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New connections between static elastic cloaking,
low-frequency elastic wave scattering and neutral
inclusions (NIs) are established in the context of two-
dimensional elasticity. A cylindrical core surrounded
by a cylindrical shell is embedded in a uniform
elastic matrix. Given the core and matrix properties,
we answer the questions of how to select the
shell material such that (i) it acts as a static
elastic cloak, and (ii) it eliminates low-frequency
scattering of incident elastic waves. It is shown
that static cloaking (i) requires an anisotropic shell,
whereas scattering reduction (ii) can be satisfied more
simply with isotropic materials. Implicit solutions
for the shell material are obtained by considering
the core–shell composite cylinder as a neutral elastic
inclusion. Two types of NI are distinguished, weak and
strong with the former equivalent to low-frequency
transparency and the classical Christensen and Lo
generalized self-consistent result for in-plane shear
from 1979. Our introduction of the strong NI is an
important extension of this result in that we show
that standard anisotropic shells can act as perfect
static cloaks, contrasting previous work that has
employed ‘unphysical’ materials. The relationships
between low-frequency transparency, static cloaking
and NIs provide the material designer with options for
achieving elastic cloaking in the quasi-static limit.
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1. Introduction
The ability to cloak a region of space so that an incident field or applied loading does not see
or feel the presence of an object is of great interest in science and engineering. Over the last two
decades, significant progress has been made in this field in the domains of electromagnetism
[1,2], acoustics [3,4], heat transport [5] and flexural waves on thin plates [6,7]. Cloaking of elastic
waves however, even in the quasi-static limit requires materials with properties that are, at
present, unachievable. According to transformation elasticity [8,9], one needs solids that display
a significant amount of anisotropy combined with strong asymmetry of the elastic stress. Large
anisotropy is common in composite materials and can be engineered by design, but significant
stress asymmetry is not seen in practical materials. Some mechanisms to circumvent apparent
non-feasibility of cloaking in elastodynamics have been proposed, including isotropic polar solids
for conformal transformation elasticity and cloaking [10,11], hyperelastic materials under pre-
stress [12,13], symmetrization of the asymmetric effective modulus tensor [14], and under some
circumstances solutions can be found in the case of thin plates that do not need asymmetric stress
[15,16]. Recent work has employed lattice transformations to cloak in-plane shear waves [17].

Restricting attention to statics on the other hand, a purely static cloak is an elastic layer that
has the effect of ensuring that the deformation exterior to the cloaked region is the same as if
there were no object or layer present. Static cloaking is closely related with the concept of a
neutral inclusion (NI), which is a region of inhomogeneity in an otherwise uniform solid that
does not disturb an applied exterior field. NIs can be tailored to specific loading types, whereas
a static cloak will ensure that there is no influence to the presence of an object for any type
of imposed field. NIs are therefore by definition statically cloaked for a certain imposed field.
Examples of NIs are Hashin’s coated sphere [18] for conductivity, later generalized to coated
confocal ellipsoids [19] and other possible shapes [20]. The associated scalar potential problem
and associated NIs and coated NIs have been studied extensively, see [21, §7], [22] and references
therein. Extensions to the case of nonlinear conductivity [23] and hydrostatic loading in plane
finite elasticity have also been considered [24]. The two-dimensional scalar potential problem is
pertinent in the context of the anti-plane elastic problem [20,25]. The full elastostatic NI problem is
more challenging, and there have been a number of relevant studies in linear elasticity [22,26–31].
A general elastic NI, or a condition to realize one, has not been exhibited with finite thickness
shells, although see [22] where NIs are derived for special loading scenarios. Instead it is often the
case that ‘interface’-type conditions are required for the combined shear/bulk modulus neutrality,
i.e. for neutrality to be achieved under general in-plane loadings [27]. There has been some
success in realization of an approximate core–shell design based on Hashin’s assemblage using a
pentamode material for the shell, a so-called unfeelability cloak [32].

Our interest here is two-dimensional cylindrical and inhomogeneous NIs for elasticity. The
configuration studied is a cylindrical core region surrounded by a shell (or coating, layer, annulus)
all of which is embedded in a host exterior medium, as illustrated in figure 1. The properties of
the shell (homogeneous or inhomogeneous) are chosen so that the combined core and coating
act as an NI. Unlike the cloak of transformation elastodynamics [9], the moduli of the static
cloak will depend upon the properties of the cloaked object. The three-phase elastically isotropic
configuration depicted in figure 1 has been studied previously, under the action of various far-
field loadings in the context of estimating the static effective properties of core unidirectional
fibres dispersed in a matrix with the properties of the coating. By inserting the composite
cylinder (core plus coating) in the background medium and requiring that it act as an NI, the
background properties provide a self-consistent estimate of the effective material properties, i.e. the
matrix properties. This approach partitions into two sub-problems, first for in-plane hydrostatic
loading which ensures a condition can be determined for the effective bulk modulus. However
the in-plane shear problem is under-determined; the ‘perturbed’ static displacement outside the
composite cylinder depends on two coefficients, while the background material has only a single
parameter: the effective shear modulus. It is not possible to make both perturbed displacement
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Figure 1. The central cylindrical core of radius r0 is surrounded by a cylindrical shell (or layer or annulus) of elastic material
of outer radius r1. The core density, shear modulus and in-plane bulk modulus are ρ0,μ0 and K0, the shell properties can be
anisotropic and radially dependent, although only the isotropic shell case is illustrated here. The composite cylinder lies in an
infinite uniform isotropic elastic medium,ρe,μe and Ke. (Online version in colour.)

coefficients vanish simultaneously, i.e. the composite cylinder cannot be a NI/static cloak if the
coating is isotropic. As an alternative, Christensen & Lo [33] assumed that the strain energy in the
composite cylinder must be the same as the strain energy in an equivalent volume of the effective
material, which can be satisfied by setting only one of the displacement coefficients to zero (the
stress terms associated with 1/r4 decay do not contribute to the strain energy). This procedure has
been termed the Generalized Self Consistent Scheme (GSCS) [34]. The GSCS energy equivalence
method has been generalized to the case of multiply layered cylinders using transfer matrices
[35]. The effect of anisotropy in fibres and coatings was considered by Avery & Herakovich [36]
in relation to thermal properties of composites. Thermoelastic effective properties for orthotropic
phases were derived using a combination of the GSCS and Composite Cylinders Assemblage
(CCA) methods in [34]. A Mori–Tanaka inspired interaction approach was used by Chen et al.
[37] to consider thermomechanical loading of cylindrically orthotropic fibres with transversely
isotropic coatings. The solutions were subsequently applied to estimate effective properties of
coated cylindrically orthotropic fibre reinforced composites [38]. Recent reviews of relevance
include [39] on homogenization and micromechanics and [40,41] on inclusions.

Christensen and Lo’s solution for the composite cylinders model [33], and its generalizations
[34,35] can be considered as weak NIs because the perturbed exterior field is not completely
eliminated (the 1/r4 decay in the exterior stress remains) as compared with strong NIs for
which the exterior displacement and stress are unperturbed. A related but apparently quite
distinct situation arises with scattering of time-harmonic elastic waves. The scattered, i.e.
perturbed, exterior field, can be expressed as an asymptotic series in a non-dimensional parameter
proportional to the frequency. We say that the scattering object is transparent at low frequency
if both the leading-order longitudinal and transverse-scattered waves vanish [42]. The lowest-
order terms in the power series vanish for both the scattered longitudinal and transverse waves
if the scatterer is an NI. However, as discussed above, a given two phase composite cylinder with
isotropic phases can at most be a weak NI, which begs the question of how the weak NI relates to
low-frequency transparency.

One lesson taken from the composite cylinders model [33] is that isotropy of the shell is not
sufficient for the composite cylinder to act as a strong NI. We therefore anticipate that anisotropy
is required. One of our main results is therefore to identify the type of anisotropy necessary to
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achieve a strong NI effect. The static elastic cloak determined here is however distinct from others
in elasticity [8–13] in that it can be realized using ‘normal’ elastic materials corresponding to
symmetric stress.

(a) Objective and overview
The problem considered is as follows: given a host matrix and a cylindrical core, determine the
shell properties such that the core+shell (composite assemblage) acts as either a strong or a weak
NI, to planar deformation of hydrostatic and shear loading (figure 1). We define the following
terms, both of which apply under homogeneous loading states.

— Strong NI: the perturbed field exterior to the NI is zero. This is equivalent to a static elastic
cloak.

— Weak NI: the strain energy of the NI is the same as the strain energy of an equivalent
volume of matrix material.

The core and matrix have material properties K0, μ0, ρ0 and Ke, μe, ρe, respectively, the in-plane
bulk modulus, shear modulus and density. Given the core radius r0 and the outer radius of the
shell r1, the objective is to find properties of the shell that result in an NI of either type. At the same
time, we are interested in the relation between NI effects, weak and strong, and low-frequency
transparency.

We will explicitly show that a two-phase composite cylinder with isotropic core and shell
cannot be a strong NI. An isotropic shell can only yield a weak NI, and equations for the required
properties K, μ, ρ will be obtained. A strong NI requires that the shell be anisotropic, and the
requisite conditions will be found. It will be shown that the NI and transparency properties are
related: a weak NI is transparent at low frequency, that is, both of the leading-order scattered
waves (longitudinal and transverse) vanish. Conversely, low-frequency transparency implies that
the scatterer acts as an NI, weak or strong, but generally weak.

Given a composite cylinder and its properties one can ask what are the properties of the matrix
which makes it act as an NI. This is a standard effective medium problem, which may be solved in an
approximate or exact manner, as we will see in §§2 and 5, respectively. Finding solutions for the NI
layer properties is therefore an inverse problem: we will first solve the effective medium problem,
with the NI properties determined as implicit functions of the core and matrix properties. The
approximate effective medium solution in §2 provides the only explicit examples for the NI
properties.

Our approach to the exact solution of the NI problem combines static and dynamic solutions
in a novel manner. Unlike previous derivations of the effective bulk modulus, which require full
solutions for the displacement and stress fields in the composite cylinder [33,35], here it is found
directly as the solution of an ordinary differential equation (ODE) of Riccati type. The effective
shear modulus involves a 2 × 2 impedance matrix which satisfies a Riccati ODE. This matrix
yields both the low-frequency transparency and the NI conditions. The former is derived using a
low-frequency expansion of the scattered field, giving a condition identical to the GSCS. The NI
condition for shear is a purely static one which reduces to a single constraint on the elements of the
impedance matrix. In particular, we derive a simple condition which is necessary and sufficient
to obtain a strong NI. We provide examples of composite cylinders comprising isotropic cores
and uniform anisotropic shells that are strong NIs and illustrate two of these cases graphically
showing the difference between the weak and strong NI in the process.

The outline of the paper is as follows. An approximate effective medium solution is used
in §2 to solve for (approximate) NI parameters. The explicit solution shows that the range of
possibilities decreases to zero in certain parameter regimes. Section 3 outlines the exact forward
solution approach for the composite cylinder effective medium problem, and relates the NI effect
to low-frequency transparency effects. By representing the fields in terms of angular harmonics,
it is apparent that there are two distinct problems to solve: for n= 0 and n= 2. Solutions of the
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effective medium problem are given in §4 for the effective bulk modulus (n= 0), and in §5 for
the effective shear modulus (n= 2). Distinction between weak NI, strong NI and low-frequency
transparency become apparent in §5, where the exact NI solution is described. Examples of strong
NI core–shell composite cylinders are presented in §6. Concluding remarks are given in §7.

2. Static cloak using an approximate model
As an introduction to the problem, we first demonstrate how one can use an approximate model
to estimate the properties necessary for an approximate static cloak. It should be stressed that
since the model is approximate the configuration cannot be classified as an exact NI of any type,
weak or strong. However, it gives an indication of what is required of such an NI and its possible
regimes of validity. Consider the single-core configuration as depicted in figure 1. In the context of
effective medium theory, the core (subscript 0) and coating properties, together with core volume
fraction f ∈ (0, 1), are given and the external properties (subscript e) are then determined subject to
some consistency constraint. The static cloak problem is different in that the core and surrounding
medium properties are given and the cloak (coating) properties are chosen in order to render
either equivalent energy or zero transparency, etc.

As an example, let us use effective property estimates based on a modification of the Kuster–
Toksöz model [43, eqn (4)]

ρ − ρe = f
(
ρ − ρ0

)
, (2.1a)

K − Ke

μ + Ke
= f

(
K − K0

μ + K0

)
, (2.1b)

μ − μe

μ + μe
(
1 + 2μ

K

) = f (μ − μ0)

μ + μ0
(
1 + 2μ

K

) (2.1c)

where f = r2
0/r

2
1. The relation (2.1a) for densities is obviously correct and therefore we will not

consider density further. The expression (2.1b) is, as we will see, the correct relation between K, Ke,
K0 and μ for isotropic shells. However, the shell shear modulus μ given by (2.1c) is not the right
value, but an approximation. The identities (2.1b,c) coincide with the Hashin–Shtrikman two-
dimensional bounds for Ke and μe [44], similar to the three-dimensional Kuster–Toksöz model
[45]; formulae valid in the limit of small f were derived in [46, eqns (3.15), (3.16)] which are in
agreement with (2.1c). Solving for the layer or cloak properties yields

ρ = ρe − fρ0

1 − f
(2.2a)

and

K = Ke/(μ + Ke) − fK0/(μ + K0)
1/(μ + Ke) − f/(μ + K0)

, (2.2b)

where μ solves the cubic equation

[
(1 + f )(μ0 − μe)KeK0 − (Ke + 2K0 − f (2Ke + K0)

)
μeμ0

]
μ

+ [(μ0 − μe)(Ke + fK0) + (1 − f )(KeK0 − 2μeμ0) + 2μ0K0 − f2μeKe
]
μ2

+ [Ke + 2μ0 − f (K0 + 2μe)
]
μ3 − (1 − f )μ0μeK0Ke = 0. (2.2c)

A solution exists for (ρ, K, μ) for any given (ρ0, K0, μ0), (ρe, Ke, μe) if f is small. As f is increased,
the solution may or may not exist. If ρ0 > ρe, then a positive solution for ρ is only possible for
f < ρe/ρ0. A small cloak is equivalent to large f , i.e. 1 − f � 1.
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For instance, in the limiting cases when the core is a hole, equation (2.2b,c) give

K = (1 + 2f )μe

1 − 2νe(1 + f ))
, μ = (1 + 2f )μe

1 − 2f (1 − 2νe)
, for K0 = μ0 = 0, (2.3)

where νe = 1
2 − (μe/2Ke). Note that because the planar problem is isotropic, νe is given by the

expression for the isotropic Poisson’s ratio in terms of in-plane properties K and μ, but since
the effective medium is transversely isotropic it cannot be thought of as Poisson’s ratio: see the
erratum follow up [47] to [33]. If the core is a rigid inclusion the cloaking layer becomes

μ = (2 − f )μe − (1 + f )Ke

2(2 + f )
+
√(

(2 − f )μe − (1 + f )Ke

2(2 + f )

)2
+
(

1 − f
2 + f

)
Keμe,

K = (1 − f )Ke − fμ, for
1
K0

= 1
μ0

= 0.

(2.4)

In each case, the cloak depends on the matrix properties and the core volume fraction f . The
expression for K in (2.3), which must be positive and finite, implies that the range of possible f
shrinks to zero as νe approaches 1/2, the incompressibility limit.

Solutions for static cloak properties (or NIs) are now sought that do not require approximate
effective property expressions.

3. Quasi-static cloaking problem set-up
The objective is to determine necessary and sufficient conditions on the material properties of the
coating of figure 1 in order that the combined core and coating acts as a quasi-static cloaking
device. Two distinct definitions of quasi-static cloaking are considered: (i) the NI effect, and
(ii) low-frequency wave transparency. The former is a purely static concept whereby an applied
static field is unperturbed in the exterior of the core–shell composite. Low-frequency wave
transparency is a dynamic concept; it requires that the leading-order term in the expansion of
the scattered field expressed as an expansion in frequency vanishes for any type of incident time
harmonic plane wave. However, as one might expect, it is possible to rephrase the condition in
terms of static quantities, as in Rayleigh scattering [48]. This idea is used here also, and in the
process the similarities and differences between (i) and (ii) will become apparent.

Anticipating the need to go beyond isotropic shells we consider cylindrically anisotropic
inhomogeneous materials [49] with, in general, four radially varying elastic moduli. Our method
of solution uses the formulation of [50] (Note misprints: There is a −I on the r.h.s. of eqn (2.8);
the left off-diagonal blocks mentioned below (2.16) are positive semi-definite; (R1,R2) appearing
below eqns (4.1) and (4.4) must be replaced by (R2,R1).) although we note that other equivalent
state-space approaches have been successfully employed, e.g. Tsukrov & Drach [51] derived
displacement and stress solutions for a multilayered composite cylinder with cylindrically
orthotropic layers subject to homogeneous boundary loadings using the state space formalism of
[52,53]. Our solution method is based on impedance matrices [50] which do not require pointwise
solutions for displacement and stress, which simplifies the analysis considerably.

(a) Matricant and impedance matrices
Given an arbitrary static loading in the far-field, displacement solutions may be written in terms
of summations over azimuthal modal dependence of the form einθ for integer n. Cylindrical
coordinates r, θ are used here. Radially dependent displacements are then ur(r), uθ (r) with
associated traction components tr(r) (= σrr) and tθ (r) (= σrθ ). Assume that the coating (cloak) is
cylindrically anisotropic [50] with local orthotropic in-plane anisotropy defined by the moduli (in
Voigt notation) C11, C22, C12, C66, where 1, 2 ↔ r, θ . The static elastic equilibrium and constitutive
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equations can then be written as a system of four ordinary differential equations in r,

d v
d r

(r) = 1
r
G(r)v(r), where (3.1)

v=

⎛
⎜⎜⎜⎝

ur
− i uθ

rtr
− i rtθ

⎞
⎟⎟⎟⎠ , G=

⎛
⎜⎜⎜⎝

1 − γ n(γ − 1) C−1
11 0

−n 1 0 C−1
66

C −nC γ − 1 n
−nC n2C n(1 − γ ) −1

⎞
⎟⎟⎟⎠ ,

γ = 1 + C12

C11
,

C=C22 − C2
12

C11
.

(3.2)

The constraint of positive definite strain energy for the two-dimensional deformation requires
C11 > 0, C66 > 0, C> 0.

The propagator, or matricant, M(r, r0), by definition [50] satisfies

dM
d r

= 1
r
G(r)M with M(r0, r0) = I, (3.3)

where I is the 4 × 4 identity. Note its important property that

v(r1) =M(r1, r0)v(r0) (3.4)

The 2×2 impedance matrix, Z(r), is defined by(
rtr

− i rtθ

)
=Z

(
ur

− i uθ

)
. (3.5)

It can be expressed in terms of the impedance at r= r0, Z(r0), using the matricant, as

Z(r) = (M3 + M4Z(r0)
)(
M1 + M2Z(r0)

)−1 where M(r, r0) =
(
M1 M2
M3 M4

)
. (3.6)

Alternatively, the impedance satisfies a separate ordinary differential matrix Riccati equation

r
dZ
d r

+ ZG1 + GT
1Z + ZG2Z − G3 = 0,

where G1 =
(

1 − γ n(γ − 1)
−n 1

)
, G2 =

(
C−1

11 0
0 C−1

66

)
, G3 =C

(
1 −n

−n n2

)
.

(3.7)

The transpose ZT satisfies the same equation, and therefore, if the initial condition for the
impedance matrix is symmetric then it remains symmetric. We will only consider this case, and
can therefore assume that it is always symmetric, Z(r) =ZT(r). The impedance matrix considered
here is the static limit of the dynamic impedance discussed in [54] for general cylindrical
anisotropy, specifically the impedance z of [54] is related to the present version by z= −JZJ†

where J= diag(1, i) and † denotes the Hermitian transpose. Integration of the Riccati equation
for the time harmonic problem can be tricky because of the appearance of dynamic resonances,
although these difficulties can be circumvented [55]. No such problems arise in the present
case, for which numerical integration of (3.7) is stable. The initial value of the impedance for a
uniform cylinder is analysed in detail in [54], where it is termed the central impedance since the
pointwise value of the impedance at r= 0 is required for the initial condition of the dynamic
Riccati differential equation.

The eigenvalues of G are taken to be {λ1, λ2, λ3, λ4} with right and left eigenvectors vi, ui
(i= 1, 2, 3, 4) satisfying Gvi = viλi, uT

i G= λiuT
i where V= [v1, v2, v3, v4], U= [u1,u2,u3,u4]. The

eigenvectors are normalized such that

UTV=VUT = I,

G=VDUT ⇒Gm =VDmUT,

where D= diag(λ1, λ2, λ3, λ4). (3.8)

The eigenvalues and eigenvectors are functions of r if the moduli, through G depend on r.
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(i) Uniform properties

For a constant set of moduli G over some range including r and r0, the eigenvalues and
eigenvectors are fixed and the solution of (3.3) can be written

M(r, r0) =VE(r, r0)UT where E(r, r0) = diag

((
r
r0

)λ1

,
(

r
r0

)λ2

,
(

r
r0

)λ3

,
(

r
r0

)λ4
)

. (3.9)

Alternatively, M can be expressed simply as a matrix exponential,

M(r, r0) = eG log(r/r0) =
(

r
r0

)G

. (3.10)

There are two distinct types of impedance matrix solutions for a uniform medium. The first is
the impedance of a solid cylindrical region of finite radius. Since there is no length scale in the
impedance relation, it follows that the impedance is independent of the radius, and thus by virtue
of equation (3.7), is a solution of the Riccati matrix equation

ZG2Z + ZG1 + GT
1Z − G3 = 0. (3.11)

The second type of impedance is associated with the dual configuration of an infinite medium
with a circular hole of finite radius. Again, the impedance is a root of (3.11). These matrix roots of
the algebraic Riccati equation can be found using standard matrix algorithms [56,57].

(b) Long wavelength scattering
The exterior medium is strictly transversely isotropic but we are interested in planar wave
propagation. Hence this two-dimensional problem is isotropic with mechanical behaviour
characterized by the two elastic properties μe and Ke = λe + μe. The displacement can thus be
expressed using two potential functions φ and ψ ,

u= ∇φ − ∇ × ψe3. (3.12)

Assuming time dependence e− i ωt, the incident wave is in the x1-direction φ =AL ei kLx1 , ψ =
AT ei kTx1 , where kL = ω/cL, kT = ω/cT, c2

L = (Ke + μe)/ρ, c2
T = μe/ρ and AL and AT are the

longitudinal and transverse wave amplitudes, respectively. Taking AL = (i kL)−1, AT = (i kT)−1

leads to the incident wave

u= ( ei kLx1 , ei kTx1 , 0
)
, v= vL + vT, (3.13)

where, using x1 = r cos θ , x2 = r sin θ ,

vL =

⎛
⎜⎜⎜⎝

cos θ

i sin θ

i kLr(λe + 2μe cos2 θ )
−kLr2μe cos θ sin θ

⎞
⎟⎟⎟⎠ ei kLr cos θ , vT =

⎛
⎜⎜⎜⎝

sin θ

− i cos θ

i kTr2μe cos θ sin θ

kTrμe(cos2 θ − sin2 θ )

⎞
⎟⎟⎟⎠ ei kTr cos θ . (3.14)

In the low-frequency, or equivalently long-wavelength regime, and in the vicinity of the cylinder

kLr� 1 and kTr� 1, (3.15)
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resulting in the asymptotic expansions

vL = i
2
kLr

⎛
⎜⎜⎜⎝

1
0

2(λe + μe)
0

⎞
⎟⎟⎟⎠+

⎛
⎜⎜⎜⎝

cos θ

i sin θ

0
0

⎞
⎟⎟⎟⎠+ i

2
kLr

⎛
⎜⎜⎜⎝

cos 2θ

i sin 2θ

2μe cos 2θ

i 2μe sin 2θ

⎞
⎟⎟⎟⎠+ O

(
k2
Lr

2), (3.16a)

vT = 1
2
kTr

⎛
⎜⎜⎜⎝

0
1
0
0

⎞
⎟⎟⎟⎠+

⎛
⎜⎜⎜⎝

sin θ

− i cos θ

0
0

⎞
⎟⎟⎟⎠+ i

2
kTr

⎛
⎜⎜⎜⎝

sin 2θ

− i cos 2θ

2μe sin 2θ

− i 2μe cos 2θ

⎞
⎟⎟⎟⎠+ O

(
k2
Tr

2). (3.16b)

These can be considered as near-field expansions, valid in the neighbourhood for which (3.15)
holds. The first term in vT is a rigid body rotation, and the second terms in both vL and vT are rigid
body translations. The first term in vL can be interpreted as a radially symmetric far-field loading,
while the third terms in both vL and vT are n= ±2 shear-type loadings. The n= 1 loadings cause
the inclusion to undergo rigid body motion; the parameter that is relevant in the low-frequency
limit is the effective mass, or equivalently its effective density. Therefore, at this level of long-
wavelength approximation, the scattering can be evaluated from the solutions for n= 0 and n=
±2 quasi-static loadings. In order to better identify these terms, we rewrite (3.16) as

vL = i
2
kLr

⎛
⎜⎜⎜⎝

1
0

2(λe + μe)
0

⎞
⎟⎟⎟⎠+

∑
n=±1

ei nθ

2

⎛
⎜⎝a±

0
0

⎞
⎟⎠+ i

4
kLr

∑
n=±2

ei nθ

(
a±

2μea±

)
+ O

(
k2
Lr

2) (3.17a)

and

ivT = i
2
kTr

⎛
⎜⎜⎜⎝

0
1
0
0

⎞
⎟⎟⎟⎠+

∑
n=±1

ei nθ

2

⎛
⎜⎝±a±

0
0

⎞
⎟⎠+ i

4
kTr

∑
n=±2

ei nθ

(
±a±

±2μea±

)
+ O

(
k2
Tr

2), (3.17b)

where a± ≡ ( 1
±1 ). The terms in these equations for the incident plane waves can be identified as

separate quasi-static loadings of type n= 0, 1, and 2. The n= 1 term involves only the effective
mass term, which involves the average density. This is decoupled from the elasticity problem and
will not be discussed further. For the remainder of the paper, we will focus on the n= 0 and n= 2
loadings.

4. Effective bulk modulus: n= 0
Equations (3.1) and (3.2) simplify for n= 0 to two uncoupled systems

d
d r

(
ur
rtr

)
= 1

r

(
1 − γ C−1

11 ,
C γ − 1

)(
ur
rtr

)
(4.1)

and
d

d r

(
uθ

rtθ

)
= 1

r

(
1 C−1

66
0 −1

)(
uθ

rtθ

)
. (4.2)

The latter is associated with pure twist or torsion: define the relationship between the angle of
twist and the angular traction as r−1uθ = Se(r)tθ then equation (4.2) implies that the effective
compliance is

Se(r) = r2

r2
0
S0 + r2

∫ r

r0

d x
x3C66(x)

, (4.3)

where S0 = Se(r0). For instance, S0 = 0 for a shell r> r0 pinned at r= r0.



10

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A476:20190725

...........................................................

Our main concern with the n= 0 case is for radially symmetric loading for which the only
quantity of importance is the effective compressibility of the inclusion. Define the pointwise
effective bulk modulus K∗ as a function of r, by

K∗(r) ≡ rtr
2ur

. (4.4)

Matching this to the exterior medium guarantees an NI effect for n= 0, in addition to zero
monopole scattering in the low-frequency regime. We next derive K∗(r).

(a) A scalar Riccati equation for the bulk modulus
Substituting rtr = 2K∗ur in (4.1) yields the Riccati ordinary differential equation

dK∗
d r

+ 2
r
C−1

11

(
K2

∗ − C12K∗ − 1
4

(C11C22 − C2
12)
)

= 0. (4.5)

Noting that C11C22 − C2
12 > 0, define the positive moduli K, μ and the non-dimensional parameter

β > 0

K = 1
2

(√
C11C22 + C12

)
, μ = 1

2

(√
C11C22 − C12

)
, β =

√
C22

C11
, (4.6)

so that the Riccati equation becomes

dK∗
d r

+ 2
r
β(K + μ)−1 (K∗ − K

)(
K∗ + μ

)= 0. (4.7)

(b) Example: Constant moduli
If K, μ and β are constants the Riccati equation (4.7) can be integrated and combined with the
matching conditions at the core boundary, K∗(r0) =K0, and at the exterior boundary, Ke =K∗(r1),
r1 ≥ r0, to yield

K − Ke

μ + Ke
= f β

(
K − K0

μ + K0

)
where f = r2

0

r2
1

. (4.8)

This is in agreement with (2.1b) when β = 1, but is more general in that it includes the possibility
of an anisotropic layer (β 
= 1). For given values of the inner and outer parameters K0, Ke and radii
r0, r1, the relation (4.8) places a constraint on the possible cloaking moduli. In this case, it relates
K, μ and β according to

μ = −
(
K0(Ke − K) − Ke(K0 − K)f β

(Ke − K) − (K0 − K)f β

)
. (4.9)

For instance, taking K0 → ∞, 0, implies the limiting cases

μ =
⎧⎨
⎩

(Ke − K)f−β − Ke, rigid core,(
(K−1

e − K−1)f−β − K−1
e

)−1
, hole.

(4.10)

At this stage, there are still two unknowns, K and μ, and only one relation between them,
equation (4.9). Choosing coatings with in-plane shear and bulk moduli and anisotropy ratio β

that satisfy the relationship (4.9) thus ensures an NI when the medium is subjected to in-plane
hydrostatic pressure. In order to find a second relationship between μ and K (and thus uniquely
define the coating properties), a second relation needs to be determined, if one exists. It transpires
that this second relationship comes from the n= 2 solution.

5. Effective shear modulus: n= 2
We first consider the cloaking layer to be isotropic, and prove that it is not possible to obtain a
strong NI (static cloak). We will then show that the strong NI condition can only be met with an
anisotropic layer.
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(a) Isotropic medium
An isotropic shell has two elastic parameters which can be taken as C66 and γ , in terms of
which the remaining two elastic moduli in equation (3.2) are C11 = 2C66(2 − γ )−1 and C= 2C66γ .
The eigenvalues of G are n − 1, n + 1, 1 − n, −1 − n, which for n= 2 become {λ1, λ2, λ3, λ4} =
{1, 3, −1, −3}. The right and left eigenvectors satisfying (3.8) are

U= 1
2
C

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2γ −3 1 0

−γ 3 1 −3γ

2 −1 −1 2γ − 2

2 − γ 1 −1 2 + γ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, V= 1
2
C−1

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
2γ − 2

3
2

1
3

1
2 + γ

3
2 − γ −1

3

1 0 −2γ −1

1 γ γ 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (5.1)

where C= diag(2C66, 2C66, 1, 1), γ = 1
1−ν

and ν is Poisson’s ratio.
Consider a solid cylinder. Only solutions with λi ≥ 0 are permissible in the cylinder,

corresponding to the first two columns of V in (5.1). The impedance matrix at every point in
the cylinder is then constant and equal to

Z=V3V
−1
1 = 2C66

4 − γ

(
2 + γ 2 − 2γ

2 − 2γ 2 + γ

)
where V=

(
V1 V2
V3 V4

)
, (5.2)

in agreement with [54, eqn (8.6)] for the central impedance matrix. It may be checked that Z of
(5.2) solves the Riccati equation (3.11).

(b) Neutral inclusion shear condition
A cylinder of uniform material with shear modulus and Poisson’s ratio μ0, ν0 and radius r0 is
surrounded by a shell, or cloak with outer radius r1. The impedance on the exterior boundary is,
see (3.6)

Z(r1) = (M3 + M4Z(r0)
)(
M1 + M2Z(r0)

)−1, Z(r0) = 2μ0

3 − 4ν0

(
3 − 2ν0 −2ν0
−2ν0 3 − 2ν0

)
, (5.3)

and Mi are block elements of the matricant M(r1, r0). The far-field loading for n= 2 (n= −2 is
different!) follows from (3.17). In addition, the exterior field in r> r1 comprises the solutions with
λi < 0 which are v3 and v4, the third and fourth columns in V of (5.1). The continuity condition at
the interface r= r1 for some incident amplitude α1 
= 0 is

α1

⎛
⎜⎜⎜⎝

1
1

2μe

2μe

⎞
⎟⎟⎟⎠+ α3v3 + α4v4 =

(
b

Z(r1)b

)
, (5.4)

where μe is the exterior shear modulus and b(ur(r1), −iuθ (r1))T. The strong NI condition requires
that α3 = 0, α4 = 0, in which case we have

b= α1

(
1
1

)
, Z(r1)b= 2μeα1

(
1
1

)
for a strong NI. (5.5)

Hence, the strong NI condition is that (1 1)T is an eigenvector of Z(r1) with eigenvalue 2μe. The
first of these requires that

Z11 + Z12 =Z21 + Z22, (5.6)

which can be simplified using the fact that the impedance is symmetric, Z12 =Z21. Thus, the
cylindrical region r≤ r1 acts as a strong NI if and only if the elements of the impedance matrix
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satisfy
Z11(r1) =Z22(r1) for a strong NI. (5.7)

(i) Isotropic core plus shell

Consider a core μ0, ν0 of radius r0 with a surrounding shell μ, ν of outer radius r1 > r0. Using
equations (3.9), (5.1) and (5.3), it can be shown that

Z11(r1) − Z22(r1) = 3

(
r2

1

r2
0

− 1

)
(μ0 − μ)
(1 − ν)μ

(
μ + μ0

3 − 4ν0

)
/ det

(
M1(r1, r0) + M2(r1, r0)Z(r0)

)
. (5.8)

The NI condition (5.7) can only be met if the shell and core have the same shear modulus, μ1 = μ0,
in which case the effective shear modulus is simply μ0, regardless of the values of Poisson’s ratios
ν1 and ν0, see equation (5.21). This means that the core cannot be transformed into a strong NI by
surrounding it with a single shell of isotropic material.

(c) Low-frequency transparency condition in shear
For a given incident wave, the n= 2 contribution to the scattered displacement us exterior to the
inclusion can be expressed using equation (3.12) with φ = BLH

(1)
2 (kLr)ei 2θ , ψ = iBTH

(1)
2 (kTr)ei 2θ ,

where H(1)
n is the Hankel function of the first kind. This yields, dropping the ei2θ term,

usr = kLBLH
(1)′
2 (kLr) + 2

BT
r
H(1)

2 (kTr),

and − i usθ = kTBTH
(1)′

2 (kTr) + 2
BL
r
H(1)

2 (kLr).

⎫⎪⎪⎬
⎪⎪⎭ (5.9)

Both BL and BT are functions of frequency, the precise forms dependent on the inclusion details.
For the moment, we assume that they each have regular expansions about ω = 0, i.e.

BL = BL0 + ωBL1 + . . . ,

and BT = BT0 + ωBT1 + . . . .

}
(5.10)

Expanding (5.9) in the long wavelength near-field limit, the scattered wave is to leading order
in ω, (

usr
i usθ

)
= − 2 i

πr

(
BT0
BL0

)
+ 8 i

πr3

(
BL0

k2
L

− BT0

k2
T

)(
1

−1

)
+ . . . . (5.11)

This low-frequency expansion should be consistent with the purely static representation of the
exterior ‘scattered’ field as a sum of the form, see equation (5.4),

vs = α3v3 + α4v4, (5.12)

where v3 and v4 are the third and fourth columns in V of (5.1), corresponding to r−1 and r−3 decay
outside the inclusion, respectively. Comparing the r−1 term in (5.11) with the first two elements
of v3 implies that

BL0

BT0
= 2 − γ

2
⇒ BL0

k2
L

= BT0

k2
T

, (5.13)

because 1 − (γ /2) = k2
L/k

2
T . Equation (5.13) means that if one of BL0, BT0 vanishes, then both vanish.

Equivalently, it says that both BL0, BT0 vanish if the coefficient of the r−1 term is zero.
Hence, the leading-order term in the low-frequency expansion of the scattered field vanishes if

and only if the coefficient of the r−1 term, i.e. v3, in the quasi-static solution is zero. Low-frequency
transparency therefore requires only that α3 vanishes. This result agrees with the strain energy
condition first derived by Christensen & Lo [33], and later in more general form by Hashin [34]
and Hervé & Zaoui [35]. Also, the above derivation is independent of the type of incident wave,
but relies only on the form of the scattered wave potentials as a combination of Hankel functions.

In summary, we conclude that
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Lemma 5.1. Low-frequency transparency in shear, is obtained if (see equation (5.12))

α3 = 0, (5.14)

which is equivalent to the weak NI condition for in-plane deformation, if (4.9) also holds (the bulk modulus
condition) and β = 1 for isotropic coatings.

The core–shell composite is a strong NI for planar deformation if and only if

α3 = 0 and α4 = 0. (5.15)

together with (4.9).

We next seek more explicit versions of these conditions, and in the process find the effective
shear modulus of the matrix.

(i) The effective shear modulus

Equation (5.4) can be written

[
−v3 − v4

I
Z(r1)

]⎛⎜⎝α3
α4
b

⎞
⎟⎠= α1

⎛
⎜⎜⎜⎝

1
1

2μe

2μe

⎞
⎟⎟⎟⎠ . (5.16)

The transparency/weak NI condition (5.14) then becomes

det

[
v1 v4

I
Z(r1)

]
= 0 ⇒ det

⎛
⎜⎜⎜⎜⎜⎝

1
2

1
6 1 0

1
2 − 1

6 0 1

μe −μe Z11 Z12
μe μe Z12 Z22

⎞
⎟⎟⎟⎟⎟⎠= 0. (5.17)

Expanding the determinant yields a quadratic equation for the effective shear modulus

μ2
e − μe

6

(
Z11 + Z22 + 4Z12

)− 1
12

(
Z11Z22 − Z2

12
)= 0. (5.18)

The sign of the root chosen must agree with the NI value for the effective modulus above when
condition (5.7) holds.

The above results for both the low-frequency transparency and the weak and strong NI
conditions can be combined with the bulk modulus condition of §4 as follows.

Theorem 5.2. The cylindrical core–shell is transparent at low frequency and acts as a weak NI for
in-plane hydrostatic pressure and in-plane shear if the exterior medium has bulk and shear moduli

Ke = K(μ + K0) − μ(K − K0)(r0/r1)2β

μ + K0 + (K − K0)(r0/r1)2β
(5.19a)

and

μe = 1
6

(
Zs + 2Z12 +

√
(2Zs + Z12)2 − 3Z2

d

)
, (5.19b)

where

K = 1
2

(√
C11C22 + C12

)
, μ = 1

2

(√
C11C22 − C12

)
, β =

√
C22

C11
(5.19c)

and

Zs = 1
2

(
Z11 + Z22

)
, Zd = 1

2

(
Z11 − Z22

)
, (5.19d)

and Zij are the elements of the impedance matrix Z(r1) defined by equation (5.3).
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Table 1. Examples of composite cylinder strong NIs. The isotropic core radius and properties are r0, μ0, ν0 and the exterior
(matrix) properties are the in-plane bulk and shear moduli Ke andμe. The anisotropic coating (shell) properties required are
C11, C22, C12 and C66 and its outer radius is r1 = 1.

example r0/r1 μ0 ν0 C11 C22 C12 C66 Ke μe

(i) 0.5 1 1
3 4.0 4.40 2.49 1.0 3.2572 0.9401

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(ii) 0.2 0 1
3 4.8 2.9781 2.80 1.0 1.9782 0.6445

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(iii) 0.2 106 1
3 2.5782 2.52 2.4 1.0 2.5848 0.2990

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(iv) 0.75 21 1
3 3.5839 11.5096 −0.4658 3.2078 6.0307 5.9049

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Furthermore, the layered shell acts as a strong NI for in-plane shear and hydrostatic loading, if and only
if

Zd = 0, (5.20)

coupled with (5.19a). The strong NI condition (5.20) cannot occur if the shell is isotropic, but requires
anisotropy. If the strong NI condition is met then the matrix shear modulus is

μe = 1
2 (Z11 + Z12). (5.21)

and the matrix bulk modulus is Ke of (5.19a).

In practice of course the core and matrix/exterior properties are specified and the coating
properties (and thickness) are deduced by solving (5.21) and (5.19a).

In summary, low-frequency transparency/weak NI can be achieved with isotropic shell
material. The strong NI condition restricts the types of shells: equation (5.8) indicates that a
uniform isotropic shell cannot yield a strong NI, regardless of the isotropic core properties. We
note that the explicit form of μe in (5.19b) is far simpler than the alternatives available [34,
eqn (50)], [35, eqn (82)], even the original [33, eqn (4.11)]. Finally, it should be kept in mind
that, just as for the approximate NI considered in §2, the weak and strong NI conditions are not
guaranteed to be achievable for all combinations of matrix and core properties and core volume
fraction in the composite cylinder.

6. Implementation of the theory: weak versus strong neutral inclusions
We now provide some examples of strong NIs. In particular, for each of the examples in table 1
the identities (5.19a) and (5.20) are satisfied, and hence the composite cylinder is a strong NI.

In figure 2, we plot radial and shear stress distributions as functions of r associated with
Example (ii) (left of the figure) and (iii) (right of the figure) in table 1. For all cases, we fix the
fibre and exterior (matrix) properties and plot the isolated fibre (no coating) case (blue long
dash), the weak NI case (black solid) and the strong NI case (red short dash). Weak NI properties
are deduced from the Christensen and Lo shear conditions (see appendix B) coupled with the
standard isotropic bulk modulus condition (5.19a) with β = 1 (isotropic coating). We thus deduce
that for example (ii) isotropic coating properties are Kweak = 2.32912, μweak = 0.715023, whereas
for example (iii) isotropic coating properties are Kweak = 2.47029, μweak = 0.277903.

Figure 2a,b illustrates σrr(r) for the hydrostatic problem (independent of θ ) for Examples (ii) and
(iii), respectively. The problem is scaled such that σrr → 1 as r→ ∞. Figure 2c–e illustrates the
shear problem (σxx + σyy = 0 as r→ ∞). Figure 2c,e correspond to Example (ii) whereas figure 2d,f
correspond to Example (iii). σrr is evaluated at θ = 0 and σrθ is evaluated at θ = π/4.

One should note that strong NIs ensure that the field is unperturbed in r≥ 1 for the shear
problem. The hydrostatic problem is unperturbed for r≥ 1 for both strong and weak NIs as
expected. The effect is more noticeable in Example (ii) (void) than for Example (iii) (rigid core).
In the latter case, the weak NI can be seen as almost as effective as the strong NI. In the former,
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Figure2. Stress plots as functions of r, associatedwith an isolatedfibre (blue longdash),weak (isotropic) NI (black solid), strong
(anisotropic) NI (red short dash). (a,c,e): Example (ii) and (b,d,e): Example (iii) from table 1. (a) and (b) illustrate σrr(r, θ = 0)
associatedwith in-planehydrostatic pressure for Examples (ii) and (iii), respectively,whereas (c,d) and (e,f ) illustrateσrr(r, θ =
0) andσrθ (r, θ = π/4) associated with in-plane shear, for Examples (ii) and (iii), respectively. Far field loading is normalized
to unity. (Online version in colour.)

however, the weak NI is ineffective in shear. In Example (iii), we also note that the strong NI has
a strong influence on the stress distribution in the core.

7. Conclusion
The connection between low-frequency transparency of elastic waves and NIs has been made
for the first time. Intuitively, both effects are related to static or quasi-static cloaking, although
as we have seen, the relationships require careful definitions of both NIs and low-frequency
transparency. Two distinct types of NI have been identified, weak and strong, with the former
equivalent to low-frequency transparency and the latter with static cloaking. The main results of
the paper are summarized in theorem 5.2 which shows that weak NI/low-frequency transparency
is easier to achieve than strong NI/static cloaking. The former can be obtained with an isotropic
shell surrounding the core [42], while the latter requires anisotropy in the shell/cloak. For a given
core and matrix, and relative shell thickness, the determination of the shell properties for either
the weak or strong NI effect is implicit through effective medium conditions. The existence of
solutions is not guaranteed, but depends upon the parameters in a non-trivial manner.
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The problem has been made tractable by considering the n= 0, 1, 2 sub-problems, with
n= 1 trivially related to density. The concepts of low-frequency wave transparency and NI are
identical for the n= 0 problem, for which there is no distinction between weak and strong NI
effects. Thus, if the exterior bulk modulus matches the effective bulk modulus of the core–shell
composite cylinder then the latter acts as an NI and is transparent in the long wavelength regime.
Distinguishing between weak and strong NI effects are necessary for the n= 2 problem. For the
weak NI effect, the shell properties must be such that the single condition (5.17) holds, in which
case the effective shear modulus of the shell plus core is given by (5.19b). The strong NI effect
requires that equations (5.17) and (5.20) are both satisfied, with matrix effective shear modulus of
equation (5.21).

These connections between low-frequency transparency, static cloaking and NIs provide the
material designer with options for achieving elastic cloaking in the quasi-static limit. Extension
of the results to spherical geometries is the natural next step and will be the subject of a future
report.
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Appendix A. Elastodynamic scattering solution
Based on the representation (3.12), let

φ = (BLJn(kLr) + DLH
(1)
n (kLr)

)
k−1
L ei nθ

and ψ = (BTJn(kTr) + DTH
(1)
n (kTr)

)
k−1
T ei nθ ,

⎫⎬
⎭ (A 1)

then, dropping the ei nθ terms,

u=Un(Jn, r)b + Un(H(1)
n , r)d, (A 2a)

rt=Vn(Jn, r)b + Vn(H(1)
n , r)d where (A 2b)

u=
(
ur
uθ

)
, t=

(
tr
tθ

)
, b=

(
BL

BT

)
, d=

(
DL

DT

)
, (A 2c)

Un(f , r) =

⎛
⎜⎝ f ′(kLr) − i n

kTr
f (kTr)

i n
kLr

f (kLr) f ′(kTr)

⎞
⎟⎠ , (A 2d)

and Vn(f , r) = μe

⎛
⎜⎜⎜⎜⎜⎝
kLr

[
2f ′′(kLr) +

(
2 − k2

T

k2
L

)
f (kLr)

]
−2 in

[
f ′(kTr) − 1

kTr
f (kTr)

]

2 in
[
f ′(kLr) − 1

kLr
f (kLr)

]
−2f ′(kTr) +

(
2n2

kTr
− kTr

)
f (kTr)

⎞
⎟⎟⎟⎟⎟⎠ .

(A 2e)

Following the notation of [54], assume

rt= −Z1u at r= r1, (A 3)

then the scattered L and T amplitudes d of azimuthal order n can be found in terms of the incident
ones b as

d= −(Vn(H(1)
n , r1) + Z1Un(H(1)

n , r1)
)−1(Vn(Jn, r1) + Z1Un(Jn, r1)

)
b. (A 4)

This is the basic equation for solving the scattering.
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The impedance Z1 is found by first forming the core impedance, which follows from [54,
eqn (8.9)]. This serves as the initial condition for integrating the impedance from r= r0 to r1. Direct
integration of the dynamic analogue of the Riccati equation (3.7) is unstable, however, fast and
stable methods exist to circumvent this difficulty. We use the Möbius scheme based on eqns (17)
and (32) of [55].

Appendix B. Christensen and Lo’s weak neutral inclusion
Christensen & Lo [33,47] developed the so-called Generalized Self-Consistent scheme and thus
provided the following expressions for the effective (exterior) shear modulus μe in terms of the
core μ0 and shell μ properties. We have re-written these here since we specify core and exterior
properties and solve for coating properties. We have also corrected the typographical errors that
appeared in the original paper:

D
(

μ

μe

)2
+ B

μ

μe
+ A= 0, (A 1)

where

D= 3f (1 − f )2
(

μ0

μ
− 1
)(

μ0

μ
+ η0

)

+
(

μ0

μ
η +

(
μ0

μ
− 1
)
f + 1

)(
μ0

μ
+ η0 +

((
μ0

μ

)
η − η0

)
f 3
)

, (A 2)

B= −6f (1 − f )2
(

μ0

μ
− 1
)(

μ0

μ
+ η0

)

+
(

μ0

μ
η +

(
μ0

μ
− 1
)
f + 1

)(
(η − 1)

(
μ0

μ
+ η0

)
− 2

((
μ0

μ

)
η − η0

)
f 3
)

,

+ (η + 1)f
(

μ0

μ
− 1
)(

μ0

μ
+ η0 +

(
μ0

μ
− η0

)
f 3
)

(A 3)

and A= 3f (1 − f )2
(

μ0

μ
− 1
)(

μ0

μ
+ η0

)

+
(

μ0

μ
η + η0η +

(
μ0

μ
− η0

)
f 3
)((

μ0

μ
− 1
)

η −
(

μ0

μ
η + 1

))
, (A 4)

with f = r2
0/r

2
1, η = 1 + 2(μ/K) and η0 = 1 + 2(μ0/K0).
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