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Achieving multi-level devices is crucial to efficiently emulate key bio-plausible
functionalities such as synaptic plasticity and neuronal activity, and has become an
important aspect of neuromorphic hardware development. In this review article, we focus
on various ferromagnetic (FM) and ferroelectric (FE) devices capable of representing
multiple states, and discuss the usage of such multi-level devices for implementing
neuromorphic functionalities. We will elaborate that the analog-like resistive states in
ferromagnetic or ferroelectric thin fiims are due to the non-coherent multi-domain
switching dynamics, which is fundamentally different from most memristive materials
involving electroforming processes or significant ion motion. Both device fundamentals
related to the mechanism of introducing multilevel states and exemplary implementations
of neural functionalities built on various device structures are highlighted. In light of
the non-destructive nature and the relatively simple physical process of multi-domain
switching, we envision that ferroic-based multi-state devices provide an alternative
pathway toward energy efficient implementation of neuro-inspired computing hardware
with potential advantages of high endurance and controllability.
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1. INTRODUCTION

The recent advancements of data-driven learning paradigm such as artificial deep neural networks
(DNN) have achieved superhuman performance in various applications including image/pattern
recognition, natural language processing, and developing autonomous intelligence (LeCun et al.,
2015). However, the energy consumption of artificial intelligence (AI) implemented in today’s
computers is significantly higher compared to that of a human brain (Cox and Dean, 2014). The
energy inefliciency of such hardware is largely attributed to the von-Neumann memory bottleneck
due to the separation of memory and compute units and the limited on-chip memory density in
computing hardware. For instance, DNNs are usually implemented in graphic processing units
(GPUs), which desire large area and power consumption in presence of growing DNN model
sizes and large amount of data to process. Neuromorphic computing is an emerging computing
paradigm that aims for building bio-plausible computing systems in pursuit of brain-level efficiency
in cognitive processing (Mead, 1990; Roy et al.,, 2019). Recently, remarkable implementations
of neuromorphic hardware such as TrueNorth (Merolla et al., 2014) and Loihi (Davies et al,
2018) have been demonstrated based on complementary metal-oxide-semiconductor (CMOS)
technologies. But CMOS-based technologies require large number of transistors to implement
neuronal and synaptic functions, leading to increased cost of energy and area.
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On the other hand, emerging non-volatile memories (NVM)
based on novel physical mechanisms can lead to significant
reduction of leakage power and achieve high on-chip density
compared to CMOS, while mimicking key neuro-synaptic
functionalities for neuromorphic computing (Yu and Chen,
2016; Li et al, 2019). Particularly, the emerging NVM
technologies have great potential to provide scalable and
energy efficient building blocks for crossbar based in-memory
computing by performing computation within memory arrays
(Ambrogio et al., 2018; Ielmini and Wong, 2018). With crossbar
computing, the product of an input vector (voltage) and a weight
matrix (conductance) can be obtained from the accumulated
output currents, following Ohm’s Law. Such configuration leads
to efficient hardware realization of matrix-vector multiplication
(MVM) operations, which are ubiquitous in both bio-plausible
computing and standard DNN models. Therefore, enabling
crossbar computing will not only facilitate the development
of neuromorphic fabrics, but also improve hardware efficiency
of executing generic Al/machine learning algorithms. As for
neuromorphic processing, several mathematical models have
been proposed to describe the neuronal models and synaptic
learning rules of biological nervous system (Hodgkin and
Huxley, 1952; Izhikevich, 2003), laying the foundation for
neuro-mimetic implementation in hardware. Figure 1 shows a
hardware-implemented neural network with exemplary leaky-
integrate and fire (LIF) neurons and synapses based on spike
timing-dependent plasticity (STDP) or pulse-driven synaptic
learning rules (Yu et al.,, 2019). Emulation of both neurons and
synapses have been experimentally demonstrated using emerging
NVMs (Tuma et al., 2016; Islam et al., 2019).

In order to provide high density on-chip memory as well as
efficient emulation of synaptic plasticity and neuron activations,
it is desirable to have programmable multi-level NVM devices.
The capability of multiple states per device will not only enlarge
the capacity and precision of synaptic weight storage in neuro-
inspired computing, but also lead to benefits in generic memory
applications due to increased density. Furthermore, multi-level
NVM devices can realize both emulation of the aforementioned
bio-plausible neurons (Sharad et al., 2013; Burr et al., 2017) and
in-device implementation of various analog neuron models such
as (shifted) sigmoid (Siddiqui et al., 2019) and rectified linear
units (ReLu) (Lashkare et al., 2018), which are frequently used
in DNNs. Among the emerging NVMs, resistive random-access
memory (ReRAM) (Hu et al., 2014) and phase change memory
(PCM) (Boybat et al.,, 2018) can provide high memory density
as well as multi-level cells. However, the electroforming process
involving ion motion of ReRAM and the melting-crystallization
process of PCM induce endurance and reliability issues: large
variations among devices and sizeable drifts over time (Eryilmaz
et al,, 2015). The low endurance significantly limits the numbers
of writes, preventing the use of ReRAM and PCM for training
large-scale AI models. The large device variation not only
makes it difficult to program such NVM devices to a desirable
conductance states but also places challenges to differentiate and
sense the multiple levels. Moreover, due to the large conductance
drift over time in PCM, erroneous results may occur even for
inference-only tasks when running a pre-trained model mapped

in PCM crossbar arrays. At present, although various types
of NVM devices have been proposed and studied, it is still
challenging to provide a reliable, scalable, and energy efficient
hardware solution for multi-level neuro-mimetic devices (Burr
et al,, 2017; Schuman et al., 2017; Yan et al., 2018; Chakraborty
et al., 2020b; Kim et al., 2020).

In contrast, devices using ferroic (magnetic and ferroelectric)
materials such as magnetic RAM (MRAM) (Bhatti et al., 2017)
and ferroelectric RAM (FeRAM) (Ishiwara, 2012) can provide
better endurance and more energy-efficient writing, leveraging
the unique properties of spin or charge polarization. In particular,
the spintronic materials are promising for high endurance due to
the absence of physical ionic motion in magnetization switching,
while ferroelectric field-effect transistors (FeFET) could offer
superior CMOS compatibility. While spintronic (magnetic) and
ferroelectric materials have been traditionally investigated for
binary memory, there has been growing interest in exploiting
them for multi-level neuromorphic devices for functionalities
such as synaptic plasticity and membrane potential modulation
in neurons. More interestingly, the switching mechanisms
and memory effects of ferroic materials share remarkable
resemblance with biological neural systems, suggesting a possible
path of developing bio-plausible hardware primitives. However,
although the NVM devices based on ferroic materials might have
larger cell areas than ReRAM and PCM, they can still achieve
better density compared to CMOS.

In this review article, we explore ferroic materials as possible
material of choice for neuromorphic with multi-level resistive
devices. It is shown that spintronic and ferroelectric materials
leveraging multi-domain switching dynamics enable devices
to obtain multi-level states with improved controllability and
endurance compared to ReRAM and PCM. The rest of this article
is organized as follows. Section 2 focuses on spintronic devices,
where both domain wall (DW) motion in ferromagnets and
multi-domains induced in exchange-coupled heterostructures
can be leveraged to achieve multi-level nanometer-scale devices.
Section 3 focuses on ferroelectric devices, including FeFET and
ferroelectric tunnel junctions (FTJ) as the basic configurations
for generating ferroelectric multi-level states. Both fundamental
material physics of multi-level devices as well as representative
demonstrations of neural functionalities are covered. Section
4 reiterates the opportunities with ferroic multi-level devices
toward developing neuromorphic hardware in comparison
with other technologies. We will highlight key advantages
and challenges for each of these technologies, followed by
discussions and proposals regarding the potential pathways for
addressing the challenges. We conclude this review with the
proposal that through the co-design of device, circuit, and
algorithm, multi-level ferroic devices could provide exciting
opportunities of constructing large-scale and energy efficient
cognitive computing systems.

2. SPINTRONIC DEVICES

Spintronic materials have shown clear advantages for developing
next generation non-volatile memory with potential combination
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FIGURE 1 | Concept of a biological neural network and its hardware implementation in crossbar arrays. Left panel illustrates that two biological neurons are
interconnected by a synapse. The strength of the synaptic connections (synaptic weights) can be modified depending on the relationship between the two neurons. A
crossbar array implementing artificial neural networks containing neurons connected by synaptic devices is shown in the right panel. The center panel describes
synapse (top) and neuron (bottom) models. The activation of a neuron is controlled by its membrane potential, and its dynamics can be described of a leaky
integrate-fire (LIF) neuron model. An accurate description of the membrane potential desires devices that can represent analog state values. Neurons are
interconnected by synapses, which can be put into crossbar devices with variable conductance states. Spiking timing dependence plasticity (STDP) and pulse driven
potentiation/depression of a synapse is shown to illustrate one bio-plausible learning mechanism based on synaptic plasticity.

of high speed, low power, and unparalleled endurance.
In particular, magnetic tunnel junctions (MTJ) have been
extensively investigated and demonstrated reliable memory read
and write schemes in device dimension down to tens of
nanometers (Ikegawa et al., 2020). As is illustrated in Figure 2,
a MTJ] in MRAM memory cell comprises of two FM layer
separated by a thin tunnel barrier. Conductance of MT] under
applied voltages will be high (low) when the magnetizations in
the two ferromagnetic layers are parallel (anti-parallel) due to
spin-dependent tunneling across the barrier (Parkin et al., 2004).
In practical MTJ device stack, one of the FM layer is pinned
by additional structures forming a reference layer (RL), while
the other FM layer defined as free layer (FL) can be switched
between the two states under external stimulus including external
magnetic field, or spin-polarized current induced spin transfer
torque (STT) (Slonczewski, 1996; Diao et al., 2007) and spin-orbit
torque (SOT) (Liu et al., 2012), as illustrated in Figure 2B.
While MTJs can naturally store binary information with
high accuracy and thermal stability based on the bi-directional
magnetizations, having controllable multilevels in the FL is
more of interest for device level emulations of neuromorphic
functionalities. Note that ferromagnetic materials are known to
maintain long-range magnetic ordering with long retention and
high stability against perturbations due to the strong exchange

interactions among localized magnetic moments therein.
Conversely, introducing stable multi-domain configurations
in magnetic-based materials inevitably becomes difficult
thanks to the need of countering the forming of long-range
magnetic ordering, imperatively urging new mechanisms
from material and device structure level for inducing multi-
domains functionalities. In the following subsections, various
approaches introducing multi-level devices are highlighted and
some prototypes of demonstrating brain-inspired computing
are discussed.

2.1. Multi-Level Spintronic Devices Based

on Domain Wall Motion

A natural path to multilevels in spintronics is to split the
single-domain magnetizations as formed in MRAM devices to
multiple domains (Fong et al., 2016). It is known that switching
of magnetic thin films can involve mechanisms of nucleation
formation and domain propagation, suggesting a possibility
to generate intermediate multi-domain of magnetic textures
between the bi-stable states. In order to have stable configurations
of multiple domains in continuous ferromagnetic thin films,
additional mechanisms are required to maintain the pinning of
domain walls between spin-up and spin-down regions. The DWs
can be pinned or displaced, depending on the combined effects of
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FIGURE 2 | (A) Magnetic tunnel junction (MTJ) and tunneling magnetoresistance (TMR). Resistance of MTJ depends on the relative orientations of the two
ferromagnetic layers next to the tunnel barrier. High/low resistance states correspond to anti-parallel (AP)/parallel (P) configuration of the magnetic ordering in the free
layer and reference layer. (B) Spin transfer torque (STT) and spin-orbit torque (SOT). STT is originated from spin polarized current going through an MTJ. The STT
effectively switches spins by countering against the Gilbert damping of the free layer magnetic moments. SOT is a result of spin Hall effect at interface of
ferromagnetic/heavy metal layers, where a charge current flowing along the heavy metal layer can induce a transverse spin current flowing into the adjacent
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material properties such as exchange coupling among magnetic
moments, shape anisotropy determined by device geometry, as
well as local defects (Beach et al., 2006; Thomas et al., 2006; Emori
etal., 2013). Conceptually, such domain wall motion (DWM) in a
ferromagnetic thin film can generate a near-continuous variation
of magnetic states from one direction to the other, resulting in
variable resistance states of a magneto-resistive device described
by a model with parallel resistors.

2.1.1. Device Fundamentals of Domain Wall Motion

The idea of using DWM driven by current-induced torque has
sparkled a plethora of studies built on the mostly matured
STT-switching technology (Wang et al., 2009; Lequeux et al.,
2016). It has been proposed and demonstrated that with
special engineering of device geometry, non-volatile multi-level
resistance states can be realized in an MT] with perpendicular
magnetic anisotropy (PMA). As is shown in Figure 3A, a DW in
the free layer of MT] with the shape of an elongated stripe can be
displaced by applied electric currents, leading to modifications in

MT] resistance following the relationship:
G(x) = Gp * x/L + Gap * (1 — x/L) + Gpw (1)

where Gp and Gap are the parallel and antiparallel conductance
respectively, and x is the domain wall position in a stripe of
length L. STT-DWM is controlled by the magnitude and polarity
of the spin polarized currents across the FL. The current-driven
DWM device can potentially work as a two-terminal compact
device following the STT-MRAM configuration. Furthermore,
it was recently found that in magnetic heterostructures such as
oxide/ferromagnetic/heavy metal stacks, a chiral DW with Néel
configuration can be formed and stabilized in perpendicularly
magnetized thin films due to Dzyaloshinskii-Moriya exchange
interaction (DMI) at the FM/HM interface and the broken
inversion symmetry in the heterostructure stack (Emori et al.,
2013). It is observed that the Néel Wall can be efficiently
driven by the spin orbit torque (SOT) originated from spin
Hall effect (SHE) of the heavy metal layer, as is shown in
Figure 3B. Therefore, DWM driven by SOT in a MTJ/HM
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heterostructures can be leveraged for programming the multi-
level device conductance (Sengupta et al, 2016b). While in
general a magnetic field is needed for deterministic SOT
switching of PMA materials due to the in-plane spin polarization
(Liu et al., 2012), it is found that the interfacial DMI could
effectively provide the desired magnetic field toward field-free
SOT driven DWM (Emori et al., 2013). Current-driven DW
motion in heavy-metal/ferromagnet/oxide structures is naturally
explained by the combination of the SHE and DMI. The SHE
produces the sole current-induced torque, and DMI stabilizes
chiral DWs while permitting uniform DW motion with very
high efficiency. The writing speed of DWM-SOT devices is
characterized by the domain wall velocities, which increases with
the current density up to saturation in absence of pinning sites.
Although domain wall velocity can be as high as 10> m/s (Beach
et al., 2006; Agrawal and Roy, 2018), in practice DW motion
can be hindered due to pinning in magnetic thin films, making
it challenging to have precise control and efficient manipulation
of DWs (Thomas et al., 2006). The readout mechanism in the
proposed device is similar to that of a STT-MRAM memory
cell, while the SOT is generated from a lateral charge currents
which has a separated flow path from the reading operation
across MTJ stack. The major advantage of the three-terminal
device is the decoupled read and write paths which will eliminate
the read disturbance issue of MT]J and thus lead to significant
improvement in device endurance. Recently it is confirmed
experimentally that SOT-DWM can be used for artificial synaptic
devices in MgO/CoFeB/Ta heterostructures. In the following
subsection, various prototypes implementing neuromorphic
functionalities based on DWM spintronic devices are discussed.
Although we focus on SOT-driven configurations given the
advantage of separate read/write paths, similar mechanism will
also work for STT-driven configurations.

2.1.2. Domain Wall Motion Based Neuromorphic
Devices

A direct application of SOT-driven DWM device will be crossbar
implementation for MVM computing engine. Leveraging a linear
dependence of conductance on the DW position which is
subsequently linearly dependent on the driving electric current
(before saturation), SOT-DWM devices in a crossbar array
can have their DW position (and thus conductance states)
accurately programmed to map a synaptic weight matrix, as
is illustrated in Figure4 (Sengupta et al, 2016b; Sengupta
and Roy, 2017). Parallel dot product of vector (voltage) and
matrix (conductance) can be directly executed following the
Kirchoff Current Law. Given the non-volatility of conductance
states in those multi-domain devices, we could just set the
devices once with pre-trained weight matrix and reuse the stored
weights during inference, eliminating additional memory access
and data transfer. The advantage of separated read and write
paths in SOT-DWM is evidently demonstrated, as the MVM
operations at inference only involves reading path and thus
read disturbance to the states is minimized. The DWM-based
multi-level device can also implement STDP, another important
synaptic characteristics. With STDP learning rule, presynaptic
spike arrival before the occurrence of postsynaptic spike leads

to long-term potentiation (LTP) of the connecting synapse,
whereas spike arrival after postsynaptic spike leads to long-
term depression (LTD) of the same synapse. The magnitude
of the relative change in synaptic strength (AW) decreases
exponentially with the timing difference between the preneuron
and postneuron spikes. A key step to realize STDP with a DWM-
based spin device is to link the timing of the pre-neuron and
post-neuron to the conductance change in the interconnected
SOT-driven DWM synapse. One approach as illustrated in
Figure 4 is to provide exponential variation of HM currents
modulated by the timing of PRE and POST neurons in circuit,
assuming that the DW displacement and the device conductance
change is linearly dependent on the magnitude of the HM
current. By biasing the interfaced transistor Mgrpp in the sub-
threshold regime, current flowing through the transistor will vary
exponentially with the gate voltage. For instance, in the case
of LTP, the turning ON of “POST signal” gate combined with
a linear increase of the “PRE signal” gate voltage, will lead to
an exponentially varying programming current connecting the
PRE and POST gates, depending on the timing window between
PRE and POST signals. In presence of increases in the spike
timing difference, the Mgrpp driven from cut-off to the sub-
threshold region will decrease the HM current and thus the
resultant conductance change AG exponentially. In order to
ensure the programmability of DWM and resolution of STDP,
it is required that the rise time of the Mgrpp’s gate voltage is
much longer than the post-spiking duration. In the proposed
configurations, the Mgrpp transistor with us rise time of gate
voltage and ns spiking duration were used (Sengupta et al,
2016a). The capability of synaptic weight storage as well as STDP
with simple peripheral circuits makes spintronic based hardware
promising for emulating complex brain-like algorithms.

In addition to synaptic plasticity, neuronal behaviors can also
be realized based on the domain dynamics involving SOT-driven
DWM. While a mono-domain SOT-MT] or STT-MTJ is fully
capable of making a stochastic spiking neuron based on the
sigmoidal switching probability function of excitation currents
(Sengupta et al., 2018), being able to generate intermediate
state in device could enhance the versatility of spintronic
neurons and greatly extend the capability of emulating complex
neuron functionalities. Following the multi-domain magnetic
configuration in a SOT-DWM device, an analog nueron can
be implemented following a similar device structure of the
synaptic device discussed above. Such analog devices with almost
continuous output values can directly mimic the behaviors of
saturating rectified linear units (saturating ReLU), or sigmoidal
neurons which are predominantly applied in state-of-art deep
artificial neural networks (Sengupta and Roy, 2017). Moreover,
SOT-driven DWM could also utilize variations of positions in
device to mimic IF neuron, which is an essential building block
for hardware implementation of spiking neural networks. As is
shown in the lower panel of Figure 4C, a DW located in the
FL away from the MT] sensing region may be pushed toward
the MTJ region by applied current, in analogy to an increase of
membrane potential due to accumulated intake of excitation. As
soon as the DW enters the sensing area under the tunnel barrier,
resistance change will be sensed following the magnetization
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switching due to DW motion and subsequently the output
terminal will generate a spike. Therefore, displacement of DW
positions enables the representation of changing membrane
potentials in biological neurons, providing an increased level of
bio-fidelity compared to a binary stepped neuron using single
domain MT]J.

2.1.3. Prospect of Domain Wall Based Multi-Level
Devices

Compared to other memristive technologies, spintronic DWM
devices provide a feasible means of leveraging material
physics for low-power and high-endurance implementations
of neuromorphic functionalities. In particular, the SOT-driven
DWM device configuration enables realization of an all-spin
neuromorphic computing block including both synapse and
neuron units, while the low operation voltages as well as
separated read and write paths at device level may lend further
advantages. At present, DWM mechanism is one of the most
investigated feature for developing spin-based neuromorphic
devices. While huge potential of DWM devices has been
demonstrated in both simulations and experiments, there are still
challenges to address toward large scale practical implementation
of such technology. For example, most DWM devices relies
on precise control and sensing of a single domain wall, which
often needs a quasi-1D device shape for confinement of the
domain dynamics. Such constraint on device geometry lead to
large footprints along the DW propagation direction (ranging
from 1 to 10 um), and thus hindering the deployment of the
DWM devices beyond prototype demos (Cai et al., 2017; Jin
etal., 2019; Siddiqui et al., 2019). Novel ideas such as introducing
skyirmions have been investigated (Chen et al., 2018), potentially

extending the current single wall based devices to multiple DW
configuration (Song et al., 2020), but more work is needed to
illustrate a viable path of scalability and controllability using
skyrmions. Moreover, the assumption that DW displacement is
linearly dependent on applied currents may not always hold in
practice, due to the presence of random local device/material
defects that may trigger irregular pinning/depinning, leading
to erroneous results in real devices. These challenges in DWM
devices also motivate the community in search of material-
level mechanism beyond fully relying on motion of a single
domain wall. As is discussed in the following subsection, multi-
state devices built on exchange-coupled heterostructures could
address some of these concerns and may pave a promising
pathway for building scalable neuromorphic primitives.

2.2. Multi-Level Spin Devices Based on
Exchange-Coupled Systems

In this section, we will focus on two categories of approach
based on magnetic exchange-coupled heterostructures. The first
type relies on antiferromagnetic (AF) ordering, and particularly
its interaction with ferromagnetic ordering to introduce non-
coherent response to external excitation such as spin currents.
The idea of using AF materials to modify FM in bilayer F/AF
blocks has already been used such as exchange bias in MT] stack
used in magnetic sensor and MRAM (Parkin et al., 1999), while
the adoption of AF for neuro-inspired device level granularity is
emerging very recently (Fukami et al., 2016). The other type is
to introduce micro-structure modifications into magnetic thin
films in order to facilitate the divisions of magnetic domains
with the help from material segregation. While the underlying
technique of fabricating continuous/granular exchange coupled
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composites has been successfully implemented for boosting the
storage density of binary magnetic storage over the past decade,
its potential adoption for neuromorphic applications is only
recently proposed (Wang et al., 2019). We will discuss the basic
material selection and proposed device structure, followed by
highlights of recent demonstrations of realizing neuro-inspired
functionalities such as memristive synapses.

2.2.1. Material Physics of Exchange-Coupled
Systems

AF materials, which by definition have local spins ordered in
compensated patterns (e.g., anti-parallel with neighboring spins),
can facilitate multi-domains due to the absence of long range
exchange interaction and dipole fields. In polycrystalline AF
metallic thin films such as PtMn or IrMn, AF grains are formed
with a dispersion of crytalline orientation and grain size, leading
to variation in the AF ordering orientation and distribution
of switching energy barrier among AF grains. Therefore, an
inhomogeneous exchange bias is expected at a interface of
FM/AF bilayer heterostructure. In presence of external fields
or spin currents, the nucleation of the different regions in
the FM layer may be impacted differently by the adjacent AF
domains underneath, leading to multiple domains with non-
coherent nucleation or gradual switching of the whole device
area characterized by sloped hysteresis curves (Fukami et al.,
2016). By replacing non-magnetic heavy metal with AF such
as PtMn, a perpendicularly magnetized FM can be switched
by SOT in a analog fashion, suggesting an exciting potential

of integrating into practical SOT-MT] devices, as is shown in
Figure 5A. Meanwhile, it is reported that the multi-domain
behavior will vanish when device dimension reduced to about
200 nm (Kurenkov et al., 2017), although the physical AF
grains are typically as small as 15 nm. This observation suggests
that magnetic cluster size in the continuous FM layer remains
significantly larger than the scale of grain size, even under an
inhomogeneous exchange bias from the AF grains. It remains
challenging to find a feasible way so that adjacent AF can induce
FM domains down to the size of AF grains. Interestingly, devices
built with AF-only materials recently have also demonstrated
multi-level resistance states, though more work is needed to
search for better sensing mechanism of AF order without
assistance of FM (Olejnik et al., 2017).

In addition to bringing in F/AF exchange interaction from
polycrystalline AF layer, interlayer exchange coupling between
two ferromagnetic layers can also lead to effective splitting
of the ferromagnetic order, if microstructure modifications
can be introduced into one of the two ferromagnets. In
pursuit of high density data storage, such technique has been
matured and successfully implemented as exchange coupled
composite medium in the magnetic recording industry. As
is shown in Figure 5B, state of the art storage medium can
have perpendicularly magnetized alloys (such as CoPt) grow
in columnar structures with grain size averaged about 7-8
nm (Choe et al., 2005; Tham et al., 2007). More importantly,
the intergranular coupling between the ferromagnetic columns
can be greatly suppressed by the non-magnetic segregating
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FIGURE 5 | (A) Exchange-coupled F/AF bilayer structures with multi-level states. The top panel illustrates the bilayer structure and magnetic configurations, while the
bottom panel shows multi-level Hall resistance and hysteresis loop. Figure adapted with permission from Borders et al. Appl. Phys. Express 10 013007 (2017). (B)
Exchange-coupled continuous-granular structures with multi-level states. The top panel shows the material structure of the continuous/granular composite, while the
bottom panel shows multi-state magnetization under an increasing writing field. Figure adapted with permissions from Choe et al. IEEE Trans. Mag., 41, 3172-3174
(2005) Copyright 2005 IEEE, Tham et al. IEEE Trans. Mags. 43, 671-675 (2007) Copyright 2007 IEEE, and Wang et al. U.S. Patent Application No. 16/255,698.
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oxide material (such as SiO, and TiO,), leading to a magnetic
cluster size similar to the physical grain size. The grains with
a finite switching field distribution will respond to external
excitation non-coherently, generating multi-domain states. It has
been recently revealed that intermediate magnetic states can
be retained under gradually increased external magnetic field,
demonstrating a possibility of making memristors based on the
multi-domain switching dynamics (Wang et al., 2019). Further
studies are needed for validating reliable read and write schemes
in such composite devices. In order to integrate such granular
structures into integrated electronic devices, heterostructure of
MT]/granular layer may be used. FL of MTJ can be coupled
to the granular layer via interfacial exchange coupling in order
to read out the averaged magnetization in the multi-granular
layer. As for writing mechanism, heavy metals such as 8-W or
Ta could be deposited as underlayer next to the granular layer,
and thus SOT-driven switching can be exploited in addition to
STT approach.

2.2.2. Neuromorphic Devices Based on
Exchange-Coupled Heterostructures

The possibility of inducing multi-states based on
antiferromagnetic and exchange-coupled heterostructures
ignited growing interest given its potential in developing
neuro-inspired devices and hardware primitives. The field is still

evolving rapidly today with ongoing efforts in various directions.
As for F/AF heterostructures, It is recently shown that the
non-volatile analog device build on [Co/Ni]/PtMn can provide
synaptic weight matrix of a simple Hopfield Model which can
be trained on device and realize associative memory operation
as illustrated in Figure 6A (Borders et al., 2016). As is shown
in Figures 6B,C, bio-plausible functionalities such as STDP
and synaptic plasticity in response to input pulse trains are also
demonstrated with the F/AF heterostructure, where STDP were
achieved with pre-neuron and post-neuron spikes represented
by opposite polarities (Kurenkov et al., 2019). Moreover, AF-only
material also demonstrated synaptic behavior in response to
accumulated pulses, opening up the possibility of AF-only
neuromorphic devices (Figure 6D; Olejnik et al, 2017). As
for continuous/granular heterostructures, although multilevel
magnetic states have demonstrated in CoPt-based composites,
device integration into compact memristive prototype with
MRAM type of read/write remains to be shown further down
the road.

2.2.3. Prospect of Multi-Level Devices Using
Exchange Coupled Systems

The leverage of exchange-coupled magnetic systems in achieving
multi-level resistive states for neuro-inspired devices brings in
new momentum into neuromorphic spintronics. With utilization
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of fundamental material properties, those multi-level devices
based on the non-coherent switching of multi-domains becomes
less dependent on special device geometry, which is usually
needed for the quasi-1D confinement of a single domain wall.
Although both F/AF and ferromagnetic continuous/granular
exchange coupled heterostructures hold great promises, critical
challenges such as scalability of domains confined by grains
and integration with TMR-like readout mechanism will have
to be addressed. At present, the resistance change of several
Ohms (or less than few percents) in most of recent device-level
demonstrations are not feasible for CMOS circuits to sense and
process in a integrated chip. Combined efforts of microstructure
segregation and antiferromagnetic order on MT]J-based platform
could potentially pave the way for providing scalable multi-level
spintronic integrated devices for neuro-inspired computing.

3. FERROELECTRIC DEVICES

Ferroelectric materials can maintain electric polarization states
that can be switched by applying voltages (electric fields),
and therefore have been under continuous investigations
for non-volatile memory applications. With multi-domain

switching dynamics taken into consideration, ferroelectric
materials are capable of realizing not only as binary synapse
but also as multi-level synapse. FeFET and FT] are the
most studied device structures for implementing ferroelectric
neuromorphic hardware, and will be discussed in details in the
following subsections.

3.1. Multi-Level Devices Based on

Ferroelectric FET

3.1.1. Material and Device Fundamentals of FeFET
An FeFET integrates a ferroelectric layer into the gate stack
of the transistor, generating non-volatile channel conductance
of the transistor modulated by the polarization switching in
the FE layer. Previously, materials having a perovskites crystal
structure such as BaTiO3z (BTO) and PbZryTi;xO3 (PZT)
are used as ferroelectric materials. In addition to perovskites,
novel 2-dimensional (2-D) materials such as transition metal
dichalcogenides are being explored in ferroelectric devices (Ko
etal,, 2016; Zhao et al., 2020). Although FeFETs have been studied
extensively given the potential for voltage-controlled non-volatile
memory technology, challenges in material integration and
scaling have greatly hindered its developments. Interestingly,
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the recent finding of high coercive field ferroelectricity (Boscke
etal,, 2011) with low permitivity in doped HfO,-based thin films
(layer thickness < 20 nm) offers distinctive advantages such as
improved retention, scalability, and high CMOS compatibility
in comparison to previously investigated materials such as PZT
(Gong and Ma, 2016). Therefore, the following discussion of
implementing neuromorphic functionalities with FeFETs will
focus on HfO,-based devices.

As for neuro-inspired computing, FeFET devices can produce
wide range of electrically controllable non-volatile conductance
states which are of particular interest for emulation of
neuronal behavior and synaptic plasticity. As is illustrated in
Figure 7, intermediate partial polarization states, in addition
to the bidirectional fully polarized states, can be induced in
FeFET with several FE domains. The multi-domain switching
dynamics of the electrical polarization have been observed
in polycrystalline thin films of doped HfOx such as Si:HfO,,
Zr:HfO,,0r Hfy5Zrg50, (Zhou et al,, 2015; Oh et al., 2017).
This polycrystalline film characteristic is determined by post-
deposition annealing, which is amorphous without annealing.
The normally used annealing temperature range is between 400
and 600°C. After the annealing process, FeFET could have the
crystallized ferroelectric layer and this enables FeFETs to have
non-volatile functionality by using the remnant polarization.
The evolution of multiple ferroelectric domains is captured by
polarization-electric field (P-E) hysteresis loops. As is shown in
Figure 7B, minor loops of different sizes are generated by varying
the ranges of the sweeping electric fields in doped HfO,. The
non-coherent switching of electric polarization are contributed
to the inherent distribution of coercive electric field (E.) among
the FE grains (Wang et al., 2020). Most of minor loops have
non-zero and differentiable remnant polarization states, which
provides capability of storing non-volatile multi-bit information
in ferroelectric layer. Note that FeFETs are three or four terminal
devices, and the multi-level conductances can be characterized
by the polarization-dependent threshold voltage, as is shown in
Figure 7D (Mulaosmanovic et al., 2017).

3.1.2. FeFET Based Neuromorphic Devices
The device characteristics of FeFET can be utilized for efficient
emulation of both synaptic and neuronal functionalities at the
device level. For synapse weight update, there are different
pulsing schemes in potentiation and depression and one
of the methods incremental programming voltage is widely
employed to obtain larger conductance range and symmetry
and near-linearly increasing or decreasing conductance. It has
been reported that Zr-doped HfO, thin film is capable of
demonstrating up to 32 states (5-bit) of channel conductance
with an maximum on/off conductance ratio (Gon/Geg) of
45 (Jerry et al, 2017). The improved symmetry in weight
updates, as shown in Figure 8, could make ferroelectric devices
more suited for on-chip training in terms of reliability and
predictable synaptic weight compared to training with other
memristive memories.

Moreover, neuron behaviors such as input accumulation,
leaking in membrane potential, and spike firing can also
be emulated utilizing the field-time dependence of domain

nucleation kinetics in ferroelectric materials, as shown in
Figures 8B,D (Mulaosmanovic et al., 2018; Dutta et al., 2019).
In presence of input spike trains as voltages applied across the
ferroelectric layer, the portion of switched electric polarization
from the multiple domains accumulated, leading to modulation
of the output conductance (Gps) and drain current Ips. And
leaky behavior due to reduction of the remnant polarization
retention has also been observed. Such leak in ferroelectric can be
resulted from gate leakage current, effects from interface charges,
oxide breakdown, intrinsic depolarizing field in a ferroelectric
capacitor, or a reversed inhibitory electric field. It was also
observed that abrupt change in channel conductance can take
place under scaled devices which have just few grains so that each
grain switching effect are largely reflected into the conductance
change, effectively emulating a step-like integrate-fire neuron.
The sharp transition from OFF to ON state is attributed to
formation of conductance pathway in the channel when a
sufficient number of subdomains have switched.

3.1.3. Prospect of Multi-Level FeFET

FeFET with HfO;-based thin films has shown great potential
toward the development of non-volatile neuromorphic
devices. The capability of emulating both synapse and neuron
functionalities with the same device structure could provide an
advantage toward hardware integration. More importantly, the
ferroelectric material has high CMOS compatibility, while the
possibility of realizing symmetric conductance modulation, as
well as demonstrated high on/off ratio makes it competitive for
implementing both training and inference machine learning
tasks at large scales. Meanwhile, some critical issues still
remains. In general, HfO,-based FeFETs still have endurance
and retention issues associated with the interfacial layer
deposited between ferroelectric and channel. This is because the
degradation in remnant polarization due to the impact of charge
traps, defects, and oxide breakdown. Currently the endurance
of HfO,-based FeFET is about 10° cycles (Oh et al., 2019), still
requiring significant improvements for industrial applications.
A paramount challenge for using FeFET as neuromorphic multi-
level devices is the scaling limit of the device dimension. Multiple
conductance states, a device prerequisite for emulating synaptic
plasticity, are determined by intermediate partial polarization
states. At present it is found that the average domain size of
Zr-doped HfO; thin film is about 30 nm (Lederer et al., 2019),
which is significantly smaller than domains in conventional PZT
materials, but is still quite large compared to the state-of-art
CMOS feature size. Therefore, more exploratory device and
material engineering, such as device structure, doping and
post-annealing temperature optimization, may be needed to
maintain multi-level polarization states while further pushing
down the devices dimensions.

3.2. Multi-Level Ferroelectric Tunnel
Junctions

3.2.1. Device Fundamentals of FTJ

Another subclass of multi-domain devices built on ferroelectrics
is ferroelectric tunnel junctions (FTJs). FTIJs are two terminal
devices with a layer of ferroelectric material sandwiched between
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FIGURE 7 | (A) Image of polycrystalline multigranular HfZrO thin film, where average grain size is around 30 nm. Figure reproduced with permission from Lederer

et al. Appl. Phys. Lett. 115, 222902 (2019) Copyright 2019 AIP Publishing. (B) Polarization-electric field (P-E) loops with hysteresis of HfO,. Figure reproduced with
permission from Zhou et al. Acta Mater. 99 (2015) 240-246. Copyright 2015 ELSEIVER. (C) Device structure of a FeFET. (D) Conductance states of FeFET modulated
by the gate voltage. Figure reproduced with permission from Mulaosmanovic et al. (2017) Symposium on VLS| Technology (p. T176-T177) Copyright 2017 IEEE.

H
o

w
(=]
!

20+

il
o
!

o
1

-10-

Polarization (uC/cm?)

)
1S3
I

-30

T T T T T

2 4 0 1 2 3 4
Applied field, E (MV/em)

Drain current |, [A]

)

VG.read

top and bottom metallic layers of electrodes, where sizeable
tunneling currents can occur at room temperature if the
ferroelectric layer is as thin as few nanometers. Although the
concept of FTJ has been proposed in 1971 (Esaki et al., 1971),
device realization has been challenging due to the fact that
ferroelectricity are vanishing with decreasing film thickness,
while tunneling junctions need to work with thin tunnel barriers.
FTJ started to gain considerable interest from the 2000s when
high quality ultrathin ferroelectric films (thickness < 10 nm)
were made possible by epitaxial deposition. Heterostructures of
complex oxides based junctions are the most widely studied
FT] systems. With the ferroelectric barrier layer sandwiched
between different electrode materials, different screening lengths
in electrodes break the symmetry of electrostatic potential profile
across the FTJ tunnel barrier. Such electrostatic potential profile
will be modified by the reversal of ferroelectric polarization,
leading to considerable tunneling resistance variation known
as the tunneling electro-resistance (TER) effect. FTJs made
with various ferroelectric materials including BaTiO3 (BTO),
BiFeO; (BFO), and Hfy5Zrp50, (HZO) have demonstrated
large range of modulation in the tunneling electroresistance

(with typical Gon/Gogr Ratio of 10-10*) (Chanthbouala et al.,
2012; Ambriz-Vargas et al., 2017; Boyn et al., 2017), suggesting
a promising pathway for non-volatile memory applications.
Similarly to the scenario in FeFET, the polarization switching
in ferroelectric ultrathin films involves domain nucleation and
propagation dynamics, providing exciting opportunities for
emulating memristive neuromorphic functionalities with electric
control. As is shown in Figure 9, resistance levels in perovskite-
based FTJs are modulated following the portion of domain
being switched, confirming the multi-domain nature behind the
memristive behavior.

3.2.2. FTJ-Based Neuromorphic Devices

Based on the dynamics of multi-domain nucleation, a fine tuning
in tunneling resistance state is demonstrated corresponding to
a gradually increased portion of switched ferroelectric domains
under incremental voltage or repetitive series of constant voltage
signals. As is shown in Figure 9B, the pulse duration dependence
of the gradual domain evolution in BFO-based FT] suggests
that FTJs can emulate highly bio-plausible behavior utilizing
the multi-domain switching dynamics. Long term potentiation
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and depression (LTP/LTD) under positive and negative voltage
pulses (as illustrated in Figure 10A) have also be demonstrated,
paving the way toward practical implementation of synaptic
plasticity for brain-inspired hardware primitives (Chanthbouala
et al., 2012). Moreover, STDP can also be achieved with device
conductance modulation as a function of delay between pre-
synaptic and post-synaptic spikes, as is shown in Figure 10B
(Boyn et al,, 2017). In addition, it is encouraging to see that
similar investigations of realizing neuromorphic functionalities
such as synapse potentiation/depression (Figure 10C) and STDP
(Figure 10D) were also recently achieved with Hfy5Zry50;
(Yoong et al., 2018), suggesting a viable path of fabricating FT7Js
with good CMOS compatibility.

3.2.3. Prospect of Multi-Level FTJ

Given the advantages of relatively simple device structure with
controllable conduction mechanism, high ON/OFF ratio, fast
switching and non-destructive multi-level dynamics, FTJ holds
a promising prospect for implementing synaptic devices. In
particular, FT] as a two-terminal device can be better suited
for crossbar implementations of synaptic weight matrices. But
FTJ-based synapses are still in early research stage with several
issues to address. One major issue is that most FTJs require
high voltages (> 2-5 V) applied over the tunnel barrier to
switch the polarization, making it challenging for scalable circuit
integration. One of the approach to reduce the operation voltage
is thinning ferroelectric tunnel barriers, however, the retention
and stability of polarization is deteriorated, limiting retention of
current FIJs on the order of 10-100 h (Guo et al., 2020). Another
generic challenge is the scalability of ferroelectric multidomains
as is also faced by FeFET devices. Moreover, phenomena
associated with polarization reversals, such as interfacial charge
trapping and ion migrations could induce defects that negatively
impact on device endurance, and thus most FTJ devices to
date have endurance of no larger than 10° cycles (Guo et al.,
2020). And the shared path of TER reading and polarization
switching could further lead to additional reliability issue such
as destructive read. Another challenge is that tunneling current is
exponentially depending on the thickness of the tunnel barrier so
that precise thickness controlling is needed. From the viewpoint
of practical manufacturability, more explorations are needed as
most FTJs to date rely on exotic ferroelectric materials such as
perovskites and/or unconventional electrode materials due to
material growth constraints. In this respect, HfOx-based FTJs
are considered as an emerging candidate given the less stringent
condition of synthesis and Si CMOS process compatibility.

4. DISCUSSION

The multi-level device characteristics utilizing collective multi-
domain dynamics of magnetization or electric polarization
switching have successfully demonstrated device-level emulation
of neural functionalities and could be leveraged to build
robust and energy efficient bio-plausible hardware primitives for
Al applications.

Spintronic and ferroelectric devices could potentially
provide some advantages compared with ReRAM/PCM and

CMOS technologies. The spin-based devices require a lower
programming voltage compared to ReRAM (Park et al., 2013;
Adam et al.,, 2017) and PCM (Papandreou et al., 2011; Tuma
et al,, 2016). They also demonstrate higher endurance compared
to ReRAM and PCM (Prenat et al., 2016; Li et al., 2019). While
the multi-bit capability of spintronic devices may be limited
by the low ON/OFF ratio (Gon/Gog ~ 2-3), it is worthwhile
to note that high precision weight matrices can be mapped to
multiple crossbars in large scale implementation of in-memory
computing. Moreover, multi-level cells having large number of
states would typically require a higher precision readout circuitry
to interface between digital and analog domains, dominating the
power and area costs (Shafiee et al., 2016; Ankit et al., 2019).
On the other hand, FeFET and FTJ could provide large dynamic
ranges (Gon/Gog < 10%) with numerous intermediate states.
Hence, multi-level spintronic devices can be well suited for
implementing frequently updated components such as neurons,
while ferroelectric devices are considered to be more suitable for
implementing analog synapses, given the device characteristics
of large memory windows between states, low read/write energy,
fast switching, and superior CMOS compatibility (Khan et al.,
2020). In the following, we will elaborate particular challenges of
implementing crossbar in-memory computing based on ReRAM
and PCM materials, and highlight the strength in spintronic and
ferroelectric device characteristics that could potentially address
some of the challenges. A near-term scenario of NVM based
neuromorphic computing is to execute Al inference tasks with
pre-trained models mapped into crossbar arrays, while a more
challenging scenario is to enable on-chip learning.

As for the inference-only scenario, the crossbars are in read-
only mode. The MVM operations will be executed based on
the product of the input voltage and the weight matrix, which
are stored as device conductances. In general, it is desirable
to have large storage density of devices with distinctive states
and strong data retention against thermal agitation and other
relaxation mechanisms over an extendable time. PCM based
on alloys such as Ge,SbyTes, although capable of high density
with large dynamic range (Gon/Gog ~ 10%), suffers resistance
drift due to relaxation of the amorphous state (high resistance
states). Such drift in device conductance significantly degrades
the desirable data retention and thus requires additional circuit-
level compensation scheme in real applications, leading to
additional energy consumption and delay (Yu and Chen, 2016).
As for filament-based ReRAM with oxides such as HfO/TaOx,
although it has advantages of compact cell/array size, large
device variability (especially at high resistance states) can be
a major hindrance (Yu and Chen, 2016; Li et al., 2019). The
large device variation not only places challenges on the sensing
circuit but also leads to a reduced number of bits per cell,
even when the device-level conductance ON/OFF ratio is high
(Chakraborty et al.,, 2020b). On the other hand, the memory
effect of ferroic (ferromagnetic or ferroelectric) orderings are
well-poised given their advantages in storing information with
superior retention. In particular, spintronic devices can store
information based on the magnetizations in materials with strong
anisotropy. The thermal stability of the bits stored in spintronic
devices is governed by ratio of the energy barrier of switching
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FIGURE 10 | (A) Demonstration of synaptic potentiation and depression in a BaTiO3-based FTJ. Figure reproduced with permission from Chanthbouala et al. Nat.

Mat. 11, 860-864 (2012) Copyright 2012 Springer Nature. (B) STDP demonstration in BaFeO3 based FTJ. Figure reproduced from Boyn et al. Nat. Comm. 8, 14736
(2017). Copyright 2017, Authors, licensed under a Creative Commons Attribution (CC BY) license. (C) Demonstration of synaptic potentiation and depression and (D)
STDP in HfOx based FTJ. Figures reproduced with permission from Yoong et al. Adv. Funct. Mater. 2018, 28, 1806037. Copyright 2018 WILEY-VCH Verlag GmbH &
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over thermal fluctuation A = Ey,/kpT, where Ey, is the effective
energy barrier of magnetization switching, kg is the Boltzmann
constant and T is the operation temperature. With A ~ 60-80
in current spintronic devices, superior data retention has been
demonstrated on the order of years in memory and data storage
applications. In addition, the fact that electro-forming is overall a
one-dimensional process suggests that device and cycle variations
could always be an issue with filament-based device such as
ReRAM. Note, multi-domain devices are fundamentally not
limited to 1D process and in principle, can be modeled as parallel
conduction channels. Such conceptually parallel channels can be
less prone to variations, thanks to the averaging effects of the
collective channels. Therefore, both spintronic and ferroelectric
devices suffer less from device variability compared to filament
based memristive technologies. Another pressing challenge of
running MVM on crossbar arrays is the non-ideality associated
with crossbar circuits. While large crossbars are desirable to
utilize the massive parallelism in crossbar based MVM, the non-
ideality due to voltage drop along wire resistance and other

circuitry components (“IR” drop) will become more severe at
larger crossbars, leading to non-ideal output current values
compared to the ideal crossbar output current I = G - V. Note
that using devices with low ON-state resistance will be more
susceptible to the non-ideal IR drop, and thus a high ON-state
resistance is desirable for accurately performing crossbar-based
inference task (Chakraborty et al., 2020a). PCM and ReRAM
typically have ON-resistance of 10-100 k<2, while FeFET can
operate at ON-resistance of higher than 500 k2 (Jerry et al,
2017). Emerging spintronic devices such as spin orbit torque
(SOT)-MT]J can potentially work under M2 ON-resistance, due
to separated read/write paths (Doevenspeck et al., 2020). The
ability of providing large ON-state resistance can potentially
enable deployment of large crossbars with minimal impact on
computing accuracy.

On-chip learning and training using crossbar arrays of
memristive devices are even more challenging, since both read
and write operations will be involved and thus the device
conductance in crossbar arrays will be re-written frequently
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throughout training. One major issue of both ReRAM and
PCM is the limited endurance (10°-10% write cycles). The
chalcogenide alloy in PCM experiences frequent expansion and
contraction under heating during writing process, and the high
probability of physical detachment at the interface between
the alloy and the heating elements can lead to permanent
defects in devices, leading to hard errors such as stuck at
fault when device states are no longer changeable. As for
the ReRAM, both intrinsic device variation originated from
fabrication process and the writing/resetting of ReRAM devices
can contribute to severe device defects that can significantly
degrade the accuracy of the crossbar in-memory computing.
In contrast, the endurance of ferromagnetic devices is much
better in comparison with ReRAM and PCM, since switching in
spin-based devices do not need electro-forming of conduction
filaments (or forming conductive phase through heat-induced
crystallization). The endurance of production-ready STT-MRAM
can be as high as 10'4-10'° cycles with write latency of 10
ns, making MRAM much more competitive for data memory
requiring frequent updates. And newly emerging SOT-MT]
equipped with separated read and write current paths could
provide even more flexibility in design fast and high-endurance
devices. The leverage of MRAM technology for neuromorphic
computing can provide a viable path toward making crossbar
arrays with high endurance for training and learning. Moreover,
writing in PCM and ReRAM requires high energy consumption
and latency due to the device characteristics. The phase transition
in PCM needs substantial write current (~100 WA for a 20 nm
device as reported in Kang et al, 2011) to heat and melt the
material, and the switching speed is limited by the relatively
slow crystallization process (>50 ns; Yu and Chen, 2016).
As for the filament-based ReRAM materials, large device-to-
device and cycle-to-cycle variability resulting from the stochastic
nature of ion migration and variation of the filament shape
and structure have always been a critical issue for training in
ReRAM devices. Although single write of a ReRAM device can
be fast and efficient, multiple write-verify cycles are needed
to set a device into a desirable conductance level, effectively
raising the cost of writing. Therefore, training directly on arrays
of PCM/ReRAM devices can lead to high energy consumption
and significant delay as well as degradation in computing
accuracy due to device failure. The high cost of writing with
ReRAM and PCM crossbars can be potentially mitigated by
using devices based on spintronic and ferroelectric materials.
Changes of device states in ferromagnetic and ferroelectric
materials rely on magnetization or polarization switching, which
can be more energy efficient since no crystallization/melting
process or significant ionic motion are involved. Note that
utilizing the multi-domain switching dynamics provides a
statistical averaging effect over the multiple domains involved,
reducing the device and cycle variations. In addition, the
implementations of neurons, compared to synapses, typically
have more relaxed requirement of density, but may have more
stringent requirement on endurance due to the possibly frequent
occurrence of activation. At present, most of the available
ReRAM and PCM materials do not have the desirable endurance
to execute neuron activation. Therefore, we believe that emerging

ferroic devices and systems with superior endurance can have
exciting opportunities in providing non-volatile neuronal devices
in addition to synapses. Such implementation could potentially
lead to significant improvement in energy efficiency due to
reduced data movement between memory and neuron units.

In spite of the tremendous progress in implementing synaptic
as well as neuronal functionalities based on a plethora of multi-
domain materials, further explorations are still needed to tackle
several key challenges. First of all, large device footprints are
typically desirable for demonstrating multi-domain switching
mechanism in either spintronic or ferroelectric devices, limiting
the synaptic memory density that can be implemented. In
magnetic devices, multi-domain switching are found to vanish
in ferromagnets as the device size decreased to 200 nm, even
in presence of interlayer coupling to adjacent multi-domain
antiferromagnets (Kurenkov et al., 2019). Therefore, achieving
energy-efficient generation and control of multi-domains in a
scalable spin-based material/device platform still requires further
explorations. In ferroelectric devices, most demonstrations of
memristive behaviors to date are done on devices with lateral
size of 200 nm to few microns, but it remains to be seen if
the multi-level polarization switching can still persist as devices
dimension shrinks to the size comparable to size of a nucleation
site in ferroelectric thin films. Moreover, the spintronic and
ferroelectric technologies also have their own challenges to
address. As for spintronic devices, continuous efforts are needed
for smooth integration of multi-domain functional blocks with
manufacturable and programmable devices such as MTJs. In
particular, how to utilize novel mechanisms such as voltage-
controlled magnetic switching, spin-orbit torques in emerging
materials such as antiferromagnets, multiferroics, or granular
composite structures for generating multi-level in a scalable
integrated devices will be of significant interest. Magnetic devices
are further challenged by limited readout resolutions due to
the relatively small magneto-resistance effect in practical MTTJs.
Fortunately, emerging SOT-MT] with separate read and write
paths could lead to device optimized in new design space with
possibly higher ON/OFF ratios (up to 6x larger TMR ratio)
that could be better suited for neuromorphic computing (Ikeda
et al., 2008; Doevenspeck et al., 2020). And novel materials
such as half metal have been predicted to potentially boost
the magnetoresistive signals in future (Bhatti et al, 2017).
In devices built on ferroelectric thin films (thickness < 10
nm), growing depolarizing effects and charge redistribution/trap
at interfaces across the heterostructures significantly limit
the retention and endurance of the remnant polarization
states. Therefore, further investigations of materials and device
physics will be crucial in achieving reliable and scalable multi-
domain neuro-inspired hardware primitives toward sub-10-
nm domains.

The multi-level spintronic and ferroelectric devices, which
enable MVM acceleration and efficient emulation of neural
functionalities, provide building blocks for implementing large-
scale computing system. Note that complex AI tasks such as
image classifications or natural language processing usually need
to run large DNN models comprising multiple layers, where
the size of involved matrices can be significantly larger than
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FIGURE 11 | In-memory computing architecture involving multiple tiles of interconnected crossbar arrays to process high dimensional MVM operations with high bit
precision. (A) lllustration of the muilti-tile architecture for executing large input vector with high bit precision where multiple crossbars will be used for mapping the input
and weight matrix. (B) lllustration of the circuit of a single crossbar array comprising the array of synaptic devices in series with access transistors and peripheral
analog and digital circuits. A multiplexer (MUX) and transimpediance amplifier (TIA) are directly connected to the crossbar columns, followed by sample and hold circuit
(S&H) as well as ADC and shift and add circuitry.

typical crossbar sizes. Furthermore, in order to yield satisfactory
prediction accuracy, the model parameters in Al algorithms
such as DNN will need higher resolution (for example, 16-32
bit synaptic weights) compared to the highest possible bits per
cell in synaptic devices (about 1-5). Therefore, the mapping of
input vectors and weight matrices into hardware may involve
multiple arrays or multiple columns (Shafiee et al., 2016). The
bits of input vector are converted to voltages, and they can be
streamed in time depending on the bit-precision of the digital-
analog converters (DAC) (Ankit et al., 2019). The accumulated
current in crossbar column obtained from the dot product
of the input voltage vector and conductance matrix will be
processed in combination with results from multiple time steps
(bit streaming) and/or multiple columns/arrays (bit slicing)
to execute multi-bit MVM operations. In order to minimize
noise accumulation through these aforementioned multi-bit
operations, digital circuitry such as shift and adder are needed,
requiring the conversion of analog signals to digital domains
via analog-digital converters (ADC). Moreover, processing of
partial sums from multiple crossbar arrays are needed in the
case of large matrices for generating the final outputs, which
also desire ADCs in order to leverage the noise resilience
of digital circuitry. As is shown in Figure 11, crossbar arrays
of multi-level devices provide building blocks for partitioning
and mapping of a neural network model, so that workflows
involving large and high precision models can still leverage
the advantage of the underlying device characteristics of non-
volatile multi-level memory. Crossbar arrays of devices with
large number of bits per device will increase the requirement

of ADC bit precision, leading to significant increase of power
and area costs dominated by the ADC (Shafiee et al.,, 2016).
To this effect, the footprint and energy cost of crossbar array
itself may not be the bottleneck. While more crossbars will
be needed to map the algorithmic models using devices with
fewer bits per cell, better energy efliciency could be reached
with low-precision ADCs. Therefore, depending on which factor
dominates the system-level performance, a trade-off analysis
could lead to optimized designs with different crossbar and
ADC configurations. The impacts of device/circuit level settings
such as device conductance range, crossbar size, number of
states per cell have been demonstrated on the performance
of implementing high level AI algorithms (Chakraborty et al.,
2020a), while algorithmic characteristics such as sparsity in
model parameters can also influence the choice of setting and
operation of the crossbar arrays. Therefore, systematic trade-off
analysis and application specific co-design across the hierarchy
of material, device, circuit, and algorithm will be crucial toward
the optimization of system-level performance, and we hope that
this review will inspire more research efforts on utilizing the
emerging ferroic device technologies toward developing efficient
neuro-inspired computing system comprising both hardware
and software.
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