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Abstract

Practical encryption is an important tool in improving 
the cybersecurity posture of vehicle data loggers and 
engineering tools. However, low-cost embedded 

systems struggle with reliably capturing and encrypting all 
frames on the vehicle networks. In this paper, implementa-
tions of symmetric and asymmetric algorithms were used 
to perform envelope encryption of session keys with 
symmetric encryption algorithms while logging vehicle 
controller area network (CAN) traffic. Maintaining deter-
minism and minimizing latency are primary considerations 
when implementing cryptographic solutions in an embedded 
system. To satisfy the timing requirements for vehicle 
systems, the memory-mapped Cryptographic Acceleration 
Unit (mmCAU) on the NXP K66 processor enabled 6.4Mb/

sec symmetric encryption rates, which enables logging of 
multiple channels at 100% bus load. Using AES-128 in Cipher 
Block Chaining (CBC) mode provides the encryption for 
data confidentiality. Errors and integrity checks are handled 
by a Cyclic Redundancy Check (CRC) checksum withing the 
data and digitally signed SHA256 hash values of the overall 
encrypted record secured the integrity of the data. A 
hardware security module (HSM) is utilized to store asym-
metric key pairs for key management. The HSM implements 
Elliptic-Curve Cryptography (ECC) algorithms for key 
exchanges and digital signatures. Secure collection and 
secure data uploads to a central server are demonstrated. 
This work and the source code are open source with the goal 
of inspiring improved secure communications for 
vehicle networks.

Introduction

Historically, passenger cars and heavy trucks have been 
made of various mechanical and thermal systems that 
convert energy from fuel to kinetic energy. However, 

modern vehicles incorporate many Electronic Control Units 
(ECUs) communicating over an internal vehicle network 
called the Controller Area Network (CAN). These ECUs carry 
commands, such as testing the brakes, produce more torque, 
etc. The CAN also is used for sharing sensor data, such as 
vehicle speed, engine speed, fuel levels, etc. While the addi-
tional electronic control systems have enabled increases in 
fuel efficiency, vehicle reliability, and business effectiveness, 
the added systems create new levels of complexity.

The National Motor Freight Traffic Association (NMFTA) 
has published a whitepaper regarding the heavy vehicle cyber-
security [1]. The paper describes why the technologies on these 
vehicles has progressed (the good), the flaws inherent with 
such architectures (the bad), and how those flaws can be easily 
exploited (the ugly).

With so many interconnected ECUs and integrated 
sensors available in a modern vehicle, safety and comfort 
features are more robust and well-implemented. Most vehicles 
now have Anti-lock Braking System, Traction Control System, 
Roll-over Stability Control, and Electronic Stability Control 
as standard safety features that significantly improve the 
driver ability to gain back vehicle control during times when 
accidents are likely to happen. In addition, some heavy vehicles 
even include an integrated airbag module to minimize 
impacting damage on the driver if accidents do occur. The 

safety of vehicles has been greatly improved over the years, 
and automotive companies continue to design and optimize 
these systems.

In addition to safety, comfort is an important design 
consideration. Depending on the consumer’s desires, different 
models or trims now possess some features. Some basic 
features include door ajar indicator, infotainment sound level 
adjustment based on vehicle speed, automatic headlights, etc. 
Higher levels of automation available today include complex 
systems such as Adaptive Cruise Control, Lane Departure 
Warning, Lane Keeping Assist, Automated Parking Assist, etc.

The automotive industry is heading toward connected 
vehicles where Vehicle-to-Vehicle, Vehicle-to-Infrastructure, 
or self-driving vehicles are being developed and tested. As a 
result, safety, comfort, and automation are the key elements 
in successful vehicle design, and the evolution in computeriza-
tion within vehicles has provided a big leap in the industry.

Heavy trucks and passenger cars use CAN for internal 
network communications. Developed by Bosch in the early 
1980s, CAN has been used by the automotive industry 
progressively since then. The most common implementations 
of CAN versions used are CAN 2.0A with 11-bit device identi-
fiers for passenger cars, and CAN 2.0B with 29-bit device 
identifiers often found on heavy trucks, as specified by 
J1939-21 Data Link Layer [2]. The CAN bus is made up of 
multiple nodes, primarily ECUs, that communicate with 
differential signaling through two wires: CAN high (CANH) 
and CAN low (CANL). The CAN protocol is fundamentally 
flawed from a data security perspective and has been heavily 

Downloaded from SAE International by Jeremy Daily, Tuesday, August 10, 2021



SECURE CONTROLLER AREA NETWORK LOGGING	 2

researched. The NMFTA whitepaper [1] lists some vulnerabili-
ties associated with the architecture of CAN protocol:

•• Any node can listen, and any node can talk. There is no 
order or permission required for a node to start 
communicating, provided it is on the CAN bus.

•• Any node can assert priority. CAN protocol handles 
message collision with arbitration, in which the message 
with highest priority wins.

•• There is no encryption or validation within the CAN bus 
communication. The messages are sent in clear text; all 
received messages are assumed to have been sent from 
an authorized sender.

•• The limit of 8 bytes per CAN frame eliminates the use of 
any modern block cipher to encrypt the data to 
ensure confidentiality.

CAN is a high speed, robust communication protocol; 
however, it was made in the time where cybersecurity was not 
in the mindset and the vehicle connectivity was not consid-
ered. The only security in the CAN messages is through obscu-
rity which means each manufacturer designs its own propri-
etary message IDs and data fields without publishing it. 
Nevertheless, as seen by the mentioned characteristics above, 
data availability, integrity, and confidentiality can be easily 
exploited. If the network or a node is compromised by an 
attack, the vehicle safety mechanisms can malfunction.

There are a few common attacks that have been done, 
either by actual hackers or in lab testing, as described in the 
NMFTA whitepaper. These are considered pain-points for 
engineering a secure system.

•• Denial of Service- sending messages with the highest 
priority as fast as possible will overtake other legitimate 
messages with arbitration and hence, overwhelm the 
CAN bus. This leads to ECUs being unable to 
communicate with each other; as a result, the vehicle can 
behave unpredictably and/or cannot function at all. This 
is a basic attack that affects data availability.

•• Middleperson- a malicious device is inserted between 
two or more communicating parties where it can observe 
and modify messages transmitting in between them. 
Moreover, a CAN bus node can be taken over and 
become the middleperson, where it sends out modified 
messages to impersonate the original sender. Data 
integrity and confidentiality can be exploited, and 
commands can be changed.

•• Diagnostic Packets- if attackers have access to the CAN 
bus, they may also be able to access the diagnostic 
functions that automotive technicians use for 
troubleshooting. These functions are mainly intended to 
be run in a controlled environment and may involve 
important safety features. If they are exploited and used 
incorrectly, they will do more harm than good.

•• ECUs Firmware- the firmware is the memory and 
commands for the brain of the vehicle operation. 
Sometimes, it needs to be updated or debugged by the 
manufacturer, and this process usually takes place 
through the diagnostic port, which involves the CAN 

bus. Hackers can download, reverse-engineer the 
firmware to assembly level or an intermediate 
representation and determine the proprietary data 
structures designed by the manufacturers. They may 
have enough information to creatively exploit the vehicle 
or even rewrite their modified firmware back to 
the ECUs.

•• Fuzzing- this is a method where messages are injected 
randomly into the CAN bus to determine how the 
vehicle behaves. Different functions can be identified and 
tied to message parameters using fuzzing techniques. 
Therefore, proprietary information is at risk of being 
exposed. Fuzzing and lead to unintended cyber-physical 
reactions and even physical damage.

A good model against cybersecurity threats can 
be measured by the CIA Triad: confidentiality, integrity, and 
availability. Confidentiality means sensitive information 
should be protected against unauthorized access. Enforcing 
confidentiality usually involves cryptographic methods. 
Integrity means that the data has not been altered by unau-
thorized users and the originator of the data can be verified. 
Current methods to protect data integrity use cryptographic 
hashing and digital signatures. Lastly, availability means 
authorized users can access the data. Protecting data avail-
ability depends on the system infrastructure and models that 
can quickly detect threats or failures and be resilient when 
such circumstances occur. For CAN network systems, any 
additional cryptographic implementations could be pursued 
to increase the CIA triad benchmark for cybersecurity.

Objective
Automobiles have cybersecurity concerns based on the char-
acteristics of the CAN protocol as there are many attack 
vectors and methods that can be implemented to exploit auto-
motive systems. However, heavy trucks or commercial vehicles 
are exposed to cybersecurity risks differently comparing to 
passenger vehicles due to some major factors. The primary 
distinguishing feature is that heavy trucks follow the SAE 
J1939 standard, which is a recommended practice for commu-
nication and diagnostics among vehicle components. The 
manufacturers are not legally obligated to abide by the 
standard; however, they do implement many parts of SAE 
J1939 on a heavy vehicle network. The second difference is 
that heavy trucks are built with accommodations for hori-
zontal integration to allow customers to customize the vehicles 
based on their needs. This means that customers have many 
options from which to choose for various components, 
including engines, brake controllers, transmissions, telematics 
units, infotainment systems. A unified communications 
standard, such as SAE J1939, is necessary to support interoper-
ability and “plug and play” functionality between these dispa-
rate hardware systems. However, with open standards, heavy 
vehicles are easy targets because hackers can easily look for 
weaknesses within the network structure from the publicly 
available information. The CAN protocol security through 
obscurity strategy will continue to fail on top of its existing 
vulnerability to some attacks.
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The last difference between passenger vehicles and heavy 
trucks is the prevalent use of third-party telematics devices. 
These telematics companies provide equipment that is 
installed on the vehicle network to keep track of information 
such as location, speed, fuel status, diagnostic trouble codes, 
etc. Telematics units can be seen in big fleets where monitoring 
hundreds or thousands of trucks is essential for business 
operations and compliance with regulations. A cybersecurity 
challenge is these telematics units are connected wirelessly, 
which introduces a new attack vector to the previously air-
gapped vehicle network.

With these threats, heavy vehicles may be at high risk of 
being exposed to cyber-attacks. Therefore, the heavy vehicle 
industries should realize that increasing cybersecurity posture 
and mitigating risk and potential threats are important objec-
tives in not only designing and building new commercial 
vehicles, but also maintaining current trucks on the road. 
Preventing attacks from occurring is always preferable to 
mitigating an attack once it takes place. Thus, intrusion and 
anomaly detection mechanisms need to be developed and 
deployed in the CAN bus system. A large pool of data from 
heavy vehicle CAN buses in the form of log files from normally 
operating trucks is essential for development and testing of 
vehicle network-based cybersecurity controls. This data will 
consist of various types of CAN messages that take place on 
the bus, which can be periodic from normal operation or 
aperiodic from responding to special events.

The purpose of this paper is to report on a solution to 
build such a data pool securely and efficiently.

Related Research
There are many public papers regarding different vehicle 
hacking techniques that exploit the CAN security posture. 
One of them is the infamous Jeep hack in 2015, performed by 
Charlie Miller and Chris Valasek [3]. The authors were able 
to find a way to gain access to deep level networks where sensi-
tive signals are transmitted via the infotainment system. The 
firmware of this head unit was modified to execute malicious 
commands to critical ECUs. The result was that the vehicle 
was disabled. Data integrity and confidentiality have been 
exploited with this technique.

In another paper, Subhojeet Mukherjee, et al. described 
a denial of service attack on embedded networks in commer-
cial vehicles [4]. With his testbed consisting of a single, high-
speed CAN bus of 250 kbps, he has successfully shown that 
by sending a large number of request messages for a specific 
parameter, the number of regular messages dropped signifi-
cantly due to the high computational load. Understanding of 
the limit of the system performance, Subhojeet exploited data 
availability here.

In a different paper, Kyong-Tak Cho and Kang Shin took 
advantage of the error handling feature of the CAN protocol 
to shutdown ECU nodes from the network [5]. When an ECU 
tried to communicate, they injected attack messages to trigger 
the error flag to increase the victim Transmit Error Counter 
(TEC). When the TEC is above 255, the node is forced to shut 
down, hence the so-called bus-off mode. They can then send 

messages with forged ID and data to impersonate the node. 
Again, data integrity has been violated using the CAN data 
protocol. These attacks are no longer hard to implement, espe-
cially with the current publicly available information and 
technology. This research motivated the inclusion of the error 
counters in the CAN Logger data record.

Several CAN projects to gather or monitor vehicle data 
have been pursued. A group of students from the University 
of Michigan have attempted to build a standalone embedded 
system to collect CAN messages, while filtering important 
ones with the purpose of warning drivers [6]. Adnan Shaout, 
Dhanush Mysuru, and Karthik Raghupathy described in the 
paper that their setup consisted of Vector software CANoe 
and Vector 1610 CAN hardware for CAN simulation, an 
Arduino UNO with ATMega328p processor and a CAN Shield 
hardware for CAN interface, a display for warning driver, and 
a Teensy 3.6 with SD card slot for memory storage. During 
the experiment, the Arduino UNO sniffed all the CAN 
messages with the help of the CAN Shield. This processor 
filtered out the messages with appropriate addresses and sent 
a copy of the data to the Teensy 3.6 for storage on the SD card. 
The display showed error messages if the messages contain 
undesired sensor values. The design functioned as intended 
but encountered computing power problems that caused the 
system to drop messages that arrived with an interval less 
than 50ms. Progress has been made on this problem, as stated 
in the paper, where the modified system can handle up to inter 
message time of 5ms. However, when a vehicle is under denial 
of service attack, the messages can be injected at a much faster 
rate, which can pose a challenging issue. If the system cannot 
capture all messages, it will not meet the requirements of a 
high fidelity CAN monitor. The system cybersecurity was 
deemed to be out of scope and thus not addressed in the refer-
enced paper. However, if there is any cybersecurity threat, this 
system will not likely to detect such attack and may even fail 
to operate.

In another project, Manthias Johanson and Lennart 
Karlsson discussed their wireless diagnostic system, where 
CAN messages are captured and monitored over an Internet 
connection [7]. This is interesting because the project involved 
the Internet of Things (IoT), which led to more complications 
in the system. The design was a wireless Diagnostic Read-out 
(DRO) system, which consisted of the Vehicle Information 
and Diagnostic for Aftersales (VIDA) device as a DRO system, 
a custom-built dynamically linked library (DLL) for tunneling 
CAN frames over the Internet, a mobile unit equipped with 
an embedded Linux OS computer for CAN interface, an 
Internet connection through a General Packet Radio Services 
(GPRS) modem, and a server for dispatching requests. The 
DRO process involved a manual initiation with a button on 
the mobile device. An encrypted Transmission Control 
Protocol (TCP) connection was established on the server, with 
a public IP address reachable from the mobile unit. After that, 
specific diagnostic CAN messages were sent to the mobile unit 
from the server, where they were relayed onto the CAN bus. 
The responses were captured and sent back to the server. Due 
to the bandwidth limitation, the system could not relay all 
messages on the CAN bus and, therefore, only filtered out 
important ones. However, the paper did touch on the concerns 
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of data integrity and confidentiality because an Internet 
connection was used by employing encrypted TCP connection 
along with RSA-based authentication mechanism.

Capturing all CAN data, particularly at high speeds, was 
a common problem that impacted both referenced CAN 
monitoring projects above. This is even harder to achieve when 
cybersecurity measures and wireless connection are imple-
mented, because processing power and transmission band-
width are limited, respectively.

Current Approach
Due to the complexity and high cost of integrating a new 
embedded system into the existing vehicle network compo-
nents, the best approach to collect CAN data is to design and 
build an affordable standalone device that can be  easily 
connected to the vehicle CAN bus. Because the device is stand-
alone, the data should be  stored on an external memory 
storage, such as SD cards, for simple management. The device 
must be able to capture all the data because missing abnormal 
messages will defeat the purpose of the project. To do so, the 
device needs to have a direct connection to the vehicle 
networks. Data volume can grow, and thus, a cloud or server 
platform may be useful to store and manage the logs from 
many different uploading devices. Using third-party servers 
accessed over the Internet poses a risk from a cybersecurity 
aspect. Moreover, data integrity and confidentiality are two 
important factors that need to be protected. The reasons for 
encrypting the data are that enciphered data is useless and 
some vehicle owners do not wish to publish their data. As a 
result, security measures such as cryptographic algorithms 
are utilized to encrypt, sign, and verify the data.

Organization
The paper provides the following contributions:

	 1.	 Detailed documentation regarding the hardware 
design of the CAN logging device, such that some of 
the example may provide inspiration with the 
purpose of increasing cybersecurity posture.

	 2.	 Examples of end-to-end security with a hardware 
security module (HSM) and cloud-based 
encryption system.

	 3.	 Software reference design to implement a cloud-based 
system with pre-provisioned security devices.

The paper discusses the system requirements, hardware 
implementation, test and evaluation results, and overall 
software design to include the middleware and cloud back-
end. All the source code for the tests and implementations is 
available on Github [8].

Design Requirements
To carry out the objective, the CAN logger device must 
securely capture all CAN data under both normal and 
abnormal (i.e. 100% bus load or error frames) operating 

conditions. Secondly, the data must be securely stored and 
organized for easy retrieval and decoding by the data owner. 
Lastly, the design and source code should be made available 
to the public. A list of requirements for fulfilling the desired 
goals follows. While some requirements have not been vetted 
against industry standards, they have worked for laboratory 
uses. Most requirements were focused on heavy vehicle 
use cases.

	 1.	 The logger must connect to multiple vehicle networks 
using industry standard connectors. The connector 
should handle power, ground, CAN1-H, CAN1-L, 
CAN2-H, CAN2-L, CAN3-H, CAN3-L, J1708-H 
and J1708L.

	 2.	 The logger needs to be inexpensive and easy to 
manufacture because many devices are essential for 
efficiently collecting data from various locations. The 
desired cost per device should not exceed $200.

	 3.	 The logger must be able to capture all CAN messages, 
even at 100% bus load. This ensures the device’s 
reliable functionality to prevent losing any 
information that may be critical for data analysis.

	 4.	 In addition to the normal CAN messages, the logger 
must also capture error frames in order to help detect 
abnormal activity on the CAN bus.

	 5.	 The logger should use the vehicle battery line from the 
connector as a source for power to minimize cost 
associated with adding extra self-power components.

	 6.	 The logger must not lose data in the event of a power 
failure. Power failures could occur if the device is 
disconnected from the port or if vehicle loses power 
from the battery or alternator.

	 7.	 The logger must handle typical voltages associated 
with vehicle systems up to 24V. However, transients 
may go up to 30V or more because there are load 
dumps and reversals associated with inductive loads 
and starters that create voltage spikes. It is vital the 
device operation is sustainable and resilient in such 
conditions. Therefore, a maximum design system 
voltage of 36 V was chosen to mitigate the risk of 
system power failure that may occur. If the voltage 
exceeds the maximum specification, the device must 
also have an inexpensive way to protect critical 
components from permanent damage.

	 8.	 The logger must automatically detect different CAN 
bus speeds. Due to different CAN bitrates used on 
different vehicles, the device should be able to 
automatically detect the current bitrate on the bus. 
The most common ones on heavy trucks are 250 kbps 
and 500 kbps. Other bitrates that may be used are: 
125 kbps, 666 kbps, and 1 Mbps. This feature helps 
eliminate manual bitrate input from the user, and 
thus, making the operation quicker and 
more convenient.

	 9.	 The logger should have removable and expandable 
external storage for storing the log data.

	 10.	 The logger must employ standard cryptographic 
implementations to protect data integrity and 
confidentiality. Asymmetric keys can be utilized for 
signing, verifying, and safely exchanging symmetric 
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keys which are used for data encryption. Because the 
design and source code are going to be public, the 
objective is to achieve security using open standards.

	 11.	 The backend storage system needs to enable secure 
and scalable access to the data.

	 12.	 Users need a local interface to upload and download 
files from the server. This application must be a secure 
gateway for the system to authenticate users and 
monitor their activities. Users should not have 
permission to directly access files stored on the server.

CAN Logger Hardware
The CAN Logger is designed and built to log CAN messages 
on operating heavy vehicles. The device is an improved version 
of the based on two proofs of concept. Both ideas were 
products from university student projects. More information 
about these projects can be found on the GitHub repository 
in [8]. Because there were two earlier versions, the hardware 
presented herein is the third model, or the CAN Logger 3.

The CAN Logger 3 four-layer printed circuit board (PCB). 
The board has a dimension of 3.254” by 2.229”, which fits in 
the BUD HP-3651-B enclosure. The board was laid out using 
Altium Designer, and the design files are publicly available. 
The main three components that provide the functionality for 
the CAN Logger 3 are: 1) the NXP K66 ARM Cortex-M4F 
microprocessor, 2) the ATWINC1500 WIFI module, and 3) 
the ATECC608A hardware security module.

Block Diagram
The CAN Logger 3 hardware design is illustrated through the 
block diagram in Figure 2-10, in which the components will 
be discussed in detail in the next section.

Microprocessor The circuit to support the NXP K66 
processor was inspired by the Teensy 3.6 development board 
from PJRC.com. The Teensy 3.6 is an open-source hardware 

design that is compatible with the Arduino Integrated 
Development Environment (IDE). It is CAN compatible 
through the FlexCAN library [9]. The device’s dual CAN 
channels, and on-board SD card slot are features that meet 
the objective of this project. Powered by the K66 ARM 
Cortex-M4 microprocessor, the Teensy 3.6 has a clock speed 
up to 180Mhz. Moreover, the K66 also has an embedded 
mmCAU ColdFire coprocessor that performs cryptographic 
algorithms such as AES, DES, 3DES, MD5, SHA-1, and 
SHA-256. The datasheet of the K66 and mmCAU can be found 
in [10].

The mmCAU can use AES 128 to encrypt data at a rate 
of 6.4 Mbyte/second in ECB mode. The CAN Logger 3 is able 
to encrypt and log CAN traffic at 100% bus load. In addition, 

 FIGURE 1  CAN Logger 3 device showing the buttons and 
LEDs on the left and the cover removed on the right
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 FIGURE 2  CAN logger hardware system block diagram
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 FIGURE 3  CAN Logger 3 showing the ATWINC1500 WiFi 
module with its hardware switch
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the FlexCAN library has been modified to detect error 
frames [9]. This microprocessor satisfies the requirements of 
the project.

ATWINC1500 WIFI Module The CAN Logger 3 is also 
equipped with the low power consumption ATWINC1500 
WIFI module, which features IEEE 802.11 b/g/n and 2.4 GHz 
ISM band. This allows the CAN Logger to implement WIFI 
communication to transfer log files to the local computer 
before uploading or transfer the data straight to the server 
wirelessly, which is beneficial for the scope of the project. 

However, this also poses as an attack vector. To mitigate risk 
in specific applications, a physical switch is made in the design, 
as seen in Figure 6 above, such that users need to solder and 
bridge the jumper to enable the WIFI module. Thus, if users 
do not wish to use the WIFI feature, they can physically 
disable the ATWINC1500 module. The datasheet of the 
module can be found in [11].

ATECC608A Hardware Security Module The 
Microchip ATECC608A hardware security module (HSM) is 
the key component for the security aspect of the logging 
process. Information about the module can be found in [12]. 
The hardware is a cryptographic module with hardware-based 
key storage that protects up to 16 keys. Once the keys or confi-
dential data are stored and locked in the ATECC608A 
memory, the information cannot be read and can only be used 
internally by the hardware functions. This is a great feature 
in the cryptographic world where there is always a need to 
keep secrets in a safe space and not expose them to the external 
environments where they can be sniffed or exploited with 
methods such as middleperson attacks.

Moreover, the ATECC608 supports cryptographic algo-
rithms including AES-128 encrypt/decrypt, Galois field 
multiply for generic authenticated encryption block cipher 
mode, SHA256 & HMAC hash, and especially ECC following 
P256 NIST, Elliptic-curve Digital Signature Algorithm 
(ECDSA) following FIPS186-3, and Elliptic-curve Diffie-
Hellman (ECDH) following FIPS SP800-56A standards. The 
reason why ECC is preferably over other algorithms in IoT 
asymmetric cryptography is that ECC can meet the same 
security standard with a much smaller key size [13]. A 160-bit 
ECC key is equivalent to a 1024-bit RSA and Diffie-Hellman, 
or a 256-bit ECC key is equivalent to a 3072-bit RSA and 
Diffie-Hellman.

This means that ECC is much more powerful in terms of 
computing time and memory space. The speed test has been 
conducted on various embedded processors and the results 
in [14] shows the superior speed of ECC over RSA. With the 
cost of approximately $0.75 per piece and the provided 
features, the ATECC608A HSM was selected as the security 
module for this project.

Logging Fields
The goal of the logger is to efficiently write CAN messages to 
an SD card. Writing individual CAN messages (16 bytes) 
requires overhead when writing to the SD card and 16 byte 

 FIGURE 5  Automatic bit rate detection routine
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 FIGURE 4  CAN Logger 3 and the hardware 
security module
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 FIGURE 6  Electronic codebook (ECB) mode encryption
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blocks are not optimal. Instead, SD card write speeds are much 
higher when using 512 byte blocks. As such, we designed a 
512 byte buffer to write to the SD Card. This buffer contains 
19 CAN messages and associated meta data, as shown in 
Table 2. Each CAN frame has the following pieces of informa-
tion, as shown in Table 1:

•• Channel - representing the physical CAN hardware.

•• A real-time clock timestamp (seconds from the epoch)

•• A system microsecond counter

•• CAN Arbitration Identifier

•• Data Length Code

•• Eight bytes of CAN Data

The additional data in each frame includes the number 
of messages received on each channel, the Receive Error Count 
and the Transmit Error Counts. These additional counters 
can help determine different events on the network, especially 
if a so-called bus off attack takes place.

Additional metadata regarding the file name, write time 
of the last block, and a checksum are included. These often do 
not change as new data arrives, but filling in the tail of the 
write buffer with potentially useful information was more 
desirable than padding with meaningless characters.

If an error condition is detected by the CAN controller, 
the software will produce an error message by writing a CAN 
frame to the buffer with the error flag set. The error handling 
follows the same format and encoding as Linux SocketCAN 
error handling.

Functional Tests and 
Results
There are some crucial functions the CAN Logger 3 has to 
properly perform to successfully fulfill the operational and 
performance requirements. This section discusses a series of 
comprehensive testing to ensure such functionality of the 
CAN Logger 3. The test scripts can be found in the GitHub 
repository at [23].

CAN0 and CAN1 Test
The most important function of the CAN Logger 3 is to read 
and write CAN messages on the CAN0 and CAN1 channels. 
Two CAN loggers with the test script [61] were connected to 
a terminated CAN bus for testing.

Both channels were initiated at 250kbps bitrate. In the 
loop function, the CAN Logger 3 would read any available 
message while writing a random frame on both CAN channels. 
The fact that there were messages read on both channels means 
the CAN Logger 3 was able to successfully write and read 
CAN messages on CAN0 and CAN1, and thus, passed the test.
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l. Autobaud Function and Test
Autobaud or auto bitrate detection is an important feature of 
the CAN Logger 3. It is implemented by taking advantage of 
the Received Error Counter (REC), which can be found in the 
modified FlexCAN library at [9].

The Autobaud process was designed based on the recom-
mendations in J1939-16 Automatic Baud Rate Detection 
Process [15]. When the device is connected to the heavy 
vehicle network, the device will start Autobaud immediately 
and set to listen only mode. A sequence of bitrate choices is 
iterated through, which are 250,000, 500,000, 125,000, 
666,666, and 1,000,000 bit/s. The device first starts with the 
initial bitrate read from EEPROM. The CAN REC and receive 
timer are reset to 0. The device then polls for any available 
CAN frame that it can detect with the current bitrate. There 
is a 150 milliseconds timeout for the receive timer. During 
that duration, if the device detects CAN frames, then it is on 
the correct bitrate. The device will update the EEPROM with 
the correct bitrate setting if the previous one is different and 
end the Autobaud routine.

However, if there is no CAN frame detected, the device 
will proceed to read the CAN REC. If the number increases, 
that means the device is on wrong bitrate setting and it will 
change the CAN bitrate to the next one on the list and repeat 
the process until the right one is selected. If the CAN REC 
does not increase, this could mean that there is no actual CAN 
message on the network. If the timer has not expired, the 
device will go back and continue to poll for CAN frame. 
Otherwise, the device will change the CAN bitrate. The 
sequence is repeated until CAN messages are available on 
the network.

To test the Autobaud feature, a setup of two networks 
with two different bitrates of 250kbps and 500kbps was made. 
The device was first plugged in to the network with 250kbps 
bitrate and starts logging. After that, it was plugged into the 
second network with 500kbps bitrate. The metadata of the two 
log files show the bitrate on CAN0, which are 250kbps on one 
file and 500kbps on the other. In addition, the fact that the 
two corresponding log files were successfully created means 
the autobaud feature passed the test.

Symmetric Encryption Using 
AES-128
The log files are encrypted using the mmCAU with AES-128 
algorithm. There are many AES encryption modes that can 
be implemented. Encryption using Electronic Code Book 
(ECB) mode is the first generation of AES and the most basic 
form of block cipher encryption. It breaks up the input data 
into many 16-byte blocks and encrypts them individually 
using its AES session key. Thus, data of any size can be used 
as input and will be padded to the size that is divisible by 16, 
if necessary. However, the disadvantage of this mode is that 
it lacks diffusion. If identical 16-byte blocks are encrypted 
in ECB, the results are also identical. As a result, this can 
expose data patterns and does not provide true confidenti-
ality. As a matter of fact, a study on ciphertext entropy has 
proved that encryption using ECB mode is not suitable for 
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image or text files that have repeated identical data [16]. This 
is crucial because some CAN frames are periodic, meaning 
that the same data are sent within the same constant interval. 
Thus, encrypting CAN data using ECB mode is considered 
vulnerable. AES in the cipher block chaining (CBC) mode 
is used to overcome this problem where an initialization 
vector (IV) or so-called salt, which is an arbitrary number 
that is only used once, is XORed with the first block, and the 
cipher result is then XORed with the next block and so on. 
Therefore, each cipher block depends on all the previous 
ones, which scrambles the patterns and creates diffusion. 
Figure 6 and Figure 7 illustrate ECB and CBC modes for AES 
encryption processes, respectively.

The mmCAU uses the cryptolibAESSHA library [17] 
to implement its AES capability, with an Arduino interface 
published by Paul Stoffregen [18]. The AES-128 CBC encryp-
tion and decryption were tested against NIST test vectors 
[19]. The main functions from the test code is displayed  
below:

Logging Speed Test
This test explored the actual AES encryption speed of the 
mmCAU and verified that the CAN Logger 3 was able to log 

data at full bus load. An Arduino script was written to measure 
the rate of mmCAU encryption.

The script measured the time the mmCAU took to 
encrypt a 16-byte block using ECB and a 512-byte block using 
the CBC added function, in microseconds. Encrypting 
16-bytes took about 2 microseconds, which is equivalent to 8 
Mbyte/second. However, encrypting a 512-byte took 80 micro-
seconds, which is equivalent to 6.4 Mbyte/sec. The loss in 
speed was expected because CBC mode required more 
computing power than ECB.

Encrypted logging tests were performed at 100% busload 
for two CAN channels at 1 Mbit/second. The CAN Logger 3 
was able to capture and encrypt all messages, which is a rate 
of 2Mbits/second. To validate this claim, one CAN Logger 3 
was programmed to transmit 20,000 messages on each 
channel on an interval of 130.125 milliseconds. This interval 
is for an 8-byte message with no stuff bits at 100% load. The 
CAN Logger 3 that was programmed to encrypt and log the 
files captured all the messages in the same amount of time. 
Busload was monitored with the Linux SocketCAN can-utils 
[20] that showed over 100% busload. While truly exceeding 
100% busload is not feasible, the can-utils implementation for 
SocketCAN is not tuned to make accurate assessments. 
Therefore, this is an indicator of bus saturation, as opposed 
to a proof.

Secure Hash Algorithm
SHA-256 hashing is used for one-way mapping data of arbi-
trary size to a unique fixed-size digest of 32 bytes. Any change 
to the data will result in a completely different hash digest. 
Thus, it is a good way to check if the data has been altered. 
The log file and some important information from the logging 
operation are SHA-256 hashed with the Teensy 3.6 Evaluation 
Board. The library function was validated against NIST test 
vectors [21].

After importing the SHA-256 library, a Sha256 instance 
was created. The update function took the data in to hash and 
updated the digest. The final function would complete and 
output the hash digest of all the combined input. Figure 9 
shows the hash digest of NIST test vectors using the Teensy 
library and their correct hashes. The values are identical, 
meaning that the SHA-256 library is valid.

 FIGURE 7  Cipher Block Chaining (CBC) mode encryption
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 FIGURE 8  Test results for AES-128 CBC mode encryption 
and decryption
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 FIGURE 9  Result of the testing for SHA-256
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ECDH Pre-Master Calculation
This test shows the partial concept of ECDH pre-master key 
exchange by showing the shared secret result from the server 
(Python) and the client (Teensy). The first step is to generate 
an ECC key pair for the client. The client public key then will 
be manually loaded into the server Python script, where the 
server will generate an ECC key pair for itself and use its 
private key and the input client public key to calculate a shared 
secret. The server public key, along with the client keypair 
generated previously, will be then manually loaded into the 
Teensy script, where the client will use its private key and the 
server public key to calculate a shared secret.

Figure 10 shows that the client and the server calculate 
the same shared secret. This demonstrates the Diffie-Hellman 
key exchange concept where public keys are exchanged, and 
the client and the server can use the other's public key to 
generate the same shared secret for further use in 
secure communication.

Connection Interrupt Test
The CAN Logger 3 logs the data by opening, writing, and 
closing a binary file. If the closing process does not occur, all 
the data in this current logging session will be lost. The file 
closing function is only designed to be triggered when network 
activity has ceased. To verify that the CAN Logger 3 can 
successfully log a file after being unplugged from the network, 
the closing process time and the processor running time after 
disconnection are measured and compared.

The file closing function in the firmware is modified to 
print out the time it takes in microseconds. Figure 11 shows 
the closing time for logging with and without AES encryption. 
The average time for both is very similar and f luctuates 
between 4,000-5,000 microseconds. The next step is to measure the processor running time 

after the device is disconnected. An oscilloscope is used to 
monitor the power to the processor along with the raw 12V 
input from the network and the diode protected 12V from the 
device at the same time. The firmware is modified to pull an 
LED high immediately after the file is closed. The voltage of 
the LED is also monitored by the oscilloscope to determine 
whether the file closing occurs and how long it takes. Figure 12 
shows the voltage traces of the four mentioned signals. The 
data is then exported and analyzed to measure the desired 
parameters, as depicted in Figure 13.

The results show that when the device is unplugged, the 
raw 12V input quickly drops below 1V, which is the first indi-
cation that the file closing function should be triggered. The 
capacitor in the design still supplies power to maintain the 
voltage regulator output at a normal voltage level of 5V for 
about 7.5 milliseconds while the device residual power slowly 
decreases. After that, the Teensy 3.6 input voltage starts to 
drop and loses power at 8.52 milliseconds when it reaches 
below its operational voltage of 3.6 V. Moreover, the LED turns 
on at 4.18 milliseconds after the device is unplugged. The facts 
that the LED does turn on and the Teensy processor running 
time outlasts the file closing time indicates the CAN Logger 
3 does not lose log data when power connection is interrupted.

 FIGURE 11  Binary file closing time for non-encrypted 
version (left) and AES encrypted version (right)
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 FIGURE 12  Voltage of safe 12V (yellow), LED indicator 
(light blue), raw 12V (purple), and processor power (dark blue) 
when the CAN Logger 3 is unplugged from power

©
 S

A
E 

In
te

rn
at

io
na

l.

 FIGURE 10  Demonstrating the ECDH concept between a 
host and client
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In cases where the power loss occurs while there is still 
residual capacitance, and the device is not isolated from the 
network, the RAW voltage will not drop suddenly to trigger 
the file closing function. This can cause the device not to close 
the file properly. However, the situation is uncommon and not 
in the scope of the project, and therefore, the problem is not 
further examined.

System Software 
Implementation

Overview Process
The CAN logging operation includes two main processes: 
provisioning and normal operation. Both are required to 
communicate with a server. Amazon Web Services (AWS) was 
chosen as the third-party cloud services provider for this 
project. The interface between the CAN Logger 3 and AWS is 
done via a local computer running a Python application. The 
CAN logger devices communicate with the local computer 
through local serial USB. The connection between the 
computer and the AWS cloud is through the Internet with 
secure transport layer security (TLS) using the Python 
requests module.

The provisioning process must happen first to configure 
the new device before it can be  delivered to clients and 
function properly as intended. With the provisioned CAN 
logger, clients can use it as a standalone device to log data 
from heavy trucks securely with encryption. The encrypted 
log files will temporarily be stored on the device until uploaded 
to the AWS server for secure storage and data management. 
The process overview is depicted in Figure 14, on the 
following page.

To achieve the security and privacy of this model, the 
following factors are assumed to be uncompromised:

•• The local computer with Python application

•• The provisioning operator

•• The Internet connection with secure TLS

•• The AWS third-party

•• The owner of the CAN logger

The local computer and the provisioning operator are 
parts of the device’s manufacturing process. Preventing these 
two factors from being compromised is not in the scope of 
the CAN logging project but in the security of the local facility 
itself. As a result, these two factors are assumed to be safe in 
this project.

Transferring sensitive data via the Internet can be risky. 
However, by following the industry-standard TLS, the connec-
tion via the Internet should be protected. Therefore, it is safe 
to assume that the communication between the Python appli-
cation and the AWS is secure in this project.

Using a third-party cloud is a debatable subject because 
the data owners put all their trust and resources into the hand 
of a different company. However, this is common in the 
business world, where one relies on the services of data storage 
and the protection from others. On the other hand, some 
prefer to spend more resources to develop their own data 
management structure because the data may be too valuable 
to be stored elsewhere. The decision whether to use a third-
party service depends on the needs of the data owner. Amazon 
Web Services (AWS) provides a data management system with 
high security on its end at a much lower cost than building 
one. Therefore, AWS is trusted to be used in this project, and 
their security is assumed to not be easily compromised.

Lastly, the owner of the CAN logger is the only person 
who possesses and operates the device post-delivery. It is their 
responsibility to keep their device safe from unauthorized 
physical access. Any device that is in the wrong hands can 
be broken; it’s only a matter of time because there is no such 
system that is 100% secure. For this project, the CAN logger 
owner is assumed to always have possession of the device and 
operate it correctly without any harmful intention. However, 
a well-designed system should make it extremely difficult for 
hackers to attack. It should take a lot of time and money to 
penetrate the system, and thus, the obstacles should discourage 
hackers from trying, or at least give the system administrator 
more time to detect and eliminate any threat. And, if one 

 FIGURE 13  Rescaling and analyzing the voltage dropped 
from power interruption
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 FIGURE 14  CAN Logger 3 system software 
design overview
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device is compromised, it will not compromise all devices and 
the overall system should still function properly. The CAN 
logger was designed to follow this principle.

Provisioning
Provisioning Function The provisioning process is a 
one-time public key exchange between the CAN logger device 
and the server hosted through AWS before the devices get 
delivered to the users. A provisioning operator or system 
administrator will serve as a connecting role to implement 
and monitor the process between the device and the server. 
The primary purposes of the initial provisioning are to acquire 
the device’s identification for the server database and to 
exchange public keys to establish the same shared secret for 
secure communication using asymmetric cryptography. The 
steps in key exchange provision are depicted in Figure 15 on 
the following page.

The enumerated descriptions for Figure 15 are described 
in Table 3.

Get Server Private Key Password Function During 
the provisioning process, the random password generated for 
the server private key is sent to the local computer Python 
application. The key is converted to an ASCII-armored PEM 
form, which is known as the serialized private key. The 
operator or administrator has an option to decrypt the 
password and use it to retrieve the serialized server private 
key stored in the JSON physical backup file. The process is 
illustrated in Figure 16 and Table 4.

The following table describes Figure 16.

Normal Operation
Secure CAN Logging After the key exchange provision, 
the device is ready to used for logging sessions. In this process, 

 FIGURE 15  Secure Key Exchange provisioning process diagram
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 FIGURE 16  Serialized server private key password 
function diagram
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the log data will be encrypted in real time and then signed in 
the CAN Logger 3 before sending to the server. These steps 
ensure that the contents of the files are not exposed in storage 
and while being transmitted to the server through the Internet. 
Signing the logs verify that the server receives authentic data 
from the correct sender. The server can then decrypt and 
analyze the data based on user needs using the calculated 
shared secret key from the provisioning step. The logging 
process is depicted in Figure 17.

Every time the device starts a logging session, the 
ATECC608A generates a 32-byte random number, which is 
split into a 16-byte AES session key and a 16-byte initialization 
vector (IV). The CAN data is logged in a way that the logger 
initially determines the bus bitrate, generates a binary file in 
the SD card, and starts collecting data to fill up a 512-byte 
block with CRC-32 checksum included in the last four bytes. 
When this buffer is full, the logger encrypts the data, writes 
it to the binary file, resets the buffer, and repeats the process 
until the logging stops. Because some CAN messages are 
repeated periodically in a truck network, using AES in ECB 
mode can pose a potential risk to an AES plain text attack. As 

a result, the buffer is encrypted with AES-128 CBC mode using 
the generated AES session key and IV. When logging ceases, 
the file is closed and written to the SD card. The encrypted 
log file is then hashed using SHA256 in the program code and 
signed using the ECDSA ATECC608A function, which 
produces the file’s signature.

Upon generation of the session key and IV, the AES 
session key is encrypted with AES-128 using the shared secret, 
which is calculated at the beginning of the logging session 
with ECDH pre-master function using the device private key 
and server public key as inputs. The encrypted AES session 
key and the signature are stored in the metadata text file along 
with the AES IV, the bitrate, and the filename. The current 
information in the metadata text file is hashed and signed 
similarly to the encrypted log file, producing a text file signa-
ture to ensure the authenticity of the text file. The text file 
signature is then appended to metadata text file, which along 
with the encrypted log file, are then stored in the SD card until 
being transferred to the server.

At the time of this writing, the clients will need to use 
the Python user application to upload the data to the server. 

TABLE 3 Secure key exchange provisioning process description

Process System Description
1 Embedded Firmware The ATECC608A hardware security module first generates an ECC key pair, which is the device 

private key and public key.

2 Embedded Firmware The device private key is locked in the memory slot and cannot be changed or read.

3 Local Computer The device’s public key along with the ATECC608A ID are first sent to a Python application on a 
local computer controlled by the provisioning operator. The connection here is through local serial 
(mini USB cable).

4 Local Computer The Python application then forwards the device public key and the HSM ID to AWS through the 
internet with secure TLS protocol.

5 AWS Cloud Once the server receives the data from the Python application, it will use the lambda function to 
generate its ECC key pair specifically for this CAN logger.

6 AWS Cloud The server private key is encrypted in AWS Key Management Service (KMS) using its master key 
(unique key managed by AWS).

7 AWS Cloud The encrypted server private key is then stored and tied to the device ID in the AWS DynamoDB 
database.

8 AWS Cloud The shared secret key is derived with ECDH pre-master with the device public key and the server 
private key.

9 AWS Cloud The server private key is serialized and encrypted with a randomly generated 16-byte password for 
back up purpose.

10 AWS Cloud The password is encrypted using AES-128 ECB mode because it is only 16 bytes. The AES 
encryption key used is the shared secret derived from ECDH.

11 AWS Cloud The server public key, server serialized encrypted private key, and encrypted password are sent 
back to the Python application using the same secure TLS communication.

12 Local Computer The provisioning operator will then perform a visual key comparation between the device and 
server public keys obtained from the Python application to the ones visible on AWS website. This 
makes sure that the server and the device both have the other’s authentic public key in case the 
communication between the Python application and the AWS server is compromised.

13 Local Computer Once the provisioning operator confirms the key match, the server public key will be sent to the 
CAN Logger 3 through local serial.

14 Embedded Firmware The server public key is stored and locked in the ATECC608A memory key slot for future function 
implementation.

15 Local Computer The provisioning operator can also save the serialized server private key, encrypted password, and 
the corresponding serial number to a JSON file, which is a physical backup that the administrators 
keep. However, to use the server private key, it needs to be loaded with the corresponding 
password, which can be decrypted as described in the next section.

16 Local Computer If the key-check fails, the application will show an error message.©
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The clients must log in with their credentials to identify them-
selves and their device. Through local serial, the device will 
be connected to the application where the log files information 
will be displayed on the interface. The clients can then select 
and upload the desire log files along with their corresponding 

metadata text files to AWS cloud via secure TLS communica-
tion. In theory, the hardware can support automatic uploading 
through the WiFi subsystem in the CAN Logger 3.

Once the server receives the metadata and the encrypted 
log files, the server will populate the metadata in the AWS 
DynamoDB database, and store the encrypted log file in AWS 
S3 storage service. When the file is needed upon user request, 
the server will extract the corresponding server encrypted 
private key and device public key from the database to decrypt 
the file. The server will first decrypt the server’s encrypted 
private key using AWS key management service. With the 
server private key and the device public key, the shared secret 
key is calculated with ECDH pre-master function using the 
server private key and the device public key. The encrypted 
AES session key for the file from the database is then decrypted 
using the shared secret key. The encrypted log file now can 
be decrypted using AES-128 CBC mode with the AES session 
key obtained previously and the AES IV from the database. 
However, before decrypting, the integrity of the file is verified 
using ECDSA with its signature and device public key to make 
sure the file has not been tampered with. After the integrity 
is checked, the file is decrypted before being available to 
the user.

Middleware (Python User 
Interface)
The CAN Logger and the server are connected by the Python 
interface, which is controlled by the user. The GUI is shown 
in Figure 18 and its functions are described in Figure 19.

TABLE 4 Serialized server private key password 
function description

Process System Description
1 Embedded 

Firmware
The CAN logger initially sends its 
serial number to the Python 
application for identification.

2 Local Computer The local computer Python 
application loads the backup JSON 
and looks up the encrypted 
password from the corresponding 
serial number from the file.

3 Local Computer The encrypted password is sent to 
the CAN logger device via local 
serial.

4 Embedded 
Firmware

The shared secret key is derived 
from ECDH pre-master algorithm 
with the stored device private key 
and the server public key.

5 Embedded 
Firmware

The encrypted password is 
decrypted using the shared secret 
key.

6 Local Computer The decrypted password is sent 
back to the local computer 
application where it is displayed for 
the operator or administrator. ©
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 FIGURE 17  Logging and uploading process diagram
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When the clients first run the application, it will auto-
matically ask for username and password with a dialog box 
to submit to the server and then return a token for further 
user authentication. This process can also be done by selecting 
Login button under User menu dropdown. Once the clients 
have successfully identified themselves, the next step is to 
connect the logger device by selecting Logger dropdown menu 
and Connect button to choose the current device serial COM 
port. This function will parse through all the data on the 
device SD card and grab all the metadata text files to verify 
their authenticity with the signature appended at the end of 
the file using the device public key. When the files are verified, 
the metadata of all available binary files stored in the SD card 
is displayed on the Python application, as shown in Figure 18. 
The clients now can proceed to send the data to the server by 
clicking on the desire file and selecting Upload button under 
the File menu dropdown. The application will download the 
file through local serial and send a POST request to the server 
with the data.

Beside the mentioned functions, the Python user applica-
tion also has other buttons with their descriptions shown in 
Figure 19. The Hello button under the User menu dropdown 
helps the clients test their connectivity and authentication 
between their end to the AWS server. A successful dialog box 
will appear to indicate that the correct API key is used. Under 

the Logger menu dropdown, the Format SD button will erase 
and format the SD card on the connected device to blank state. 
The Provision button should only be used once and at the 
provisioning process by the manufacture. As described in the 
provisioning process above, this function exchanges the public 
keys between the logger and the AWS server securely. Lastly, 
if the clients want to decrypt a desired file locally, the Get Key 
function sends the selected file’s SHA-256 digest and the 
device serial number to the server and requests the corre-
sponding plaintext AES session key. The logger must be provi-
sioned before with a securely stored key tied to the serial 
number for this function to work. The key, once received 
successfully from the server, can be  used to decrypt the 
encrypted log file.

Summary/Conclusions
The CAN data-gathering project is needed to establish a 
database of operating heavy vehicle network communication. 
To accommodate the large scale of CAN logs, the data are 
uploaded and stored in the cloud. Security mechanism is 
required to protect data confidentiality and integrity during 
logging operation that involves the IoT. The approach of secure 
CAN logger project produces the CAN Logger 3 device, which 
follows common security standards using symmetric and 
asymmetric encryption. The functionality of the device has 
been conducted to fulfill the operational requirements of 
the project.

Secure end-to-end communication between vehicles and 
their data management services is vital when confidentiality 
and integrity are important factors in the processes of data 
monitoring and collection. In a typical heavy truck model, 
OEMs are not required to design a built-in data monitoring 
and management system for the customers. However, due to 
the horizontal integration design, this can be done mostly by 
telematics companies or third-party devices that involve a 
cloud IoT platform. Secure end-to-end communication may 
or may not be  implemented by these third-party service 
providers. However, if they do implement it, their process is 
likely to be  proprietary and the customers have to trust 
their implementation.

This paper describes the CAN Logger 3 software design 
that provides a secure end-to-end data transmission between 
the vehicles to the AWS cloud platform with the Python client 
application as a user supporting interface. There is no one 
unique way to implement a secure end-to-end communica-
tion, but this project uses off-the-shelf products as well as 
industry recommended practices to carry out the task. The 
documentation and source codes of the CAN Logger 3 design 
are available to the public for references, and it has the 
following features:

•• A low-cost hardware security module is used for secure 
key storage along with cryptographic implementations, 
including Diffie-Hellman key exchange, digital 
signature, and encryption.

•• A public key exchange process between the CAN Logger 
3 and the AWS cloud is performed during the 

 FIGURE 18  CAN logger client application interface
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 FIGURE 19  Depiction of the button functions in 
the application
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TABLE 5 Logging and uploading process description

Process System Description
1 Embedded Firmware When logging session starts, the ATECC608A HSM generates a 32-byte random number.

2 Embedded Firmware The first 16 bytes of the 32-byte number is designated for the AES key of this logging session.

3 Embedded Firmware The last 16 bytes of the 32-byte number is designated for the initialization vector (IV) for the AES 
CBC mode.

4 Embedded Firmware The CAN logger initially determines the CAN bus bitrate with autobaud, and generates a metadata 
text file with the same name as the log file, which contains the timestamp and bitrate, to be stored 
on the SD card.

5 Embedded Firmware The AES IV is appended to the metadata file.

6 Embedded Firmware The CAN logger collects heavy vehicle data in 512-byte buffer. The first 508 bytes are actual data 
and the last 4 bytes are CRC-32 checksum for error detection. During the logging, the buffer is 
encrypted by the mmCAU and written to the binary file. When this buffer is full, the processor 
hashes and updates the hash with previous buffers, if any. The buffer is reset, and the process 
repeats until the logging stops. A new log file is started when the current logging session reaches 
1Gb of data.

7 Embedded Firmware After the logging session finishes, the encrypted log file is stored in the SD card. This file has the 
same name as the metadata file and is in binary format.

8 Embedded Firmware The SHA-256 hash of the encrypted log file is appended to the metadata file.

9 Embedded Firmware The shared secret key is derived from ECDH pre-master algorithm using the device private key and 
the server public key stored in the ATECC608A HSM.

10 Embedded Firmware The 16-byte AES session key is encrypted with AES-128 ECB using the shared secret key. The 
encrypted key is then appended to the metadata file.

11 Embedded Firmware The device public key stored in the ATECC608A HSM is appended to the metadata file for later 
local verification.

12 Embedded Firmware The metadata file is hashed using SHA-256.

13 Embedded Firmware The metadata file hash digest is signed with ECDSA using the device private key.

14 Embedded Firmware The metadata text file appended with its signature is stored in the SD card.

15 Local Computer Before uploading the file to AWS, the user must log in with their credentials to identify themselves 
and establish secure connection. Their credentials will be tied to the uploading session later. The 
login process follows the AWS API authentication, which will be explained in detail later.

16 Local Computer Through local serial, the device connects to the application which extracts the metadata file with 
its signature and the encrypted log file.

17 Local Computer The metadata file signature is verified using the device public key stored in the metadata file. This 
process mainly checks the metadata file for error that may occur during logging operation or 
transmission to the computer application. However, it does not guarantee the file’s integrity 
because the device public key used for verification is stored in the data to be verified itself and 
thus, the key is not reliable. Malicious users can replace the key with their own public key and 
resign the metadata file. A true integrity check will be performed on the AWS side. After the 
metadata is successfully verified, the metadata and its signature are sent to AWS via the Internet 
with secure TLS.

18 AWS Cloud Once the server receives the metadata, it first checks for invalid session key, such as key containing 
all 0xFF or 0x00 that could occur when the logger failed to encrypt the AES session key.

19 AWS Cloud The metadata file is hashed with SHA-256. The hash digest will be used for ECDSA verification.

20 AWS Cloud The device public key is retrieved from AWS DynamoDB database using the device serial number 
from the metadata. The device public key here is from the provisioning process and thus, it is 
reliable to be used in ECDSA verification.

21 AWS Cloud The metadata file is verified with ECDSA using the metadata file hash, its signature, and the device 
public key.

22 AWS Cloud If the metadata verification is successful, AWS sends a response back to the local computer 
application with a message that the metadata verification has passed.

23 AWS Cloud If the metadata verification fails, AWS sends a response back to the local computer application 
with a message that the metadata verification has not passed and the metadata may have been 
compromised.

24 Local Computer When the local computer application receives the message that the metadata has been verified 
successfully, the application starts sending the encrypted log file to AWS.

25 AWS Cloud When AWS receives the encrypted log file, the server hashes the file with SHA-256 and the hash 
digest is compared with the one from the metadata file. ©

 S
A

E 
In

te
rn

at
io

na
l.

Downloaded from SAE International by Jeremy Daily, Tuesday, August 10, 2021



SECURE CONTROLLER AREA NETWORK LOGGING 	 17

Process System Description
26 AWS Cloud If the hashes match, the encrypted log file with its corresponding hash and user credentials are 

stored in Amazon S3 Bucket. AWS also sends a response back to the local computer application 
with a message that the encrypted log file has been uploaded successfully.

27 AWS Cloud If the hashes do not match, AWS also sends a response back to the local computer application 
with a message that the encrypted log file has not been uploaded because the file has been 
compromised.©
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provisioning process at production. The same shared 
secret key can be derived later from both parties for 
secure communication.

•• Every truck logging session is encrypted using a 
randomly generated key, which is then encrypted using 
the shared secret key from the provisioning process. 
Thus, all the sensitive information is encrypted to 
protect data confidentiality before being stored on the 
local SD card.

•• A client application interface is made for users to 
transfer their data from the CAN Logger 3 to the AWS 
server as well as to view and download uploaded files 
from the database. The communication between the 
device and the client application is through local serial, 
and the communication between the client application 
and AWS server is through the Internet with secure TLS 
using the Python requests module.

•• Every truck logging session is hashed, and the hash 
digest along with the logging session metadata are signed 
using the device private key. The signature must 
be successfully verified by the AWS server using the 
device public key obtained from the provisioning process 
before the log data is uploaded and stored on the server 
database. This step verifies that the data is from the 
correct sender and it has not been altered in any way, 
which is very important in cybersecurity measures as 
well as forensics purposes.

•• User access control is implemented to ensure that only 
authorized users can access their data only or data that 
has been shared with them.

•• Each device’s vital information is backed up to a local 
drive, which is kept by the administrators.

The hardware and software system comprising the CAN 
Logger 3 outperforms previous systems as it does not drop 
any frames, even with a saturated CAN bus. Furthermore, the 
confidentiality of the system is maintained from the moment 
the CAN traffic is recorded.

The CAN logging project has gathered a significant 
amount of heavy truck CAN traffic with more than 11 billion 
messages for the database, and more data is still being 
collected. Moreover, a CAN logger device with an AWS cloud 
system has been designed for the project to provide secure 
data collection and storage by implementing cybersecurity 
measures following the industry standards. There is also a 
user-friendly client application GUI for users to manage their 
data between the device and the AWS server. The log data 
from the project can only be accessed by its owner and the 
project administrators; however, the CAN logging project 

hardware and source codes are made available to the trucking 
industry as well as the public with the hope that it can 
be applied to increase cybersecurity posture in heavy vehicles, 
and its documentation can be  found on the GitHub 
repository [8].

Cyber-physical system security, as a field of study, is in 
its infancy. This paper represents a concrete example of 
designing an entire data logging system (i.e. device, front-end 
and back-end) with cybersecurity as a primary objective. The 
CAN Logger 3 project demonstrates the economics and feasi-
bility of incorporating cybersecurity as a design requirement. 
This body of work should be useful for inspiring future designs 
that incorporate CAN bus, hardware security modules, and 
system level communications.
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Definitions/Abbreviations
AES - Advanced encryption standard cryptography
AWS - Amazon web services
CAN - Controller area network
CBC - Cipher blocker chaining
ECB - Electronic codebook
ECC - Elliptic-curve cryptography
ECDH - Elliptic-curve Diffie-Hellman
ECDSA - Elliptic-curve digital signature algorithm
ECU - Electronic control unit
GUI - Graphical user interface
HSM - Hardware security module
IDE - Integrated development environment
IoT - Internet of Things
IV - Initialization vector
mmCAU - Memory-mapped crypto acceleration unit
NIST - National Institute of Standards and Technology
NMFTA - National Motor Freight Traffic Association
NSF - National Science Foundation
PCB - Printed circuit board
RSA - Rivest-Shamir-Adelman asymmetric cryptography
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