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ABSTRACT

Genetic recombination in eukaryotes can occur with or without
crossover, where the latter event is referred to as gene conversion.
New discoveries in the genomic and post-genomic era have shed
new light into the complex interplay between recombination and
other evolutionary processes such as point mutations. In particular,
G/C content of genomic regions can increase over evolutionary time
due to recombination in the form of gene conversion — a phenome-
non known as GC-biased gene conversion (gBGC) — and gBGC is
increasingly appreciated as serving an important role in genome
evolution throughout the eukaryotic Tree of life. These findings
have largely relied on computational advances for analyzing recom-
binant sequences for indirect signatures of gBGC. However, deeper
insights into the functional and evolutionary significance of gBGC
require a unified framework that accounts for variable-across-sites
recombination and point mutation processes.

In this study, we introduce PHYNCH (or “PHYlogeNetiC-HMM
for analyzing gBGC and recombination hotspots”). PHYNCH uti-
lizes a statistical model that combines a hidden Markov model to
capture local genealogical variation due to recombination and gene
conversion with a finite-sites model of sequence evolution along a
local genealogy. Inference and learning under the new model is used
to detect and analyze local patterns of gBGC and recombination
hotspots within genomic sequences. We validate the performance of
PHYNCH using simulated benchmarking data. Furthermore, we use
PHYNCH to create a new genomic map of gBGC and recombination
in rice.
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INTRODUCTION

In eukaryotes, meiotic recombination can occur either with or with-
out crossover between recombining chromosomes. Following the
terminology used by [15], we refer to the former as a recombination
event and the latter as a gene conversion event; both are understood
to have played central roles in the evolution of eukaryotic genomes.
The spatial distribution of recombination and gene conversion
events varies locally within genomes and can be concentrated in
genomic regions with up to multiple orders of magnitude higher
recombination rate compared to surrounding regions [19]. In hu-
mans, for example, around 80% of all recombination breakpoints
are concentrated in less than 15% of the genome [4].
Recombination can also strongly affect base composition and
substitution processes, as in the case of GC-biased gene conversion
(gBGC) where G/C-content of recombining DNA regions increases
over evolutionary time due to gene conversion during recombi-
nation [9, 12]. Prior systematic studies have provided evidence of
gBGC in animals [22, 23, 29] and plants [8]. For example, Muyle
et al. [28] found that gBGC affects the GC content of third codon
positions and intronic regions in grass genomes. The studies indi-
cate that the interplay of gBGC with other evolutionary forces has
shaped important eukaryotic genomic features including local re-
combination breakpoint distributions, the ancestral tract landscape,
and local base composition heterogeneity. The studies also provide
mechanistic insights into the functional consequences of gBGC on
key cellular processes including transcription and translation. For
example, evidence suggests that gBGC biases tRNA abundance [13]
and can play functional role in elevating point mutation rates [20].
Advances in high-throughput biomolecular sequencing and the
resulting explosion of large-scale genomic and other -omics data
[26, 34] have enhanced efforts to comprehensively study gBGC
across a diverse range of organisms. These studies have also relied
on computational and statistical approaches to detect and analyze
genomic signatures left by the evolutionary processes under study.
Many of these methods were originally developed for analyzing
recombinant sequences and related biomolecular sequence analysis
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tasks without necessarily focusing on gBGC [6, 7, 17, 18, 24, 25]. But
the complex interplay of recombination and mutation processes is
inherent to gBGC, and joint analysis within a single unified frame-
work may yield insights that may be inaccessible when reasoning
about one in isolation of the other. A well-known example is the
confounding effect that gBGC has upon traditional approaches
for inferring bio-molecular signatures of adaptive evolution (e.g.,
substitution rate-based analysis) [3]. One of the few methods avail-
able for model based analysis of gBGC in genomic sequences is
the method of Capra et al. [3]. The method has the advantage of
also analyzing evolutionary conservation alongside gBGC, but is
defined for a fixed 4-taxon phylogeny.

MATERIALS AND METHODS

To address this gap, we introduce PHYNCH (or “PHYlogeNetiC-
HMM for analyzing gBGC and recombination hotspots”), a phylo-
genetic hidden Markov model-based framework for detecting and
analyzing genomic patterns of gBGC and recombination hotspots in
eukaryotic genomes. The framework utilizes a combined statistical
model for analyzing recombination and mutation processes that
jointly vary across sites. The framework is well-suited to fine-scale
mapping and is not restricted to a specific number of taxa (i.e.,
groups of organisms under study) or fixed phylogenetic hypothesis.

The contributions of our study are summarized as follows. First,
the new PHYNCH framework accounts for linked variation across
sites for recombination and mutation processes. The framework
adopts an explicit phylogenetic model to compare and analyze
biomolecular sequences. Second, PHYNCH is a general phylogenetic-
HMM framework that is well-suited to fine-scale mapping. In the-
ory, the framework will support analysis of inputs with an arbitrary
number of taxa (although see Discussion for additional practical
considerations). Finally, we apply the PHYNCH framework to an
empirical rice genomic sequence dataset. The analysis provides a
new high-resolution map of gBGC and recombination hotspots in
the rice genome.

Problem definition

For the purposes of clarity, we begin by defining a special case of
the computational problem addressed in our study. (The full com-
putational problem is defined in a subsequent subsection.) Let G
be a set of aligned genomes g1, 92, - , gn, each of length k, and
the multiple sequence alignment A with dimension n * k has rows
consisting of the genomes and columns consisting of aligned sites.
Let A, be the z!" site in the alignment, which corresponds to the
2" column in the matrix. Every site A, has evolved under a local
genealogy (i.e., evolutionary history of a site). Note that recombina-
tion can cause local genealogies to vary across different sites — both
in terms of topology and branch length. Hotspots evolved under
recombination and point mutation processes with higher evolution-
ary rates and/or different base frequency distributions compared
to background regions, and local genealogies in the former can be
expected to exhibit greater local variation compared to the latter.
Let A(n) be the set of all unrooted binary tree topologies on n
leaves. Let Ty (n) be the set of |A(n)| unrooted binary trees on n
leaves, each of which a distinct topology from A(n) and branch
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lengths £}, The set of trees Tj(n) are used to model local genealo-
gies of sites in “background” regions of A that evolved under a
baseline evolutionary model. Note that any tree ¢t € Tj(n) could
be the local genealogy of a given site A, - i.e., P(A;|t,0,) > 0
where 0}, corresponds to the parameters of a finite-sites substitu-
tion model in background regions (e.g., the general-time reversible
model (GTR) [33] or nested models such as the HKY85 model [14]).
Local genealogies can change along the genome with different
rates due to the existence of hotspots. Let Ty, (n) be the set of |A(n)|
trees, each with a distinct topology from A(n) but with different
branch lengths ¢;. Together with a different substitution model
Oy, the set of trees Ty (n) are used to model local genealogies in
“hotspot” regions of A that evolved under a non-baseline evolu-
tionary model; the hotspot model captures local genealogical dis-
cordance and local base composition bias that are generated by
GC-biased gene conversion and recombination hotspots. Given a
genomic sequence alignment A, local trees Tj,(n) U Ty, (n), and the
substitution model instances 6}, and 0y, we define a sequence of
n random variable g, each of which takes on an ordered pair of
values (x,y) € (Tp(n) X {0p}) U (Ty(n) X {0y }). We then define the
computational problem as follows.

e Input: A genomic sequence alignment A consisting of n
aligned sequences and k sites.

e Output: For each site 1 < z < k, the per-site hotspot proba-
bility

P(qz = (x,y)|A, 0)

where (x,y) € (Tp(n) x {0p}) U (Tp(n) x {0}) and the
PHYNCH model instance 6 includes a set of local tree models
Tp(n) and Ty, (n), and substitution model instances 8, and 6},.

The solution to this problem includes statistical inference of
hotspot regions within the input genomic sequences. The site A, is
located in a hotspot region when g, = (x, y) where x € Ty(n) and
y = 0y, and in a background region otherwise. The problem outputs
also provide fine-scale annotation of recombination breakpoints and
local recombination and substitution model variation (including
GC-content variation) down to single-site resolution. Note that
the problem addresses soft inference since g is a random variable
and every ordered pair (x, y) has (possibly non-zero) probability

P(qz = (x,y)|A).

PHYNCH model

PHYNCH utilizes a phylogenetic hidden Markov model (HMM)
to analyze genomic signatures of GC-biased gene conversion and
recombination hotspots within the set of input sequences. To facili-
tate discussion, we begin by considering a special case where the
input involves n = 4 taxa and one genomic sequence is sampled
per taxon (i.e., group of organisms under study); otherwise, no re-
strictions are placed on sample relatedness and an out-group is not
needed. Furthermore, we restrict our discussion to the above two-
class problem where genomic regions fall into either background or
hotspot categories. (See the following subsection for a more general
formulation of the PHYNCH model.)

In this case, the number of all possible unrooted binary tree
typologies for genomes is |A(n)| = 3, and the PHYNCH model
would include a total of 1 + 2|A(n)| = 7 states: a start state sg, and
six additional states. The latter consists of background states b;
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for 1 < i < 3 - each corresponding to one of the three possible
local gene tree topologies that can appear in a background genomic
region — and hotspot states h; for 1 < i < 3 similarly for hotspot
regions. Let g(b;) be the distinct gene tree topology associated with
background state b;; the state b; includes a local gene tree model
that consists of both the topology ¢g(b;) and a set of branch lengths
{(b;). Each hotspot state h; includes a local gene tree model with
topology g(h;) and branch lengths £(h;) similarly. The resulting
set of states is shown in Figure 1. Note that each distinct topology
appears twice in the model - once in a background state and once
in a hotspot state — but possibly with differing branch lengths in
the two different states in which it appears.

b, b, by
h, hy hy

Figure 1: Illustration of PHYNCH model states. The top row
consists of states b; for 1 < i < 3 that correspond to local ge-
nealogies — each having a distinct unrooted topology - that
are observed in background genomic regions. The bottom
row consists of states h; that similarly correspond to hotspot
regions. The model also includes a start state 5. To simplify

the illustration, transitions and model parameters are not
shown (see Methods for more details).

Based on the row/column arrangement of states in Figure 1’s
illustration, “within-row” transitions between different b states
correspond to topological discordance of local genealogies across
recombination breakpoints within a background genomic region;
within-row transitions between different h states correspond to re-
combination breakpoints within a hotspot region similarly. “Across-
row” transitions from a b state to an h state or vice versa correspond
to background and hotspot region boundaries.

The PHYNCH model includes the following transition, initial
state, and emission probabilities and parameters. Similar to the
HMM proposed by Westesson and Holmes [36], the within-row
transition probability parameter €5 accounts for the level of lo-
cal topological discordance due to recombination in background
regions; lower parameter values are correlated with increased re-
combination breakpoint frequency. Transitions from a given state
to a different state in the background row of states occur with
equal probability. Within-row transition probabilities for hotspot
regions and the probability parameter €, are defined similarly. The
within-row transition probability parameters are specified such that
1—€p =2 1— €, WLOG. Across-row transition probabilities are pa-
rameterized by a switching parameter y. The switching parameter

accounts for local variation in substitution and recombination pro-
cesses and is correlated with the frequency of background/hotspot-
delineating breakpoints. Transitions from a given state in one row
to any other state in a different row occur with equal probability.
Transitions from the start state sp to any other state occur with
equal probability as well. For convenience, we define the following
probabilities where 1 < i <3and1 <j < 3:

1
S = Sl
1
b = Jh = o
Tor = Ihi = g
1-€p 0. .
6biby) = { BT 1
€p otherwise
1-€p irs .
B(hi,hy) = | BT 17
€n otherwise

b5, = (1= 1)3(bi. by)

th;,h; = (1= y)8(hi, hj)
The transition probability matrix is then specified as follows, with
rows labeled by the states so, b1, b2, b3, h1, h2, h3 from top to bottom,
columns labeled from left to right similarly, and each cell containing
the probability of transitioning from a row’s corresponding state
to a column’s corresponding state:

ST S S S S
by tbuby  thibs  YIho VIR Vi
thyby  thb, tbybs  YIR YIhy,  VSh
tha by thob, thabs VI VI hy,  VIh (1
Yfoo Yo, Yoy thihy thih thohs
YIoo VS, Yotk thohs  thohs
L0 vfo,  Yfo, Yo thohy thohy  thyhy ]

The initial state of the PHYNCH model is always the start state
S0-

An individual state b; for 1 < i < 3 in a background region emits
a site pattern A, for 1 < z < k according to an emission probability
P(Az|g(bi), £(i), 0p) under the site’s local genealogy model with
tree topology ¢g(b;), branch lengths £(b;), and substitution model
0p. Emission probabilities are defined similarly for each hotspot
state h;. Under the finite-sites substitution models in this study,
the emission probability of a site pattern at a given state can be
efficiently calculated using dynamic programming, as in the peel-
ing algorithm used in traditional phylogenetic MLE [10, 11]. Our
experiments utilize the HKY85 model of nucleotide substitution
[14], and the GTR model [33] and other nested models are readily
substituted.

We also adopt a modeling choice that is intended to reduce model
complexity, improve learning, and mitigate overfitting. Branch
lengths in background state b; for 1 < i < 3 are shared with
hotspot state h; and scaled by scaling factor parameter f such
that £(h;) = PL(b;). The scaling parameter f therefore controls
the relative evolutionary divergence of background versus hotspot
regions.

Likelihood calculations under a fixed PHYNCH model instance
and posterior decoding can be performed efficiently using dynamic
programming in the form of the peeling algorithm for emission

(=R e -l == ]
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probability calculations and the forward and backward algorithms
[30]. PHYNCH model parameters are learned using statistical op-
timization under the maximum likelihood criterion. A variety of
heuristics are commonly used to address this computationally dif-
ficult problem [30]. We utilize a hill-climbing algorithm coupled
with Brent’s method for univariate optimization [2] in our experi-
ments. Statistical inference is addressed using a modified posterior
decoding algorithm. The algorithm annotates each site A, with the
probability > P(qz = (x,y)|A, 0) that it falls within
(6 y)&(Th(n)x{0n})

a hotspot region.

Finally, our simulation study included model selection experi-
ments that coupled PHYNCH inference and learning with a likeli-
hood ratio test (LRT). Two nested models were evaluated in each
test: an alternative model that consisted of a standard PHYNCH
model (i.e., a PHYNCH model that includes both background and
hotspot states) and a null model that consisted only of background
states. The alternative model includes eight additional parameters
compared to the null model: €y, y, f, and 6y, where the HKY model
used for the latter contributes four base frequency parameters and
one substitution rate parameter. Both models were fitted using MLE
in a manner identical to the other PHYNCH analyses in our study.

General problem formulation and model

The PHYNCH model and framework is readily extended to more
general inputs. First, inputs with n sequences require A(n) to consist
of the set of all binary tree topologies on n taxa, and the number
of states in a row will equal |A(n)|. Furthermore, the PHYNCH
model can be extended to handle r > 2 classes of recombination
and substitution models beyond the background/hotspot models
considered in our study; the PHYNCH model extensions will create
a corresponding row of states for each of the r rate classes, along
with “within-row” and “between-row” transitions and associated
parameters analogous to the simpler formulation above. In this
study, we focus on two-class background/hotspot model where
r=2.

Simulation study

We used msHOT [16] to simulate local coalescent histories un-
der an extended multi-species coalescent model that incorporated
hotspots, where the latter exhibited elevated recombination, muta-
tions, and GC content bias relative to background regions. Note that
PHYNCH’s phylogenetic HMM makes use of a sequentially Mar-
kovian approximation for both the coalescent-with-recombination
model and related gene conversion models [15, 37, 38], and the
msHOT simulations utilize the latter full models. Each simulation
sampled 4 or 5 individuals from a panmictic population. Either 0, 1
or 2 hotspots were simulated per dataset, where the one-hotspot
simulations utilized fixed placement between 2000 and 4000 bp
and the two-hotspot simulations utilized fixed placements between
1000 and 3000 bp and between 4000 and 4500 bp. The scaled recom-
bination rate p in background and hotspot regions was set to 5.0
and 50.0, respectively. The scaled mutation rate 6 in background
and hotspot regions was set to 1.0 and 10.0, respectively. Coales-
cent times were converted into branch lengths under finite-sites
substitution model (see equation 3.1 from [15]).

Meijun Gao and Kevin J. Liu

Then, seq-gen [31] was used to simulate sequence evolution
on the local gene tree corresponding to each local coalescent his-
tory; sequence evolution proceeded under finite-sites substitution
model. Our study utilized the HKY85 model [14] for the latter.
The substitution model parameter values for background and GC-
biased hotspot regions were based on empirical analyses of the
rice genomic sequence dataset in our study (see below for dataset
details). First, the GC content histogram for annotated genes was
used to assess the bimodal nature of base composition bias in the
rice genome. The assessment was used to partition genes into two
GC content categories — either high or low - based on a visu-
ally assessed fixed threshold. For each of the two sets of genes —
low and high - RAXxML [35] was used to perform concatenated
phylogenetic MLE under the HKY model; the estimated substitu-
tion rates and base frequencies were used in the seq-gen simu-
lations of background and hotspot regions, respectively. The re-
sulting background model instance consisted of base frequencies
T4 = 0.267,7g = 0.213,7¢ = 0.200,7; = 0.320 and a transi-
tion/transversion rate of 1.855; the hotspot model instance consisted
of base frequencies 74 = 0.162, 7g = 0.341, 7c = 0.347, 7; = 0.150
and a transition/transversion rate of 2.058. The total simulated se-
quence length of each 4-taxon and 5-taxon dataset were 5 kb and 2
kb, respectively.

For each model condition, the simulation procedure was repeated
to obtain 20 replicate datasets. Model condition parameters and
summary statistics for simulated datasets are shown in Table 1.

PHYNCH’s performance on the simulated benchmarking data
was assessed using multiple performance criteria. A modified poste-
rior decoding was used to perform statistical inference (see above).
We evaluated type I and type II error by comparing PHYNCH’s
soft inference that a site is located within a hotspot region versus
ground truth (i.e., the true hotspot location(s)): the type I and type
II error comparisons were based on receiver operating character
(ROC) curves, precision-recall (PR) curves, area under ROC curve
(ROC-AUC), and area under PR curve (PR-AUC). A true positive
is a site that has PHYNCH posterior decoding probability above a
fixed threshold and is actually located within a true hotspot region,
a true negative is a site that has PHYNCH posterior decoding prob-
ability below a fixed threshold and is located outside of any true
hotspot region, a false positive is a site that has PHYNCH posterior
decoding probability above a fixed threshold but is located outside
of any true hotspot region, and a false negative is a site that has
PHYNCH posterior decoding probability below a fixed threshold
but is located within a true hotspot region; varying the threshold
yields different points along the ROC and PR curves. We also as-
sessed PHYNCH’s computational runtime and peak main memory
usage.

Rice genomic sequence dataset analysis

We used PHYNCH to analyze an empirical dataset that consisted of
whole genome sequence data for two rice subspecies — Oryza sativa
Jjaponica and O. s. indica — and two sister species — O. rufipogon and
O. nivara. We downloaded whole-genome sequences and gene anno-
tations from Ensembl Plants [5]. The accessions for the O. s. japonica
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Table 1: Simulation study: model condition parameters and summary statistics for simulations involving recombination. The
model condition parameters consists of the number of taxa (“Num taxa”), the simulated sequence length (bp), the scaled recom-
bination rate for background and hotspot regions (“Scaled recomb rate bkgd:hot”), the scaled mutation rate for background and
hotspot regions (“Scaled mut rate bkgd:hot”), and the number of hotspot regions and their location(s) (“Num hotspot(s)” and
“Hotspot location(s)”, respectively). We also report the average normalized Hamming distance of the simulated MSA for each
replicate dataset (“ANHD”) and the average recombination breakpoint frequency normalized by sequence length (“Recomb

bkpt freq”) (n = 20).

Scaled Scaled Recomb

Model Num Sequence recomb rate mut rate Num Hotspot bkpt

condition taxa length (bp) bkgd:hot bkgd:hot hotspot(s) location(s) ANHD freq
4R.0 4 5000 5:NA 1:NA 0 NA 0.6502 0.0047
4R.1 4 5000 5:50 1:10 1 [2000,4000] 0.6760 0.0219
4R.2 4 5000 5:50 1:10 2 [1000,3000],[4000,4500]  0.6782 0.0248
5.R.0 5 2000 5:NA 1:NA 0 NA 0.6303 0.0053
5R.1 5 2000 5:50 1:10 1 [500,1300] 0.6654 0.0226
5.R.2 5 2000 5:50 1:10 2 [500,1200],[1500,1800] 0.6727 0.0275

Table 2: Simulation study: model condition parameters for simulations involving gene conversion. Figure layout and descrip-
tion are identical to Table 1, other than an additional parameter contributed by the model of gene conversion: mean gene

conversion tract length (“Mean GC tract length (bp)”).

Scaled Scaled
Model Num Sequence recomb rate mut rate Num Hotspot Mean GC
condition taxa length (bp) bkgd:hot bkgd:hot hotspot(s) location(s) tract length (bp)
4.G.0 4 5000 5:NA 1:NA 0 NA 50
4.G.1 4 5000 5:50 1:10 1 [2000,4000] 50
4.G.2 4 5000 5:50 1:10 2 [1000,3000], [4000,4500] 50

IRGSP-1.0 assembly, the O. s. indica ASM465v1 assembly, the O. rufi-
pogon OR_W1943 assembly, and the O. nivara Oryza_nivara_v1.0 as-
sembly are GCA_001433935.1, GCA_000004655.2, GCA_000817225.1,
and GCA_000576065.1, respectively. MAFFT with default settings
was used to align gene sequences for each gene. For each chromo-
some, SNP positions in gene MSAs were concatenated and analyzed
using PHYNCH. Summary statistics for the empirical dataset are
shown in Table 3. Model condition parameters were estimated from
the SNP MSAs using the same optimization procedures that were
used elsewhere in our study. Soft inference was performed using
modified posterior decoding in a manner identical to the simulation
study.

Software and data

An open-source software implementation of the PHYNCH frame-
work and the data used in our study are publicly available under
permissive copyleft open licenses at https://gitlab.msu.edu/liulab/
gBGC_Phylo_HMM.

RESULTS AND DISCUSSION

Simulation study

We began by assessing PHYNCH’s performance in terms of type
I and II error of its modified posterior decoding-based inference
(i.e., the probability that a site is located within a hotspot region).

Across all of the model conditions in our study, PHYNCH’s infer-
ence resulted in receiver operating characteristic (ROC) curves and
precision-recall (PR) curves with greater than 0.999 area-under-
curve (AUC) on average (Table 4). PHYNCH yielded average accu-
racy greater than 0.99 on the one- and two-hotspot models condi-
tions with recombination, based on a stringent classification thresh-
old of posterior decoding probability greater than 0.95; accuracy
on the model conditions with gene conversion were greater than
0.945 on average. Base frequencies for the background and hotspot
substitution models 8, and ), were estimated with error less than
0.005 (Supplementary Tables S1 and S2).

In all of the non-hotspot model conditions in our study, LRT-
based model selection consistently avoided rejecting the non-hotspot
null model when compared against the PHYNCH alternative model.
Median and minimum corrected g-values are listed in Supplemen-
tary Table S3 (n = 20), and none were statistically significant
(a = 0.05). LRT-based model selection was similarly effective on
the one- and two-hotspot model conditions in our study. All tests
returned statistically significant q-values (@ = 0.05) and the non-
hotspot null model was rejected in favor of the PHYNCH alternative
model in all cases.

Runtime and main memory usage for PHYNCH analyses are
shown in Figure 2. On average, PHYNCH required at most 3 hours
and just over 200 MiB to complete analysis of each four-taxon
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Table 3: Empirical study: rice genomic sequence dataset statistics. Rice whole-genome sequence (WGS) data was downloaded
from Ensembl Plants [5]; total WGS length for each chromosome is shown (“Length (bp)”). Annotated genes were then aligned
and concatenated; the number of SNPs, average normalized Hamming distance, and percentage of cells consisting of indels in
the concatenated alignment matrix (“Concatenated MSA”) is reported (“Num SNPs”, “ANHD”, and “Gappiness”, respectively).

Concatenated MSA
Chromosome Length (bp) Num SNPs ANHD Gappiness

1 13401096 122210 0.285 0.281
2 10307950 60632 0.280 0.272
3 10712212 70737 0.263 0.255
4 7941634 73186 0.298 0.288
5 6952511 46830 0.260 0.252
6 6540066 41423 0.265 0.259
7 6412536 49462 0.289 0.291
8 5943838 42428 0.282 0.275
9 4249722 29209 0.270 0.267
10 4456037 65809 0.308 0.294
11 4031078 48072 0.325 0.331
12 3504895 26023 0.279 0.275

dataset. PHYNCH’s computational runtime requirements greatly in- 901

creased on the five-taxon datasets, however — a difference of nearly 804

two orders of magnitude — although its memory usage remained

the same. We attribute the increased runtime to the computational = 701

difficulty of learning PHYNCH’s model. Learning is addressed using L 601

model likelihood maximization, which is already known to be com- g 501

putationally difficult for the statistical models that are integrated 2.0l

into PHYNCH’s phylogenetic HMM [30, 32]. Furthermore, the num- <

ber of states required for the general formulation of PHYNCH’s 2 397

model will rapidly grow as the number of input sequences increases, 201

and runtime and main memory usage will increase as well. (Be- 101

low, we discuss a promising algorithmic approach for addressing

anticipated scalability challenges.) 0-

Rice genomic sequence dataset analysis 0,200

PHYNCH was used to detect genomic signatures of GC-biased 0.1751

gene conversion and recombination hotspots in rice and two sister o

species. The resulting fine-scale genomic map is shown in Figure © 01507

3. Putative genomic regions exhibiting GC-biased gene conversion g‘ 0.125 1

and recombination were detected in all 12 chromosomes in the rice g 0.1001

genome. Longest regions with high posterior decoding probability =

appeared around coordinates ~27 Mb to ~28 Mb in chromosome % 00751

7 and around coordinates ~17 Mb to ~18 Mb in chromosome 12. & 0.050

Some chromosomes contained more such regions relative to other 0.025 1

chromosomes, with the largest number appearing in chromosomes ’

3,7,1,2,4, 6, and 12. Genes within PHYNCH-inferred posterior
decoding probability above a high threshold are listed in Supple-
mentary Table S4. Panther [27] analysis identified subsets of genes
in the gene list that had Gene Ontology (GO) term enrichment
(Table 5). Further investigation is needed to test specific molecular
hypotheses that have been generated by PHYNCH analysis.

We note that there are several important differences between the
empirical study and simulation study. First, the sequence lengths in
the empirical study datasets are greater than in the simulation study
datasets by 1 to 2 orders of magnitude. PHYNCH inference and

0.000 -

4.R.0 4.R.1 4.R.2 5.R.0 5.R.1 5.R.2

Figure 2: Simulation study: runtime (h) and main memory
usage (GiB) of PHYNCH analyses. Average runtime and peak
memory usage are reported for simulation conditions with
recombination; standard error bars are also shown (n = 20).

learning remained tractable on the larger datasets in our empirical
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Table 4: Simulation study: type I and type Il error of PHYNCH inference. A modified posterior decoding calculation was used to
perform soft inference (see Methods section for details). Type I and type II error was assessed based on three calculations: area
under receiver operating characteristic curve (ROC-AUC), area under precision-recall curve (PR-AUC), and accuracy based on
hard classification with a fixed probability threshold of 0.95; for each calculation, an average across all replicates in a model
condition is shown (n = 20). Only accuracy is reported for the zero-hotspot model conditions since all sites are background
and multiple classes are needed for ROC and PR curves to be well-defined.

condition ROC-AUC PR-AUC Accuracy

Model
4.R.0
4R.1 0.9999
4R.2 0.9999
4.G.0
4.G.1 0.9996
4.G.2 0.9998
5.R.0
5R.1 0.9999
5R.2 0.9999

0.9501
0.9999 0.9971
0.9999 0.9954
1.000
0.9995 0.9461
0.9998 0.9486
0.9682
0.9999 0.9968
0.9999 0.9935

study. Second, the genomic sequences in our simulation study arose
through the complex interplay of different evolutionary processes
including point mutations, recombination and gene conversion,
gBGC, and others. The simulation conditions in our study cap-
ture a subset of these processes. Third, empirical genomes include
structural and functional features that are not directly captured
in our simulations. Finally, the empirical data in our study were
obtained using next-generation sequencing. Real-world data acqui-
sition and sequencing can introduce non-negligible error upstream
of biomolecular sequence analysis.

CONCLUSION

In this study, we introduced PHYNCH, a new phylogenetic HMM
framework for analyzing genomic patterns of gBGC and recombi-
nation hotspots. We conducted simulation experiments to evaluate
PHYNCH’s performance. PHYNCH returned type I and type Il error
that was largely robust to the range of evolutionary scenarios ex-
plored in our simulations, but a primary bottleneck was scalability
based on the number of input sequences. We anticipate that larger
and more divergent datasets may reveal further performance bot-
tlenecks; future algorithmic enhancements can boost PHYNCH’s
scalability (see below).

We conclude with directions for future research. First, other evo-
lutionary processes can also cause local genealogical discordance,
particularly genetic drift and incomplete lineage sorting. As in re-
lated HMM frameworks [7, 17, 24, 25], the PHYNCH model can be
augmented with coalescent model-based extensions to account for
the latter. Second, we note that not all local genealogies are equally
likely, and some may have low or trivial probability. This insight
can be exploited to perform model reduction as an approximation
technique [39]. We hypothesize that adapting these techniques to
the PHYNCH framework will improve computational runtime and
main memory usage by orders of magnitude. Finally, appropriate
extensions to the PHYNCH model would allow inference that dis-
tinguishes between crossover events, gene conversion events, and
combinations of both. Our future work aims to explore alternate

transition models for distinguishing between recombination out-
comes — either with or without crossover. As a proxy, convolutional
neural networks [21] may be able to distinguish between local tract
length distributions left by the two processes as different classes of
local motifs.
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Figure 3: Empirical study: a PHYNCH-inferred genomic map of gBGC and recombination hotspots in rice. A modified posterior
decoding was used to infer the probability that a site was contained within a gBGC and recombination hotspot (see Methods
for details). Genome coordinates are based on the IRGSP-1.0 O. s. japonica reference genome.
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