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Abstract. One of the most costly factors in providing a global computing in-
frastructure such as the WLCG is the human effort in deployment, integration,
and operation of the distributed services supporting collaborative computing,
data sharing and delivery, and analysis of extreme scale datasets. Furthermore,
the time required to roll out global software updates, introduce new service
components, or prototype novel systems requiring coordinated deployments
across multiple facilities is often increased by communication latencies, staff

availability, and in many cases expertise required for operations of bespoke
services. While the WLCG (and distributed systems implemented throughout
HEP) is a global service platform, it lacks the capability and flexibility of a
modern platform-as-a-service including continuous integration/continuous de-
livery (CI/CD) methods, development-operations capabilities (DevOps, where
developers assume a more direct role in the actual production infrastructure),
and automation. Most importantly, tooling which reduces required training, be-
spoke service expertise, and the operational effort throughout the infrastructure,
most notably at the resource endpoints (sites), is entirely absent in the current
model. In this paper, we explore ideas and questions around potential NoOps
models in this context: what is realistic given organizational policies and con-
straints? How should operational responsibility be organized across teams and
facilities? What are the technical gaps? What are the social and cybersecurity
challenges? Conversely what advantages does a NoOps model deliver for inno-
vation and for accelerating the pace of delivery of new services needed for the
HL-LHC era? We will describe initial work along these lines in the context of
providing a data delivery network supporting IRIS-HEP DOMA R&D.

1 Scale of Operations

By almost any metric, the Worldwide LHC Computing Grid [1] has been enormously suc-
cessful delivering the processing capacity required by the LHC experiments. The WLCG has
170 sites integrated into a global production fabric capable of delivering billions of CPU-
hours per year while transferring hundreds of petabytes between storage endpoints at the
various Tiers for processing and analysis. The software and computing teams of the LHC
collaborations have built highly capable distributed workload and data management systems
to exploit the aggregated resources of the contributing facilities (Figure 1). The result has
been prodigious numbers of public results and graduated Ph.D. students.
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The LHC experiments organize distributed computing operations into teams, usually one
for distributed data management and the other for distributed production and analysis oper-
ations [2]. These teams of experts are typically backed up by a second tier of support per-
sonnel (dedicated “shifters”) distributed across continents to provide 24x7x365 operational
coverage. The tasks include optimizing storage utilization, monitoring file transfers and data
throughput performance, ensuring data quality (checks for missing and/or corrupted data both
centrally and at all of the WLCG sites), testing configuration and performance of site storage
services, and the generic functions of monitoring, reporting, trouble triaging, and facilitating
communication between WLCG site administrators and the experts throughout the system.

Figure 1: At left: the WLCG infrastructure which, across its Tier0, Tier1, and Tier2 centers,
provided the bulk of the computing capacity for LHC Run 1 and Run 2 processing, storage,
simulation and analysis. At right, distributed computing system components (in this case
ATLAS [3]) which are typical of the LHC experiments.

The central teams are crucial to the smooth operation of the overall system and thus re-
quire significant experience and training; as a result the positions are at risk for understaffing
or single-points-of-expertise-failure. Not visible to the central teams are the supporting tasks
of the WLCG site managers and system administrators who are responsible for efficient and
reliable operation of infrastructure and services in order to meet their WLCG pledged MOU
commitments, including for availability and reliability metrics. Their tasks include opera-
tion of the computing and storage systems and supporting infrastructure, deployment and
operation of the job and storage service endpoints (compute and storage elements), check-
ing consistency between storage and central data management catalogs, troubleshooting file
transfer and job errors, responding to tickets and emails to regional support lists from the cen-
tral operations and shift teams. Often this may require reporting misconfigured tasks which
result in job failure, problematic user jobs, and other issues in the distributed system that may
or may not have been triggered by a local site problem. Thus, while overall the sytem itself
performs very well and has met the demands of scale and complexity of the LHC experiments
thus far, there are signficant labor costs and some future risks. Services can be difficult for
non-experts to operate, and the training for new staff with complex and non-standard services
and distributed systems is significant and long. Moreover, new development and innovation
is difficult given the static (or slowly changing) nature of the widely distributed service en-
vironment. Updates across the many sites and differing e-infrastructures must be externally
coordinated, introducing time delays for the central development teams.

2 Federating the Edge

The point at which institutional computing resources meet the LHC experiments is the
“edge”, i.e. the facility edge network where service endpoints are typically deployed on ro-
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bust hosts connected to high capacity local and wide area networks. These zones are naturally
fully under the control and responsibility of the local site manager, including enforcement of
site access and cybersecurity policies.

In the WLCG edge of today we have a diverse and rich set of services connecting local re-
sources to the global platform: services for network diagnostics (e.g. PerfSONAR throughput
and latency measuring hosts), data transfer (storage) endpoints (“DTNs”), compute elements
to route jobs to local resource managers (local job schedulers), software & conditions data
caches (CVMFS, Frontier-squid), data caches (e.g. XCache), and in the case of ATLAS, the
Harvester edge service (specifically for leadership class HPC facilities). In future? We can
probably expect novel data delivery (transformations, reformatting, decompression, etc.) and
data caching services. But one could imagine “facility APIs” (implementing Infrastructure-
as-a-Service, IaaS), platform APIs (PaaS), and other modern abstractions may begin to play
increasingly prominent roles. Scalable analysis platforms for HEP, often implemented us-
ing cloud-native technologies such as Kubernetes, are under development. We might expect
some of these systems to appear during Run 3. While WLCG sites are “federated” within the
context of the VO-site trust relationship of the grid model, there is no capability convergence
in the service layer across sites. Deployment and operations must happen locally, at each site
independently, by multiple individuals. This naturally leads to heterogeneity in the presented
software release and configuration, as well as unevenness in quality of service.

2.1 NoOps and DevOps

To reduce site level differences, provide uniformity of configuration and evenness of quality
of service, and reduce development (innovation) times, it is useful to explore a “NoOps”
(no –local– operations) model where the focus is on automation, reducing the manpower
required of the WLCG site team to support all of the systems needed for grid operations.
This obviously is unrealistic for the majority of (existing) services, and so its context here
is meant to refer to specific services which permit the development/deployment teams to
operate in this manner (usually simple stateless services). We illustrate this with the example
depicted in Figure 2.

Figure 2: A deployment sequence for an XCache service using the Kubernetes-based SLATE
federated edge platform.

In this example, an XCache service is deployed as a container image with a Helm chart
configuration in a manner of minutes by an expert developer/operator. This can be scripted
for several sites at once, permitting regional or global platform updates through a command
line. The natural cloud-native analogy would be Netflix movie caches which, while located
everywhere (in the network, on-prem at institutions), are DevOp’d centrally but NoOp’d lo-
cally [4]. There is no requirement of a local system adminstrator to fool with the cache when
it breaks. Netflix is very good at fixing their caches, to the point of rehearsing breakage and
repair, to prove to themselves they can (and measure the time required). Importantly, no local
manpower is required to ensure a high quality of service for movie streaming to local clients.
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2.2 Standardizing the edge substrate

A first step in this direction would be examine the typical service deployment arrangements
found on WLCG sites. Note here we are confining the discussion to the edge, and only a
subset at that. Currently, all of the infrastructure components are added using the preferred
deployment and configuration management of the center (e.g. Puppet, Ansible, etc.) often on
bare metal or a machine virtualization service such as OpenStack. This can allow for a mix
of automation and declarative specification, depending on the chosen system. In many cases
services are built “by hand”. Essentially heterogeneity is introduced by differing hardware
virtualization schemes, configuration management systems, and deployment practices across
the sites.

By adding a consistent edge substrate layer, one that is common across facilities, and
modular service components which use them, labor can be reduced and the odds of uniformity
improved. This is schematically depicted in Figure 3. Depending on the technology used,
there may be security challenges however, because instead of considering one service to
permit (at a time), the site must consider the whole substrate. It is also obvious this would
only become realistic if the software enjoyed broad community adoption, to the point of
becoming a defacto standard (such as we have at the host image level with Linux).

Figure 3: Top figure: individually installed edge ser-
vices at a site can be deployed declaratively through
use of a “substrate”. Bottom figure: federated sub-
strates can be built from sites, with services sharing
common declarative deployment patterns on the indi-
vidual sites. Note the partionining of administrative
domains between the local NoOps and central DevOps
teams.

An edge substrate can do
more than just standardize sin-
gle sites: It can be distributed,
giving a single interface to ad-
dress many sites. A distributed
substrate can be federated in
different ways: hardware it-
self deployed at each site may
be managed centrally. This is
broadly the approach taken by
the Pacific Research Platform
(PRP) [5] team, which oper-
ates an infrastructure which be-
gan in California but now ex-
tends internationally. Hardware
may be controlled by local site
admins, who then grant fine-
grained permissions to external
organizations for service opera-
tion. This is the approach we
are discussing here. Different
methods may be better suited
to different collections of sites
and different end uses. A sim-
pler, centralized platform prob-
ably works best for some. Some
sites (DOE labs, for example), have indicated they would require strict local controls. Ser-
vices have traditionally only been the responsibility of the local administrator and security
teams. Building multi-site platforms for orchestrating services means that sites need to de-
fine or review policies for external administration of services. Platforms need to establish
their policies for interacting with the endpoints, and define how they will use resources.
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3 SLATE Platform

The SLATE (Services Layer at the Edge) platform [6, 7] provides a substrate for this kind
of approach. Docker, Kubernetes, and Helm are used to package and deploy service applica-
tions. A central server component is used to mediate user requests being sent to participating
edge Kubernetes clusters. It is designed to provide the necessary trust guarantees enabling
service administrators to deploy and manage their software infrastructure effectively, while
simultaneously maintaining the security of the computing resource providers’ software, stor-
age, computing, and network resources.

While SLATE uses Kubernetes [8, 9] as its underlying technology, the concept outlined
here is largely independent of particular Kubernetes features, making it applicable to other
implementations. SLATE supports both edge [10] infrastructure services, such as caches and
data transfer endpoints, and domain applications which perform particular scientific calcu-
lations. While there are important differences between infrastructure services and domain
applications, for the context of this paper they can generally be treated together and will be
referred to generically as ‘applications’.

3.1 SLATE Architecture

Figure 4: The central API server accepts user
requests from the CLI and web portal, looks
up data as needed from the persistent store,
and generates commands to participating Ku-
bernetes clusters.

Many options are possible for federating
multiple sites using Kubernetes, includ-
ing “stretched” Kubernetes clusters with
geographically distributed nodes, native
Kubernetes federation [11], and add-on
products such as Admiralty [12]. The ap-
proach taken by SLATE, as illustrated in
Figure 4, is instead to introduce a cen-
tral, custom component (described be-
low), distinct from Kubernetes, to imple-
ment federation capabilities. This offers
a number of advantages: a) a tailoring
of the federation to the needs of the col-
laboration/experiment, b) a partial decou-
pling of the development of the SLATE
platform from changes in the Kubernetes
project itself, and c) allowing sites to re-
tain full administrative control of their
own Kubernetes edge cluster.

The central SLATE component im-
plements a REST API, accepts user re-
quests, and forwards instructions to indi-
vidual Kubernetes clusters as appropriate.
Federated identity is based on InCommon
and CI Logon, as implemented by the Globus Research Data Portal [13]. The state of the
SLATE platform is persisted in a database, currently DynamoDB [14], which provides scal-
ability and independence from hardware at a single site. When determining whether to for-
ward instructions to Kubernetes, the API server accepts the user requests, validates the user
with federated identity access, and applies authorization rules to determine whether the user
in question has sufficient privilege for the requested action. Groups defined in the SLATE
platform determine the capabilities of users. These same groups also authorize the user to
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manage member clusters and application instances. Each resource provider which chooses
to participate in the federation typically operates one Kubernetes cluster, on which multiple
groups may deploy applications.

3.2 Application packaging

In order to deploy applications on the SLATE platform, developers containerize applications
and package them through the use of Helm [15] charts and templates. Helm charts and
templates are a simple format for providing some configuration values and for requesting
Kubernetes object definitions. This approach makes application deployments simple and
consistent. Charts are able to abstract application configuration settings out into a single
document (in the form of a YAML [16] file). When the application is installed, the settings are
substituted into the object definitions which are loaded into Kubernetes. Charts make usage
simple for science users who are conversant with the configuration of the application (e.g. the
amount of storage allocated for a data cache or the number of nodes to run in a distributed
data analysis cluster) but may not be familiar with the syntax and structure of Kubernetes.
Codifying applications into charts has the additional benefit that the chart represents a unified
description of how the application will install. Another entity can then review and audit this
unified description for several key security properties, such as code loaded and network ports
utilized. SLATE will install only charts from specific catalogs to enforce a baseline level of
trust for the sites. This is depicted in Figure 5.

Figure 5: Left: Application install process on the SLATE platform. Applications are made
available in a standardized catalog, with the SLATE API server enforcing that applications are
installed only from this source. Right: Application review process for the SLATE platform.
An application developer submits suggested changes, including both sources for a container
image and a Helm chart, a platform reviewer considers the changes, and after approval by the
reviewer an updated version of the application catalog is automatically published.

4 NoOps XCache Deployment

The goal was to build an XCache-based data caching network to support virtual data place-
ment (VP) studies in the ATLAS production system. A number of SLATE-registered Ku-
bernetes clusters became operational: the ATLAS Great Lakes Tier2 center (AGLT2) at
the University of Michigan; the ATLAS Midwest Tier2 center (MWT2) at the University
of Chicago; Střední Čechy, Česká republika Tier2 center (in Prague); and within the ESnet
network (Sunnyvale PoP), which was deployed for a short duration test. An XCache appli-
cation, customized for ATLAS, was curated into the SLATE application catalog. An ATLAS
XCache DevOps team was organized.
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The process involved deploying Kubernetes on a dedicated server at each site, thus
creating a network of edge clusters. Each cluster was registered to the SLATE platform
and configured to give the DevOps team (atlas-xcache group) deployment privileges.
Additional, XCache-specific steps were followed: the node was labeled in Kubernetes
(xcache-capable=true) to control placement of the service on the correct host; one or
more storage volumes were mounted by the local system administrator and communicated to
the DevOps team; and the XCache endpoint protocol was registered with the ATLAS infor-
mation service.

The DevOps team created a test suit and containerized it. The team then could launch a
realistic stress test from Google Compute Engine within minutes, to ensure a quick supply of
clients to generate load. The DevOps team deployed all services from the command line in-
terface. Notable benefits of the process included automatic XCache core dump collection (for
central debugging of remote problems), and a simpler troubleshooting experience given the
uniform container environment. Figure 6 shows sample deployment commands and Figure 7
gives the consolidated view of running XCache instances in the SLATE console, providing a
convenient point of configuration, deployment state, and log data inspection.

Figure 6: SLATE command line deployment example illustrating deployment of an XCache
service instance on a production Kubernetes cluster at the University of Chicago, within the
MWT2 network and tested with the site’s job queues.

Figure 7: The SLATE console display of running XCache instances across the cluster net-
work, with navigation links to detailed state and logging information for each of the deployed
service instances.

5 Evolving Trust and Privilege in WLCG

Infrastructure services are qualitatively different from the batch jobs that many sites already
accept from outside users—they must run persistently, and must often accept network con-
nections from outside. To admit such services, site administrators need strong guarantees
that only suitable persons will be able to deploy services; that only appropriate software for
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providing a relevant service will be run; that services will use appropriately secure software
and configuration; that external users running services will not interfere with existing uses of
resources.

5.1 Security and Policy Development

To address these and other concerns, the SLATE team underwent a software and security
process review with TrustedCI [17, 18], the NSF Cybersecurity Center of Excellence. The
major goal was to design security policies and procedures that address the issues of trust
and privilege. Incident Response and Disaster Recovery have been identified as particularly
critical areas. Incident Response, in particular, can involve multiple sites, and a need to share
information in a timely manner. We think that getting these policy areas structured correctly is
key to building a useful platform. Eventually, we hope to have policies which can themselves
be considered sufficiently standard for broad adoption by the community. This means that we
need to form a clear picture of site concerns with respect to federated operation procedures
and methods. And these documents must align with existing WLCG security policies.

5.2 WLCG Federated Operations Security Working Group

The deployment exercise of XCache with SLATE within the ESnet network first elevated the
issue of container image security and lack of an established trust model for this approach
to operations. This was due to vulnerabilities discovered in the application image and not
the platform or the operational model. In response we solicited input from cybersecurity
experts from the OSG and the WLCG, and ultimately helped form a federated operations
security working group. A charter [19] was written at the pre-GDB meeting at Fermilab
in September 2019. This was followed by discussion at the WISE workshop [20] in San
Diego, co-located with the NSF Cybersecurity Summit for Large Facilities. The next step
for the working group is to design a community survey to collect perspectives, concerns, and
other information (e.g. institutional policies that might prevent adoption of a NoOps model).
The survey will capture profile information of participants in order to examine responses
according to location (country), e-infrastructure (grid organization), facility type (e.g. Tier),
and professional role (systems administrator, site manager, cybersecurity official, etc.).

6 Summary and Future

Federated service operations across uniform substrates is possible today and is being ad-
vanced by a number of teams within trusted domains. For example, the U.S. ATLAS comput-
ing organization is deploying, operating and monitoring Xrootd and Frontier-Squid caching
servers at their Tier-2 centers using SLATE and Kubernetes by a central team, accelerating
the rollout of new features while reducing site administration effort. In addition to reducing
operational effort at WLCG sites, the NoOps model can increase security, improve reliabil-
ity, provide quicker updates, and allow central opertation by experts, potentially freeing local
operational effort up for other tasks. A curated application catalog is an important compo-
nent for trusted deployments and is one element of an overall federated operations security
policy framework which must be developed for widespread adoption by the community. As
WLCG computing sites explore the use of Kubernetes for infrastructure management gener-
ally, their application in edge networks provides a golden opportunity for federated service
orchestration.
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