from the port or if vehicle loses power
from the battery or alternator.

7. 'The logger must handle typical voltages associated
with vehicle systems up to 24V. However, transients
may go up to 30V or more because there are load
dumps and reversals associated with inductive loads
and starters that create voltage spikes. It is vital the
device operation is sustainable and resilient in such
conditions. Therefore, a maximum design system
voltage of 36 V was chosen to mitigate the risk of
system power failure that may occur. If the voltage
exceeds the maximum specification, the device must
also have an inexpensive way to protect critical
components from permanent damage.

8. The logger must automatically detect different CAN
bus speeds. Due to different CAN bitrates used on
different vehicles, the device should be able to
automatically detect the current bitrate on the bus.
The most common ones on heavy trucks are 250 kbps
and 500 kbps. Other bitrates that may be used are:
125 kbps, 666 kbps, and 1 Mbps. This feature helps
eliminate manual bitrate input from the user, and
thus, making the operation quicker and
more convenient.

9. The logger should have removable and expandable
external storage for storing the log data.

10. The logger must employ standard cryptographic
implementations to protect data integrity and
confidentiality. Asymmetric keys can be utilized for
signing, verifying, and safely exchanging symmetric
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keys which are used for data encryption. Because the
design and source code are going to be public, the
objective is to achieve security using open standards.

11. The backend storage system needs to enable secure

and scalable access to the data.

12. Users need a local interface to upload and download
files from the server. This application must be a secure
gateway for the system to authenticate users and
monitor their activities. Users should not have

permission to directly access files stored on the server.

CAN Logger Hardware

The CAN Logger is designed and built to log CAN messages
on operating heavy vehicles. The device is an improved version
of the based on two proofs of concept. Both ideas were
products from university student projects. More information
about these projects can be found on the GitHub repository
in [8]. Because there were two earlier versions, the hardware
presented herein is the third model, or the CAN Logger 3.

The CAN Logger 3 four-layer printed circuit board (PCB).
The board has a dimension of 3.254” by 2.229”, which fits in
the BUD HP-3651-B enclosure. The board was laid out using
Altium Designer, and the design files are publicly available.
The main three components that provide the functionality for
the CAN Logger 3 are: 1) the NXP K66 ARM Cortex-M4F
microprocessor, 2) the ATWINC1500 WIFI module, and 3)
the ATECC608A hardware security module.

Block Diagram

The CAN Logger 3 hardware design is illustrated through the
block diagram in Figure 2-10, in which the components will
be discussed in detail in the next section.

Microprocessor The circuit to support the NXP K66
processor was inspired by the Teensy 3.6 development board
from PJRC.com. The Teensy 3.6 is an open-source hardware

IGEEERN CAN Logger 3 device showing the buttons and
LEDs on the left and the cover removed on the right
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design that is compatible with the Arduino Integrated
Development Environment (IDE). It is CAN compatible
through the FlexCAN library [9]. The device’s dual CAN
channels, and on-board SD card slot are features that meet
the objective of this project. Powered by the K66 ARM
Cortex-M4 microprocessor, the Teensy 3.6 has a clock speed
up to 180Mhz. Moreover, the K66 also has an embedded
mmCAU ColdFire coprocessor that performs cryptographic
algorithms such as AES, DES, 3DES, MD5, SHA-1, and
SHA-256. The datasheet of the K66 and mmCAU can be found
in [10].

The mmCAU can use AES 128 to encrypt data at a rate
of 6.4 Mbyte/second in ECB mode. The CAN Logger 3 is able
to encrypt and log CAN traffic at 100% bus load. In addition,
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the FlexCAN library has been modified to detect error
frames [9]. This microprocessor satisfies the requirements of
the project.

ATWINC1500 WIFI Module The CAN Logger 3 is also
equipped with the low power consumption ATWINC1500
WIFI module, which features IEEE 802.11 b/g/n and 2.4 GHz
ISM band. This allows the CAN Logger to implement WIFI
communication to transfer log files to the local computer
before uploading or transfer the data straight to the server
wirelessly, which is beneficial for the scope of the project.
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However, this also poses as an attack vector. To mitigate risk
in specific applications, a physical switch is made in the design,
as seen in Figure 6 above, such that users need to solder and
bridge the jumper to enable the WIFI module. Thus, if users
do not wish to use the WIFI feature, they can physically
disable the ATWINC1500 module. The datasheet of the
module can be found in [11].

ATECC608A Hardware Security Module The
Microchip ATECC608A hardware security module (HSM) is
the key component for the security aspect of the logging
process. Information about the module can be found in [12].
The hardware is a cryptographic module with hardware-based
key storage that protects up to 16 keys. Once the keys or confi-
dential data are stored and locked in the ATECC608A
memory, the information cannot be read and can only be used
internally by the hardware functions. This is a great feature
in the cryptographic world where there is always a need to
keep secrets in a safe space and not expose them to the external
environments where they can be sniffed or exploited with
methods such as middleperson attacks.

Moreover, the ATECC608 supports cryptographic algo-
rithms including AES-128 encrypt/decrypt, Galois field
multiply for generic authenticated encryption block cipher
mode, SHA256 & HMAC hash, and especially ECC following
P256 NIST, Elliptic-curve Digital Signature Algorithm
(ECDSA) following FIPS186-3, and Elliptic-curve Diffie-
Hellman (ECDH) following FIPS SP800-56A standards. The
reason why ECC is preferably over other algorithms in IoT
asymmetric cryptography is that ECC can meet the same
security standard with a much smaller key size [13]. A 160-bit
ECC key is equivalent to a 1024-bit RSA and Diffie-Hellman,
or a 256-bit ECC key is equivalent to a 3072-bit RSA and
Diffie-Hellman.

This means that ECC is much more powerful in terms of
computing time and memory space. The speed test has been
conducted on various embedded processors and the results
in [14] shows the superior speed of ECC over RSA. With the
cost of approximately $0.75 per piece and the provided
features, the ATECC608A HSM was selected as the security
module for this project.

Logging Fields

The goal of the logger is to efficiently write CAN messages to
an SD card. Writing individual CAN messages (16 bytes)
requires overhead when writing to the SD card and 16 byte

© SAE International.
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blocks are not optimal. Instead, SD card write speeds are much
higher when using 512 byte blocks. As such, we designed a
512 byte buffer to write to the SD Card. This buffer contains
19 CAN messages and associated meta data, as shown in
Table 2. Each CAN frame has the following pieces of informa-
tion, as shown in Table 1:

* Channel - representing the physical CAN hardware.

* A real-time clock timestamp (seconds from the epoch)
* A system microsecond counter

* CAN Arbitration Identifier

e Data Length Code

e Eight bytes of CAN Data

The additional data in each frame includes the number
of messages received on each channel, the Receive Error Count
and the Transmit Error Counts. These additional counters
can help determine different events on the network, especially
if a so-called bus off attack takes place.

Additional metadata regarding the file name, write time
of the last block, and a checksum are included. These often do
not change as new data arrives, but filling in the tail of the
write buffer with potentially useful information was more
desirable than padding with meaningless characters.

If an error condition is detected by the CAN controller,
the software will produce an error message by writinga CAN
frame to the buffer with the error flag set. The error handling
follows the same format and encoding as Linux SocketCAN
error handling.

Functional Tests and
Results

There are some crucial functions the CAN Logger 3 has to
properly perform to successfully fulfill the operational and
performance requirements. This section discusses a series of
comprehensive testing to ensure such functionality of the
CAN Logger 3. The test scripts can be found in the GitHub
repository at [23].

CANO and CANT1 Test

The most important function of the CAN Logger 3 is to read
and write CAN messages on the CANO and CAN1 channels.
Two CAN loggers with the test script [61] were connected to
a terminated CAN bus for testing.

Both channels were initiated at 250kbps bitrate. In the
loop function, the CAN Logger 3 would read any available
message while writing a random frame on both CAN channels.
The fact that there were messages read on both channels means
the CAN Logger 3 was able to successfully write and read
CAN messages on CANO and CAN1, and thus, passed the test.
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Autobaud Function and Test

Autobaud or auto bitrate detection is an important feature of
the CAN Logger 3. It is implemented by taking advantage of
the Received Error Counter (REC), which can be found in the
modified FlexCAN library at [9].

The Autobaud process was designed based on the recom-
mendations in J1939-16 Automatic Baud Rate Detection
Process [15]. When the device is connected to the heavy
vehicle network, the device will start Autobaud immediately
and set to listen only mode. A sequence of bitrate choices is
iterated through, which are 250,000, 500,000, 125,000,
666,666, and 1,000,000 bit/s. The device first starts with the
initial bitrate read from EEPROM. The CAN REC and receive
timer are reset to 0. The device then polls for any available
CAN frame that it can detect with the current bitrate. There
is a 150 milliseconds timeout for the receive timer. During
that duration, if the device detects CAN frames, then it is on
the correct bitrate. The device will update the EEPROM with
the correct bitrate setting if the previous one is different and
end the Autobaud routine.

However, if there is no CAN frame detected, the device
will proceed to read the CAN REC. If the number increases,
that means the device is on wrong bitrate setting and it will
change the CAN bitrate to the next one on the list and repeat
the process until the right one is selected. If the CAN REC
does not increase, this could mean that there is no actual CAN
message on the network. If the timer has not expired, the
device will go back and continue to poll for CAN frame.
Otherwise, the device will change the CAN bitrate. The
sequence is repeated until CAN messages are available on
the network.

To test the Autobaud feature, a setup of two networks
with two different bitrates of 250kbps and 500kbps was made.
The device was first plugged in to the network with 250kbps
bitrate and starts logging. After that, it was plugged into the
second network with 500kbps bitrate. The metadata of the two
log files show the bitrate on CANO, which are 250kbps on one
file and 500kbps on the other. In addition, the fact that the
two corresponding log files were successfully created means
the autobaud feature passed the test.

Symmetric Encryption Using
AES-128

The log files are encrypted using the mmCAU with AES-128
algorithm. There are many AES encryption modes that can
be implemented. Encryption using Electronic Code Book
(ECB) mode is the first generation of AES and the most basic
form of block cipher encryption. It breaks up the input data
into many 16-byte blocks and encrypts them individually
using its AES session key. Thus, data of any size can be used
as input and will be padded to the size that is divisible by 16,
if necessary. However, the disadvantage of this mode is that
it lacks diffusion. If identical 16-byte blocks are encrypted
in ECB, the results are also identical. As a result, this can
expose data patterns and does not provide true confidenti-
ality. As a matter of fact, a study on ciphertext entropy has
proved that encryption using ECB mode is not suitable for
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m Cipher Block Chaining (CBC) mode encryption
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m Result of the testing for SHA-256

Plaintext Plaintext Plaintext
[ENEEEEEEEEEEE] [ENEEEEEENEEEE] [ENNEEEEEEEEEE]
Initialization Vector (1V)
[ENEEEEENNNEEE] D &b
block cipher block cipher block cipher
Key encryption Key encryption Key encryption
Ciphertext Ciphertext Ciphertext

m Test results for AES-128 CBC mode encryption
and decryption

& COMA4 (Teensy) Serial - o x

| Send

AES-128 CBC Encryption:

Block 1 Cipher Text: 7649ABAC8119B246CEE98EYB12ES197D
Test Vector Block 1: 764%abac8119b246ceeS8e%b12e5197d
Block 2 Cipher Text: 5086CBY9B507219EESSDB113A917678B2
Test Vector Block 2: 5086cb%b507219ee95db113a917678b2
Block 3 Cipher Text: 73BED6BBE3C1743B7116E69E22229516
Test Vector Block 3: 73bed6b8e3cl743b7116e69e22229516
Block 4 Cipher Text: 3FFICAARI681FAC09120ECA307586E1AT
Test Vector Block 4: 3fflcaal68lfac09120eca307586ela?

AES-128 CBC Decryption:

Block 1 Clear Text: 6BC1BEE22E409F96E93D7E117393172A
Test Vector Block 1: 6bclbee22e409f956e93d7e117393172a
Block 2 Clear Text: AE2DSAS71E0O3ACSCY9EBT7EFAC4SAFSESI
Test Vector Block 2: ae2d8a57le03ac9cSeb76fac45afBeS5l
Block 3 Clear Text: 30C81C46A35CE411ESFBC1191A0AS2EF
Test Vector Block 3: 30c8lc46a35ced4lleSfbcll9lalaS2ef
Block 4 Clear Text: F69F2445DF4FS9B17AD2B417BE66C3710

Test Vector Block 4: £69f2445df4f9pl17ad2b417be66c3710 v
< >

Autoscroll Newiine v Clear output

image or text files that have repeated identical data [16]. This
is crucial because some CAN frames are periodic, meaning
that the same data are sent within the same constant interval.
Thus, encrypting CAN data using ECB mode is considered
vulnerable. AES in the cipher block chaining (CBC) mode
is used to overcome this problem where an initialization
vector (IV) or so-called salt, which is an arbitrary number
that is only used once, is XORed with the first block, and the
cipher result is then XORed with the next block and so on.
Therefore, each cipher block depends on all the previous
ones, which scrambles the patterns and creates diffusion.
Figure 6 and Figure 7 illustrate ECB and CBC modes for AES
encryption processes, respectively.

The mmCAU uses the cryptolibAESSHA library [17]
to implement its AES capability, with an Arduino interface
published by Paul Stoffregen [18]. The AES-128 CBC encryp-
tion and decryption were tested against NIST test vectors
[19]. The main functions from the test code is displayed
below:

Logging Speed Test

This test explored the actual AES encryption speed of the
mmCAU and verified that the CAN Logger 3 was able to log

© SAE International.

@ COM10 (Teensy) Serial - o x

i Send

Test vector for SHA256

Text to hash:

Hash from device: E3B0C44298FCLCL49AFBE4C8996FBI2427AE41E4649B934CA495991B7852B855
Correct hash: ©3b0c44298fclcl49atbiac8996£b92427ac41e4649b934ca495991b7852b8SS
Text to hash: abc

Hash from device: BA7816BFSFO1CFEA414140DESDAE2223B00361A396177A9CB410FFE1F20015AD
correct hash: ba7816bf8f0lcfeadl4140de5dac2223b00361a396177a9cha10££61£20015ad
Text to hash: abcdbedecdefdefgefghfghighijhijkijklsklmklmnlmnomnopnopq

Hash from device: 248D6A61D20638BSESC026930C3E6039A33CE45964FF2167F6ECEDDA19DBO6C]
correct hash: 248d6261d20638b8e5c026930c326039a33ce45964££21676eceddd19db06c]
Text to hash: abcdefghbcdefghicdefghijdefghijkefghijklfghisklmghisklmnhijklmnoijkln
Hash from device: CESBL6AT78AF8380036CES9E7B0492370B249B11ESFOTASIAFACAS037AFEEIDL
Correct hash: C£5b16a778a£8380036ce59e7b0492370b249b11e8£07a51atacd5037afecddl |,
< >

Ravtosarol Newine v [ Gearoutput

data at full busload. An Arduino script was written to measure
the rate of mmCAU encryption.

The script measured the time the mmCAU took to
encrypt a 16-byte block using ECB and a 512-byte block using
the CBC added function, in microseconds. Encrypting
16-bytes took about 2 microseconds, which is equivalent to 8
Mbyte/second. However, encrypting a 512-byte took 80 micro-
seconds, which is equivalent to 6.4 Mbyte/sec. The loss in
speed was expected because CBC mode required more
computing power than ECB.

Encrypted logging tests were performed at 100% busload
for two CAN channels at 1 Mbit/second. The CAN Logger 3
was able to capture and encrypt all messages, which is a rate
of 2Mbits/second. To validate this claim, one CAN Logger 3
was programmed to transmit 20,000 messages on each
channel on an interval of 130.125 milliseconds. This interval
is for an 8-byte message with no stuff bits at 100% load. The
CAN Logger 3 that was programmed to encrypt and log the
files captured all the messages in the same amount of time.
Busload was monitored with the Linux SocketCAN can-utils
[20] that showed over 100% busload. While truly exceeding
100% busload is not feasible, the can-utils implementation for
SocketCAN is not tuned to make accurate assessments.
Therefore, this is an indicator of bus saturation, as opposed
to a proof.

Secure Hash Algorithm

SHA-256 hashing is used for one-way mapping data of arbi-
trary size to a unique fixed-size digest of 32 bytes. Any change
to the data will result in a completely different hash digest.
Thus, it is a good way to check if the data has been altered.
The log file and some important information from the logging
operation are SHA-256 hashed with the Teensy 3.6 Evaluation
Board. The library function was validated against NIST test
vectors [21].

After importing the SHA-256 library, a Sha256 instance
was created. The update function took the data in to hash and
updated the digest. The final function would complete and
output the hash digest of all the combined input. Figure 9
shows the hash digest of NIST test vectors using the Teensy
library and their correct hashes. The values are identical,
meaning that the SHA-256 library is valid.
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ECDH Pre-Master Calculation

This test shows the partial concept of ECDH pre-master key
exchange by showing the shared secret result from the server
(Python) and the client (Teensy). The first step is to generate
an ECC key pair for the client. The client public key then will
be manually loaded into the server Python script, where the
server will generate an ECC key pair for itself and use its
private key and the input client public key to calculate a shared
secret. The server public key, along with the client keypair
generated previously, will be then manually loaded into the
Teensy script, where the client will use its private key and the
server public key to calculate a shared secret.

Figure 10 shows that the client and the server calculate
the same shared secret. This demonstrates the Diffie-Hellman
key exchange concept where public keys are exchanged, and
the client and the server can use the other's public key to
generate the same shared secret for further use in
secure communication.

Connection Interrupt Test

The CAN Logger 3 logs the data by opening, writing, and
closing a binary file. If the closing process does not occur, all
the data in this current logging session will be lost. The file
closing function is only designed to be triggered when network
activity has ceased. To verify that the CAN Logger 3 can
successfully log a file after being unplugged from the network,
the closing process time and the processor running time after
disconnection are measured and compared.

The file closing function in the firmware is modified to
print out the time it takes in microseconds. Figure 11 shows
the closing time for logging with and without AES encryption.
The average time for both is very similar and fluctuates
between 4,000-5,000 microseconds.

m Demonstrating the ECDH concept between a
host and client

e x

Server ECDH.py — OneDrive - Universty of Tusa\-\Python 539L095.y econp
il cryptography.hazmat.backends default_backend
2 cryptography.hazmat.primitives.asymmetric ec
3 cryptography.hazmat.primitives.kdf.hkdf HKDF
serialization

2 cryptography.hazmat.primitives

@ COM? (Teensy) Seral

| Send

Testing ECDH Concept

Selecting Curve

Private key size: 32

Public key size: 64

Server Public Key:
177DALCEETD8SSEF6F9ISOE6E3757 TADETEBAECS TAE4EGEE235E023E3B6E06781074A38AC4948
Teensy Private Key:
BS7EC37C044A31DB47327719BCCAECSDE31FO9E38F2E.
Teensy Public Key:

0X93, 0XEF, 0X03, 0XEL, 0X6D, 0XCO, 0X95, 0X72, 0XAE, 0XB7, 0X00, OXDE, 0XDO, 0X07, OXED, 0
Calculating shared secret from Server Public Key.

111EFATE6CAD7934B2

lculated shared secret in S3

Shared secret:
D3E79B284563828F41494109B8FB87123D8F00CF7A0699279F23AAA35ECFED4S

<
2 Autosaol

Server public Key is: ©X17,0X7d,@Xal,@Xc6,0Xf7,0Xd8,0X55,0Xef,0X6f,0X95,0X0e,0X6e
X67,0X81,0X07,0X4a, 0X38,0Xac,0X49,0X48,0Xa9, OXbc, 0X0a, 0X41,0Xd4, 0X70, 0X41, 0X1d,, OX]

Teensy Public Key: 93ff@3e16dc09572aeb700dfdee7fd416dc6c8d73e6e447a6T4cobb8T2616a4

IShared secret: d3e79b284563828f41494109b8fb87123d8fe0cf7a0699279f23aaa35ecfed48 .
[rinished in ©.3s]

m Binary file closing time for non-encrypted

version (left) and AES encrypted version (right)

@ COM10 (Teensy) Serial

|

Time to close file in 4205
Closed file TU2_ 004.bin
Opened File TU2__005.bin
Time to close file in 4728
Closed file TU2__005.bin
Time to close file in 8 us
Closed file TU2__ 005.bin
Opened File TU2_ 006.bin
Time to close file in 5280
Closed file TU2_ 006.bin
Opened File TU2__007.bin
Time to close file in 5309
Closed file TU2__ 007.bin
Opened File TU2__008.bin
Time to close file in 4784
Closed file TU2_ 008.bin

@ COM10 (Teensy) Serial

|

Closed file TU2__ OON.bin
Opened File TU2__ 000.bin
Time to close file: 3704
Closed file TU2__000.bin
Opened File TU2__0OP.bin
Time to close file: 5462
Closed file TU2__00P.bin
Opened File TU2_ 00Q.bin
Time to close file: 4373
Closed file TU2_ 00Q.bin
Opened File TU2__OOR.bin
Time to close file: 4919
Closed file TU2_ OOR.bin
Opened File TU2_ 00S.bin
Time to close file: 4029
Closed file TU2__00S.bin

© SAE International.
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m Voltage of safe 12V (yellow), LED indicator
(light blue), raw 12V (purple), and processor power (dark blue)
when the CAN Logger 3 is unplugged from power

The next step is to measure the processor running time
after the device is disconnected. An oscilloscope is used to
monitor the power to the processor along with the raw 12V
input from the network and the diode protected 12V from the
device at the same time. The firmware is modified to pull an
LED high immediately after the file is closed. The voltage of
the LED is also monitored by the oscilloscope to determine
whether the file closing occurs and how long it takes. Figure 12
shows the voltage traces of the four mentioned signals. The
data is then exported and analyzed to measure the desired
parameters, as depicted in Figure 13.

The results show that when the device is unplugged, the
raw 12V input quickly drops below 1V, which is the first indi-
cation that the file closing function should be triggered. The
capacitor in the design still supplies power to maintain the
voltage regulator output at a normal voltage level of 5V for
about 7.5 milliseconds while the device residual power slowly
decreases. After that, the Teensy 3.6 input voltage starts to
drop and loses power at 8.52 milliseconds when it reaches
below its operational voltage of 3.6 V. Moreover, the LED turns
on at 4.18 milliseconds after the device is unplugged. The facts
that the LED does turn on and the Teensy processor running
time outlasts the file closing time indicates the CAN Logger
3 does not lose log data when power connection is interrupted.

© SAE International.
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m Rescaling and analyzing the voltage dropped

from power interruption
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m CAN Logger 3 system software

design overview

Voltage Versus Time

8.52 ms Teensy
Running Time Safe 12V
—LED
w—RAW Input

w—Teensy Vin

80

Time at Teensy Power
Lost Below 3.6 V

Time at Device  ——p-
Unplugged

7.50 ms Until Teensy
60 Voltage Drop

Voltage (V)

Time at LED
Pulling High 10

—

418 msFile
20 | Closing Time

-10 5 5 10 15 20

Time (milisecond)

In cases where the power loss occurs while there is still
residual capacitance, and the device is not isolated from the
network, the RAW voltage will not drop suddenly to trigger
the file closing function. This can cause the device not to close
the file properly. However, the situation is uncommon and not
in the scope of the project, and therefore, the problem is not
further examined.

System Software
Implementation

Overview Process

The CAN logging operation includes two main processes:
provisioning and normal operation. Both are required to
communicate with a server. Amazon Web Services (AWS) was
chosen as the third-party cloud services provider for this
project. The interface between the CAN Logger 3 and AWS is
done via alocal computer running a Python application. The
CAN logger devices communicate with the local computer
through local serial USB. The connection between the
computer and the AWS cloud is through the Internet with
secure transport layer security (TLS) using the Python
requests module.

The provisioning process must happen first to configure
the new device before it can be delivered to clients and
function properly as intended. With the provisioned CAN
logger, clients can use it as a standalone device to log data
from heavy trucks securely with encryption. The encrypted
log files will temporarily be stored on the device until uploaded
to the AWS server for secure storage and data management.
The process overview is depicted in Figure 14, on the
following page.

To achieve the security and privacy of this model, the
following factors are assumed to be uncompromised:

* The local computer with Python application

* The provisioning operator

. a DynamoDB
Provisioning
CAN Logger 3 gperator

Secure TLS S3

Provisioning

£

Provisioned
CAN Logger 3

Lambda

Key
Management
Service

Internet Amazon

R

Heavy Truck

-<:>‘<:>.; -
API

> Computer
@ spas

™ Application Gateway
User
Data Logging

Normal Operation

Amazon Web
. Services Cloud |
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e The Internet connection with secure TLS
* The AWS third-party
* The owner of the CAN logger

The local computer and the provisioning operator are
parts of the device’s manufacturing process. Preventing these
two factors from being compromised is not in the scope of
the CAN logging project but in the security of the local facility
itself. As a result, these two factors are assumed to be safe in
this project.

Transferring sensitive data via the Internet can be risky.
However, by following the industry-standard TLS, the connec-
tion via the Internet should be protected. Therefore, it is safe
to assume that the communication between the Python appli-
cation and the AWS is secure in this project.

Using a third-party cloud is a debatable subject because
the data owners put all their trust and resources into the hand
of a different company. However, this is common in the
business world, where one relies on the services of data storage
and the protection from others. On the other hand, some
prefer to spend more resources to develop their own data
management structure because the data may be too valuable
to be stored elsewhere. The decision whether to use a third-
party service depends on the needs of the data owner. Amazon
Web Services (AWS) provides a data management system with
high security on its end at a much lower cost than building
one. Therefore, AWS is trusted to be used in this project, and
their security is assumed to not be easily compromised.

Lastly, the owner of the CAN logger is the only person
who possesses and operates the device post-delivery. It is their
responsibility to keep their device safe from unauthorized
physical access. Any device that is in the wrong hands can
be broken; it’s only a matter of time because there is no such
system that is 100% secure. For this project, the CAN logger
owner is assumed to always have possession of the device and
operate it correctly without any harmful intention. However,
a well-designed system should make it extremely difficult for
hackers to attack. It should take a lot of time and money to
penetrate the system, and thus, the obstacles should discourage
hackers from trying, or at least give the system administrator
more time to detect and eliminate any threat. And, if one
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m Secure Key Exchange provisioning process diagram

7 % R \-/_/ \-/_/ . ye @ =Y
——Python App. AWS Website—| Encrypt
@ * Random -
N =
Store and Lock @V's“a' Es.120 |Password
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. Local Operator | o576 v Secure '— Password
Device Serial F _ TLS
Private e
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@. Public Key 1 <7\|_> ECDh
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Eci;”;e b Server Private Encrypted
Pairey Devic.e Server Key, Server i Store Private
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Key Key Encrypted
Serial Password,
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@ Device \ | Amazon bl
ATECC608A 1 Public [ DynamoDB : ic
kHardware Security Module ) Key Serial Device ey Generate
Number Table Server ECC
Key Pair
N CAN Logger 3 Y, ~— L Python Application ) ~— . Amazon Web Services Cloud

device is compromised, it will not compromise all devices and
the overall system should still function properly. The CAN
logger was designed to follow this principle.

Provisioning

Provisioning Function The provisioning process is a
one-time public key exchange between the CAN logger device
and the server hosted through AWS before the devices get
delivered to the users. A provisioning operator or system
administrator will serve as a connecting role to implement
and monitor the process between the device and the server.
The primary purposes of the initial provisioning are to acquire
the device’s identification for the server database and to
exchange public keys to establish the same shared secret for
secure communication using asymmetric cryptography. The
steps in key exchange provision are depicted in Figure 15 on
the following page.

The enumerated descriptions for Figure 15 are described
in Table 3.

Get Server Private Key Password Function During
the provisioning process, the random password generated for
the server private key is sent to the local computer Python
application. The key is converted to an ASCII-armored PEM
form, which is known as the serialized private key. The
operator or administrator has an option to decrypt the
password and use it to retrieve the serialized server private
key stored in the JSON physical backup file. The process is
illustrated in Figure 16 and Table 4.

The following table describes Figure 16.

Normal Operation

Secure CAN Logging After the key exchange provision,
the device is ready to used for logging sessions. In this process,

m Serialized server private key password

function diagram

© SAE International.
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TABLE 3 Secure key exchange provisioning process description

SECURE CONTROLLER AREA NETWORK LOGGING -

The ATECC608A hardware security module first generates an ECC key pair, which is the device

The device private key is locked in the memory slot and cannot be changed or read.
The device’s public key along with the ATECC608A ID are first sent to a Python application on a

local computer controlled by the provisioning operator. The connection here is through local serial

The Python application then forwards the device public key and the HSM ID to AWS through the
Once the server receives the data from the Python application, it will use the lambda function to
The server private key is encrypted in AWS Key Management Service (KMS) using its master key
The encrypted server private key is then stored and tied to the device ID in the AWS DynamoDB
The shared secret key is derived with ECDH pre-master with the device public key and the server
The server private key is serialized and encrypted with a randomly generated 16-byte password for
The password is encrypted using AES-128 ECB mode because it is only 16 bytes. The AES

The server public key, server serialized encrypted private key, and encrypted password are sent

back to the Python application using the same secure TLS communication.

The provisioning operator will then perform a visual key comparation between the device and

server public keys obtained from the Python application to the ones visible on AWS website. This
makes sure that the server and the device both have the other’s authentic public key in case the
communication between the Python application and the AWS server is compromised.

Once the provisioning operator confirms the key match, the server public key will be sent to the
The server public key is stored and locked in the ATECC608A memory key slot for future function

The provisioning operator can also save the serialized server private key, encrypted password, and

the corresponding serial number to a JSON file, which is a physical backup that the administrators
keep. However, to use the server private key, it needs to be loaded with the corresponding
password, which can be decrypted as described in the next section.

Process System Description
1 Embedded Firmware
private key and public key.
Embedded Firmware
Local Computer
(mini USB cable).
4 Local Computer
internet with secure TLS protocol.
5 AWS Cloud
generate its ECC key pair specifically for this CAN logger.
6 AWS Cloud
(unique key managed by AWS).
7 AWS Cloud
database.
8 AWS Cloud
private key.
9 AWS Cloud
back up purpose.
10 AWS Cloud
encryption key used is the shared secret derived from ECDH.
n AWS Cloud
12 Local Computer
13 Local Computer
CAN Logger 3 through local serial.
14 Embedded Firmware
implementation.
15 Local Computer
16 Local Computer

the log data will be encrypted in real time and then signed in
the CAN Logger 3 before sending to the server. These steps
ensure that the contents of the files are not exposed in storage
and while being transmitted to the server through the Internet.
Signing the logs verify that the server receives authentic data
from the correct sender. The server can then decrypt and
analyze the data based on user needs using the calculated
shared secret key from the provisioning step. The logging
process is depicted in Figure 17.

Every time the device starts a logging session, the
ATECCG608A generates a 32-byte random number, which is
splitinto a 16-byte AES session key and a 16-byte initialization
vector (IV). The CAN data is logged in a way that the logger
initially determines the bus bitrate, generates a binary file in
the SD card, and starts collecting data to fill up a 512-byte
block with CRC-32 checksum included in the last four bytes.
When this buffer is full, the logger encrypts the data, writes
it to the binary file, resets the buffer, and repeats the process
until the logging stops. Because some CAN messages are
repeated periodically in a truck network, using AES in ECB
mode can pose a potential risk to an AES plain text attack. As

If the key-check fails, the application will show an error message.

aresult, the buffer is encrypted with AES-128 CBC mode using
the generated AES session key and I'V. When logging ceases,
the file is closed and written to the SD card. The encrypted
log file is then hashed using SHA256 in the program code and
signed using the ECDSA ATECC608A function, which
produces the file’s signature.

Upon generation of the session key and IV, the AES
session key is encrypted with AES-128 using the shared secret,
which is calculated at the beginning of the logging session
with ECDH pre-master function using the device private key
and server public key as inputs. The encrypted AES session
key and the signature are stored in the metadata text file along
with the AES IV, the bitrate, and the filename. The current
information in the metadata text file is hashed and signed
similarly to the encrypted log file, producing a text file signa-
ture to ensure the authenticity of the text file. The text file
signature is then appended to metadata text file, which along
with the encrypted log file, are then stored in the SD card until
being transferred to the server.

At the time of this writing, the clients will need to use
the Python user application to upload the data to the server.
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The clients must log in with their credentials to identify them-
selves and their device. Through local serial, the device will
be connected to the application where the log files information
will be displayed on the interface. The clients can then select
and upload the desire log files along with their corresponding

TABLE 4 Serialized server private key password
function description

Process System Description

1 Embedded The CAN logger initially sends its
Firmware serial number to the Python
application for identification.

2 Local Computer The local computer Python
application loads the backup JSON
and looks up the encrypted
password from the corresponding
serial number from the file.

3 Local Computer The encrypted password is sent to
the CAN logger device via local
serial.

4 Embedded The shared secret key is derived

Firmware from ECDH pre-master algorithm
with the stored device private key
and the server public key.

5 Embedded The encrypted password is

Firmware decrypted using the shared secret
key.

6 Local Computer The decrypted password is sent

back to the local computer
application where it is displayed for
the operator or administrator.

© SAE International.

metadata text files to AWS cloud via secure TLS communica-
tion. In theory, the hardware can support automatic uploading
through the WiFi subsystem in the CAN Logger 3.

Once the server receives the metadata and the encrypted
log files, the server will populate the metadata in the AWS
DynamoDB database, and store the encrypted log file in AWS
S3 storage service. When the file is needed upon user request,
the server will extract the corresponding server encrypted
private key and device public key from the database to decrypt
the file. The server will first decrypt the server’s encrypted
private key using AWS key management service. With the
server private key and the device public key, the shared secret
key is calculated with ECDH pre-master function using the
server private key and the device public key. The encrypted
AES session key for the file from the database is then decrypted
using the shared secret key. The encrypted log file now can
be decrypted using AES-128 CBC mode with the AES session
key obtained previously and the AES IV from the database.
However, before decrypting, the integrity of the file is verified
using ECDSA with its signature and device public key to make
sure the file has not been tampered with. After the integrity
is checked, the file is decrypted before being available to
the user.

Middleware (Python User
Interface)
The CAN Logger and the server are connected by the Python

interface, which is controlled by the user. The GUI is shown
in Figure 18 and its functions are described in Figure 19.
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Description

When the clients first run the application, it will auto-
matically ask for username and password with a dialog box
to submit to the server and then return a token for further
user authentication. This process can also be done by selecting
Login button under User menu dropdown. Once the clients
have successfully identified themselves, the next step is to
connect the logger device by selecting Logger dropdown menu
and Connect button to choose the current device serial COM
port. This function will parse through all the data on the
device SD card and grab all the metadata text files to verify
their authenticity with the signature appended at the end of
the file using the device public key. When the files are verified,
the metadata of all available binary files stored in the SD card
is displayed on the Python application, as shown in Figure 18.
The clients now can proceed to send the data to the server by
clicking on the desire file and selecting Upload button under
the File menu dropdown. The application will download the
file through local serial and send a POST request to the server
with the data.

Beside the mentioned functions, the Python user applica-
tion also has other buttons with their descriptions shown in
Figure 19. The Hello button under the User menu dropdown
helps the clients test their connectivity and authentication
between their end to the AWS server. A successful dialog box
will appear to indicate that the correct API key is used. Under

SECURE CONTROLLER AREA NETWORK LOGGING -

the Logger menu dropdown, the Format SD button will erase
and format the SD card on the connected device to blank state.
The Provision button should only be used once and at the
provisioning process by the manufacture. As described in the
provisioning process above, this function exchanges the public
keys between the logger and the AWS server securely. Lastly,
if the clients want to decrypt a desired file locally, the Get Key
function sends the selected file’s SHA-256 digest and the
device serial number to the server and requests the corre-
sponding plaintext AES session key. The logger must be provi-
sioned before with a securely stored key tied to the serial
number for this function to work. The key, once received
successfully from the server, can be used to decrypt the
encrypted log file.

Summary/Conclusions

The CAN data-gathering project is needed to establish a
database of operating heavy vehicle network communication.
To accommodate the large scale of CAN logs, the data are
uploaded and stored in the cloud. Security mechanism is
required to protect data confidentiality and integrity during
logging operation that involves the IoT. The approach of secure
CAN logger project produces the CAN Logger 3 device, which
follows common security standards using symmetric and
asymmetric encryption. The functionality of the device has
been conducted to fulfill the operational requirements of
the project.

Secure end-to-end communication between vehicles and
their data management services is vital when confidentiality
and integrity are important factors in the processes of data
monitoring and collection. In a typical heavy truck model,
OEMs are not required to design a built-in data monitoring
and management system for the customers. However, due to
the horizontal integration design, this can be done mostly by
telematics companies or third-party devices that involve a
cloud IoT platform. Secure end-to-end communication may
or may not be implemented by these third-party service
providers. However, if they do implement it, their process is
likely to be proprietary and the customers have to trust
their implementation.

This paper describes the CAN Logger 3 software design
that provides a secure end-to-end data transmission between
the vehicles to the AWS cloud platform with the Python client
application as a user supporting interface. There is no one
unique way to implement a secure end-to-end communica-
tion, but this project uses off-the-shelf products as well as
industry recommended practices to carry out the task. The
documentation and source codes of the CAN Logger 3 design
are available to the public for references, and it has the
following features:

* A low-cost hardware security module is used for secure
key storage along with cryptographic implementations,
including Diffie-Hellman key exchange, digital
signature, and encryption.

* A public key exchange process between the CAN Logger
3 and the AWS cloud is performed during the
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TABLE 5 Logging and uploading process description

Process

1
2
3

10

l

12
13
14
15
16

17

18

19

20

21

22

23

24

25

System

Embedded Firmware
Embedded Firmware
Embedded Firmware

Embedded Firmware

Embedded Firmware
Embedded Firmware

Embedded Firmware

Embedded Firmware
Embedded Firmware

Embedded Firmware
Embedded Firmware

Embedded Firmware
Embedded Firmware
Embedded Firmware
Local Computer

Local Computer

Local Computer

AWS Cloud
AWS Cloud
AWS Cloud
AWS Cloud
AWS Cloud

AWS Cloud

Local Computer

AWS Cloud

Description
When logging session starts, the ATECC608A HSM generates a 32-byte random number.
The first 16 bytes of the 32-byte number is designated for the AES key of this logging session.

The last 16 bytes of the 32-byte number is designated for the initialization vector (IV) for the AES
CBC mode.

The CAN logger initially determines the CAN bus bitrate with autobaud, and generates a metadata
text file with the same name as the log file, which contains the timestamp and bitrate, to be stored
on the SD card.

The AES IV is appended to the metadata file.

The CAN logger collects heavy vehicle data in 512-byte buffer. The first 508 bytes are actual data
and the last 4 bytes are CRC-32 checksum for error detection. During the logging, the buffer is
encrypted by the mmCAU and written to the binary file. When this buffer is full, the processor
hashes and updates the hash with previous buffers, if any. The buffer is reset, and the process
repeats until the logging stops. A new log file is started when the current logging session reaches
1Gb of data.

After the logging session finishes, the encrypted log file is stored in the SD card. This file has the
same name as the metadata file and is in binary format.

The SHA-256 hash of the encrypted log file is appended to the metadata file.

The shared secret key is derived from ECDH pre-master algorithm using the device private key and
the server public key stored in the ATECC608A HSM.

The 16-byte AES session key is encrypted with AES-128 ECB using the shared secret key. The
encrypted key is then appended to the metadata file.

The device public key stored in the ATECC608A HSM is appended to the metadata file for later
local verification.

The metadata file is hashed using SHA-256.
The metadata file hash digest is signed with ECDSA using the device private key.
The metadata text file appended with its signature is stored in the SD card.

Before uploading the file to AWS, the user must log in with their credentials to identify themselves
and establish secure connection. Their credentials will be tied to the uploading session later. The
login process follows the AWS API authentication, which will be explained in detail later.

Through local serial, the device connects to the application which extracts the metadata file with
its signature and the encrypted log file.

The metadata file signature is verified using the device public key stored in the metadata file. This
process mainly checks the metadata file for error that may occur during logging operation or
transmission to the computer application. However, it does not guarantee the file’s integrity
because the device public key used for verification is stored in the data to be verified itself and
thus, the key is not reliable. Malicious users can replace the key with their own public key and
resign the metadata file. A true integrity check will be performed on the AWS side. After the
metadata is successfully verified, the metadata and its signature are sent to AWS via the Internet
with secure TLS.

Once the server receives the metadata, it first checks for invalid session key, such as key containing
all OxFF or 0x00 that could occur when the logger failed to encrypt the AES session key.

The metadata file is hashed with SHA-256. The hash digest will be used for ECDSA verification.
The device public key is retrieved from AWS DynamoDB database using the device serial number
from the metadata. The device public key here is from the provisioning process and thus, it is
reliable to be used in ECDSA verification.

The metadata file is verified with ECDSA using the metadata file hash, its signature, and the device
public key.

If the metadata verification is successful, AWS sends a response back to the local computer
application with a message that the metadata verification has passed.

If the metadata verification fails, AWS sends a response back to the local computer application
with a message that the metadata verification has not passed and the metadata may have been
compromised.

When the local computer application receives the message that the metadata has been verified
successfully, the application starts sending the encrypted log file to AWS.

When AWS receives the encrypted log file, the server hashes the file with SHA-256 and the hash
digest is compared with the one from the metadata file.

© SAE International.
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If the hashes match, the encrypted log file with its corresponding hash and user credentials are

stored in Amazon S3 Bucket. AWS also sends a response back to the local computer application
with a message that the encrypted log file has been uploaded successfully.

Process System Description
26 AWS Cloud
27 AWS Cloud

If the hashes do not match, AWS also sends a response back to the local computer application

with a message that the encrypted log file has not been uploaded because the file has been

compromised.

provisioning process at production. The same shared
secret key can be derived later from both parties for
secure communication.

* Every truck logging session is encrypted using a
randomly generated key, which is then encrypted using
the shared secret key from the provisioning process.
Thus, all the sensitive information is encrypted to
protect data confidentiality before being stored on the
local SD card.

* A client application interface is made for users to
transfer their data from the CAN Logger 3 to the AWS
server as well as to view and download uploaded files
from the database. The communication between the
device and the client application is through local serial,
and the communication between the client application
and AWS server is through the Internet with secure TLS
using the Python requests module.

* Every truck logging session is hashed, and the hash
digest along with the logging session metadata are signed
using the device private key. The signature must
be successfully verified by the AWS server using the
device public key obtained from the provisioning process
before the log data is uploaded and stored on the server
database. This step verifies that the data is from the
correct sender and it has not been altered in any way,
which is very important in cybersecurity measures as
well as forensics purposes.

* User access control is implemented to ensure that only
authorized users can access their data only or data that
has been shared with them.

* Each device’s vital information is backed up to a local
drive, which is kept by the administrators.

The hardware and software system comprising the CAN
Logger 3 outperforms previous systems as it does not drop
any frames, even with a saturated CAN bus. Furthermore, the
confidentiality of the system is maintained from the moment
the CAN traffic is recorded.

The CAN logging project has gathered a significant
amount of heavy truck CAN traffic with more than 11 billion
messages for the database, and more data is still being
collected. Moreover, a CAN logger device with an AWS cloud
system has been designed for the project to provide secure
data collection and storage by implementing cybersecurity
measures following the industry standards. There is also a
user-friendly client application GUI for users to manage their
data between the device and the AWS server. The log data
from the project can only be accessed by its owner and the
project administrators; however, the CAN logging project

hardware and source codes are made available to the trucking
industry as well as the public with the hope that it can
be applied to increase cybersecurity posture in heavy vehicles,
and its documentation can be found on the GitHub
repository [8].

Cyber-physical system security, as a field of study, is in
its infancy. This paper represents a concrete example of
designing an entire data logging system (i.e. device, front-end
and back-end) with cybersecurity as a primary objective. The
CAN Logger 3 project demonstrates the economics and feasi-
bility of incorporating cybersecurity as a design requirement.
This body of work should be useful for inspiring future designs
that incorporate CAN bus, hardware security modules, and
system level communications.
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Definitions/Abbreviations

AES - Advanced encryption standard cryptography
AWS - Amazon web services

CAN - Controller area network

CBC - Cipher blocker chaining

ECB - Electronic codebook

ECC - Elliptic-curve cryptography

ECDH - Elliptic-curve Diffie-Hellman

ECDSA - Elliptic-curve digital signature algorithm
ECU - Electronic control unit

GUI - Graphical user interface

HSM - Hardware security module

IDE - Integrated development environment

IoT - Internet of Things

IV - Initialization vector

mmCAU - Memory-mapped crypto acceleration unit
NIST - National Institute of Standards and Technology
NMEFTA - National Motor Freight Traffic Association
NSF - National Science Foundation

PCB - Printed circuit board

RSA - Rivest-Shamir-Adelman asymmetric cryptography
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