

Mycologia

ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/umyc20

Phlebopus roseus, a new edible bolete from China, is associated with insects and plants

Yang Mei , Cheng-Yi Liu , Shu-Hong Li , Alexis Guerin-Laguette , Yu-Jun Xiao , Ping Tang , Shan-Ping Wan , Gregory Bonito & Yun Wang

To cite this article: Yang Mei , Cheng-Yi Liu , Shu-Hong Li , Alexis Guerin-Laguette , Yu-Jun Xiao , Ping Tang , Shan-Ping Wan , Gregory Bonito & Yun Wang (2020): *Phlebopus roseus*, a new edible bolete from China, is associated with insects and plants, Mycologia, DOI: 10.1080/00275514.2020.1816781

To link to this article: https://doi.org/10.1080/00275514.2020.1816781

<u>+</u>	View supplementary material 亿
	Published online: 18 Dec 2020.
	Submit your article to this journal 🗷
Q ^L	View related articles 🗹
CrossMark	View Crossmark data 🗗

Phlebopus roseus, a new edible bolete from China, is associated with insects and plants

Yang Mei^a, Cheng-Yi Liu^a, Shu-Hong Li^b, Alexis Guerin-Laguette oc, Yu-Jun Xiao^a, Ping Tang^a, Shan-Ping Wan oc, Gregory Bonito oc, and Yun Wang^{a,b,f,g}

^aPanzhihua City Academy of Agricultural and Forest Sciences, Panzhihua, Sichuan, China; ^bBiotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming 650223 Yunnan, China; ^cThe New Zealand Institute for Plant & Food Research Ltd., Christchurch 8140, New Zealand; ^dCollege of Resource and Environment, Yunnan Agricultural University, Kunming 650100, China; ^eDepartment of Plant Soils and Microbial Sciences, Michigan State University, East Lansing Michigan 48824; ^fChinese Academy of Sciences Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, 132 Lanhei Road, Kunming, Yunnan 650201, China; ^a15 Lynfield Avenue, Ilam, Christchurch, New Zealand

ABSTRACT

Phlebopus roseus is described as new based on collections from southwest China. Phylogenetic analyses of nuclear rDNA internal transcribed spacer region ITS1-5.8S-ITS2 (ITS) and portions of nuclear 28S rDNA (28S), translation elongation factor 1-alpha (tef1), and the largest and second largest subunits of RNA polymerase II (rpb1, rpb2) support P. roseus as a novel species in the genus Phlebopus (Boletinellaceae, Boletales). The new species resembles P. portentosus but differs from it in that mature basidiomata have a bright rose-red-colored stipe and a radiate tubular hymenophore with nested pores. Despite extensive searching, P. roseus has only been found at four sites within a 24-hectare orchard dominated by *Eriobotrya japonica*, which is agriculturally important given its fruit production (loquats). Therefore, this species appears to be endemic and geographically restricted. The ecology of this bolete is also unique. In line with the trophic behavior of other species in the Boletinellaceae, our observations indicate that P. roseus forms a symbiotic association with the scale insect Coccus hesperidum, identified through sequence analysis of its mitochondrial cytochrome c oxidase subunit I (COI) region, to form fungus-insect galls that develop on roots of E. japonica trees. Phlebopus roseus is an edible mushroom species and is collected from the type location by farmers and sold commercially in limited quantities at local markets alongside P. portentosus and other fungi.

ARTICLE HISTORY

Received 20 May 2020 Accepted 27 August 2020

KEYWORDS

Boletinellaceae; Coccus hesperidum; Eriobotrya japonica; soil scale insects; symbiosis; 1 new taxon

INTRODUCTION

The Boletinellaceae P.M. Kirk, P.F. Cannon & J.C. David (2001) are a distinctive family of fungi in the order Boletales (1931) that comprises two genera, *Phlebopus* (R. Heim) Singer (1936) and *Boletinellus* Murrill (1909). Species in both genera have an unusual ecology as saprotrophs but also have a complex biotrophic association with insects. In this tripartite association, the boletes form a symbiosis with soil mealy bugs of the family Pseudococcidae within a fungus-insect gall on plant roots (Gonçalves 1940; Cotter and Miller 1985; Brundrett and Kendrick 1988; Gruhn et al. 1992; Zhang et al. 2015; Nuhn 2016). Fungi within Boletinellaceae produce stout fleshy basidiomata that have a poroid hymenophore. Other characteristics of this family include the broad elliptical basidiospores and the presence of

clamp connections on hyphae composing basidioma tissues and mycelial cultures. *Phlebopus* differs from *Boletinellus* in having a ventricose, bulbous, basal, sulcate stipe.

At present, only three species have been described in *Boletinellus* and more than 12 taxa have been reported in *Phlebopus* (Murrill 1909; McNabb 1968; Heinemann and Rammeloo 1982; Watling and De Meijer 1997; Deschamps and Moreno 1999; Watling 2006; Kirk et al. 2008; Tedersoo et al. 2010; Pham et al. 2012; Nuhn 2016). Only one species, *P. portentosus*, has been previously reported from China (Zang 2006; Lei et al. 2009; Zhang et al. 2015). *Phlebopus portentosus* has been found in Yunnan, Sichuan, Guangxi, and Hainan provinces in China, northern Thailand, and Sri Lanka (Sanmee et al. 2010; Pham et al. 2012; Zhang et al. 2015). This species has also been reported from Laos,

CONTACT Gregory Bonito bonito@msu.edu; Yun Wang wangy10melrose@hotmail.com Yang Mei and Cheng-Yi Liu contributed equally to this work.

Alexis Guerin-Laguette is a visiting scientist at Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China.

Yun Wang's current address is 15 Lynfield Avenue, llam, Christchurch, New Zealand

Supplemental data for this article can be accessed on the publisher's Web site.

© 2020 The Mycological Society of America

Cambodia, Vietnam, Indonesia, and Malaysia (Watling 2006; Kirk et al. 2008). Here, we provide a complete morphological description and multigene phylogenetic analysis of a new species of Phlebopus, which occurs intermixed with P. portentosus under trees of Eriobotrya japonica (loquat) in Miyi County, Panzhihua, Sichuan, China. Further, we report on the unique ecology of this bolete, which grows in association with scale insects to form fungus-insect galls on roots of *E. japonica*.

MATERIALS AND METHODS

Collection and morphological analysis.—Basidiomata of *P. roseus* were collected from Miyi County in Sichuan, China, in 2015. The holotype (HKAS 102569) and three specimens were deposited in the KUN Cryptogamic Herbarium (TABLE 1). The samples were brought back fresh for isolation and morphological examination. For tissue isolation, surfaces of basidiomata were wiped with 75% ethanol, cuts made with forceps, and then the basidioma was split in half by hand. A small piece of flesh was excised from the junction between the pileus and the stipe and plated onto potato dextrose agar (PDA) and incubated at 24 C for 2

Macroscopic and microscopic characteristics of basidiomata were described from fresh specimens following the methods of Yang and Zhang (2003). Briefly, sections were made by hand with a razor blade and mounted in water. For the best sections, water was replaced with lactophenol solution by suction before taking micrographs. Observations and photographs were made with an Olympus BH-2 microscope (Tokyo, Japan). Scanning electron microscopy (SEM) images were made at KUN. The pileus and stipe dimensions were inferred from 10 basidiomata. Measurements of spores, basidia, and cystidia were made from five basidiomata. Since we suspected the presence of a new species in 2013, we recommended that farmers weigh P. roseus basidiomata

separately from those of *P. portentosus* after each harvest to estimate relative yield of the two species annually.

Insect analysis.—Roots of Eriobotrya japonica were collected beneath P. roseus basidiomata. The fungusinsect galls were found on some of the collected roots. The fungus-insect galls were washed under tap water and then cut open to reveal scale bug-like larvae inside that appeared similar within and between galls. Three insect larvae were collected from one gall, stored at 4 C in 75% ethanol, and their DNA was analyzed separately.

Molecular methods.—Four specimens, each collected from a different fruiting site within the loquat orchard (see SUPPLEMENTARY FIG. 1), were analyzed (TABLE 1). Total DNA was extracted from silica-dried basidiomata tissues with a modified cetyltrimethylammonium bromide (CTAB) methodology (Hofstetter et al. 2002; Li et al. 2011). Nuc rDNA internal transcribed spacer region ITS1-5.8S-ITS2 (ITS barcode) and portions of nuc 28S rDNA (28S), single-copy protein genes that encode RNA polymerase II largest (rpb1) and second largest (rpb2) subunits, and translation elongation factor 1-alpha (tef1) were amplified by polymerase chain reaction (PCR) following the protocol provided by Li et al. (2011). Primers used to amplify each locus are presented in TABLE 2. Purification and bidirectional Sanger sequencing of PCR products were conducted by Beijing Genomics Institute on an ABI3130 automated sequencer (Beijing, China).

Insect DNA was extracted from larvae using an animal tissue genomic DNA kit (Tiangen Bio-Chem Technology, Beijing, China) following the manufacturer's protocol and was stored at -20 C until use. The mitochondrial cytochrome c oxidase subunit I (COI) region was amplified by PCR with the forward primer PcoF1 and reverse primer LepR1 (TABLE 2). PCR reactions were performed in a final volume of 25 µL containing 12.5 µL Premix

Table 1. Specimens, pure cultures, and sequences obtained in this study.

	Collection number	GenBank accessions	
Taxon		ITS/28S rDNA	rpb1/rpb2/tef1
Phlebopus roseus	MY2017273	MK734170/MK734301	MK736300/MK747251/MK736294
Phlebopus roseus	MY2017274	MK734175/MK734306	—/MK747256/MK736299
Phlebopus roseus	MY2017275 ^a	MK734171/MK734302	MK736301/MK747252/MK736295
Phlebopus roseus	MY2017275_a ^b	MK734173/MK734304	MK736303/MK747254/MK736297
Phlebopus roseus	MY2017277	MK734172/MK734303	MK736302/MK747253/MK736296
Phlebopus roseus	MY2017277_a ^b	MK734174/MK734305	MK736304/MK747255/MK736298

Note. All specimens were harvested in Miyi County, Sichuan, China, 26°55′19"N, 102°06′44"E, alt. 1220–1300 m, in an orchard of Eriobotrya japonica on 9

^aMY2017275 is the holotype and corresponds to specimen HKAS 102569 kept in the Cryptogamic Herbarium, Kunming Institute of Botany (KUN), Academia Sinica, Kunming, Yunnan, China. Paratypes MY2017273, MY2017274, and MY2017277 correspond to specimens HKAS 106938, HKAS 106939, and HKAS 106940, respectively.

 $[^]b$ Pure cultures MY2017275_a and MY2017277_a were obtained from corresponding basiodiomata. No sequence is available at RPB1 for MY2017274.

Table 2. Fungal and insect primer sequences used in this study.

Locus	Primer name	Primer sequence	Reference
ITS	ITS1F	CTTGGTCATTTAGATGAAGTAA	Gardes and Bruns 1993
	ITS4	TCCTCCGCTTATTGATATGC	White et al. 1990
285	LROR	ACCCGCTGAACTTAAGC	Vilgalys and Hester 1990
	LR5	TCCTGAGGGAAACTTCG	Vilgalys and Hester 1990
rpb1	RPB1-Af	GTCCGGGWCATTTTGGTC	Matheny et al. 2002
	fRPB1-Cr	TTGTCCATGTANGTRGCRACA	Matheny et al. 2002
rpb2	bRPB2-6F	TGGGGYATGGTNTGYCCYGC	Matheny 2005
	bRPB2-7IR	CCCATRGCYTGYTTMCCCATDGC	Matheny 2005
tef1	983F	GCYCCYGGHCAYCGTGAYTTYAT	Rehner 2001
	1567R	ACHGTRCCRATACCACCRATCTT	Rehner 2001
COI	PcoF1	CCTTCAACTAATCATAAAAATATYA	Park et al. 2011
	LepR1	TAAACTTCTGGATGTCCAAAAAATCA	Park et al. 2011

Note. ITS = nuclear ribosomal DNA internal transcribed spacer ITS1-5.8S-ITS2; 28S = large subunit of the nuclear ribosomal repeat; rpb1 = RNA polymerase II largest subunit; rpb2 = RNA polymerase II second largest subunit; tef1 = translation elongation factor 1-alpha; COI = mitochondrial cytochrome c oxidase subunit I.

(Beijing Qingke, Chengdu, China), 1 μL of each primer (5 μM; Sangon Biotech, Shanghai, China), 1 μL DNA temwater (ddH_2O) . μL double-distilled plate, 9.5 Amplifications were performed with the following cycling parameters: 94 C for 5 min, followed by 35 cycles of 94 C for 30 s, 46.7 C for 45 s, and 72 C for 1 min, and with a final extension at 72 C for 10 min. PCR products were run on a 1% agarose gel and stained with GelRed (Biotium, Hayward, California). PCR products were purified and sequenced bidirectionally by the Qingke Biological Company, Beijing, China.

Fungal sequences were edited and assembled using SeqMan II (Larsson and Sundberg 2011). The BLASTN algorithm was used to compare sequences (TABLE 1) with those on GenBank, and with those belonging to reference taxa for phylogenetic analyses. All sequences used for comparison are presented in SUPPLEMENTARY TABLE 1. Sequence alignments for each locus were performed individually in MUSCLE 3.7 (Edgar 2004). Alignments were visually inspected and ambiguous regions excluded in Mesquite (Maddison and Maddison 2018). Given that different reference taxa were available for each locus, with most reference sequences belonging to ITS and 28S, we split and sorted the data into two concatenated data matrices using SequenceMatrix (Vaidya et al. 2011). The first data matrix consisted of concatenated ITS and 28S alignments for 32 taxa and 1864 characters. The second data matrix consisted of a concatenated alignment of rpb1, rpb2, and tef1 and included 21 taxa and 3762 characters. Outgroup taxa in the Scleroder-matineae were chosen based on recent analyses of the Boletales and published data avail-GenBank (Sato and Toju

Maximum likelihood (ML) analyses were conducted with RAxML 8.2.12 (Stamatakis 2014). Data partitions for protein-coding gene exons were determined with PartitionFinder (Lanfear et al. 2012) based on codon and locus using the Akaike information criterion. Intron

regions were excluded. A GTRGAMMA nucleotide substitution model was used for each of the five partitions that were found. One thousand ML bootstrap replicates were executed in RAxML under a GTRGAMMA model. For Bayesian inference (BI) estimations, independent analyses were conducted in MrBayes 3.2.7a (Ronquist et al. 2012). Two independent Markov chain Monte Carlo (MCMC) runs with four chains were conducted for 10 million generations sampling every 100 generation. MCMC convergence was assessed by visualizing with Tracer (Rambaut et al. 2018) and determining that effective sampling size (ESS) was above 400. The first 25% of trees were discarded as burn-in, and posterior probabilities (PPs) were calculated from the remaining distribution of trees. MrBayes and RAxML analyses were computed through the CIPRES Web portal (www.phylo.org) and visualized with FigTree (http://tree.bio.ed.ac.uk/software/figtree).

Insect sequences were assembled and edited manually using Sequencher 4.1.4 (Gene Codes, Ann Arbor, Michigan). The consensus sequence was queried against the National Center for Biotechnology Information (NCBI) public database GenBank with the BLASTn algorithm to aid identification. Similar sequences were downloaded from GenBank to conduct a phylogenetic analysis for verification. Reference insect sequences and the COI sequence derived from the fungus-root gall were aligned in MUSCLE 3.7 (Edgar 2004). The alignment was visually inspected and ambiguous regions excluded in Mesquite 3.51 (Maddison and Maddison 2018). Maximum likelihood (ML) analyses were conducted as above following with 1000 ML bootstrap replicates. The consensus insect COI sequence was deposited at GenBank (MT482789).

RESULTS

Pure culture isolation.—Pure culture isolates of P. roseus were obtained from basidioma tissues sampled from the junction between the pileus and the stipe and

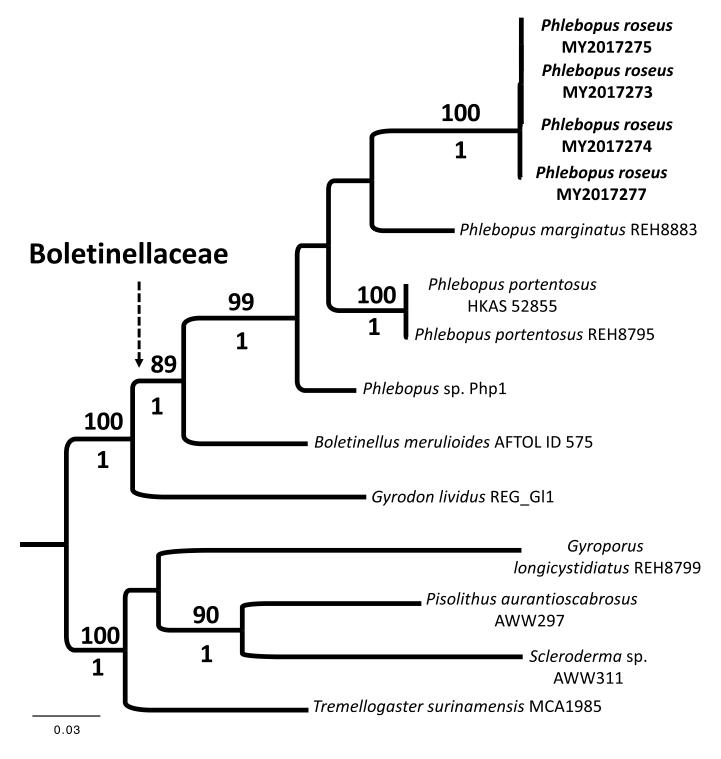


Figure 1. Maximum likelihood (ML) phylogeny based on the combined data set of rpb1, rpb2, and tef1 nucleotide sequences showing the placement of Phlebopus roseus (labeled and in bold) within Phlebopus and the Boletinellaceae. The node comprising Boletellaceae is labeled with a dotted arrow. Taxa within Paxillaceae (Gyrodon) and Sclerodermatineae (Gyroporus, Pisolithus, Scleroderma, Tremellogaster) were used as outgroups to root the phylogeny. ML bootstrap support values >70% are shown above nodes. Bayesian posterior probabilities (0-1) are shown below nodes.

plated onto PDA. A total of 73 homogeneous mycelial colonies were obtained out of 86 attempts (85%). Microscopic observation revealed that subcultures contained clamp connections, indicating that they were dikaryotic. Isolates completely colonized 7.5-cm-diam plates after 25 d of incubation at room temperature (24 C). Fungal phylogenetic analyses.—Independent assessments of the phylogenetic placement of P. roseus based on protein-coding (FIG. 1) and rDNA (FIG. 2) data provided multiple levels of resolution and sampling. The phylogenies were similar in topology, in that Phlebopus formed a monophyletic lineage derived from a shared ancestor with Gyrodon (Paxillaceae). rDNA data indicated that Boletinellus is weakly supported monophyletic group, but only one taxon was sampled in the single-copy protein-coding gene matrix, so no firm conclusions can be made about the monophyletic status of this genus. In both sets of analyses, P. roseus was resolved within the Boletinellaceae (70% bootstrap support and 1.0 PP) (FIGS. 1, 2). ITS sequences of P. roseus are >10% different from those of other sampled Phlebopus species.

Insect phylogenetic analyses.—The COI sequence generated from the insect larvae showed 99.52% similarity with Coccus hesperidum (GenBank KY085328; see Amouroux et al. 2017). Phylogenetic analysis of COI further supports the identification of the larvae as C. hesperidum (SUPPLEMENTARY FIG. 2). Similarly, the morphology of the insect larvae found in the galls is Coccus-like and consistent with that of C. hesperidum.

TAXONOMY

Phlebopus roseus M. Yang, C.-Y. Liu & Y. Wang, sp. FIGS. 3, 4 nov.

MycoBank MB818925

Typification: CHINA. SICHUAN: Miyi County, 26°55' 19"N, 102°06'44"E, alt. 1220-1300 m, on soil in understory of an Eriobotrya japonica (loquat) orchard, 9 Jan 2015, Mei Yang MY2017275 (holotype HKAS 102569). GenBank: ITS = MK734171; 28S = MK734302; rpb1 = MK736301; rpb2 = MK747252; tef1 = MK736295.

Diagnosis: Phlebopus roseus differs from other Phlebopus species by its reddish stipe and its tubular hymenophore with nested angular pores of multiple sizes.

Etymology: roseus (Latin), referring to the rose-red stipe.

Description: Pileus up to 170 mm wide, convex or plano-convex when young, becoming applanate with a reflexed margin and often grooved in age, margin often extending beyond the pores; surface dry, velutinate; dark brown when young, becoming yellowish brown with age, often tinted reddish brown; flesh thick, bright yellow, reddish underneath the pileus cuticle, blue where touched; 5% KOH negative on pileus surface and context. Tubes very thin, radiating from the stipe, slightly adnexed; bright yellow when young, sordid yellow at maturity; pores concolorous with tubes, pores and tubes blue where bruised; pores pentagonal or hexagonal, often nested with a larger single pore $(1-2 \times 3-4 \text{ mm})$ having 2-5 smaller pores (0.5-2 mm) with shallower ridges within (FIG. 3E). Stipe up to 150 mm long, ventricosebulbous, 23 mm wide at the apex, enlarged below and up to 85 mm wide at the base; dry, coarsely sulcate basally, velutinate; roseus to reddish brown, usually yellowish at the basel end of the stipe; flesh sordid, yellow, becoming blue where handled. Odor not distinctive; taste meaty, slightly earthy.

Basidiospores $6.5-8 \times 5-6 \mu m$, smooth, broadly elliptic or obovate, thin-walled, deep yellow in water, apical pore absent, dark brown in deposit. Basidia $15-25 \times 10-12 \mu m$, hyaline, clavate, 4-spored. Pleurocystidia $20-50 \times 7-15 \mu m$, clavate or heteromorphous. Hymenophoral trama bilateral, hyaline, hyphae to 11 µm wide. Pileipellis a trichoderm, with sparse erect terminal cells $28-30 \times 3-6 \times \mu m$, these cylindric with rounded apices and brown pigment. Stipitipellis consisting of interwoven hyphae with dense, erect, terminal cells, 2–5 μm wide, up to 90 μm long, thinwalled, with brownish intracellular pigment. Clamp connections present (FIG. 4A)

Ecology and distribution: solitary or in groups on soil of sandy loam with pH 5.7-7.3, under trees of Eriobotrya japonica, alt. 1220-1300 m, forming fungus-insect galls with Coccus hesperidum on the roots (FIG. 4D-E), occurring summer to autumn. Known only from an abandoned loquat plantation of about 24 ha located in Miyi, Sichuan, China. Known only from the type locality.

Other specimens examined: CHINA. SICHUAN: Miyi County, same locality as the holotype MY2017275, 9 Jan 2015, Mei Yang MY2017273 (HKAS 106938); 9 Jan 2015, Mei Yang MY2017274 (HKAS 106939); 9 Jan 2015, Mei Yang MY2017277 (HKAS 106940).

DISCUSSION

Boletinellaceae is a small family within the Boletales. Our data confirm that this family consists of two genera: Phlebopus and Boletinellus, although the placement of B. rompelii in the genus was poorly resolved as previously shown (FIG. 2; Louzan et al. 2007). Gyrodon was the only representative of Paxillaceae that was included, and it fell outside of Boletinellaceae in our phylogenetic analysis of protein sequences. The phylogenetic placement of Boletinellaceae within the Boletales was poorly resolved in Wilson et al. (2012); however, a more recent phylogenetic study (Sato and Toju 2019) suggested that Boletinellaceae is the sister group of Boletineae (the suborder comprising Boletaceae and Paxillaceae).

Within Boletinellaceae, only one species, Phlebous portentosus (type from Sri Lanka), had been documented from subtropical and tropical China (Zang 2006; Lei

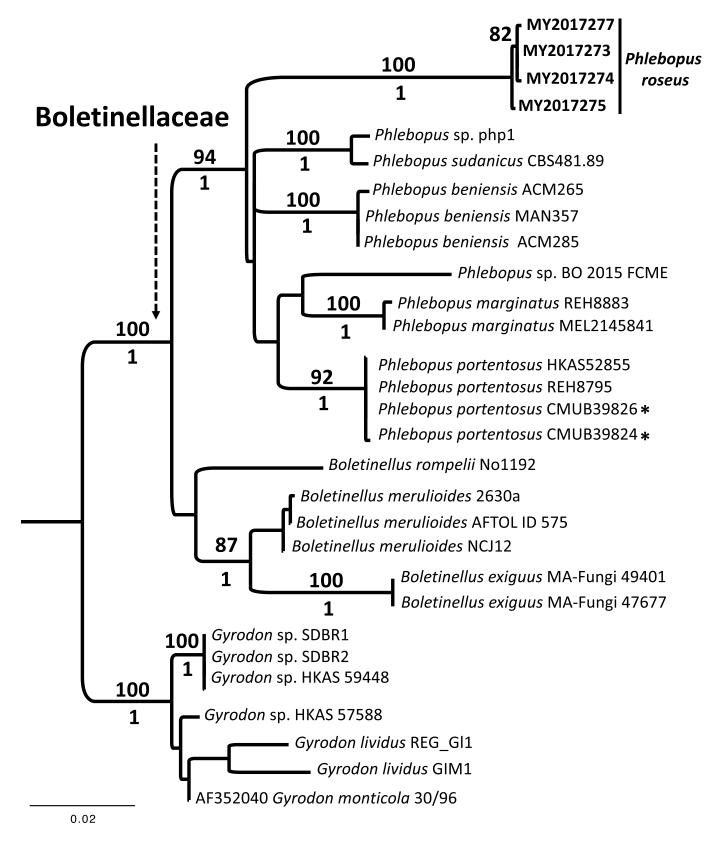


Figure 2. Maximum likelihood (ML) phylogeny based on the combined data set of ITS and 28S showing the placement of Phlebopus roseus (bold) within Phlebopus and the Boletinellaceae. The node comprising Boletellaceae is labeled with a dotted arrow. Taxa within Gyrodon (Paxillaceae) were used as outgroups to root the phylogeny. ML bootstrap support values >70% are shown above nodes. Bayesian posterior probabilities (0-1) are shown below nodes. An asterisk (*) denotes that the taxonomy of this collection provided in GenBank has been reassigned based on the molecular analysis.

Figure 3. Phlebopus roseus. A. Mushrooms sold at a farmer's market, Miyi, Sichuan, China, include a mixture of basidiomata of Phlebopus roseus and P. portentosus. B. Three young basidiomata. C–D. Mature basidiomata occurring in an orchard of Eriobotrya japonica. E. Pores organised in a nested pattern with 2–5 small pores (thin walls; arrow) inside single larger pores (thick walls; arrow head). F. Basidia and basidiospores. G. Bilateral hymenophoral trama. H–I. Cystidia. Bars: A, B = 5 cm; C, D = 2.5 cm; E = 10 mm; F, G = 10 μm; H, I = 20 μm.

et al. 2009; Zhang et al. 2015). In 2013, we first found *P. roseus* within an orchard of *Eriobotrya japonica* (loquat) in Sichuan Province, China. Fruiting bodies occurred in close proximity to *P. portentosus* but were

distinguishable by their reddish stipes. Morphologically, the radiate tubular hymenophores with nested pores on mature mushrooms are more similar to *Boletinellus* than to *Phlebopus*. Aside from this, and the rose-colored stipe,

Figure 4. Phlebopus roseus. A. Clamp connections. B. Basidiospores. C. Scanning electron microscope photograph of basidiospore. D. Insect-fungal galls with scale insect (Coccus hesperidum) larvae. E. Scale bug larvae. F. Phlebopus roseus (right) and Phlebopus portentosus (left). Bars: $A = 20 \mu m$; $B = 10 \mu m$; D, E = 1 mm; F = 2.5 cm.

P. roseus morphologically resembles P. portentosus in terms of stature and shape. The reddish stipe of P. roseus (FIG. 3A-E) also distinguishes this bolete from other species of Phlebopus. Taken together, this set of characters is unique to any described bolete species. Phylogenetic analyses of three single-copy protein genes (tef1, rpb1, rpb2; FIG. 1) and rDNA (ITS, 28S; FIG. 2) also support *P. roseus* as a new species in the genus *Phlebopus*.

Over the last six years, we have been monitoring the only known presumed population of *P. roseus*. The yields have been very low compared with those of *P. portentosus*, which occurs in the same orchard (SUPPLEMENTARY TABLE 2). About 5 tons of P. portentosus are harvested each year from the orchard, whereas yields of P. roseus fruiting body production barely reaches 95-150 kg per year. Despite visiting nearby markets and having many discussions with local farmers, we have found no evidence of P. roseus occurring in other locations in the region or elsewhere in China. In fact, P. roseus has only been found in four sites within a 24-ha orchard of E. japonica (SUPPLEMENTARY FIG. 1). Even though P. roseus may fruit in abundance locally, P. roseus appears to be endemic and geographically restricted in its distribution. Until additional data become available from herbarium materials or other reports, intense commercial harvesting of *P. roseus* from the type locality would be imprudent. Local efforts to conserve natural populations of this edible mushroom species and to protect its habitat have become urgent issues in Miyi County, China. Proposals are underway to the local authority to turn these sites into a natural reserve, but several legal issues remain to be addressed before any protective actions are taken. For the time being, careful monitoring and management of the commercial harvesting of *P. roseus* are recommended. Pressing scientific questions that remain relate to whether the distribution of *P. roseus* depends on that of its plant host and insect associate, and whether collections of *P. roseus* exist in fungaria as an unclassified or misclassified collection.

It is noteworthy that dikaryotic mycelial cultures were obtained from *P. roseus* fruiting bodies. Not only does this provide genetic and biological resources for this species, but it also may indicate that this species has a certain degree of saprotrophic capacity. Fungi in the Boletinellaceae are interesting in that they occupy a trophic niche that includes insect symbionts (Brundrett and Kendrick 1987). When excavating beneath basidiomata in the field, we discovered that scale bugs were associated with *P. roseus* mycelial mats and formed fungus-insect gall structures around plant roots (FIG. 4D-E). Whether these fungi are able to utilize C. hesperidum honeydew, other metabolites, or necromass remains an open question. A related species, P. portentosus, is often associated with soil mealy bugs in the field (Fang et al. 2020). Phlebopus portentosus has been reported to associate with up to six species of insects in the family Pseudococcidae, and they are known to produce fungusinsect galls on plant roots (Zhang et al. 2015). Yet, P. portentosus can be cultivated as a saprotroph on dead organic substrates independent of mealy bugs (Ji et al. 2011). *Phlebopus roseus* appears to have a similar mode of nutrition as P. portentosus; however, the two bolete taxa associate with different species of insects. More work is required to determine the ecology of P. roseus and how scale bugs interact with this boletoid fungus and plant host. Understanding the ecological and physiological interactions between these organisms deserves further investigation. Future research to conserve and cultivate this new edible bolete species is strongly recommended.

ACKNOWLEDGMENTS

We are grateful to Fuqiang Yu for his support. We appreciate the support of Panzhihua City Forestry Bureau. We thank Ran Wang for taking the SEM micrographs and Gang Wu for providing suggestions on the manuscript. Finally, we especially thank Ms. Yang, a farmer of Kelang Village of Miyi, Panzhihua, Sichuan, for kindly guiding us to collections of *Phlebopus roseus*. We are grateful to Roy Halling for helpful discussions and the reviewers and editors for the careful reading and thoughtful comments.

FUNDING

This study was supported financially by the Operation and Service of Forestry Microbial Resources Sub-platform (no. NIMR-2017-7), the Research and Demonstration of Domestication and Cultivation Techniques of Wild Phlebopus Portentosus (no. 2014CY-N-7), and the National Modern Agricultural Industrial Technology System—SiChuan edible fungi innovation team project (sccxtd-2020-07). Participation by Gregory Bonito was supported through National Science Foundation (NSF) grant DEB 1737898 and the International (Regional) Cooperation and Exchange Projects of the National Natural Science Foundation of China (No. 31961143010) awarded to Fuqiang Yu, and United States Department of Agriculture (USDA) grant MICL02416.

ORCID

Alexis Guerin-Laguette http://orcid.org/0000-0002-9845-9906

Shan-Ping Wan (b) http://orcid.org/0000-0002-0794-3701 Gregory Bonito (b) http://orcid.org/0000-0002-7262-8978

LITERATURE CITED

Amouroux P, Crochard D, Germain JF, Correa M, Ampuero J, Groussier G, Kreiter P, Malausa T, Zaviezo T. 2017. Genetic diversity of armored scales (Hemiptera: Diaspididae) and soft scales (Hemiptera: Coccidae) in Chile. Science Reports 7:2014.

Brundrett MC, Kendrick B. 1987. The relationship between the ash bolete (*Boletinellus merulioides*) and an aphid parasitic on ash tree roots. Symbiosis 3:315–320.

Brundrett MC, Kendrick B. 1988. The mycorrhizal status, root anatomy and phenology of plants in a sugar maple forest. Canadian Journal of Botany 66:1153–1173.

Cotter HVT, Miller OK. 1985. Sclerotia of *Boletinellus merulioides* in nature. Mycologia 77:927–931.

Deschamps J, Moreno G. 1999. *Phlebopus bruchii* (Boletales): an edible fungus from Argentina with possible commercial value. Mycotaxon 72:205–213.

Edgar RC. 2004. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research 32:1792–1797.

Fang Y-W, Wang W-B, He M-X, Xu X-J, Gao F, Liu J, Yang T-W, Cao Y, Yang T, Wang Y, Zhang C-X. (2020) Relationship between the honeydew of mealy bugs and the growth of *Phlebopus portentosus*. PLoS ONE 15:e0233710.

Gardes M, Bruns TD. 1993. ITS primers with enhanced specificity for basidiomycetes—application to the identification of mycorrhizae and rusts. Molecular Ecology 2:113–118.

Gonçalves CR. 1940. Observations on *Pseudococcus comstocki* (Kuw. 1902) attacking citrus in Baixada Fluminense. Rodriguesia 4:179–198.

Gruhn CM, Gruhn AV, Miller OK. 1992. *Boletinellus merulioides* alters root morphology of Pinus densiflora without mycorrhizal formation. Mycologia 84:528–533.

Heinemann P, Rammeloo J. 1982. Observations sur le genre *Phlebopus* (Boletineae). Mycotaxon 15:384–404.

Hofstetter V, Clémençon H, Vilgalys R, Moncalvo JM. 2002. Phylogenetic analyses of the Lyophylleae (Agaricales, Basidiomycota) based on nuclear and mitochondrial rDNA sequences. Mycological Research 106:1043–1059.

Ji KP, Cao Y, Zhang CX, He MX, Liu J, Wang WB, Wang Y. 2011. Cultivation of *Phlebopus portentosus* in southern China. Mycological Progress 10:293–300.

- Kirk PM, Cannon PF, Minter DW, Stalpers JA. 2008. Dictionary of the fungi. 10th ed. Wallingford, UK: CABI Europe. 784 p.
- Lanfear R, Calcott B, Ho SYW, Guindon S. 2012. PartitionFinder: combined selection of partitioning schemes and substitution models for phylogenetic analyses. Molecular Biology and Evolution 29:1695-1701.
- Larsson E, Sundberg H. 2011. Lyophyllum shimeji, a species associated with lichen pine forest in northern Fennoscandia. Mycoscience 52:289-295.
- Lei QY, Zhou JJ, Wang QB. 2009. Notes on three bolete species from China. Mycosystema 28:56-59.
- Li SH, Zhao YC, Yu FQ, Wang XH, Zhang XL, Liu PG. 2011. Systematics of the easily confusing poisonous boletes from Yunnan wild mushroom markets. Edible Fungi of China 30:34-36.
- Louzan R, Wilson AW, Binder M, Hibbett DS. 2007. Phylogenetic placement of Diplocystis wrightii in the Sclerodermatineae (Boletales) based on nuclear ribosomal large subunit DNA sequences. Mycoscience
- Maddison WP, Maddison DR. 2018. Mesquite: a modular system for evolutionary analysis. Version 3.51. [cited 2018 Nov]. Available from: http://www.mesquiteproject.
- McNabb RFR. 1968. The Boletaceae of New Zealand. New Zealand Journal of Botany 6:137–176.
- Matheny PB. 2005. Improving phylogenetic inference of mushrooms with rpb1 and rpb2 nucleotide sequences (Inocybe, Agaricales). Molecular Phylogenetics and Evolution 35:1–20.
- Matheny PB, Liu YJ, Ammirati JF, Hall BD. 2002. Using rpb1 sequences to improve phylogenetic inferences among mushrooms (Inocybe, Agaricales). American Journal of Botany 89:688-698.
- Murrill WA. 1909. The Boletaceae of North America-I. Mycologia 1:4–18.
- Nuhn ME. 2016. Molecular ecology of *Boletinellus merulioides* and systematics of the Boletineae [PhD dissertation]. Worcester, Massachusetts: Clark University. 286 p.
- Park DS, Suh SJ, Hebert PDN, Oh HW, Hong KJ. 2011. DNA barcodes for two scale insect families, scalebugs (Hemiptera: Pseudococcidae) and armored scales (Hemiptera: Diaspididae). Bulletin of Entomological Research 101:429-434.
- Pham NDH, Takahashi H, Fukiharu T, Shimizu K, Le BD, Suzuki A. 2012. Phlebopus spongiosus sp. nov. (Boletales, Boletinellaceae) with a sponge-like tissue. Mycotaxon 119:27-34.
- Rambaut A, Drummond AJ, Xie D, Baele G, Suchard MA. 2018. Posterior summarisation in Bayesian phylogenetics using Tracer 1.7. Systematic Biology 65:901-904.

- Rehner S. 2001. Primers for elongation factor $1-\alpha$ (ef1- α). [cited 2017 Oct]. Available from: http://ocid.nacse.org/ research/deephyphae/EF1primer.pdf
- Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Höhna S, Larget B, Liu L, Suchard MA, Huelsenbeck JP. 2012. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology 61:539-542.
- Sanmee R, Lumyong P, Dell B, Lumyong S. 2010. In vitro cultivation and fruit body formation of the black bolete, Phlebopus portentosus, a popular edible ectomycorrhizal fungus in Thailand. Mycoscience 51:15-22.
- Sato H, Toju H. 2019. Timing of evolutionary innovation: scenarios of evolutionary diversification in a species-rich fungal clade, Boletales. New Phytologist 222:1924-1935.
- Stamatakis A. 2014. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30:1312-1313.
- Tedersoo L, May TW, Smith ME. 2010. Ectomycorrhizal lifestyle in fungi: global diversity, distribution, and evolution of phylogenetic lineages. Mycorrhiza 20:217-263.
- Vaidya G, Lohman DJ, Meier R. 2011. Sequence Matrix: concatenation software for the fast assembly of multigene datasets with character set and codon information. Cladistics
- Vilgalys R, Hester M. 1990. Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several Cryptococcus species. Journal of Bacteriology 172:4238-4246.
- Watling R. 2006. The Sclerodermatoid fungi. Mycoscience 47:18-24.
- Watling R, De Meijer AR. 1997. Macromycetes from the state of Paraná, Brazil: 5. Poroid and lamellate boletes. Edinburgh Journal of Botany 54:231-251.
- White TJ, Bruns TD, Lee SB, Taylor JW. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ, eds. PCR protocols: a guide to methods and applications. New York: Academic Press. p. 315-322.
- Wilson AW, Binder M, Hibbett DS. 2012. Diversity and evolution of ectomycorrhizal host associations in the Sclerodermatineae (Boletales, Basidiomycota). New Phytologist 194:1079-1095.
- Yang ZL, Zhang LF. 2003. Type studies on Clitocybe macrospora and Xerula furfuracea var. bispora. Mycotaxon 88:447-454.
- Zang M. 2006. Flora Fungorum Sinicorum, Boletaceae (I), Science Press, Beijing 22:1–215.
- Zhang CX, He MX, Cao Y, Liu J, Gao F, Wang WB, Ji KP, Shao SC, Wang Y. 2015. Fungus-insect gall of Phlebopus portentosus. Mycologia 107:12-20.