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ABSTRACT. In this paper we study the relationship between three compac-
tifications of the moduli space of gauge equivalence classes of Hermitian-
Yang-Mills connections on a fixed Hermitian vector bundle over a pro-
jective algebraic manifold of arbitrary dimension. Via the Donaldson-
Uhlenbeck-Yau theorem, this space is analytically isomorphic to the mod-
uli space of stable holomorphic vector bundles, and as such it admits an
algebraic compactification by Gieseker-Maruyama semistable torsion free
sheaves. A recent construction due to the first and third authors gives
another compactification as a moduli space of slope semistable sheaves. In
the present article, following fundamental work of Tian generalising the
analysis of Uhlenbeck and Donaldson in complex dimension two, we define
a gauge theoretic compactification by adding certain gauge equivalence
classes of ideal connections at the boundary. Extending work of Jun Li
in the case of bundles on algebraic surfaces, we exhibit comparison maps
from the sheaf theoretic compactifications and prove their continuity. The
continuity, together with a delicate analysis of the fibres of the map from
the moduli space of slope semistable sheaves allows us to endow the gauge
theoretic compactification with the structure of a complex analytic space.

1. INTRODUCTION

The study of the Hermitian-Yang-Mills (HYM) equations on a Kéhler mani-
fold joins two rather different areas of research in differential geometry. On the
one hand, the Donaldson-Uhlenbeck-Yau theorem [15, 17, 62|, which relates
irreducible solutions of these equations to Mumford-Takemoto stable holo-
morphic vector bundles, is an important example of a more general relationship
between nonlinear geometric PDEs in complex geometry and algebraic geomet-
ric notions of stability coming from Geometric Invariant Theory (GIT). On the
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other hand, the HYM equations are an archetypal instance of equations appear-
ing in mathematical gauge theory. Indeed, in the case of Kéahler surfaces they
correspond to the anti-self-duality equations that were so profitably exploited
by Donaldson and others in the 1980s and 1990s. The purpose of this paper
is to develop further one aspect of the link between these two points of view
in the case of higher dimensional projective algebraic manifolds: namely, the
precise relationship between degenerations of locally free sheaves and singular
limits of HYM connections.

Concretely, we are concerned with the moduli space My (E, h, ay) of gauge
equivalence classes of smooth irreducible A-unitary connections that are solu-
tions to the HYM equations on a fixed hermitian vector bundle (E, h) of rank
r on a projective algebraic manifold X c PV of dimension n that induce a
fixed connection ay on J = det E. If M{;y\(E,h,as) is nonempty it will gen-
erally fail to be compact. Both in differential and algebraic geometry, when
one studies such noncompact moduli spaces it is often useful to construct
a compactification by adding singular objects of one kind or another at the
boundary.

1.1. Algebro-geometric modular compactifications. The first point of
view mentioned at the beginning of the introduction suggests adjoining "sin-
gular" holomorphic vector bundles, or torsion free coherent sheaves, in order to
compactify the moduli space M*(E,J) of slope stable holomorphic structures
on E with fixed determinant 7, corresponding to ay. In fact, it is possible to
implement this idea in two different ways, corresponding to two different nat-
ural restrictions imposed on the sheaves allowed. The most well-studied solu-
tion, going back to Gieseker and Maruyama |26, 41|, uses Gieseker-Maruyama
(GM) semistable sheaves £ with the same topological invariants as F. This
is a natural choice because all such sheaves are quotients H — & — 0 of a
certain fixed vector bundle H — X (see (2.14)), and GM-semistability turns
out to be the same as GIT stability for a particular linearised line bundle on
the Quot scheme Quot(H, c(E)) parametrising such quotients. A projective
scheme MS*(E, J), containing M*(E,J) as a Zariski open subset may then
be constructed as a GIT quotient, and taking the closure of M*(E, J) provides
a compactification MGM(E, J).

It is also reasonable to ask if there is a moduli space which allows degener-
ation to torsion free sheaves which are merely slope semistable. This has been
analysed in the case of surfaces in 37, 38| (see also [33]), and very recently
in higher dimensions by the first and third authors in [30]. All relevant slope
semistable sheaves are again quotients of H, and there is furthermore a certain
natural linearised line bundle over the Quot scheme whose restriction to the
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open subset R"* of slope semistable sheaves is equivariantly semiample for the
case where X is a surface. In dimensions greater than two, semiampleness of
the analogous line bundle %, 1 can be established on the weak normalisation
(Rrss)wn L We refer the reader to the introduction of [30] for an explanation
of why the passage to the weak normalisation is necessary for technical, and
very likely also philosophical, reasons. Given this, one then defines the moduli
space M"*(E,J) of slope semistable sheaves with fixed determinant 7, in
imitation of the GIT construction, to be the projective spectrum of the ring
of invariant sections of powers of .%,_1. An application of Langton’s Theorem
implies that this defines a complete, hence projective, variety. Considering the
separation properties of sections, one then shows that M*(FE, J7)“"™ embeds as
a Zariski open subset of M**(E,J). By taking its closure inside M**(E, J)
we thus obtain a second compactification M" (E, 7).

Points of MGM(E, J) and M"(E,J) may be represented by torsion free
GM- or slope semistable sheaves, respectively, but it is important to understand
their isomorphism classes; that is, when do two sheaves represent the same
point in the moduli space? For MGM(E, J), this is given by the notion of
s-equivalence. For M" (E,J), in the case of algebraic surfaces the correct
identifications were found by Jun Li in [38]. If dim X > 3, the issue is more
subtle and was analysed in [30]. The characterisation of points in these spaces,
together with the fact that GM-semistability implies slope semistability, leads
to the definition of a birational morphism = : MGM(E,J)’L”” — M"(E,J)
that extends the identity on M*(FE,J)""™, but usually collapses points at the
boundary. A more detailed summary of the theory described in the preceding
paragraphs is given in Section 2.8 below.

1.2. Gauge theoretic compactification in higher dimensions. From the
gauge theoretic point view, a natural candidate for a compactification would be
to add "singular" HYM connections. These may be understood from the found-
ational results of Uhlenbeck [60, 61, 59| which provide weak convergence along
a subsequence assuming appropriate bounds on curvature (see also [47, 50]).
Essential to the present paper is the work of Tian [57], who proves that a
sequence of smooth HYM connections {4;} converges (subsequentially) to a
limiting HYM connection A, smoothly away from a holomorphic subvariety
S C X of codimension at least two. Moreover, using the weak limit of the
Yang-Mills energy density, one can assign a positive integer multiplicity to the

IRecall that the weak normalisation of a complex space Z is a reduced complex space
Z™"™ on which the first Riemann Extension Theorem holds, together with a homeomorphic,
holomorphic map Z“" — Z. Weak normalisation is a functor on the category of complex
spaces, which by definition factors through the reduction functor.
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irreducible components of S of pure codimension two. In this way the limit
produces an effective holomorphic cycle C. The complement in .S of the sup-
port of C consists of nonremovable singularities of the limiting connection As.
Hence, there is a decomposition S = S, U S(As ), where Sy is a union of pure
codimension two subvarieties, and A, extends as a smooth connection locally
on the complement of S(Ax) (|57, 56]; Theorems 3.5 and 3.7 below). Further-
more, by results of Bando and Siu (|3]; Theorem 3.6 below), the holomorphic
bundle defined by A, away from S actually extends to all of X as a slope
polystable reflexive sheaf £, and S(As) = sing(Ex ). Note that we may have
Sp N S(Ax) # 0.

This suggests that ideal boundary points should be represented by triples of
the form (A,C,S(A)), or equivalently pairs (£,C), where A is a finite energy
HYM connection defined on the complement of |C| U S(A), C is an effective
codimension two holomorphic cycle, S(A) is a holomorphic subvariety of codi-
mension at least 3 which is exactly the set of nonremovable singularities of A,
and & is a slope polystable reflexive sheaf with S(A) = sing(€), subject to the
cohomological condition chy(E) = chy(€) + [C].

This description of the "ideal connections" appearing at infinity should be
compared to the definition of the Donaldson-Uhlenbeck compactification (see
[16], [20], and the summary provided in [38, Sect. 4|) used in the theory of
instantons on smooth four dimensional real manifolds. In this latter situation,
S is a finite set of points, and the connection A extends smoothly to the entire
manifold (S(A) = (), albeit on a bundle with modified second Chern class.
Originally, the theory is developed for either SU(2) or SO(3) bundles, and the
second Chern number is then essentially the Yang-Mills energy; in particular,
it is positive. The cohomological relation stated above then gives a uniform
bound on the total length of the cycles (the sum of the number of points with
multiplicity) and this is enough to obtain convergence of the singular sets to a
limiting cycle. One may then apply Uhlenbeck compactness on the complement
of (the support of) this limiting cycle to obtain a limiting ideal connection, and
the set of all ideal connections is thereby (sequentially) compact. Taking the
closure inside this compact space yields a gauge theoretic compactification.

In order to obtain an analogue of the Donaldson-Uhlenbeck compactific-
ation in higher dimensions, we mimic the procedure described in the pre-
vious paragraph using the approach of [57|. The appearance of the non-
removable singularity sets S(A) is a key new feature in higher dimensions.
For a sequence (A;,C;, S(4;)), the Bogomolov inequality and the relations
cho(E) = cha(A4;) + [C;], imply a uniform bound on the degrees of the C;, and
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therefore also subsequential convergence of the C; as currents to some codimen-
sion two cycle C,_. Given a general sequence of ideal connections, however, it
would seem there is no a priori control on the singular sets S(A;) beyond the
fact that they converge in the Hausdorff topology to some compact set, the
Hausdorff dimension of which is in principle only bounded in real codimen-
sion four (cf. [58, Prop. 3.3]). Although Uhlenbeck compactness applies on the
complement of this closed set to obtain a limiting connection Ay, this will not
result in an ideal connection in our sense unless we can pin down a more precise
structure for the singular set. One problem is the extension of the codimension
two subvarieties of the bubbling locus to all of X. A second crucial issue is the
behaviour of the sets S(4;). In particular, since the lower dimensional strata
S(As) associated to an ideal connection should be precisely the codimension
at least three subvariety given by the singularities of a reflexive sheaf, we wish
first of all to rule out the possibility that the S(A;) accumulate along a set of
strictly larger Hausdorff dimension.

Subsequential convergence of the S(A;) in the cycle space is implied by a
uniform bound on the degrees (or volumes) of the holomorphic subvarieties
given by the irreducible components of the S(A4;) in each dimension. The
problem that appears at this point is that it is by no means obvious that the
set ]\//THYM(E,h,a g) of ideal connections, or indeed even the set of limits of
smooth, irreducible, HYM connections satisfies this property. This is where
we are forced to use the projectivity assumption on X. Thinking of points of
]\/ZTHYM(E, h,ay) as a set of pairs (£,C) the above property for S(A) = sing(€)
would follow from the statement that the family of all polystable reflexive
sheaves &£ arising as the sheaf component of an ideal connection is bounded.
Here we may rely on fundamental results of [31] controlling the Hilbert poly-
nomials of such a family of sheaves; namely, only finitely many Hilbert poly-
nomials appear as we range over a bounded family. This fact, together with
the sheaf theoretic description of the singular sets, is enough to give a uni-
form degree bound for sequences in ]/\IHYM(E, h,ay). Therefore the question
is reduced to whether or not the sheaves £ form a bounded family. This is
answered affirmatively, using [42, Main Theorem| (see Lemma 3.16).

Applying the compactness results of Uhlenbeck and Tian on the complement
of |CL | U S, we obtain sequential compactness for the space Muyw (E,h,ay)
(see Theorem 3.17). A crucial aspect of this result, also essential for the al-
gebraic arguments of Section 5, is the fact that the limiting set S’ is actually
contained in |Co| U S(As), where Cs is a cycle obtained from C., and the
cycle produced by bubbling of the connections. Interestingly, the proof of this
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fact relies on d-methods and relatively recent estimates of Chakrabarti-Shaw
[9].

With these results we may proceed to define the compactification
Muywm(E, h,ay) to be the set of Uhlenbeck limits in ]\/ZHYM (E, h,ay) of smooth,
irreducible HYM connections. A diagonalisation argument shows that this
space is in fact closed, or in other words any limit of a sequence of ideal con-
nections in Muym(E, h,ay) again arises as an Uhlenbeck limit of connections
in My (E,h,ay). From the definition of convergence emerges a natural to-
pology on My (E,h,ay), and hence also for Myyn(FE, b, ay), resulting in the
following theorem.

Theorem 1.1 (GAUGE THEORETIC COMPACTIFICATION). Myynm(E, h,ay) is
a sequentially compact Hausdorff space containing My (E, h,ay) as a dense
open subspace.

We should point out here that after the proof of Theorem 1.2 below we will
conclude that Myyy(FE, h,ay) is actually compact, and not just sequentially
S0.

1.3. A complex structure on the HYM compactification. It is nat-
ural to ask how much structure the topological space Muyy(E, h,ay) inherits
from the projective manifold X. As mentioned in the first paragraph, the
Donaldson-Uhlenbeck-Yau Theorem gives a bijection

D MS(Evj) — M:IYM(Evhan) :

In fact, much more is true: the space M*(FE, J) has the structure of a possibly
nonreduced complex analytic space, obtained for example by analytification
from the scheme structure of the Gieseker-Maruyama moduli space,? while
My (E, hyay) has a natural real-analytic space structure. With respect to
these, the map ® is real-analytic, and may hence be used to transfer the
complex structure from M?*(E,J) to My (E, h,ay) (see [24], [39], [44], and
especially [40] for this point of view). The question then arises as to what
relationship the algebraic compactifications MGM(E, J) and M"(E, J) might
have to Muym(FE, h,ay), and whether or not the gauge theoretic compactific-
ation Muyw(E, h,ay) also has the structure of a complex or even (projective)
algebraic space.

In the case of projective surfaces, these two questions have been answered by
Jun Li in [38] (see also [19]). In this case, a complex space closely connected

2This complex structure coincides with the one induced by the moduli space of simple
holomorpic bundles and also with the one given by the moduli space of simple holomorphic
structures ([34, Chapter VII| and [44]).
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with M"(E,J) turns out to be homeomorphic to the Uhlenbeck-Donaldson
compactification (see Remark 4.16 for the details), and Li realizes this homeo-
morphism via an algebraic map M (E,J)— M"(E,J). We also note that
in this context Morgan [45] constructed a continuous map from MS*(E, J) to
Muym(E, h,ay) (see also [7] for a generalisation to non-Kéhlerian surfaces).

This brings us to the second main result of the paper, which provides a
generalisation of Jun Li’s theorem to higher dimensions.

Theorem 1.2 (COMPLEX STRUCTURE). The space Myym(E,h,ay) can be
endowed with the the structure of a reduced complex analytic space such that the
natural map My (E, hyap)®™ < Myym(E, h,ay) is holomorphic and embeds
My (E hyap)®™ as a Zariski open and dense subset. There are moreover
natural surjective holomorphic maps

F76M wn ATH -
M (E,j) — M (E,j)—}MHYM<E,h,CLJ> s

where the first map s birational, and the second map is finite and extends the
map

U M3 (E, T —— My (E, hyay)™™
to the respective compactifications.

Once the complex structure on Myy\(E, h,ay) has been constructed, the
fact that MM(E,j ) is projective, and hence algebraic, implies by standard
arguments that Muym(F, h,ay) is actually likewise algebraic (see the end of
Section 5).

Corollary 1.3 (ALGEBRAICITY OF COMPLEX STRUCTURE). The complex
space Muym(E, h,ay) constructed in Theorem 1.2 is the analytification of an
algebraic space, which we also denote by Myy\(E, h,ay), such that

_  _
M“(E7 j) —_— MHYM(E7h7aJ)

is a morphism of algebraic spaces which embeds M*(E, J)*™ ¢ M"(E,J) as
a Zariski open subset into Muyn(E, h,ay).

1.4. The sheaf-theory-to-gauge-theory comparison map. Let us give
a rough idea of the proof of Theorem 1.2, which can be found in Section
5. Broadly speaking, we follow the strategy of Li in the case of surfaces.
However, as we shall see, the relationship of Myym(E, h,ay) to M"(E, J) is
less straightforward if dim X > 3. We begin with a comparison map

o: M (E,J) — ]/\ZHYM(Ea h,az),
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defined by sending [£] — ((Gr&)VY,C¢), where £ is a slope semistable sheaf
E, Gr& is a torsion free sheaf associated to a Jordan-Holder filtration of &,
(Gr&)VY is its sheaf theoretic double dual, and Cg is the support cycle of the
torsion sheaf (Gr&)VY/Gr&. That this map is well defined is a consequence
of the geometry of M**(E,J) (see Section 2.8). In fact, as a direct result of
Propositions 4.5 and 4.7 in Section 4, we will see that the image of this map
actually lies in Muym(FE, h,ay) (see Lemma 4.12).

The first point is that ® is continuous. We prove this by showing that it
respects limits in the respective spaces. The existence of subsequential limits in
Muym(E, h,ay) is guaranteed by Theorem 1.1. We first prove the continuity
for degenerations of the form & — &, where the &; are slope stable and
locally free and & is slope semistable. The result follows from continuity
on sequences of this type, together with a diagonalisation argument. Since
a point in Myuym(FE, h,ay) is a pair (£,C), the proof reduces to two natural
continuity-type statements; one for the limiting reflexive sheaf, and one for the
holomorphic cycle.

In the sheaf component, the key point is that in the projective setting any
Uhlenbeck limit £ of a sequence of smooth, irreducible, HYM connections can
be identified with the double dual of a polystable quotient H — goo — 0 in
Quot(H, c¢(E)) (see Section 4.2). The continuity essentially follows by applying
this result to the HYM connections in the complex gauge orbit of the &;.
Here we follow the argument of [38], with some important modifications. The
idea, which is reminiscent of methods used in [15, 45, 13, 53, 7|, is to find a
subsequential limit of an L2-orthonormal basis of sections of & twisted by a
high power of the polarisation. The associated maps egk) cH(k) — &i(k) give
rise to a subsheaf g’oo C Es of full rank. On the other hand, one can take a
limit of the sequence in Quot(#, ¢(E)), and we show that . coincides with
this limit.

For continuity in the cycle component, our proof is rather different to that
of [38], and we adapt instead an argument of [54]. The main part of the proof
is to show the equality of the multiplicity of an irreducible component of the
support cycle of the quotient (Gré&y)"Y/ Gr s with the multiplicity defined
by the limit of the Yang-Mills energy densities for A; (see Proposition 4.9). We
accomplish this by means of a slicing argument from [54] together with a slight
modification of the Bott-Chern formula proven in that reference. The delicate
point here is that in order to isolate the irreducible component in question,
we must work on a modification of X by a sequence of blowups that achieves
certain useful properties. The argument in [54] is applicable to the support
cycle of the quotient of the associated graded of a holomorphic vector bundle
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and its double dual (in that case this double dual arises as an Uhlenbeck limit).
The main trick is then to notice that by virtue of the preceding paragraph,
the Uhlenbeck limit £, is the double dual of a quotient of H, and so the
cycle in question is the one associated to a kind of graded object to which the
singular Bott-Chern argument applies. With this in hand, the proof proceeds
in a manner similar to that of [54] (see Section 4.3).

1.5. The induced equivalence relation. The geometric description of the
points of the space M"*(E) given in [30] (see also Section 2.8) implies that
the map @ is in fact finite-to-one. A major difference to the case of surfaces is
that in general the fibres may potentially consist of more than one point. We
define a finite equivalence relation on M“(E ,J) by considering two points to
be equivalent precisely when they lie in the same fibre. Once the continuity of
® has been established, the quotient of M“(E, J) by this equivalence relation
is then homeomorphic to Mgynm(E, h,ay). In order to endow the quotient with
a complex structure, we need to know that our equivalence relation has suf-
ficiently nice properties so that the complex structure on M"(E, J) descends
to the quotient.

Fortunately, there is a criterion due to H. Cartan for when the quotient of a
complex space is itself complex; namely, that points can be separated by local
holomorphic functions that collapse the relation. We show that this indeed
holds for the relation on M"(E, J) defined above by a more detailed study of
sections of the line bundle .Z,_; used to define M**(E). The sheaf theoretic
moduli space was defined using all equivariant sections of .%,_1, which give
a globally defined map to projective space, and whose image is by definition
M*Fs(E,J) . It is possible that we thereby separate too many sheaves and
so obtain a space that is larger than Myym(E, h,as). We rectify this by
considering instead only those sections which are "lifted" (in a certain precise
sense) from certain well chosen complete intersection curves inside of a fixed
complete intersection surface. The associated linear systems W give rise to
locally defined morphisms v : Us — P(W*) with Us ¢ M"(E,J) open.
Taking products of these maps for finitely many choices of surfaces, we obtain
maps defined on certain open neighbourhoods of a given point of M" (E,J)
that identify precisely the fibres of ®.

The chief difficulty in implementing this strategy is verifying first of all that
the morphisms so obtained are actually constant on the fibres of ® and secondly
that by restricting to sections arising from these fixed linear subsystems, we
continue to separate sheaves not lying in the same fibre of ®. The first point is
established by showing that the image of a sheaf under the map v is determ-
ined by the image under the corresponding (global) map on the corresponding
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moduli space on the surface S of the restriction of its associated ideal connec-
tion to S (see Proposition 5.25). Here we appeal to Jun Li’s result mentioned
above, that on a surface the algebraic moduli space is the same as the space
of ideal connections. The collapsing then follows, since if two sheaves give the
same ideal connection in MHYM(E ,h,ay), their restrictions to the surface are
still equal in the moduli space on S. The second point is verified by showing
that any ideal connection is completely determined by its restriction to finitely
many such complete intersection surfaces S (see Lemma 5.27).

1.6. Open questions and further directions. The proof of Theorem 1.2
outlined above leaves unanswered several important questions. First, one
would like to know whether or not the strong form of Li’s theorem holds in
higher dimensions; that is, whether or not Myynm(FE, b, ay) is a scheme or even
projective. In contrast to the surface case this does not follow immediately
from the method of proof, since ® is not bijective. There is no good general
theory for deciding whether the quotient of a scheme by a finite equivalence
relation is again a scheme, even when the quotient is an algebraic space (see
[35] for a thorough discussion).

Second, it would be interesting to find examples where the finite-to-one prop-
erty described here actually occurs. A related question is whether the gauge
theoretic compactification can be realized as the completion of
M (B, hyay) for an appropriate metric. In [18], Donaldson proves this for
the moduli space of anti-self-dual equations on a compact four manifold, but
generalising the result to higher dimensions requires more information about
the structure of a neighbourhood of an ideal HYM connection. Note that there
has been recent progress in this direction (cf. [64, 46, 10, 11, 12]).

Finally, we remark that, via the use of boundedness results, projectivity of
X is essential to the construction of the compactification Muyy(E, h,ay) and
its complex structure that is presented here. In principle, one would like to
define a gauge theoretic compactification in various other scenarios along the
lines of the programme in |21], including HYM connections on nonprojective
Kahler manifolds, where the tools used in this paper are not available. This
seems to require at the very least some kind of analytic control on the higher
codimension singular sets S(A4;).

1.7. Organisation of the paper and conventions. In Section 2 we give ba-
sic background about the moduli spaces, coherent sheaves, the Quot scheme,
and the compactifications using algebraic geometry. The whole of Section 3 is
devoted to the proof of Theorem 1.1; namely, the construction of
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Muywm(E, h,ay) and the proof of compactness. In Section 4 we prove continu-
ity of ®. In Section 5 we analyse the fibres of ® in detail and prove Theorem
1.2. For more details, see the table of contents below.

If not explicitly stated otherwise, X will always denote a smooth projective
variety over the complex numbers C. For the purposes of a clear notation,
C® bundles will be denoted with straight characters E, etc., whereas coherent
sheaves will be denoted in script, e.g. £ — X. We shall confuse the notation of
a holomorphic vector bundle with its sheaf of germs of holomorphic sections.
When the distinction becomes necessary, we will generally use F for elements
of Quot schemes, and £ for a holomorphic bundle associated to a O-operator
on E giving an HYM connection, or to an Uhlenbeck limit of these, or more
generally to the reflexive sheaf arising from an ideal connection (see Sections
2 and 3). We use mathscript letters, e.g. .%, to denote families of sheaves over
a parameter space. If £ — X is a holomorphic line bundle, we will denote by
|£| the associated linear system. If Ox(1) is the very ample line bundle on
X C PV and S is a subvariety of X, we will denote the restriction of Ox (1)
to S by Og(1). Analytic subsets are also called holomorphic subvarieties;
in particular, the latter are not assumed to be irreducible. Dimensions and
codimensions dim and codim are always over the complex numbers C unless
otherwise indicated.
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2. HYM CONNECTIONS, REFLEXIVE SHEAVES, AND THEIR MODULI

In this preliminary section we fix basic notation and provide background
material. We give precise definitions of the moduli spaces discussed in the
Introduction. We collect the necessary lemmas on compact analytic cycles on
(projective) Kéahler manifolds. Finally, we formulate a general construction
used to produce line bundles on base spaces of flat families, and we go on to
define the two algebraic compactifications referred to previously.

2.1. Moduli spaces. Let X C PV be as in the Introduction. Throughout
this section and for the rest of the paper, (E,h) — X will be a C* complex
vector bundle of rank r with hermitian metric h. Recall that a O-operator
op : X, E) — Q%X E) is integrable if Op A g = 0. In this case, the
Newlander-Nirenberg theorem guarantees the existence of local frames anni-
hilated by 0, and Og therefore defines a holomorphic structure on E. Con-
versely, every holomorphic structure on F defines a unique 0-operator via the
Leibniz formula: dg(f -s) = df ® s, for holomorphic sections s and functions
f. We sometimes specify this relationship by & = (E, 0g).

In the presence of the metric h, a 0-operator defines a unique Chern connec-
tion A = (O, h) that is compatible with O in the sense that 04 := (d4)"! =
Op, and A is unitary, that is,

d(s1,s2)n = (das1,s2)n + (s1,das2)p

for any local smooth sections s1, so of E. We shall say that a unitary connection
A is integrable if 04 is an integrable 0-operator.

Let det E = J and deth = hj for a hermitian line bundle J — X. We
suppose J carries an integrable J-operator 0; with Chern connection a; =
(07,hy), and we denote the associated holomorphic bundle by J := (J,dy).
As stated in the Introduction, we will always work with the space Ao (E, dy)
of integrable J-operators on E which induce the fixed operator d; on J.

For the purposes of this paper, it will be convenient to renormalise the
restriction of the Fubini-Study Kahler form on PV to give a Kihler metric w
on X with vol(X,w) = 27. Let Ox(1) be the restriction of the hyperplane line
on PV to X. We will denote the underlying C* line bundle of Ox (1) by L, it’s
0-operator by 0z, and by hz, the hermitian metric on L whose Chern connection
ar, = (O, hr) has curvature equal to —27i\ - w. Here, ¢1(Ox (1)) = A - w, for
some constant A > 0. We will mostly omit w from the notation, but we note
here that all of the constructions depend on the Kéahler class in an interesting
and important manner.

Let A(E, h,ay) denote the infinite dimensional space of h-unitary connec-
tions on F inducing the connection a; on J. This is an affine space modelled
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on QY(X,gg), where gp denotes the bundle of traceless skew-hermitian en-
domorphisms of E. For A € A(E,h,ay), the curvature Fy = dg ANdag €
02(X, gg). The space of integrable connections will be denoted A (E, h,ay) C
A(E,h,ay). Then A € AYY(E, h,ay) if and only if Fy4 is of type (1,1), and
the Chern connection construction yields the identification A (E,h,a;) ~
Anot(E,07). .

Choose local holomorphic coordinates {z'} on X and write

w=1+v-1 Zgﬁdzi AdE

Given A € AY(E,h), we have an expression [y = > Fij dzt AdE. TIf A
is the adjoint of the Lefschetz operator defined by wedgmg Wlth w, then the
hermitian endomorphism

V—IAF, = Zg”F e Q%(X,V—-1gg) ,

is called the Hermitian-Einstein tensor (abbreviated HE tensor). Note that A
is characterized by the property that

(AQ)w" =n(Q AW 1) . (2.1)

for any (1,1) form .
The integrable connections important for this paper are those for which the
HE tensor is a constant multiple of the identity.

Definition 2.1. A Hermitian- Yang-Mills (or HYM) connection is an integ-
rable, unitary connection A € AY(E, h,ay) satisfying

V—IAFy = p-1Ig , (2.2)
for some p € R. The subspace of HYM-connections will be denoted:
Auaym(E, h,ay) € AYY(E hyay) .
The group of unitary gauge transformations is defined by
G(E,h) = {g € Q"(X,EndE) | g¢* =1g, (detg)(z) =1, Yz € X} .
Then G(E, h) acts on AYL(E, h,ay) (on the right) by conjugation:
dgay =9 'odaog,

and this induces an action on the curvature given by Fy(4) = g ltoF40g. In
particular, the subspaces

iy (B, hyay) C Auym(E, h,ay) C AMN(E, h,ay)

of (irreducible) Hermitian-Yang-Mills connections are preserved by G(E, h).
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Definition 2.2. The moduli spaces of HYM connections and irreducible HYM
connections connections on E are the sets

Muym(E, h,a5) = Aaym(E, h,ay)/G(E, h) ,
My (E hyay) = Afym (B hyag)/G(E, h) , respectively.
Note that by taking the trace of both sides of (2.2), integrating over X, and

using (2.1) and the normalisation of the volume, one sees that the constant u
must be given explicitly by

p= VO?&)M(E) =u(E),

where the degree, deg(E), and slope, u(E), are defined by

wnt deg(F)
(n—1)! HE) = rank £

deg(F) := /Xcl(E)/\ (2.3)

respectively. For a torsion free coherent sheaf &€ — X of rank r, we have a
line bundle det £ = (A"E)VY. Setting ¢1(€) = c1(det £), the definitions of the
degree and slope thus make sense for any torsion free sheaf.

Definition 2.3. A torsion free coherent sheaf & — X is w-slope stable (resp.
semistable) if any coherent subsheaf S C £ with 0 < rankS < rank & satisfies
w(S) < u(€) (resp. <). A torsion free sheaf is called polystable if it is a direct
sum of stable sheaves of the same slope.

As indicated, the notion of w-slope stability in Definition 2.3 depends on
the cohomology class [w] of the polarization as soon as dim X > 2. In this
paper, however, the class [w] will be fixed throughout, and we shall therefore
refer to w-(semi)slope stability simply as slope (semi)stability, or more often,
as - (semi)stability.

The group G(E, h) has a natural complexification:

GY(E)={g €EndE | (detg)(z)=1, Ve e X} .

Then G®(E) acts on the space of holomorphic structures Ao (E,0;) on E
by 9(0r) =g !
holomorphic vector bundles if and only if they are related by a complex gauge
transformation. Therefore, the subspaces

0 0g o g. Two holomorphic structures give rise to isomorphic

A3 (E,05) C AP (E,05) C Aj2y(E,05) C Apat(E, )

of stable, polystable, and semistable holomorphic structures on E are preserved
by the action of GE(E).
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Definition 2.4. The moduli space M*(E,J) of stable holomorphic structures
on F is defined as:

M*(E,J) = Ajq(E,05)/G°(E) .

Remark 2.5. In order to lighten the notation if no confusion is likely to arise,
for the rest of the paper we shall most often drop (E,h,ay), d; and J from
the notation. So for example:

MHYM = MHYM(E,h7aJ) ; M:IYM = M;YM(E,h,aJ) , MS = ]\48(E17 j) .

2.2. The Donaldson-Uhlenbeck-Yau theorem. Viewed as an equation for
the hermitian metric h on a fixed holomorphic bundle &, eq. (2.2) is a quasi-
linear second order elliptic PDE. It is therefore nontrivial to determine when
solutions exist. Famously, the obstruction is related to stability.

Theorem 2.6 (DONALDSON [17], UHLENBECK-YAU [62]). Fiz A € AbL.
There exists a HYM connection (resp. irreducible HYM connection) in the G©
orbit of A if and only if € = (E,04) € Ape is polystable (resp. stable).

This key result implies a corresponding statement at the level of moduli
spaces. Namely, there exists a natural bijection

~

O M — My - (2.4)

Furthermore, M* is a Hausdorff complex analytic space (possibly nonreduced),
and My has the structure of a real analytic space, such that this map
restricts to a real analytic isomorphism ([34, Chapter VII|, [44, Prop. 4.2],
[24], and [40, Thm. 4.1.1]).

2.3. The Hilbert polynomial and GM-semistability. Recall that L — X
denotes the underlying complex line bundle of Ox (1) and that ¢;(L) = A - w.
For a complex vector bundle £ — X we set

ri(m) = /X ch(E ® L™)td(X) . (2.5)

Then 7g(m) is a polynomial of degree n in m. The first two terms will be
important:

rank F/
2

Te(m) = m"(2r\" rank(E)) +m" A" (deg E + deg TX) (2.6)

+O(m"?)
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The definition (2.5) and expansion (2.6) extend to coherent sheaves £, and by
the Hirzebruch-Riemann-Roch Theorem and Kodaira Vanishing, for all suffi-
ciently large natural numbers m the following holds:

(X, E(m)) = xe(m) := x(E(m)) = /Xch(5(m))td(X) :

We refer to xg(m) as the Hilbert polynomial of £. The Hilbert polynomial is
clearly topological: for any holomorphic structure & = (E,dg) on E we have
xe(m) = 7p(m).

An alternative notion of stability that will play an important role in the sub-
sequent discussion is due to Gieseker and Maruyama. Let the reduced Hilbert
polynomial be defined by

x(€(m))
rank &
Then we say £ is GM-stable (resp. GM-semistable) if for any subsheaf S C &
with 0 < rank S <rank & we have ps(m)<pg(m) (resp. (<)) for m > 0.
The following relationship between GM- and slope stability follows immedi-
ately from (2.6):

pe(m) ==

pu-stable => GM-stable => GM-semistable => p-semistable .

2.4. Jordan-Holder filtrations. If £ is torsion free and p-semistable, then
it has a Seshadri filtration (also called a Jordan-Hélder filtration). This is a
filtration by coherent subsheaves

0= Ccé&E Cc--Cc&E1CcéE=E, (2.7)

so that the successive quotients Q; = &;/&;—1 are torsion free and slope stable.
Moreover, u(Q;) = u(€), i = 1,...,£. We will write Gr€ = @, Q; for the
graded object associated to the above filtration.

Such a filtration (and even its associated graded Gr &) is not uniquely de-
termined by £ and w (see [7] for examples). On the other hand, we will see
below that one can extract from it certain natural algebraic-geometric data
that is unique.

By analogy with the discussion for p-semistability, a GM-semistable sheaf
£ has a Jordan-Holder filtration by subsheaves whose successive quotients are
torsion free GM-stable with reduced Hilbert polynomial equal to that of &£.
Such a filtration is not unique, but the associated graded gr £ is unique. Given
two GM-semistable sheaves £ and &, we say they are s-equivalent if gr&; =
er 52.
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Notice that since a GM-semistable sheaf is also u-semistable, such a sheaf
admits two types of Jordan-Holder filtrations and graded objects, which in
general will differ.

2.5. Cycle spaces, singular sets, and support cycles.

2.5.1. The cycle space. Write €,(X) for the set of all analytic p-cycles C =
>;niZ; on X, where the irreducible subvarieties Z; C X all have dimension p
and n; € N. Let €(X) = Uy_(%6,(X). This is a complex space called the cycle
space. We define the degree of a cycle C € €,(X) by

wp
deg(C) := nl/ —,
g(C) Z L

where the integral is performed over the nonsingular locus of Z;. In other
words, the degree is the weighted sum of the volumes of the Z; with respect
to the Kéhler metric w. We will write |C| = U;Z; for the support of C, and
[C] = 3=, ni[Z;] for the cohomology class in H*"~P)(X, Q) defined by C. When
we occasionally allow negative integers n; in the definition such objects will be
called generalised cycles. The following fact will be important later.

Theorem 2.7 (cf. [6, 4]). A subset .¥ C €(X) is relatively compact if and
only if there is K such that deg(C) < K for allC € <.

2.5.2. Singular sets. For any coherent analytic sheaf & — X, define the set of
singular points to be

sing(£) = {x € X | € is not locally free at z}.

In general, sing(€) is an analytic subvariety of codimension at least 1. If £
is torsion free it is of codimension at least 2, and if & is reflexive it is of
codimenison at least 3. Another description of this set is given by

sing(€) = U supp (5xti(€, Ox)),
i>0

(see [48, Ch. 2, Sect. 1|). There is a unique torsion filtration (see [33, Def.
1.1.4)):

To(€) cTi(€) c---CTal€) =€,
where d = dim(supp(€)), and 7;(€) is the maximal subsheaf of £ fulfilling
dim supp(7;(€)) < i. By construction, the support of Q;(F) = T;(€)/Ti-1(€)
is a pure codimension ¢ subvariety if it is nonzero. Notice that if £ is not a
torsion sheaf, then d = n, and 7,_1(€) C &£ is the torsion subsheaf.

Now suppose & is torsion free, so that we have an injection £ < £VV. Since

EVV is reflexive, it has homological dimension strictly less than n — 1, and
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therefore Ext'(EVY,0x) = 0 for i > n — 1 (see [34, Prop. V.4.14 (b)] and [48,
Ch. 2, Lemma 1.1.1]). Hence,

n—2

sing (£VY) = U supp (Exti(é’vv,(’)x)) . (2.8)

i=1
We define the codimension k singular set of € to be

n—2

sing,,_1,(€) := supp (Qnr(€"V/€)) U | supp (Qn-—k(Ext' (€YY, 0x))) .
i=1
This set is exactly the union of all the irreducible components of sing(&) of
codimension k. Notice also that
n—2
sing,,_(EVY) = U supp(Qn_r(Ext'(EVY, Ox))) . (2.9)
i=1
From (2.8) and (2.9) we therefore obtain the following third description of the
set sing(€) when & is torsion free:

n n—2

sing(€) = (J | supp(Qn-1(€¥V/€)) Usupp(Q,-(Ext' (€YY, 0x))
k=2 1=1

which by rearranging the terms can be seen to be equal to supp(£YY/E) U
sing(EVY).

2.5.3. Support cycles. Consider a general torsion sheaf 7 — X such that
supp(7) has codimension p, and write Z; for the irreducible components of
codimension p. We will write Z for the ideal sheaf of Z = supp(7) with the
induced reduced structure. Then, there is some power ZV so that ZVT = 0;
this leads to the following filtration of 7 :

0=I"Tc...cT"'TcI*TCc...CcITCT.

We will write
N-1

grr(T) == @IkT/IkHT
k=0
for the associated graded of this filtration. Notice that Z annihilates gr,(7T),
so the latter is an Oz-module, whose first summand 7 /Z7 is precisely the
restriction 7z. Regarding the restriction grz(7)|z, as a sheaf of Oz,-modules,
we note that the fibre dimension

dim(grz(7)z,(2)) = dim((grz(T)|z,)=/m:((gr2(T)lz,):)) (2.10)
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is constant on a dense open subset of Z;. We call this natural number the
rank. We may now associate to each Z; the multiplicity

m] = rank(grz(T)|z,)

Thus, associated to the sheaf T is the effective analytic (algebraic) cycle

= m] - Zj € G p(X), (2.11)
J

which we call the support cycle of T.
To a semistable sheaf £, we may associate a canonical element C¢ € 6;,—2(X)
as follows. Consider the torsion sheaf

Te := (Gr &)Y/ Gré .

Since Gr € is torsion free, sing(Gr (£)) has codimension at least 2, and admits
the decomposition

sing(Gr &) = supp((Gr&)¥Y/ Gr &) Using((Gr&)VY) .

In particular, supp ((Gr&)¥V/Gr€) has codimension at least 2 as well. We
may therefore define the support cycle of £ by

Cg = CTg S (gn_g(X) . (2.12)

Remark 2.8. The pair ((Gr&)VY,C¢) is uniquely determined by £ and the
polarisation defining semistability (see |7, Appendix]).

Asin [54] (see also the latest preprint version), we define the multiplicities of

&
J

cients of C¢. In [30, Rem. 5.3] the multiplicities are defined differently. Namely,
let S be a general complete intersection surface intersecting ng transversally

€ to be the positive integers ms = rank(grs(7¢)) }ZE ) that appear as the coeffi-

in a finite number of smooth points {z1,--- , zx}, and set

n?(S, zi) = E(’)s,zi (Tels)z

where ¢ denotes the length of a module. Since we will rely on results from
both [54] and [30] that were proven using these two definitions, we point out
the following simple lemma.

Lemma 2.9. For general S as above, mé = =n; (S, z). In particular, n; (8, )

is independent of z; and S.

J

Proof. We begin with the observation that, since the ideal Z that cuts out
the support of 7¢ annihilates gry(7¢), then if ¢ is the natural inclusion of
the support in X, we have gr7(7e) = 1w.(¢* gr7(7g)). In other words, for a
sufficiently small open set U containing z; € Zj, grz(7) may be expressed



COMPACTIFICATIONS OF THE MODULI SPACE OF HYM CONNECTIONS 21

as an Ox-module as T ®@c Og,, for a C-vector space T of dimension mf .

Furthermore, T' = € T}, where T}, is the vector space corresponding to each
summand of grz(7g). We consider the exact sequence

0 — T ®c Zunz, — T ®c Oy —>ng(7-g)‘U —0.

By our assumptions, tensoring with Og we get an exact sequence of Og-
modules:

0 —T®cI,;, — T ®c Ovns — grz(Te) ®o, Ovns — 0.

The length of the torsion quotient on the right hand side (the dimension of its
fibre over z;) is by definition Lo, (gr7(7¢)|s)z- The relevant fibre over z; is
clearly isomorphic so 7', so this number is equal to dim T'.

On the other hand, considering the exact sequences

0— "' Ty— I" v = Th ® Oz,00 — 0,

and again using the assumptions on Z; and S, we have TO’F?X (Oz,,05) =0,
and so tensoring by Og we obtain

0= I T lpns— T T ons = T ® O, = 0 .

Using additivity of the length in exact sequences, we obtain
N-1
i (S, z) = Lo, (Tels)z = > dim T = dimT = m§ . O
k=0
We will repeatedly use the following result from [54] (see also the newest
preprint version) which is certainly also well-known in the algebraic geometry
literature. It relates the support cycle defined above to the first nonzero part
of the Chern character of 7.

Lemma 2.10. Let T be a torsion sheaf with codim(supp(T)) = p. Then
chi(T) = 0 for k < p, and ch,(T) coincides with the Poincaré dual in H*(X, Q)
of the homology class of the cycle Cy defined in (2.11).

2.5.4. Generalised cycles. For inductive arguments, the following more general
notion of associated cycle is often useful.

Definition 2.11. Let £ — X be coherent such that its torsion part Tors(E)
has support in codimension > 2. We define the (generalised) codimension 2
cycle of € as

C(&) = Crer(g—ev) = Ceoker(E—EVV) -
We further set, v(€) := (EVY,—C(£)). If € torsion free, we set Qg := EVV/E
and we put Qg := Qg /T (Qs¢), where T(Qg) , where T(Qr) = Tn_3(QF) is the
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maximal subsheaf of Qr of dimension less than or equal to n — 3; cf. [33, Def.
1.1.4]. Notice that since Qg has support in codimension at least 2, @g is pure
of codimension 2 or vanishes. In this case C(£) = —Co, = —Cs,- Moreover,
we will write [y(&)] for the class of v(€) under the natural equivalence relation
taking isomorphism classes in the first component and equality of cycles in the
second component.

Remark 2.12. Note that if £ is polystable, then £ = Gr&, Qg is equal
to the torsion sheaf 7¢ previously defined, and C(£) = —Cg so that (&) =
(E7,Cq,) = (€™,Cay) = (€™, Ce).

The following three results gather properties of codimension 2 cycles.

Lemma 2.13. If0 — & — -+ — &, — 0 is an exact sequence of coherent
sheaves on X with supports of codimension > 2, then Zj(—l)jC(é’j) =0.

Proof. This is easily checked by cutting with general complete intersection
surfaces S C X and using the fact that the multiplicities of C(€;) are equal to
the lengths of the skyscraper sheaves &£jls. O

Lemma 2.14. Let o : &1 — &9 be a morphism between coherent sheaves on X
inducing an isomorphism o¥Y : £V 5 EYY between the double duals. Then

C(&1) =C(&) + C(ker o) — C(coker a) .

Proof. The idea is to reduce the situation to an application of Lemma 2.13
on several exact sequences of coherent sheaves of codimension at least 2. By
decomposing the sequence

0—kera— & — & — cokera — 0

into short exact sequences one first reduces the question to the cases where
ker a = 0 or coker a = 0. One then compares these short exact sequences with
the morphisms & — £Y and & — &Y. a0

The next basic result will be needed in Sections 4.2 and 4.3; see |7, Ap-
pendix| and [12, Cor. 2.23| for very similar results.

Proposition 2.15. Let £ be a torsion free sheaf such that EVV is polystable,
and let T = EVV/E. Then & is p-semistable. Moreover, if Gr € is the associated
graded to any Jordan-Holder filtration of £, then (Gr&)VY =2 €YY and Ce = Cr.

Proof. Since £V is polystable it is in particular p-semistable. Suppose F C &
is a proper subsheaf with u(F) > u(€). Then F is also a subsheaf of £V with
wu(F) > p(EVY), since € and €YY coincide in codimension one and hence have
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the same slope. This violates semistability of £V, and so £ is u-semistable,
proving the first claim.

Recall the definition of the Jordan-Holder filtration (2.7). We claim that
taking the saturations &: of the & inside YV gives a Jordan-Holder filtration
for EVV. First of all, Q; = & /gi—l is torsion free by construction. Moreover,
there is an isomorphism

(@)Y = (Q)YY = (&:/&1)"Y, (2.13)
since these sheaves are isomorphic away from supp(7 ), which has codimension
greater than or equal to two. In fact, notice that since a saturated subsheaf
of a reflexive sheaf is reflexive, we actually have & = £V, by normality. The
stability of @Z then follows since @; is stable by definition, and a sheaf is stable
if and only if its double dual is, see [48, Chap. II, Lemma 1.2.4]. Therefore &
defines a Jordan-Holder filtration.

It follows from (2.13) that (Gr&)Y = @;(Q;)"V. The right hand side of
this isomorphism is the double dual of the associated graded object for the
Jordan-Holder filtration for £YV by & = EYY. Since this sheaf is uniquely
associated to £V by Remark 2.8, and £VV is polystable with possibly different
Jordan-Holder filtration whose successive quotients are the direct summands
in the decomposition of £V, we obtain the isomorphism (Gr&)"" = VY.

In order to prove the claim regarding cycles, we start by observing that
(E/E)VY 2 EVVEYY as EVV/EYY is a direct summand of Gr(£)YY and hence

reflexive. Therefore, we obtain the following diagram with exact rows:

0 & & 5/51 ——0
Y gvv (E/E)Y —=0

Notice that « is injective, as £/&; is torsion free. An application of the snake
lemma yields an exact sequence

0—&V/EL—EVIE = (E)E)VY/(E)E) — 0.
Lemma 2.13 therefore implies that C(€) = C(&1)+C(E/&1). Observe that £/&;

is again torsion free with polystable double dual, so that Remark 2.12 allows
us to conclude by induction. O

2.5.5. Some boundedness results. The following will be used later on.

Proposition 2.16. Let S be a set of semistable sheaves £ that is bounded in
the sense of [31]. Then the set of all possible Seshadri graduations Gr& for
€ €S is also bounded.
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Proof. Let r be the maximal rank of the sheaves appearing in S. Let £ any
sheaf in S. Then the length ¢ of any Seshadri filtration (2.7) of € is bounded by
r. We have Gr & = @le& /&i—1, and it is enough to show that the isomorphism
classes of all quotients &;/&;_ arising from such filtrations form a bounded set.
If £ is such that £ = 1, we have Gr& = &;/&) = £, and the statement is clear.

Consider now the subset of S consisting of those £ with £ > 1. Then for such
sheaves &, the isomorphism classes of quotients & /&1 = £/E—1 belong to
a bounded set by Grothendieck’s lemma, [33, Lemma 1.7.9], since their slope
equals to p(€) and is therefore bounded. The sheaves £_1 may now be viewed
as kernels of the projections & — &;/&r—1 so their isomorphism classes form
a bounded set &’. We continue by applying the above procedure to the set S’
and conclude by descending induction on r. (|

In the next section we will also require a boundedness result for the codi-
mension k singular sets of a bounded set of polystable reflexive sheaves. We
first need the following elementary proposition.

Proposition 2.17. Let S be a set of polystable reflexive sheaves & that is
bounded in the sense of [31]. Then for each k and each i, the set

{Qn—k(“:xti (5, OX))}SES

s also bounded.

Proof. Since S is bounded, by [31, p. 251|, we know that the sets of sheaves
{Ext'(E,Ox)}ees, are bounded. This means that for any i, j, k, the associated
sets {T;(Ext'(€,0x))}ses, and therefore also {Q,_(Ext'(E,0x))}ses, are
bounded. O

Corollary 2.18. In the setup of Proposition 2.17, the set {degsing, 1 (£)}ecs,
is finite for each k, where we regard sing,,_,.(E) as an element of €,—r(X) by
assigning the weight 1 to each of its irreducible components. In particular,
the number of irreducible components of the sets sing,,_,.(E) is bounded. As a
result, the set {sing, (E)}ecs is relatively compact in €p—1(X).

Proof. By (2.9), we have
n—2 ‘
sing,, (&) = U supp(Qn—r(Ext' (€, O0x))) ,
i=1
and by the preceding proposition the family of sheaves appearing on the right
hand side is bounded. By [31, Thm. 2.1], this implies in particular that for
each i the set of Hilbert polynomials {xo, , (esti(e,05)) () }ees, is finite. The
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(n — k)-th coefficients of these polynomials are precisely
wn—k
(n—Fk)!’
and these are therefore finite in number. On the other hand,
chy(Qn-k(Ext'(€,0x)) = PD[Cq, , (exti(z.0x))]

are the (Poincaré duals of) the support cycles of these torsion sheaves (see

/ (D k(Ext(E,0x)) A
X

Lemma 2.10). Therefore, the coefficients are given by the degrees of the cycles
Co, ,(e2ti(£,0x)), and so there are only finitely many such degrees. Since the
sum of these cycles is exactly the cycle associated to sing,, (&), except with
possibly larger multiplicities, the set of degrees deg(sing,,_,(€)) is also finite.
The second statement follows directly from Theorem 2.7. 0

2.6. The Quot scheme, natural subschemes, and convergence. The
starting point for forming moduli spaces of sheaves is that the set of slope (or
GM-) semistable sheaves with fixed Chern classes ¢;(F) is a bounded family
(see for example [42]). In practice this means that there is a natural number
mgo >> 0, such that for any m > mg and any such sheaf &, H(X,E(m)) = 0
for i > 0, and £(m) is globally generated.

Write V = C™E(™) and set

H=V®O0x(—m) . (2.14)

If we choose an isomorphism H%(X,&(m)) = V with m chosen as above, then
we have a surjection H — & — 0. Notice that the map we obtain depends on
our choice of isomorphism. Hence, we see that to any slope or GM-semistable
sheaf with Chern classes ¢;(E) we can associate a point in the Quot scheme
Quot(H, 7r), which is defined as the set of equivalence classes of quotients
gs : H — & — 0, where &€ — X is a coherent sheaf with Hilbert polynomial
equal to 7g. Quotients ¢; and ¢o are equivalent if kerq; = kergs. This is
equivalent to the existence of a commutative diagram

where ¢ is an isomorphism.

Observe that there is an action GL(V') ~ Quot(#H, 7), namely, the map g-q¢ :
H — £ — 0 is given by composing g¢ with g. This action amounts to the fact
that there is an ambiguity due to the choice of isomorphism H°(X,&(m)) =V
(i.e. a choice of basis for H(X,&(m))). Since C* acts trivially (rescaling the
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basis vectors by the same constant results in the same kernel), it will suffice to
consider the action of SL(V).

By the construction in [31], Quot(H, 7g) is a projective scheme. It is fur-
thermore a fine moduli space, so in particular there is a universal quotient sheaf
qy : I — U — 0, where S is the pullback of H via the projection map, and
U — X xQuot(H, ) is a flat family so that % |x (4.} = €, and gz | x x{ge} =
qe. There are subspaces Quot(H, (c1,"++ , Cmin(rn))) C Quot(H, 7g) consisting
of those quotients with fixed Chern classes (cq, - - - >Cmin(r,n))' Since the Chern
classes of a flat family (in particular those of %) are locally constant, we have
a decomposition:

Quot(’H, TE) = H QUOt(Ha (Clv T 7cmin(r,n))) )

where the union is over all tuples of Chern classes whose associated Hilbert
polynomial is 7. We will write

QuOt(H7 C(E)) = QuOt(Ha (CI(E)v *** 5 Cmin(r,n) (E>) :

Let R"ss (resp. R®*) C Quot(H,c(E)) denote the subscheme of quotients
q: H — & satistying:
(1) & is torsion free;
(2) det& ~ J;
(3) & is p-semistable (resp. GM-semistable);
(4) g induces an isomorphism V == HY(X, &(my)).
The spaces R**S and R are preserved by the action of SL(V'), and there is
an inclusion RO — RHsS,
In Section 3 we will need a result concerning the meaning of convergence of a
sequence in the space Quot(H, 7g) in the analytic topology. For the following,
fix a hermitian structure on .

Lemma 2.19. Let q; : H — & — 0, ¢: H — £ — 0 be points in Quot(H, 7).
suppose each &; is locally free with underlying C*°-bundle smoothly isomorphic
to E. Let w; denote the orthogonal projections to ker q;, and w the orthogonal
projection to ker g on the open set X\ sing € where £ is locally free. If ¢; — q
in the analytic topology of Quot(H, ), then

(1) m — m smoothly on X\ sing &, and

(2) on X\singé&, the underlying C*°-bundle of £ is smoothly isomorphic

to .

Proof. Recall from [31] that Quot(H, 7g) admits an embedding into a Grass-
mannian as follows. By choosing k > 0 we may assume

H'(X,kerq ® Ox(k)) = {0}
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for all ¢ € Quot(#, 7). Hence, ¢ defines a point P, € Gr(r, N), where N =
dim W, where W := H(X,H(k)), and »r = N — 7(k). By choosing hermitian
structures, we may regard P, as the element of End W given by orthogonal
projection to K, := H°(X,kerq ® Ox(k)). Applying this to the situation
in the statement of the lemma, convergence ¢; — ¢ in the analytic topology
implies smooth convergence F,, — F, in End W. This gives a sequence of
smooth bundle morphisms W ® Ox — H (k) gotten from the composition

P,
W®Ox — s We0x —s Hk),

whose images are precisely ker ¢; ® Ox (k). Since the bundle morphisms con-
verge smoothly, items (1) and (2) clearly follow. O

2.7. Flat families and line bundles over Quot schemes. The line bundles
in question come from the following general construction (see [33, Section 8.1]
for more details). Let S be a scheme over C. Given an S-flat family of coherent
sheaves & — X x S, the determinant of cohomology Ag : K(X) — Pic(S) is
defined by

A (u) := det ((ps)(px (v) ® &)). (2.15)
Here, K(X) = Ko(X) = K°(X) is the Grothendieck group of holomorphic
vector bundles (and of coherent sheaves) on X, px : X x S — X and pg :
X x S — S are the projections, and (pg); : K°(X x S) — K°(S) is defined on
a class [F] represented by a sheaf .# as

dim X
(ps)([F]) = Y (1)'[R'(ps)«Z] € K°(S),

i=0
and is then extended to K°(X) by linearity. Moreover, in our situation, it can
be shown that (pg)1(p% (v) ® &) € Ko(S), so that applying the determinant in
(2.15) makes sense; see the discussion preceding [33, Cor. 2.1.11| for details.
Therefore, we may construct line bundles on the parameter space S by specify-
ing classes in K (X). One natural way to do this is to consider classes arising
from complete intersections as follows; cf. [30, Section 3.2].

Let H C X C PN be a hyperplane section and consider the class [Og] €
K(X). We fix a class ¢ € K(X)pum = K(X)/ ~, where u ~ v iff the
difference u — v lies in the kernel of the quadratic form induced by the Euler
characteristic x, i.e., u — v € ker((a,b) — x(a-b)). By the Riemann-Roch
Theorem, the numerical behaviour of such a class is hence determined by its
associated rank 7 and its Chern classes ¢; € H*(X,Z). As we consider sheaves
with fixed determinant, we furthermore fix a line bundle J € Pic(X) such
that ¢1(J) = c1. Now, for any integer 1 <i <n —1, let X; € |H| and write
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X0 = X and X = ﬂﬁlei with 1 <[ <n-—1. We will assume that X0 g
smooth for each I. Finally, fix a basepoint € X1 whose structure sheaf
O, defines a class [O,] in each K(X®).

Then, for each 1 <1 < n — 1 we define a class in K(X") by

Un—1-1(clx, [Oulxw) == —r([On]| x)" " +x(clxo ([Or] x)" 0] .

nNgn—1—Iin

"." and powers "e are taken with respect to the

Here, multiplication
ring structure of K (X®), which is derived from the operation of taking tensor
product of locally free sheaves.

Supposing furthermore that the family &)y, = X O % S is flat over S
for each [, by using the previous construction, we can produce a sequence of
line bundles

Lo n-1-1 =N (un—1-1(clxw, [Onrlxn)) -

The main case of interest in this article is [ = 0, r = rank(E), ¢; = ¢;(E),
and & = %, the universal sheaf on Quot(H, 7). By the previous discussion
we obtain a line bundle .2 ,_1 — Quot(#, 7g) which we abbreviate by .Z,_1.
We will discuss properties of this line bundle in the following subsection.

2.8. Compactifications by sheaves. By Theorem 2.6, the moduli space
My is identified with the complex analytic space M?®. By a result of
Miyajima [44], the latter is isomorphic as a complex analytic space to both
M, and M}, @ which are moduli spaces corepresenting the appropriate mod-
uli functors (namely those associating to a complex space or C-scheme the set
of isomorphism classes of flat families of slope stable holomorphic or algeb-
raic bundles which are smoothly isomorphic to E over this space).® We will
sometimes identify all three spaces and use the notation M?.

Since M7, 4 corepresents a subfunctor of the moduli functor for the Gieseker
moduli space MY of GM-semistable sheaves, and forms a Zariski open sub-
space, M 95 compactifies M*, and therefore also M}:,;. Below we briefly recall
the construction in [30] of another compactification of My, based instead on
slope semistable sheaves. Both of these compactifications arise as the image
of a scheme in projective space under sections of line bundles produced by the
construction of the previous section.

Denote by Zgss € Pic(Quot(H, 7)) the bundle Ay (Ox (1)) associated to
the universal sheaf % — X x Quot(H,c(F)). This turns out to be ample for
[ sufficiently large, and it posseses an SL(V) linearisation. The reason for the
subscript Gss is that the subspace R®* C Quot(H, c¢(E)), is exactly the set of

3In the case of Mg, we really refer to its analytification.



COMPACTIFICATIONS OF THE MODULI SPACE OF HYM CONNECTIONS 29

GIT semistable points of % on the Zariski closure R with respect to this
linearisation. The Gieseker moduli space is the GIT quotient

Gss .__ DGss
MO =R/, SL(V).

By definition this is the Proj of the invariant section ring of Zqs:

MGss — PI'Oj (@kHO <W7 Dg/péss)SL(V) > .

A point in MS* is represented by a GM-semistable quotient qg : H — &
with det & ~ J. Moreover GIT gives a way to understand the geometry of
MG, More precisely, two quotients qg, ,qe, € RS represent the same point of
M if and only if they are s-equivalent. In particular, the space M}, g = M?
embeds as a Zariski open set.

Definition 2.20. The Gieseker compactification MM of M is defined as the

Zariski closure M3 C MG,

There is no linearised ample line bundle for which the GIT semistable points
coincide with the slope semistable sheaves. Nevertheless, several authors have
considered the line bundle

L1 =My (un—1(c,[Om])) € Pic(Quot(H, c(E))) .

When dim X = 2, the restriction to R** was studied by Le Potier and Li
([37, 38|, and see also [33]) and it was found to be equivariantly semiample.

For technical reasons explained in |30, Sect. 1.2], the situation is more subtle
in higher dimensions. One is more or less forced to consider the weak norm-
alisation (RF)“". A weakly normal complex space Z is one for which every
locally defined continuous function on Z which is holomorphic on restriction
to the smooth points Z,¢; of Z is in fact holomorphic. Every complex space
Z has a weak normalisation Z*" which is a reduced weakly normal complex
space homeomorphic to Z (see |30, Sect. 2.3] for a summary of the relevant
theory and for references). Henceforth, we write Z = (R***)"".

We consider pull back U — X x Z of the universal sheaf % — X x R™ via
the map X' x Z — X x R*, and the line bundle A (un—1(c, [Og])) € Pic(2),
which we continue to denote by .Z,_;. In [30, Thm. 3.6] it is shown that
this line bundle is equivariantly semiample with respect to the SL(V')-action
on Z induced by the natural SL(V)-action on Quot(#,c(E)). Furthermore,
the equivariant section ring of ., is finitely generated in degree 1 (perhaps
after passing to a sufficiently large power, see [30, Prop. 4.3|). In other words,
a sufficiently large power of .%,_1 gives a map from Z to a projective space,
and furthermore the images of these maps stabilise. Formally imitating the
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GIT construction we may define the space M*** to be the image, that is:
M"** = Proj <@kH0(Z,$f_1)SL(V)) . (2.16)

We will write 7 : Z — M*# for the natural surjective map. We note that by
a recent result |7, Appendix A.4|, the map 7 is in fact a quotient map.

The space M** is by construction a projective scheme. Furthermore, it
comes with a distinguished ample line bundle Opsuss(1) and enjoys a subtle
universal property (for details, see [30, Sect. 4]). In particular, any flat family
& — X x S of slope semistable sheaves over a weakly normal complex space
S yields a classifying morphism g : S — MH® so that ¥5(Opuss(1)) =
e (un_1(c, [Of]))®N, for some power N. Again, when we refer to M in
the sequel we will always mean its analytification, which is a weakly normal
complex space by [30, Thm. 4.7].

A point in M#* is represented by a quotient sheaf g¢ : H — & — 0 with
det £ ~ J. Just as for the Gieseker moduli space, one seeks a characterisation
of the points of this space in terms of properties of £. Clearly, quotients
corresponding to isomorphic sheaves £ and & give rise to the same point
in M** since this means that g¢, and gg, belong to the same SL(V') orbit,
and therefore they cannot be separated by any SL(V') invariant section of the
line bundle .%,,—1. Hence, given a p-semistable sheaf £ with the appropriate
Chern classes we may speak unambiguously of the point 7(ge) = [E] € MH
corresponding to £. Conversely, every point of M** is represented by such a
sheaf £. In fact, [30, Thm. 5.10] shows that the weak normalisation of M7, =
szlg
This motivates the following definition.

=~ M$ embeds into M#s* as a Zariski open set, similar to the case of M,

Definition 2.21. Let M" denote the Zariski closure of (M*)®™ ¢ M**. We
will call this the slope compactification.

It is important to clarify when two sheaves correspond to the same point
in M*#s. We have the following result from [38] (dim X = 2) and [30] (higher
dimensions).

Proposition 2.22. If {¢, : H — &} € Z , i = 1,2 satisfy [E1] = [Ea2] € MH,
then Gr(&)VY = Gr(&)YY and Cs, = Cg,, where q; : H — &, i = 1,2. If

dim X = 2, the converse also holds.

The proposition means that for dim X = 2, the points of M*** are in bijec-
tion with isomorphism classes of pairs (£, C) consisting of a polystable reflexive
sheaf and a O-cycle satisfying cha(€) = cha(E) + [C]. When dim X > 3, one
needs more information to characterise the geometry of M*#*. Suppose &;
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and & with gg,, ge, € Quot(H, c(E)) satisfy Gr(&)VY = Gr(&2)YY := £ and
Ce, = Cg, = C. Consider the Quot scheme of torsion quotients Quot(&, 7e—7xg).
Then we have the following Quot-to-Chow map:

X : Quot(&, 7 — Tp) — Cp—2(X) ,

given by taking a quotient 7 to its cycle Cy. The conditions imposed on &;
and & imply that the sheaves Tg, and Tg, are in Quot(€, 7¢ — 75) and lie in
the same fibre of y.

Proposition 2.23 (30, Prop. 5.8]). If T¢, and Tg, lie in the same connected
component of x1(C), then [1] = [£2]. In particular, for any q¢ € Quot(H, c(E))
giving a point [E] of M"®, there are at most finitely many different points
(&Y, of M¥> with (Gr&)VY = (Gr&)YY and Ce = Ce,.

Remark 2.24. The phenomenon of finite to oneness described above is a
genuine one. There are indeed examples where M**® is a finite set of cardinality
larger than one, and yet all representatives have graded objects with the same
double dual and cycle (see [29, Example 3.3]). In principle, it is also possible
for two sheaves to represent the same point even when their associated torsion
sheaves lie in different components of x~(C). The reason that this issue doesn’t
arise in the case dim X = 2 is that in this case the fibres x~(C) are connected
[38], and even irreducible [22].

We finish this section by summarising the relationship between M%* and
M*#ss. Writing Z9 for the space (RS*)%", the pullback of U to X x ZG
under the natural map 29 — Z induces a classifying map 29 — M#s* which
factors through a map (M)W — M#sS as (ME)¥ is a good quotient of
(ZGss)wn (see |30, Sect. 5.3]). Composing with the natural map (MGM)W‘ —
(M©ss)¥n induced by the inclusion, we obtain a map

= (M — (2.17)
On the level of points, this map can be expressed more explicitly in terms
of sheaf theory as follows. The space (MY*)“" is in bijection with the set
{er& | g¢ € Z°}. Being GM-polystable, the sheaf gr € is p-semistable (with
the same Chern classes as £). Therefore, writing the quotient map as 7g :
ZOss 5 (M%) we have Z(mg(qe)) = [gr &].

Together with [30, Thm. 5.10|, this shows that = is an isomorphism when
restricted to (M*)*" C (MGM)“’”. Since Z is in particular continuous, this
means it is also surjective, and hence in fact birational, when restricted to the
respective compactifications.
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3. THE GAUGE THEORETIC COMPACTIFICATION

As we have seen, the moduli spaces M?® and Mjjy,, are not compact in
general, even after adjoining strictly semistable bundles and reducible connec-
tions, respectively. Two compactifications of M?, MM and M", are obtained
algebro-geometrically by adding torsion free sheaves, and this was described
briefly in Section 2.8. In this section, we describe a third, gauge theoretic com-
pactification associated to Mijy,. In the case dim X = 2, this construction is
due to Donaldson [16, 20] based on work of Uhlenbeck [60] and also Sedlacek
[50]. A version of limiting Yang-Mills connections on higher dimensional man-
ifolds appeared in Nakajima [47]. Tian [57] and Tian-Yang [58| generalise the
method and obtain key results on the structure of the singular sets. Since the
construction will play a central role in this paper, and since some of the details
presented here differ from those in the references above, we will provide a com-
plete description of the compactification and some of its important features
over the next few subsections.

3.1. Uhlenbeck limits and admissible connections. We begin with a key
definition (cf. [3] and [57, Sect. 2.3]).

Definition 3.1. Let (E,h) be a hermitian vector bundle on a Kéhler man-
ifold X, not necessarily compact, with n = dim X. Then by an admissible
connection we mean a pair (A, S) where

(1) S C X is a closed subset of locally finite Hausdorff (2n — 4)-measure;

(2) A is a smooth integrable unitary connection on E | x\s°

3) Jx\s |Fa|? dvolx < +00;

(4) supx\g [AFa| < +o00.
An admissible connection is called admissible HYM if there is a constant u
such that /—1AF4 = p-Ton X\S.

We will sometimes abuse terminology by saying "A is an admissible connec-

tion on (E,h)", when S is understood.

Remark 3.2. The preceding definition is closely related to, but should not
be confused with, the notion of an admissible Hermitian- Yang-Mills metric in
a given polystable reflexive sheaf £ on X as in [3]. We will elaborate on the
relationship between the two notions in Sections 3.3 and 4.1 below.

The fundamental weak compactness result is the following.
Theorem 3.3 (Uhlenbeck, [59]). In the setup of Definition 3.1, let (A;,S;)

be a sequence of admissible HYM connections with a uniform bound on the
L?-norm of curvature. Assume there is a closed set S’ of finite Hausdorff
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n — 4)-measure suc at S; — on compact sets in the Hausdorff sense.
2 4 h that S S’ t sets in the Hausd
Then there is

(1) a subsequence (still denoted A;),

(2) a closed subset Soo C X of locally finite (2n — 4)-Hausdorff measure
containing S.,

(3) @ HYM connection A, on a hermitian bundle Es — X\ S0, and

(4) local isometries Ex ~ E on compact subsets of X\ Seo

such that with respect to the local isometries, and modulo unitary gauge equi-
valence, Aj — As in Cpo(X\Sx)-

We call the limiting connection Ay, an Uhlenbeck limit. The set So,, which
we call the (analytic) singular set, is the union of S’ with the set

ﬂ {a: € X\ | liminf042n/
1—00

n
2&)
Fa 2 > 20}
) n.
ogp>0>0

v:J'(Cl3

where o and €( are universal constants depending only on the geometry of X.

For the definition of a gauge theoretic compactification, it will be important
that the Uhlenbeck limits of smooth HYM connections be admissible HYM
connections in the sense of Definition 3.1. This will be true if F is isometric
to E on the complement of the singular set. We formulate the precise statement
as follows.

Proposition 3.4. Let (E,h) — X be a hermitian vector bundle on a com-
pact Kdhler manifold. Then any Uhlenbeck limit of a sequence of smooth HY M
connections on (E,h) is an admissible HYM connection. Moreover, the cor-
responding singular set is a holomorphic subvariety of codimension at least 2.

The remainder of this section is devoted to the description of the proof of
Proposition 3.4, which follows from work of Tian, Bando-Siu, and Tao-Tian.
In the following, let

S(Ax) == {x € X

1ima4—2”/B ( )|FAOO|2 % £0 } (3.1)

al0

This is a closed set with zero (2n — 4)-dimensional Hausdorff measure.

Theorem 3.5 (Tian, [57, Thm. 4.3.3]). Let A; be a sequence of smooth integ-
rable HYM connections (i.e. S; = ) converging in the sense of Theorem 3.3
to an Uhlenbeck limit (Aso, Soc). Then Soo admits a decomposition into closed
sets Soo = Sp U goo, where Sy is a pure codimension 2 holomorphic subvariety,
and Ss has zero (2n — 4)-dimensional Hausdorff measure.
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The set Sy appearing in the above theorem is called the blow-up locus of the
sequence A;. We will also need two results on "removable" singularities for
admissible connections.

Theorem 3.6 (Bando-Siu, [3|). Let £ be a hermitian holomorphic vector
bundle on X\S, where S has finite Hausdorff (2n — 4)-measure, and suppose
the Chern connection of £ is admissible. Then & extends uniquely as a reflexive
sheafSA on X. If the Chern cAonnection of € is HYM, the hermitian structure

extends smoothly to X\ sing(€), the Chern connection is HYM there, and & is
polystable.

Theorem 3.7 (Tao-Tian, [56]). Let (A,S) be an admissible connection on
the trivial bundle over a ball By,(z) C X. Suppose x ¢ S(A), where S(A)
is defined in (3.1). Then for 0 < o < oo sufficiently small there is a unitary
gauge transformation g on By (x)\S, such that g(A) extends to a smooth HYM
connection on By ().

We note the following important fact, which is implicit in [57, Thm. 4.3.3].

Lemma 3.8. In Theorem 3.5, we may take Seo = S(Aw); i.e., the singular
set decomposes into closed sets as follows: Seo = Sp U S(Axo).

Proof. Let u; = |Fa, |2 w" /n! be the Yang-Mills energy densities. Then we may
assume without loss of generality that we have a convergence of finite Radon
measures:

g wW"
i = = |Fa_] F—i—y, (3.2)

where the measure v is absolutely continuous with respect to H?;_{ where
Hg:o_‘l(A) = H?"4(S,, N A) is the (2n — 4)-dimensional Hausdorff measure
on Soo. We will write v(z) = ©(x) - 7—[?;_4, the density function © being

O() = lim o™ u(Bo(x)) ,

where the limit exists due to the monotonicity formula (see [57, Lemma 3.1.4
(a)]). Then = € S if and only if ©(x) # 0 (see [57, p. 222]). On the other
hand, if = € Sy, then for o > 0 sufficiently small, H?"~*(Ss N B, (x)) = 0, so
V(Seo N By(x)) =0. If z & S(Ax), then by (3.1) and (3.2) we must then also
have ©(x) = 0. The result follows. O

Let £« be the reflexive sheaf on X extending the holomorphic bundle
(FEso, 04 ), which comes from Theorem 3.6. The following result is a restate-
ment of [58, Thm. 1.4]. For completeness and for the convenience of the reader,
we provide a condensed proof of this result.
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Lemma 3.9. The equality S(As) = sing€ holds. In particular, Se s a
holomorphic subvariety.

Proof. Fix x € Soo. If v ¢ S(As), then there is rg > 0 such that SooN By, (z) C
Sp. As Sp is analytic by Theorem 3.5, So N By, () has a neighbourhood that
admits a deformation retraction to Soo N By, (x). It follows (cf. [63, Ch. 7])
that F Byy (2)
admissible connection on a trivial bundle on B, (x). We may therefore apply
Theorem 3.7 to conclude that the holomorphic bundle (E,d4.. ) extends to a
holomorphic bundle on B, (x) for some r > 0. Since the reflexive extension £y
is unique, we conclude that = ¢ sing(€). Conversely, if x ¢ sing(€), then
the Chern connection is smooth at z, and it follows that z ¢ S(Ax). O

is isometric to E‘ Bor (2)" In particular, Ay is identified with an
70

We can now give the

Proof of Proposition 3.4. By Lemma 3.9, S is a union of irreducible subvari-
eties, and so there is an exhaustion of X\Ss by compact subsets which are
deformation retracts of X\S. It follows that in the patching argument for
the construction of an Uhlenbeck limit one can find global gauges, and so the
bundle E obtained in Theorem 3.3 is isometric to (E, h) on X\ S. We refer
to [63] for further details. O

3.2. Analytic multiplicities. In this section we discuss the multiplicities
that are associated to the irreducible components of the blow-up locus. For
an admissible connection (A,S) on (E,h) — X, the result in [57, Prop. 2.3.1]
states that integration against the form

1
on X\S defines a closed (2, 2)-current on X.

Theorem 3.10 (Tian, [57, Thm. 4.3.3]). Suppose A; is a sequence of smooth
HYM connections on E, and A; has Uhlenbeck limit A with blow-up locus Sp.
Then to each irreducible codimension 2 component Z;™ C Sy, there is a positive

integer mg" such that

chy(A;) — chy(Ase) = > mg"Z5" (3.4)
J

in the sense of currents.

We define the (n — 2)-cycle associated to the sequence {A;} by C* =
>.;m"Z7", so that [C| = Sp. From (3.4) we see that chy(A) represents
che(E) + [C*™] in H*(X,Q). In this context we will also refer to the triple

(Ao, C  S(Aso)) as an Uhlenbeck limit of A;.
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To elaborate on the origin of the integer multiplicities above, we recall two
slicing lemmas from [54] which will be needed later on. We begin with the
following definition.

Definition 3.11. Let z be a smooth point of a codimension 2 subvariety Z C
X. We say that ¥ is a transverse slice to Z at z if ¥ N Z = {z} and ¥ is the
restriction of a linear subspace C? < C" to some coordinate ball centred at z
that is transverse to T, 7 at the origin.

Lemma 3.12 ([54, eq. (4.1)]). Let T be a smooth, closed (2,2) form satisfying
the equation T = myZ + dd°V, where ¥ is a (1,1)-current, smooth away from
Z, mgzZ is the current of integration over the nonsingular points of Z with
multiplicity mz, and the equation is taken in the sense of distributions. Then

for a transverse slice,
my = / T —/ d°v .
b %

The next result shows that the analytic multiplicities may also be calculated
by restricting to transverse slices.

Lemma 3.13 (|54, Lemma 4.1]). Let A; be a sequence of Hermitian-Yang-
Mills connections on a fixed hermitian vector bundle E — X, with Uhlenbeck
limit (Aoo,C®™,S(As)) and corresponding blow-up locus Sy, and let Z be an
irreducible codimension 2 subvariety of X. For a transverse slice ¥ at a generic
smooth point z € Z, we have:

1
lim / {tr(Fa, NFa,) —tr(FaNFa_)} = m?"
¥

1—00 87'(‘2

if Z = Z7" C 5", and

1
lim - / {tr(Fa, A Fa,) — tr(Fa AFa)} =0
i—o0 82 b ’ ‘

otherwise.

It will be useful to have a more explicit description of the multiplicity. First,
we will need the next result, which is an elementary computation that we omit.

Lemma 3.14. Let E — % be a bundle over a smooth 4-manifold ¥ with bound-
ary 0X. For connections A, B on E — U, U C X open, write CS(A, B) for
the Chern-Simons 3-form on U satisfying

dCS(A, B) — % tr{(Fa A Fa) — (Fg A F)} .

Then we have the following:
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(1) For Aoy, A1, As be smooth connections on E — U, there is a 2-form Q
so that on U,

CS(As, Ag) = CS(Ay, Ag) + CS(Ag, Ay) + dS.

(2) If A is a connection on E — ¥ and g is a smooth gauge transformation

defined in a neighbourhood U of 0%, then

1 _ L “1g)3) =
oz S04 = g [ (o7 a0)") = deslo) € 2.

where the right hand side is the evaluation on 0% of the pullback by g
of the Cartan 3-form generating H3(SU(r), Z).

(3) If Exo — X is a smooth vector bundle and ¢ : Elos — FEoolox 5 a
smooth isomorphism, and As, Boo are connections on Es,, then

CS(QZ)ZOAOO,Q{)ZoBoo) = CS(AomBOO)-
ox o)

In particular, for g as in (2)

CS(9(A),9(B)) = [ CS(A,B) .
ox o0x

(4) If g1,92 are gauge transformations as in (2) then

deg(g192) = deg g1 + degga . (3.5)

Returning to the situation in Lemma 3.13, let z € Z. Without loss of
generality assume z € S(As). Then by Proposition 3.4 and Theorem 3.7, Ay
locally extends to a connection on a bundle E,, that is isometric to E away
from Z. Along the slice 2 we choose local unitary frames e and e, of F and
E, respectively. Let Dg and Dg_ denote the connections on F and E,, that
make the frames e and e, parallel. We have:

1 1
/ tr(FA. A\ FA.) = — CS(A“DE)
82 Js, T 8n? oy (3.6)

1 1
— | tr(F4. AFy )= — | CS(Aw,D

Away from z € X there is a isometry ¢ : £ — Eo. By Theorem 3.3 there are
gauge transformations g; defined away from z € ¥ such that g;(A4;) — ¢} Awo.
Furthermore, since ¢} Do and Dpg are flat connections on F over a simply
connected manifold ¥\{z}, there is a gauge transformation h on ¥\{z} such
that h(¢% Dg. ) = Dg. Set h; = hg;. Now, using (3.6) and Lemma 3.14,

1/{tr(FA,/\FA.)—tI‘(FA A Fy )} :/ CS(AZ',DE)—CS<AOO,DE )
871'2 > i i (e} o o5 o
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= s CS(9i(Ai), 9i(Dg)) — CS(¢5 Aco, 9o Do)

= | CS(gi(As), 95 Asc) + CS(95Aco, 9i(DE)) — CS(95 A, #5 D)

=/, CS(gi(A;), ¢ Ace) + CS(9%. D, 9i(DE))

= [ CS(0(A0), 6 Anc) + CS(Di, hi( D)
[)))
The first term on the right hand side above vanishes as ¢ — oo, whereas by
part (2) of Lemma 3.14, deg(h;) is an integer which must stabilise to give the
multiplicity for ¢ sufficiently large.

3.3. Ideal HYM connections. Observe from Lemma 3.8 that limits A4; —
A of smooth HYM connections satisfy the following property: any removable
singularity of A lies in the codimension 2 cycle associated to { A;}. This result
motivates the next definition, which is slightly more restrictive than the one
used in [57], but well-adapted to our purposes.

Definition 3.15. An ideal HYM connection is a triple (A,C, S(A)) satisfying
the following conditions:

(1) € € G s(X):
(2) the pair (A, |C| U S(A)) is an admissible HYM connection on the her-
mitian vector bundle (E, h) — X, where S(A) is given by eq. (3.1);
(3) [cha(A)] = chy(E) + [C], in H(X, Q):
(4) A induces the connection ay on J = det E.
Moreover, we say that ideal connections (Aq,C1,S(A1)) and (Asg,Ca, S(A2))
are gauge equivalent if C; = Cq as cycles (so in particular |C1| = |C2| =: Z), and
if there is a smooth unitary gauge transformation g on X\(ZUS(A1)US(A2))
such that g(A4;) = As.

Given an ideal HYM connection (A,C, S(A)) on (E, h), by Theorem 3.6 and
Lemma 3.9 there is a polystable reflexive extension & — X of the holomorphic
bundle (E,dg) defined in the complement of Z U S(A), with S(A) = sing(&).
Conversely, let (£,C) be a pair consisting of a polystable reflexive sheaf and
a codimension 2 holomorphic cycle so that £ is smoothly isomorphic to E
on X\(Z Using(€)), where we put Z = |C|. By [3, Thm. 3], £ admits an
admissible Hermitian-Einstein metric he that is unique up to a constant. Let g
be a complex gauge transformation on X\(Z Using(€)) such that g*(he) = h.
Then a simple calculation shows (see the discussion in Section 4.1 below),
that if we write O for the holomorphic structure on E associated to &, the
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Chern connection A = (9y-(g), h) gives an admissible HYM connection (4, ZU
sing(£)) on (E,h) in the sense of Definition 3.1. By construction, the sheaf
£ is the reflexive extension associated to this admissible connection, and in
particular S(A) = sing(€). The current cha(A) defined in eq. (3.3) is closed
and represents cho(E), see the proof of |54, Prop. 3.3]. Hence, if we assume
furthermore that cha(€) = cha(E) + [C], the triple (A4,C,S(A)) is an ideal
connection.

By construction, if (A1,C;,S(A1)) and (A2, Ca, S(As2)) are gauge equivalent,
their associated holomorphic bundles are isomorphic away from the analytic
set ZUS(A1)US(Az), which has codimension > 2 in X. Hence, the respective
reflexive extensions & and & coming from Theorem 3.6 are isomorphic, and
in particular we conclude with the help of Lemma 3.9 that S(A;) = S(A2).
Conversely, if £; and £ admit admissible HYM metrics in the sense of Bando—
Siu, and if & = & and C; = Ca, then (A1,C1,S(A1)) and (Ag,Co, S(A2)) are
gauge equivalent. We may therefore regard an isomorphism class of ideal con-
nections as equivalent to an isomorphism class of pairs (£,C), where £ is a
polystable reflexive sheaf whose underlying C'*° vector bundle on the comple-
ment of |C| Using & is isomorphic to E. This is compatible with the notation
introduced in Definition 2.11. We will use this description in Section 5.

Gauge equivalence defines an equivalence relation ~ on the space of ideal
HYM connections on (E,h). We define the moduli set of ideal HYM connec-
tions on (E,h) to be

Miyst = Muym(E, b, ay) := {ideal HYM connections on (E,h)}/ ~ . (3.7)

Notice that there is a natural inclusion My, C My

In order to obtain a compactification, we will apply Theorem 3.3 to se-
quences of ideal HYM connections as well. Given any [(€,C)] € My, observe
that owing to polystability of £ the Bogomolov inequality, see for example [3,
Cor. 3|, applies to give:

Using the relations cha(€) = cha(F) + [C] and ¢1(€) = a1(E) = a1(J), we
obtain a bound

wn—2
deg(C) :Zn/Z o <C

that is independent of (£,C). This means that if [(A;, C;, S(A;))] is sequence in
My, there is a uniform bound degC; < C', and so C; converges subsequen-
tially as cycles by Theorem 2.7.
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Note that since X is compact the sets S(A;) always converge subsequentially
in the Hausdorff sense to some compact subset S’ of X. On the other hand, to
maintain the structure of an ideal connection we want the S(4;) to converge in
the union of cycle spaces Uz;g%k(X ). This is guaranteed by the next lemma,
which follows? from [42, Main Theorem| together with Corollary 2.18.

Lemma 3.16. There is a constant K with the following significance. For any
ideal HYM connection (A,C,S(A)) on (E,h) and each k = 0,1,...,n — 3,
the k-dimensional stratum of S(A) has degree less than or equal to K, when
considered as a cycle in X.

Proof. A consequence of the statement in [42] is that a set of isomorphism
classes of slope semistable reflexive sheaves of fixed rank, c1, and cp U [w]" 72,
is bounded. For sheaves £ associated to points in MHYM as above, the rank
and c; are fixed, whereas co(€) U [w]"~2 is bounded: from below by (3.8), and
from above by ca(E) U [w]" 2. The aforementioned result therefore applies to
our family of reflexive sheaves. We may then use Corollary 2.18 applied to the
sets sing(£) = U}_ssing,, 1 (£). Since these algebraic singularity sets coincide
with the analytic singularity sets S(A) by Lemma 3.9, the claim follows. [

The following is the main result of this subsection.

Theorem 3.17. Let (4;,C;, S(A;)) € ]\/4\HYM. Then there is a subsequence
(also denoted by {i}), and an ideal HYM connection (Aso,Coo, S(Aco)) such

that C; converges to a subcycle of Coo, and (up to gauge transformations) A; —
Ao in CP2 on X\(Zoo U S(Ax)) where Zoo = |Cxo|. Moreover,

loc
ChQ(AZ‘) — Cl — ChQ(AOO) — Coo (39)
in the mass norm; in particular, also in the sense of currents.

The rest of this section is devoted to the proof of Theorem 3.17. We proceed
in several steps.

Step 1. By Lemma 3.16 and Theorem 2.7, we may first extract a subsequence
(also denoted {i}), such that

(1) the Yang-Mills densities converge weakly |F,|>dvol, — s to a Radon
measure fioo;

(2) there is a cycle C, with |[CL | = ZL_ such that C; — C._ as cycles;

(3) we have Hausdorff convergence S(A;) — S, , where S/_ is a subvariety
of codimension at least 3.

4We are grateful to Carlos Simpson for suggesting that Lemma 3.16 should be a con-
sequence of Maruyama’s result.
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Step 2. We may apply Theorem 3.3 to see that the following holds: There is a
closed subset S, C X\ (Z/ US".) of locally finite Hausdorff (2n — 4)-measure,
and a smooth HYM connection A, on X\ (Z/ US’ USs), such that A; — A
up to gauge, smoothly in the local C"* topology. Moreover, by Theorem 3.5,
we may write Seo = Zso US(As), where S(Ay) is defined as in (3.1), and Zu,
is a closed pure (n — 2)-dimensional analytic subvariety of X\ (Z. U S.).

Step 3. We claim that Z,, C X\(Z) U S..) extends to X. We shall use
the Bishop-Stoll removable singularities theorem. Choose a point p € Z._,
o > 0, such that Ba,(p) C X\ (S, US(Ax)). Then for i sufficiently large, the
connections A; are smooth on B, (p)\Z; and extend to smooth connections
A; on B, (p) by Theorem 3.7. Hence, applying Theorem 3.3 we conclude that
after passing to a subsequence and up to gauge A converges to a limit A
in the local C* topology on B,(p) away from a singular set Zo U S (AOO)
that is an analytic subvariety of B,(p). Since goo and A, agree up to gauge
off a codimension 2 set, they agree up to gauge on their common domain of
definition. By our choice of p it follows that S(As)NBy(p) = 0, and ZeoNBy(p)
and Zs, N B, (p ) agree on the complement of Z7, N By(p). In particular, the
intersection cl(Z)NZ. N By (p) has codimension at least 3. Since S, US(Ax)
also has codimension at least 3, the same is true for cl(Zso) N (2, U S.). Tt
now follows from [6, Lemma 9], that Z, extends as a holomorphic (n — 2)-
dimensional subvariety Z7 on X.

Step 4. Set Zo, = Z. U Z! as pure (n — 2)-dimensional subvarieties. We
have local C* convergence A; — As, on X\ (Zoo U S(Ax) U SL). Hence, by
the same argument as in the proof of Proposition 3.4, A, is an admissible
HYM connection. To prove that we have an ideal HYM connection, we need
to show that S/, C Zo U S(Aw), and we have to assign multiplicities to the
components of Z,,. The latter part will be discussed in Step 5 below. The
former statement is a consequence of the next lemma, which is also absolutely
crucial for the argument in Section 5.

Lemma 3.18. In the situation above, SL, C S(Ax) U Zoo

Proof. Consider the reflexive sheaves £, & obtained by extending the holo-
morphic bundles (F, 04, ) and (FE, 04,), respectively. By Lemma 3.9, the loci
where the &; are not locally free are precisely the codimension at least 3 singular
sets S(A;).

Suppose that p € S, p € S(Ax) U Zs. Then we can find z; € S(A4;)
converging to p. We may also find a coordinate ball Ba,(p) whose closure lies in
the complement of S(As)UZx, and such that (£x)|p,, (p) is @ holomorphically
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trivial vector bundle. Notice that by definition of Z,, Z; N By, = () for
sufficiently large i. Let Agk) denote the polydisk of radius (4,...,8) in C*
and let ng)(O) the ball of radius ¢ in C*. We may find an annular region
U :=U(o,&;0) C Bas(p) centred about p given in coordinates by

(BOO\B(0)) x A" |

such that S, NU = 0, and hence also S(4;) N U = 0, for sufficiently large 1.
For the purposes of this proof, we choose the euclidean product metric on U,
and the standard hermitian structure on £, with respect to its trivialisation
over U, scaled by an appropriate weight as explained in [51], whose results we
will apply later on in the proof. The notation || - || will refer to the L?-norm of
bundle valued forms on U with respect to these metrics, and * will denote the
associated hermitian conjugate.

Change notation slightly, and let éAi denote the d-operator on End F in-
ducing the holomorphic structure £, ® &;. Writing éAi = 04, + a; for some
End E-valued (0, 1)-form a;, we have a; — 0 smoothly on U. We claim that
for ¢ sufficiently large there are smooth endomorphisms u; of E and a constant
C such that

(1) 8Aiui = —Qj;;

(2) [Juill < Cllasll-
In order to prove this we verify the basic estimate; namely, that there exists a
constant C' such that

1ol < C (194,01l + 119, #ll) (3.10)
for all ¢, a smooth (0, 1)-form with values in End E satisfying the 9-Neumann
boundary conditions (cf. [32, 23]). We first note that (3.10) is valid if A4; is
replaced by A:

ol < C (I19awll + 194, 4ll) - (3.11)
Indeed, since the bundle and metrics are trivialized, the problem reduces to
the scalar J-estimate, and hence (3.11) follows using standard results such as
[9, Lemma 2.1] from [52, Thm. 2.2| in the case dim X = 3 and [9, Thm. 1.1,
Cor. 6.3] in higher dimensions®. On the other hand, there is some numerical
constant ¢y independent of A; such that

104,81l > 11048l — cosup |aill 6] ,
105,81 = 194 &Il — cosup |ai[| ]| -

Since sup |a;| is arbitrarily small on U for sufficiently large ¢, the estimate
(3.11) for Ay can be parlayed into one for A;. This proves (3.10).

5The authors thank Mei-Chi Shaw for pointing us towards these references.
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Given (3.10), it follows as in [51, Lemma 3.2| that we can find wu; satisfying
(1) and (2). Let ¢; = Idg + u;. Then by (1),

5,41.(,01' = 5Al-IdE + gAiuz’ = (5,400 + ai)IdE —a; =0.

We thus have produced a holomorphic map ¢; : £ — & on U. Using interior
elliptic estimates for 9, along with (2), it follows that for sufficiently large
i, sup|u;| is arbitrarily small on a subannular region, so that in particular
det p; # 0 on U’ := U(c/2,¢e';0/2), say, for all sufficiently large i. Since £
is holomorphically trivial and since &; is reflexive, we may use a realisation of
&; on the interior U := B3(0) x A2 of U of the form stated in [34, Chap.
V, Prop. 4.13] as well as a classical Hartogs-type theorem for holomorphic
functions on annular regions to see that ¢; extends as a map of sheaves to U.

Let D; be the zero locus of det ¢; in U. Notice that x; € D;, for if not,
€ and &; would be isomorphic in a neighbourhood of x; by reflexivity, and
hence &; would be locally free at x;, thus contradicting the assumption that
x; € S(A;). Then, all the divisors D; have to intersect the annular region U’,
in particular those with index ¢ sufficiently large. This contradicts our choice
of the set U’ and completes the proof. O

Step 5. Finally, we explain how to assign multiplicities to each irreducible
component of Z, to obtain the cycle Coo. Since ZZ is the extension of A , the
irreducible components of Z/ have assigned multiplicities from Theorem 3.10,
giving a cycle C. Since we have chosen C; — C., as cycles, each component
Z C Z!, carries a multiplicity m/,. It may occur that there is additional
bubbling along Z. Let z € Z be a point such that Ba,(z) C X\S(Ax)
intersects Z, only in the smooth locus of Z, and let jj be the extended
connections from Step 3. Let © be smooth (n — 4)-form compactly supported
on B,(z). Then there is an integer m/, such that

lim (chg(Aoo) - chQ(ﬁj)) AQ=mll- / Q. (3.12)
I J By (2) ZNBs(2)

It follows that we should assign the multiplicity of the component Z to be
myz = m,, +ml, and we write C,, for the cycle whose summands are the
irreducible components of Z/_ with multiplicities defined in this way. Finally,
we are in a position to prove the following

Lemma 3.19. Define C to be the cycle C. + Cl,. Then with this definition
eq. (3.9) holds.
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Proof. Choose a smooth (2n — 4)-form 2, and fix ¢ > 0. First, we choose
rg > 0 such that

wm—Z

0< / Coo N ——— < ¢e/2.
Nig (SLUS(Ano)) (m —2)! /

Since the C; converge to a subcycle of C, for j sufficiently large it follows that

wm—2

OS/ CiN —<e¢. 3.13
Nog (S4US(Aco)) 7 (m—2)! (3:13)

Next, since S US(Ax) is a subvariety of codimension at least 3, in particular
it has zero Hausdorff (2n — 4)-measure. Hence, we may find finitely many
;i € SLoUS(Ax), i =1,...,M, and 0 < r; < ry/2, such that

Sl US(A UBrz (2;) =: Uy ; (3.14)
=1
M
ot <e 2t (3.15)

Set Uy = UM, By, (2;), and 7 = min{ry,...,7y}. Note that if y & Us, then
B, (y)NU; = (. Find finitely many y; € ﬁ;ﬂZ(’)o,j =1,...,N,and 0 < s; <,

such that
N

Us Nz, c | Bs,(y) =V .
j=1

Taking a partition of unity subordinate to the cover
{BQTi(xi)v BS]' (yj)ﬂNT((UQ U V)C)} )

it suffices to consider the cases where (2 is compactly supported in each of the
elements of the cover. From the monotonicity formula referred to previously,
there is a constant A independant of 7, such that

w™
/ |FAZ’27' < A'O’2n_4 ’
Bo () m!

for 0 < o < 0¢. It follows that there is a constant A; such that

/ chy (Az) A Q
Bs(z)

The constant ¢ only depends on the geometry of X, and so we may assume

< Aysup|Q| - ot (3.16)

without loss of generality that g < 0g. By Fatou’s lemma, (3.16) also holds
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for Aso. It follows from (3.16) that

M M
/ ChQ(AZ‘) A Q ‘ < Z / ChQ(Ai) AQ < 2271—41\1 sup ’Q‘ Z r?n—4
Us i=1 BQ’I’,L' (xz) =1

< Ajsup|Q]-e.
The same holds for A in place of A;. Since Us C N, (Sl U S(Ax)), and

using (3.13), we have for sufficiently large 1,

/ (cha(A4;) —Ci) NQ — / (cha(Aosc) — Coo) A Q‘ < 2e-sup|Q(A1+1) .
U Uz

(3.17)
Next, suppose (2 is compactly supported in Bj,(y;). For i sufficiently large
we have S(A;) C Uy, and hence S(4;) N By, (y;) = 0. As in Step 3, we have
connections A; on Bs, (y;) that converge (up to gauge) to A, smoothly on
compact subsets in the complement of Z,, N Bs,(y;). By definition of the
excess multiplicity in (3.12), we have

lim (ChQ(AOO) — ChQ(A\l) + Cz) ANQ = / Cz/)o AQ .
Y00 JBs; (y5) Bs; (y5)

Finally, on N}(ﬁQ N V)¢, the A; are smooth HYM connections and Theorem

3.10 applies directly to show that

lim (ChQ(AOO) — Chg(Az)) ANQ = / C<I>/o AQ .
1—00 NT(UQQV)C .N’T(UQHV)C

Since € was arbitrary, the lemma follows. O
3.4. Diagonalisation. The goal of this section is to prove the crucial result.

Proposition 3.20. Suppose that we have a bounded sequence of ideal HYM
connections that converges (A;,Ci, S(A;)) = (Aso,Coo, S(Aso)) as in the pre-
vious section. If each (A;,C;, S(A;)) is an Uhlenbeck limit of smooth HYM
connections on (E,h) — X, then 50 is (Aso, Coo, S(Asc))-

Proof. We have sequence of gauge transformations s; such that s;(4;) = Aso
in C;2, away from Zo, US(As). For each i, let {A; 1.} be a sequence of smooth
HYM connections and gauge transformations g; ; on X\Z; U S(A;) and Uh-
lenbeck limits g; (A; ;) — A; as k — co. By a diagonalisation argument, and
using the fact that Z.oUS(Ax) is a holomorphic subvariety, we can find a sub-
sequence k; — oo such that s;g;(Aik,) = Ao in C%. on X\ ZUS(As), where
9i = 9ik;- Applying Theorem 3.3, after passing to a further subsequence which
we continue to denote by ¢, we may assume there is an admissible connection

By on (E,h) — X and gauge transformations g; such that g;(A;x,) — B
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up to gauge in O}y, away from a singular set Zoo U S(Bwo). By Theorem 3.6,
the holomorphic bundles (E,d4_) and (E,0p, ) extend as reflexive sheaves
& and Ep_ on X. Since (Zso, S(Aso)) and (Zso, S(Bso)) have codimension
at least 2, and €4 = Ep_ on the complement, then in fact £ = 4 = €
everywhere on X. Furthermore, by uniqueness of the Bando-Siu HYM connec-
tion, Aso = Bso up to gauge, and so S(Ax) = S(Bs). By further modifying
Ji, we may assume Ay, = Boo.

It remains to consider the blow-up loci Z, and ZX) and multiplicities. Since
up to gauge, A; r, = Ao 00 X\ Zo US(Ax), it follows the blow-locus for A; g,
is contained in Z,,. This means that if Zj is an irreducible component of Zx,,
then Zj must be equal to some component Z; C Z,. For simplicity, call this
component Z.

Then to prove equality of sets we only need to know that Z., and ZOO have
the same number of irreducible components. This will follow immediately from
the fact that the cohomology classes of [Coo] and [Cso] agree (and are equal to
[cha(As)] — cha(E) = [cha(Boo)] — cha(FE)), if we show that the multiplicity
associated to Z in the cycle Co agrees with its the multiplicity in the cycle
Coo-

In other words, to prove that C, is equal to the cycle 500 associated to Zoo,
it suffices to prove that myz = myz. Let X be a generic slice to Z. Then by
Lemma 3.13,

myz = lim —=
1—00 871'2

/ <tr(FAi,k, /\FA“C_) —‘EI‘(FAO<> AFAoo)) .
Z 1 v

By the discussion following Lemma 3.14, we have my = degﬁi, where EZ =
h o g;, and h is the gauge transformation on ¥\{z} defined there. Write a; =
Aoo —Z]Z-Ai’ki and b,’ = Aoo — Si.giAi,ki so that SigiAi,ki —@Ai,ki = a; — bi. Then
by Lemma 3.14 we have

deg g; — deg(sigi) = /a CS(sigi(Aik,), Aik;) — CS(gi(Aik,), Aik,)
>

= CS(si9i(Aik,), 9i(Aik,))
ox

1

— ﬁ - tr{(ai — bz) AN Dﬁi(Ai,ki)(ai — bz)

2
+ g(ai - bi)3 + 2(ai - bi) A Fﬁi(Ai,ki)} :

Now sigi(A; ) and g;(A;,) converge smoothly on 0¥ to the same con-
nection A, so we have a;,b; — 0, and therefore the right hand side above
converges to zero. Hence, for sufficiently large 7, | deg s;g; — degg;| < 1. Since
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the degree is an integer this implies that for all such ¢ we have deg(s;¢;) = deg g;
and therefore degﬁi = deg hs;g;.

We claim that deg(hs;g;) = mz. Recall that C, breaks up into two sub-
cycles C,, and C, and so there are two cases according to whether Z is an
irreducible component of Z/ = |C_| or Z! = |C,|. In the second case the con-
nections A; bubble at the point z € Z through which the slice ¥ is taken. Since
¥ may be chosen to be away from Z/_; and the supports Z; = |C;| are contained
in a neighbourhood of Z/_ for large enough 4, then since Z; is the bubbling set
for the sequence of connection A;;, converge without bubbling to A4; on X as
k — oo. This furthermore implies that if we write E; for the topological bundle
underlying the reflexive extension &;, there are isomorphisms Ely ~ F;|y. By
the argument following Lemma 3.14, we see that deg g; calculates the bubbling
multiplicity for A; along Z for sufficiently large 7 and &, and this number is
zero by construction, so degg; = 0 and deg(hs;g;) = deg(hs;). Again by the
discussion after Lemma 3.14 | deg(hs;) = mz.

Now consider the case that Z is an irreducible component of Z. . In this case
myz = m', +m’, where m/, is the multiplicity assigned Z by the convergence
of the cycles C;, and m”, is the excess multiplicity defined in Step 5 eq. (3.12).
Notice that by Lemma 3.14 we have deg(hs;g;) = deg(hg;) + deg s;. We claim
that deg(hg;) = m/, and deg s; = m’,. The second equality follows again from
the argument after Lemma 3.14 (here we choose a single frame for the trivial
bundle on ¥, so no additional gauge transformation h is necessary). To prove
the second equality, we note that by assumption, for each i sufficiently large Z;
has an irreducible component Z;; converging to Z in the Hausdorff topology
as ¢ — 0o. Assume we have chosen Y so that it is also a transverse slice to
all Z;; through points z; for ¢ sufficiently large. Since A;; bubbles along Z;;
with Uhlenbeck limit A;, there are gauge transformations h; of E defined on
Z\{Zl} and isomorphisms (Z)Z : E’Z\{zl} — EZ’E\{Z.L} so that hz(b;kDEl = Dg
(using the same notation as in the argument following Lemma 3.14 ), and such
that deg h; calculates the associated multiplicity. Then for sufficiently large ,
deg hig; = m',. We claim that deg h; = degh for i sufficiently large. We have

degh; —degh = CS(hi¢; DE,, 95 DE..) — CS(h¢3 Dy, 05, D)
o
= CS(Dg, ¢; Di,) — CS(Dg, ¢5.DE.. )
o
+ | CS(¢;DE;s 95 DEL) -
o

Since A; = A on 0%, ¢; Dg, — ¢5 Dg. on 0% and therefore for large ¢ this
difference is zero. This implies deg(hg;) = m/,. O
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3.5. The compactification. We are now in the position to define the desired
compactification of the moduli set My -

Definition 3.21. We say that a sequence [(4;,C;, S(4;)] € ]\/ZHYM converges
t0 [(Aco, Cooy S(Aso)] in Myyy if the conclusion of Theorem 3.17 holds.

We define a topology on Myyy by giving a basis {U([A,C,S(A)])} of
open neighbourhoods of an ideal HYM connection depending on a 4-tuple
€= (e1,€2,€3,€4), € > 0. The set U([A,C, S(A)]) consists of gauge equival-
ence classes of all ideal HYM connections (A41,Cy, S(A1)) satisfying:

(1) There exists a subcycle CAl of C such that 51 and C; are within ; with
respect to the mass norm.

(2) S(A;) is contained in the ez-neighborhood of S(A) U |C| C X

(3) On the complement of a 2e9-neighbourhood of S(A) U |C| C X, there
is a gauge transformation g such that g(A;) and A are within 3 with
respect to the C'*°-topology;

(4) the currents chg(A;) —C; and chy(A) — C are within g4 with respect to
the mass norm.

Remark 3.22. By definition, a sequence [(4;,C;, S(A;)] converges to an ideal
connection [(Aso,Coos S(Axo)] in this topology if and only if it converges in the
sense of Definition 3.21. Namely a sequence converges the sense of Definition
3.21 to an ideal connection [(Aoc,Coo, S(Axo)] if and only if for every basic
open set Us([(Aso; Coo, S(Axo)]), there exists I > 0 such that [(4;,C;, S(A;)] €
U:([(Aso, Coos S(Aso)]) for all 4 > 1.

First of all, we have the following.

Theorem 3.23. The set Myyu defined in (3.7) and endowed with the topology
described above is a first countable Hausdorff space and moreover sequentially
compact.

Proof. The first statement follows directly from the definition. Compactness
follows from Theorem 3.17: Indeed, any sequence of ideal connections has a
subsequence converging to an ideal HYM connection (Aso,Coo, S(Ax)) with
respect to the topology defined above (regarding point (2) above, note that
by Lemma 3.18, the singular sets S(A;) converge in the Hausdorff sense into
(A U[Coc). 0

With this understood we make the following definition.
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Definition 3.24. The gauge theoretic compactification Myyy is the (sequen-
tial) closure M}y C Muyw, that is, the set of all Uhlenbeck limits of sequences
in My

Remark 3.25. In a first countable space the notions of closure and sequen-
tial closure coincide. Hence, in the preceding definition it does not make a
difference which closure we take.

Remark 3.26. If dim X = 2, Myyu coincides with the Donaldson-Uhlenbeck
compactification (cf. [16, ITI(iii)|] as well as the summary of the construction
provided in [38, p. 444]).

Remark 3.27. By Proposition 3.20, Myyy is sequentially closed; notice that
this fact requires an argument and is not automatic. This means precisely
that any limit [(Aeo,Coo, S(Ax))] of elements in Myyy is itself the limit of
connections in My

The main result of this section is the following.
Theorem 3.28. The space Myyw is Hausdorff and sequentially compact.

Proof. The Hausdorffness is clear, since Myyy is a subspace of a Hausdorff
space. The sequential compactness follows from the fact My is a sequentially
closed subspace of a sequentially compact space by Remark 3.27 and Theorem
3.23 above. O

Remark 3.29. The results of the next section will give a slightly different
proof of sequential compactness for Myyy. Namely, we will see that the re-
flexive sheaves associated to Uhlenbeck limits of sequences in My, are the
double duals of sheaves in a fixed Quot scheme, and therefore the boundedness
in Lemma 3.16 actually follows for this particular subset of ]\/ZHYM without
appealing to the results of [42].

4. COMPARISON OF ANALYTIC AND ALGEBRAIC MODULI SPACES

In this section we define the principal object of study in this paper: namely,
a map ® : M" — M\HYM from the closure of (M*)“" inside the slope com-
pactification M*#* to M\HYM, extending (2.4). We will give the definition in
Section 4.1. The main result of this section is that ® maps onto Myyy and
is continuous. More precisely, recall from Section 2.8 that M" is constructed
using the ring of invariant sections of some determinant line bundle on Z, the
weak normalisation of a locally closed subscheme of some Quot scheme para-
metrising slope semistable sheaves. We will study a map ¥ : Z, — ]\/4\HYM,
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defined on a certain closed subvariety Z, of Z, that descends to ®. Both Z,
and M" are (quasi-)projective and hence admit metrics. In particular, in order
to prove continuity it suffices to prove sequential continuity.

Recall from Definition 3.15 that a point of ]\/ZHYM consists of two pieces of
data: an admissible HYM connection and a holomorphic cycle. The proof
of continuity consists of showing that the respective limits coincide in both
these components. We first check on sequences in the interior of Z, (that is,
for sequences of locally free stable sheaves) that the image of ¥ and therefore
of ® lies in Myyy. Using Proposition 3.20 we will then reduce to this case.
Equality in the sheaf component will follow from the fact that any Uhlenbeck
limit of smooth HYM connections may be identified with the double dual of
a sheaf appearing as a quotient of H. This will be proven in Section 4.2. In
Section 4.3 we give a small extension of the singular Bott-Chern formula from
[54]. Using this, equality of the cycle components is proven, and the proof of
continuity is then completed in Section 4.4 using the diagonalisation argument
of Section 3.4.

4.1. Definition of the comparison between moduli spaces. Suppose first
that we have a torsion free sheaf F — X satisfying the conditions:

(1) F is p-semistable and det F ~ J;

(2) cha(F) = cha(F) in rational cohomology;

(3) there is a smooth bundle isomorphism F and so

) ) X\sing]—':E‘X\sing}—’
a C'* isomorphism

(Gr F GrF

VvV — ~
) ‘X\sing(Gr]—') - ( )‘X\sing(Gr}') - E‘X\sing(Gr}') :

We will associate to this data a gauge equivalence class of ideal HYM connec-
tions [(4,C, S(A))] as follows.

First, note that by [3, Thm. 3| there exists an admissible HE metric hx on
(Gr F)VV. By (3) we may write (Gr F)VV = Gr F = (F, 0g) on X\ sing(Gr F).
Let g be a complex gauge transformation defined on X\ sing(Gr F) such that
g(hr) = h in the sense that for any ej, ez € E,

-1

(e1,€2)ny = (g 1,9 "ea)y, -

Then a straightforward calculation regarding the curvatures of the Chern con-
nections A = (g - g, h) and (9p, hr) yields that
-1
Flgdum =9 °Fapnz©9-

In particular, since hr is HE and admissible, the pair (A, sing(Gr F)) defines
an admissible HYM connection on (£, h) in the sense of Definition 3.1.
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Second, consider the support cycle C € %,_2(X) of the torsion sheaf Tr =
(Gr F)VV/ Gr F defined in Section 2.5.3. By [57, Prop. 2.3.1], cha(A) is a closed
current which is easily seen to represent cha((Gr F)¥Y) in rational cohomology
(cf. [54, proof of Prop. 3.3]). From the exact sequence

0 —=GrF — (GtF)YW —-Tr—0

and the fact that cha(7r) = [C] (see |54, Prop. 3.1]), we conclude using as-
sumption (2) above that

[chy(A)] = cha(E) + (] (4.1)

Hence, if we define S(A) to be equal to sing((GrF)"Y), the conditions in
Definition 3.15 are satisfied.

In summary, from a sheaf F satisfying (1)-(3) above we obtained an ideal
HYM connection (A,C,S(A)) on (E,h). Different choices of g give gauge
equivalent ideal connections, and isomorphic sheaves F give rise to the same
class [(A4,C,S(A))] € Mirya.

Let R, C R"* denote the Zariski closure of the Zariski open set R, con-
sisting of locally free u-stable quotients q : H — F with det F ~ J such that
the underlying smooth bundle of F is C'*°-isomorphic to E. By an application
of Ehresmann’s Theorem to the associated family of unitary bundles, this is
a finite union of connected components of the Zariski open subset of locally
free p-stable quotients ¢ : H — F with det F ~ J. Let Z, C Z its preimage
under the weak normalisation map Z — Rfjj, which recall is a homeomorph-
ism between the underlying topological spaces. Note that the Zariski closure
of (M#)“™ defined in Definition 2.21 is equal to the image of Z, under the
classifying map 7 : Z — M*"*. By Lemma 2.19, if ¢ : H — F is in R,, then
F satisfies conditions (1)-(3) above. Hence, from the previous discussion we
have a well-defined map

U Z, — Muym, qr — [(A,C,S(A))] .

Notice that the gauge equivalence class [(A, C, S(A))] depends only on (Gr F)VV
and Cr. Consequently, by Proposition 2.22, the map ¥ descends to a map
6 : MM — MHYM satisfying

U==qor

- (4.2)

and extending (2.4) to the respective compactifications.

Remark 4.1. By construction, if F is polystable, then Remark 2.12 implies
that with the notations introduced in Definition 2.11 we have ®([F]) = [y(F)].
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4.2. Identification of the limiting sheaf. The main goal of this section is to
prove the following result, whose proof identifies an Uhlenbeck limit of smooth
HYM connections with the double dual of a certain point in Quot(H,7) (in
fact in Quot(H, c¢(E))).

Proposition 4.2. Let A; be a sequence of HYM connections on (E,h), giving
holomorphic bundles &. Then for any Uhlenbeck limit Ay, with reflexive ex-
tension Eso, there is a point oo : H — Eo — 0 in Quot(H, c(E)), such that
(Ex)VV is isomorphic to Ex

Let & = (E,04,). We realize £ (m) as a quotient by choosing a basis e; of
holomorphic sections that is orthonormal with respect to the L? metric induced
by the hermitian structure h ® h7'on &;(m). Denote the similar construction
of a choice of a basis for a further twist by:

e o™ s gi(m+ k) (4.3)
We begin with a preliminary result.

Lemma 4.3. There is a subsequence, also denoted {i}, such that for any k > 0,
(k)

the basis e; " converges smoothly away from S to a nonzero holomorphic map

elt) . O;mﬂg) — Ex(m+k) .

Moreover, if EC(,’;) C & denotes the image of eg;), twisted by Ox(—m — k),
then there is a coherent subsheaf Eoo C Eoo, such that

(1) for k sufficiently large, ek = Eno;

(2) (EOO)\/V = 8007

(3) xg_(6) = 7({), for € sufficiently large.

Proof. For k large, we denote the orthonormal basis e = { € j }T (mFk) Lot
B, denote the connection on &;(m+ k) induced by A; on &; and the connection
ar, on L. Notice that (see Section 2.1)

V—1AFp, = V—1AF4, +2n(m+ k) \w - T .

is B;-holomorphic, the Bochner formula gives

(k)

Then since e; i

fﬁw”wb=:fﬁw<>&5

1237 1,J

= V- (< Blezj 7@51}5)) + <aBZ 513)7 8B1€£k];)>)
k k
:¢?«1wdh (Op,el). 0p,e)) .

Hence,

AP = 28,(1ePP) = A(2v=Td0(1e )

2y
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= 2V 1(AFpel, ) — 2(0p,el) 2

Z?j, i?j
< 2\/—1<AFBZ.6§§-),€Z(»?>,

where we have used the identity v/—1A(8,8) = |3|? for any 8 € Q')(X,E ®
L™*+*). We therefore have

k k k
Aleff) P < Clu(E) + 2mn(m + k))|el}) P < Clefl)
for a constant C' independent of i. By a result of Morrey (cf. [27, Thm. 9.20]),
there is a uniform bound

k k
s;meﬁ»,ﬂ <c-|eMP<c,

independent of ¢ and for each j. Since the analytic singular set S has measure
zero, we may find a cover {B,(z4)}4,es such that

CZVOI(BO—(IEQ)) < % .

Write K, = X\ Uy Bo(Z4), and note that this together with the L> estimate
given above we have that

k k k k 1

e lz2x) = 116l 12(ua ooy + lleis 1zzwen) < llel lzaen + 5 -

(k) 1

so that Hem 2,y = 5
By Theorem 3.3, the A; converge smoothly outside of a holomorphic sub-
variety S to a connection A, on a bundle F, which is smoothly isometric
to (E,h), and correspondingly the connections B; converge smoothly to a
connection By, on the complement of this set. Write 5300 = 531. + B; for
B; € Q"1 (K,,End E). Then holomorphicity of the sections implies dp__ eg? =
ﬁieg?. Since f; — 0 smoothly, elliptic regularity gives C'*° estimates on egl?,

%) which is holo-

and we may extract a convergent subsequence to a limit e ;
I

morphic with respect to Bo. By the lower bound on Hez(?H 12(k,) it follows

that egz?j # 0. Repeating this argument for an exhaustion of X\S by sets K,
constructed by taking the radii of the balls B, to zero, and using the fact that
the set S is a holomorphic subvariety (and so we may take this exhaustion to
be by deformation retracts of X'\S), it follows from a diagonalisation argument
that we obtain nonzero holomorphic sections of Eo(m + k) on X\S. Since Ex
is reflexive, these extend to all of X and so we obtain for each j a nontrivial
holomorphic section e(k)j € H(Ex(m + k)).

o0,
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For each pair (j,1), apply the dominated convergence theorem to conclude

that n n
k) (k)W k) k) (W
b= [ 51 < [ 8,5

9

=00 Jx n!
so that the {eooj};(TJrk) is an L2-orthonormal subset of H?(E.(m + k)). In

other words, we have constructed the promised nonzero holomorphic map
e®) : TR g (m+ k) .

By a further diagonalisation argument, we can arrange for the convergence
along a subsequence, also denoted {i}, for all k sufficiently large. We now
check the stated properties of ec(,lé).

Let &EIS) C £ denote the coherent subsheaf

Im (O™ R £ (m o+ k) @ Ox(—m —k) .

We claim that for all k sufficiently large, &E’;) C &E’S“’
(k)

U a neighbourhood of p, a local section s of £55” on U, and a global section o
of Ox (1) that is nonvanishing at p. By definition, we may write

. Choose a point p € X,

T(m+k)

Z fle @o™, (4.4)

for some f/ € Op. Since {ei j+ )} is an L2-orthonormal basis for HY(X, &;(m
k+1)), for each i we may write

k mimiktl) k k k
1 1
Moo= S (Mol M)l (4.5)
q=1

where (-, -) is the L?inner product. By the same argument as above,

lim (ef) @ 0, ¢fg"™) — (el @0, elERY)

The right and left hand sides of (4.5) therefore converge smoothly away from

79" and therefore e( ) ;®0 lies in the image of e(k+ )

that s in (4.4) may be ertten

. This, in turn means

T(m+k+1)
i (k+1 e
o= L e
Jj=1

for some ¢/ € Oy. Since the right hand side is in S(kJrl)

by definition, the
claim follows.
By the Noetherian property of coherent subsheaves of a coherent sheaf [55,

Tag 01Y7], the chain &E’é) C 5§I§+1) C -+ C €, must stabilise for sufficiently
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large k. We set s = é’é), k> 0, and this proves part (1) of the lemma. For
part (3), notice that for £>> 0,
Xe, (0) = Xgu-m (0) = BOELT™(0) = hO(Ei(0) = 7(6) . (4.6)

From the Hirzebruch-Riemann-Roch Theorem and (2.6), we see that rank Ex
rank F = rankEs. Hence, T = &4 /Ex is a torsion sheaf, and det
det Eoo @ det T. But then (4.6) and (2.6) also imply

deg Es > deg E = deg Ene = deg En + deg(det T) .

i1l

Since the last term on the right hand side above is nonnegative, it must be that
deg(det T) = 0, and hence codim(supp(7)) > 2. Therefore, (E,)VY = EYLY.
Since £ is reflexive, (2) holds. This completes the proof of the lemma. O

Henceforth, we assume k has been chosen sufficiently large according to
Lemma 4.3, and we drop k from the notation. Since Quot(H,c(E)) is a pro-
jective scheme, in the analytic topology the sequence e; in (4.3) converges to
a limiting quotient. By definition of the equivalence of quotients, this means
there is a sequence of quotients q; : H — g’z — 0, isomorphisms ¢; : é’\l = &,
and a commutative diagram

’H*>5 —0

" 5 —0
Furthermore, there is ¢oo € Quot(H, c¢(E)) such that g; — Goo.

Lemma 4.4. There is a map Yoo : goo = € making the following diagram
commute:

7—[*>§ 0

HHE —0

Moreover, ¢ 1S an isomorphism.

Proof. Since oo is surjective, to define the map o it suffices to show that
ker goo C keres. In fact, it is enough to prove the inclusion away from a
proper subvariety. For then the image e (ker g ) would be a torsion subsheaf
of goo, and since En C Ex is torsion free, such a sheaf must vanish. Now away
from a set of codimension at least 2 we have smooth convergence: e; — e,
and T; — T (see Lemma 2.19). Hence, 0 = €; 0 T; — €4 © Mo, and the
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result follows. The map . is therefore well-defined. We claim it is in fact an
isomorphism. First, since

rankim ¢, = rank £, = rank £, = rank £, = rankime,, ,

we have rank(ker g,) = rank(keres). By the discussion above, ker goo C
ker e, and so

ke €0/ ket Goo 2 Goo(kereng) C T C Eno | (4.7)

where T C EA’OO is the torsion subsheaf. Since g’oo is torsion free, o, extends to
amap Py : & o/ T— Es. On the other hand, from (4.7) there is a well-defined
map: 17 : Eno — Eoo /T that is a generic inverse to po. Both maps 1) and @
are injective, since their kernels would be torsion sheaves, and Soo, Soo /T are
torsion free. Hence, there is an exact sequence

~ n ~ ~
00— —E /T —T —0,
for a torsion sheaf 7. It follows that,

Xz () = xg_(0) = x7(0) — x7(0)
Xz () = 7(0) = =x7(€) = x7(0) .
By Lemma 4.3 (3), the left hand side of the last equation above is nonnegative,
whereas the right hand side must be nonpositive. So x7(f) = x7(¢) = 0, and

therefore T and 7 are zero. Hence, ¢ is an isomorphism. U
Proof of Proposition 4.2. Immediate from Lemmas 4.4 and 4.3 (2). O

As a consequence of the main result above, the following proves the first
step in the continuity of ®.

Proposition 4.5. Let ¢; € Z, be a sequence whose quotients F; are locally
free and p-stable. Assume that ¢; — Goo € Zo in the analytic topology, so that
in particular the corresponding quotient Foo 1S torsion free and p-semistable.
Let A; be the corresponding sequence of HYM connections on E. Then for any
Uhlenbeck limit As, of {A;} extending to a polystable reflexive sheaf Ex, we
have Gr(Foo )Y = Exo

Proof. As in Proposition 4.2, write ¢; : H — & — 0 for the sequence in Z,
corresponding to the connections A; in the GC orbit of F;. We have &,
(goo)vv for some quotient Goo : H — Exo — 0, which is a limit of g; : H —
& — 0 with & = F;.

Note that we have proven in Lemma 4.4 above that

Eno = Enp C Ene. (4.8)
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Since £ is polystable (having an admissible Hermitian-Yang-Mills connec-
tion), and hence in particular p-semistable, this implies that SAOO is p-semistable,
cf. Proposition 2.15. Note also that because é\oo is isomorphic to £, away from
a codimension two subvariety, their determinant line bundles are equal, and in
particular the determinant line bundle of goo is the same as that of é’\z = Fi.
Therefore, €Aoo defines a point in M#*% and hence by construction also in M.

By construction, we have [§;] = [F;] in M". By continuity of the map
7 Z — MP, we therefore have [Ex] = [Foo] in M". It hence follows from
Proposition 2.22 that Gr(Fa)¥Y = Gr(€x)YY. On the other hand, the fact
that £ is polystable together with (4.8) allows to apply Proposition 2.15 to

~

obtain an isomorphism Gr(€)"" = €, which completes the proof. O

4.3. Identification of the limiting cycle. Having identified the reflexive
extension of an Uhlenbeck limit of a sequence of smooth HYM connections, we
now wish to determine the singular set as well. We will use the following sin-
gular version of the usual Bott-Chern formula, which is a slight generalisation
of [54, Thm. 1.3].

Proposition 4.6. Let qe,qr € Quot(H,T), with F torsion free and £ locally
free. Assume that the underlying smooth vector bundles F' and E of F and &
on X\ sing F are isomorphic. Set Ex, = F"V, and let Cx be the support cycle.
Then for any smooth hermitian metric h on £ and admissible metric hoo on
Eo, there is an equation of currents

cha(Esoy hoo) — cha(E,h) = Cr + dd°V | (4.9)
where W is a (2,2)-current, smooth outside the support of Cr.

Proof. Choose representatives of the points in the Quot scheme:

g :0 K —H —>E—0,
gr:0 — Ky —mH —F —0.
Let H,k be fixed hermitian metrics on ‘H and IC, respectively. By the Bott-

Chern formula applied to the sequence gg, there is a smooth (1,1)-form ¥,
such that

ChQ(IC S¥) S, k & h) - ChQ(H,H) = ddc\Ifl . (410)

Let ko be an admissible metric on the reflexive sheaf Koo. Clearly, koo ® hoo
is then an admissible metric on Ko @ Ex. By [54, Thm. 1.3] applied to the
sequence ¢r, there is a (1,1)-form W9 such that

Chg(lcoo P Eo, koo D hoo) — ChQ(H, H) =ddVy +Cr . (4.11)
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By the assumption on F and E, the Chern connection for (Jg,_,hoo) on
X\ sing F defines an admissible connection on the smooth bundle E. It follows
from the proof of [54, Prop. 3.3| that cha(Ex, hoo) is a closed current represent-
ing cha(€) in rational cohomology. The essential point here is that although
the proof contained in [54, Prop. 3.3| does not apply to an arbitrary torsion free
sheaf, it does apply as long as the underlying smooth bundle extends smoothly
to all of X, which is guaranteed by the hypotheses. From (4.11), it then follows
that cha (Koo, kso) is also a closed current. Appealing once more to the proof of
[54, Prop. 3.3] (recall that K is reflexive), cha (Koo, koo ) represents cha (Koo ) in
rational cohomology. Since K and Ko, have the same Chern classes, it follows
that there is a (1, 1)-form W3 such that

Chg(lcoo, k‘oo) — ChQ(,C, k) = ddc\Ifg . (4.12)
Finally, (4.9) follows by combining eqgs. (4.10), (4.11), and (4.12). O
The following result may be viewed as the analog of the main result in [54].

Proposition 4.7. In the notation of Proposition 4.5, the cycle Cr_ is equal
to the analytic cycle C*" associated to the Uhlenbeck limit As.. Moreover,
sing(Eac) = S(Ano)-

The rest of this section is devoted to the proof of Proposition 4.7. To simplify

the notation, write: C%9 := Cr, = Zj m?ng;.llg_

Lemma 4.8. In rational cohomology, [C*9] = [Co"].

Proof. By Proposition 4.5, the HYM connection on Gr(F. )vv is the Uhlenbeck
limit Ao, and therefore eq. (4.1) implies that [cha(As)] = cha(E)+[Cx.]. But
recall also that (3.4) implies that [che(As)] = cho(E) + [C‘m] and the result
follows. O

Now we wish to go further and prove equality as cycles. The first observation
is that by the proof of Proposition 4.5 and Lemma 4.4, in M" we have [Fa] =
[Ex], where Eoo = E is the pu-semistable sheaf that appears in Lemma 4.3.
Then it follows from Proposition 2.22 that C%9 = C7~—oo ,where ’7~'OO is the torsion

sheaf Gr(Ex0)YY/Gr(Ex). By Proposition 2.15, we obtain C* = Cz =Cr,
where Too = Exo/ 500. Hence, it suffices to show C** = Cr._. The main technical

result of this subsection is the following, which together with Lemma 4.8 will
prove Proposition 4.7.

Proposition 4.9. Let Z C supp(7s) be an irreducible component of codimen-
ston 2. Write mgz for the multiplicity of Z in the cycle Ct._. Choose a generic
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slice . Then in the notation of Proposition 4.5, we have:
/ {tr(FA NFa, ) ftr(FAoo /\FAoo)}'

In particular, since my is by definition positive, then by Lemma 3.13, Z C Sy.
Therefore, Z is a component of the cycle C*" with m%* = mz.

The proof of Proposition 4.9 will be an adaptation of the proof of Proposition
4.2 of [54]. It will use the Bott-Chern formula of Section 4.3 and the slicing
lemmas of Section 3.2. Additionally we will require the following lemma, whose
proof is identical to that of Lemma 4.3 of [54].

Lemma 4.10. LetV — X be a holomorphic vector bundle, V — F — 0 a quo-
tient, and KL C V the kernel. Write Gr(V) = K & F. Let Z C supp(Gr(V)VV/
Gr(V)) be an irreducible component of codimension 2. Then there ezists a
sequence of blow-ups along smooth complex submanifolds m : X = X hav-
ing centre C and exceptional divisor E = 7=(C), and a subsheaf K c mV
giving rise to an associated graded object Gr(m*V) = K ® F with singular set
sing(Gr(7*V)) such that the following properties are satisfied:

(1) Gr(m* )NGr(V) onX'—E:X—C;

(2) codim(ZNC) >

(3) codim(7 (smg(Gr( *V)) —-7Z))>3.

Proof of Proposition 4.9. Recall that £, was an Uhlenbeck limit of a sequence
of Hermitian-Einstein vector bundles & = (F,dy,), which in Section 3.3 we
realised as quotients X — & — 0. In Lemma 4.4 we saw that there was a
resulting quotient which we have been calling goo, and which we showed to be
isomorphic to a certain limiting quotient which we called €Aoo. For notational
reasons, during this proof we will rename this quotient qo_ : H — Q — 0, so
that in particular Q%Y = £,,. We may therefore consider the exact sequences

0 — K —H —& — 0,
00— Ko —H — Qs — 0.
If we write Groo(H) for the associated graded object of this latter sequence,
then notice that supp(7a) = supp((Groo(H)VV)/ Gr(H)), since Koo is satur-
ated and therefore reflexive.

Now we are in a position to apply Lemma 4.10 and we obtain first of all an
exact sequence

0—>I€oo—>7r*7-t—>@oo—>0

having the properties stated there.
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Consider ) j fn?lg Wj, the analytic cycle associated with the support of the
sheaf Groo (7*H)"V / Groo(7*H). By the first two parts of the Lemma 4.10, we
know that in fact, one of these irreducible components, say Wi is the proper
transform Z of Z , and so W(Wl) = Z and so since at a generic point of Z the
sheaf Groo(m*H)VY/ Groo(m*H) is isomorphic with (Gree H)VV/ Groo(H), we
also have that m‘flg =my.

Since X is Kahler, the class [Z] is homologically nontrivial, there is a class
say o € Hy(X,Z) such that the intersection product a- [Z] # 0. By a classical
result of Thom, an integral multiple of any 4-dimensional class can be rep-
resented by an embedded 4-dimensional submanifold 3, and by construction
[X] - [Z] # 0. We may furthermore choose ¥ so that it intersects Z trans-
versely in its smooth locus, and ¥ is analytic in a neighbourhood of ¥ N Z.
Therefore ¥ N Z = {z, -+, 2}, where this set is nonempty. By possibly
moving X slightly, we may suppose that ¥ intersects Z in each point z; as
a transverse slice. By Lemma 4.10 (3), all the other Wj must map to a set
of codimension greater than or equal to 3, and so must be contained in E.
Also, by the codimension statement in (3), we may assume that ¥ misses the
set m(sing(Groo(7*H)) — Z, and the proper transform 3 of ¥ only intersects
sing(Groo (7*H)) in 771(Z). On the other hand, by part (ii) we may assume
that ¥ misses Z N C, so 7 1(X) and therefore 3 misses EN7~1(Z), and so &
empty intersection with all of the Wj except for 7= Wl.

Since the quotient Q. is torsion free, the kernel K, is saturated, and there-
fore reflexive, and so has at most codimension 3 singularities. Therefore, we
may assume the 4-dimensional submanifold 3 misses the set sing K. In other
words the restrictions ICi’E and lCool2 are smooth vector bundles on 3. We
have proven that Q. is isomorphic to a quotient in Quot(H, ¢(E)), and in par-
ticular the total Chern class of Q is the same as that of the &;, and therefore
the total Chern class of K, is the same as that of the ;. If 2 : ¥ < X is the
inclusion map, then by naturality, we have ¢(Ks|y,) = o* (¢(K;)) = ¢* (¢«(Ko)) =
c(ICOO‘E). Now the point is that the total Chern class determines the topolo-
gical type of a smooth vector bundle on a 4-manifold, so ICZ-|2 and ICoo’E are
smoothly isomorphic.

As in Proposition 4.6, we fix a smooth hermitian metric k& on K; (smoothly
these bundles are all the same), and an admissible metric on ks on Ko. We
will denote by Ax, and Ax_ the corresponding Chern connections. Since Ay,
and Ay restricted to X live on the same smooth bundle, there are Chern-
Simons forms CS(Ax,, ‘Z,A;@}E) on X such that

cha (Koo, koo) — cha(Ci, k) = dCS(AIQ‘g?AICOO‘E) .



COMPACTIFICATIONS OF THE MODULI SPACE OF HYM CONNECTIONS 61

We will write Boo = Ax, @ As which is the Chern connection associated
0 (Groo H)VY = (Koo ® Eso, koo @ hoo), and B; for the Chern connection on
Gr(H) = (K;®&;, kdh). We will furthermore write B for the Chern connection
of (H,H). As in (4.11),

cho(K; & &,k @ h) — chy(H, H) = dd°V; = dCS(B;, B) .

Now for each of the 2z € Z N X, take a ball By.(z;), choosing £ small
enough so that Bs.(z;) C X — C (which can again be achieved by part (i7)),
and Bac(z) N Z%9 C Z — sing ((Groo H)VY). Then if we let ¢ be a cut-off
function which is 1 on the B.(z;) and supported in the By (z). We define
admissible metrics koo = Voo + (1 — z/;)ko on ICOO and hoo = Yheso + (1- w)ho
on 5 = QVV where ko and ho arbltrary admissible metrics on ICOO and 8
respectlvely. Denote by AIEOO and Aoo the Chern connections of these metrics.
By construction we have connection A,eoo = Ak and Eoo = A on Uy, Be(21).
Proposition 4.6 gives an equation of currents

chy (/600 & b, Ap_ ® Eoo) — chy (T*H, 7 B) = > W, + dd°U . (4.13)
J
On 3 and away from Z, we also have dd°U = d CS(B, Bs), where By =

Ap @ Ao and B = 7*B. Now by Lemma 3.12 and (4.13), we obtain:

1

(1) 12)mz = <5

/ {tl"(FB/\FB)—tT(FBw/\FBw)}
$1(Us, B- (1))

=)
872 J£na(U., Be(2x))

/ {tr(FB/\FB)—tr(FBOO/\FBOO)}
$0(Uz, Be(21))

~

v

B 1
872

1 ~
+ = [ dd°v
87 JSN(Us, Be (1))
1

- 82/ {tr (Fg A Fp) —tr (Fp,, A Fp.,)}
T JSN(Uz,, Be(21))

1 ~ ~
+ Q/A dCS(B, B)
87 JSN(Us, Be (1))
1

=52 /EQ(U%BE(%)) {tr (Fp A Fp) —tr (Far_ AFa._)}

1 / 1
- tr(Fa_ A Fa —/ CS(B, Bo) .
872 Eﬁ(UszE(Z’k)) ( - OO) 82 Ema(uszs(zk)) ( )
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Similarly, we have

1
2/ {6 (Fi A Fg) = tx(Fag, A Fag,) = tr(Fa AFa) }
8w Eﬂ(Uzk B, (Zk)) i % i i

1
:2/ {tF(FB/\FB)—tT(FBi/\FBi)}
87 Jon(Us.,, Be (2))

1 / 1 /
_ 1 dCS(B, B;) = — CS(B, B,) .
82 Eﬁ(Uszs(Zk)) ( ) 82 Ena(uszE(Zk)) ( )

1

Q2
8w £N(Uz, Be (2

/ tr(FA /\FA>—tI‘(FAOO/\FAOO)
Eﬁ UszE(Zk

(5] [2)mz = {tx(Pag, A Fax,) = tr(Fag AFac)}
)

1 / 1 /
CS(B,Bx) + —5 CS(B, B;
82 YNA(Uz, Be (1)) ( ) 82 £NO(Uz;, B:(21)) ( )
12/ FA /\FA)_tr(FAoo/\FAoo)
87r $N(Uzy, Be(21))
1
L / CS(B, B;) — CS(B, Bao) + CS(Ax. |y, Ax |y
87r £NO(Uzy, B (1))
/ r(Fa ANFa) —tr(Fa_ AFa)
Uszs(Zk
L L / CS(Buo, Bi) + CS(Ax, | Ak |s:)
82 £NO(Uz,, Be(21)) ( ) ( > |E)

where we have used Lemma 3.14 (1). Now by Lemma 3.13, the first term
on the right hand side above converges to ([X] - [Z])m%* as i — oo, whereas
the expressions for CS(Ax_, ‘E’ 5) and CS(B;, Bx) show that the second
integral vanishes. Hence, ([X] - [Z])mZ = ([¥] - [Z])m%*. Since [X] - [Z] # 0,
this implies mz = m%". O

We now have the

Proof of Proposition 4.7. It follows from Proposition 4.9 that C*9 = Cr_ =
Cr., is a subcycle of C*, so we may write

com — M =N " (msm —m3) Zgm (4.14)

J
J
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with m$" > m?lg. On the other hand, by Lemma 4.8, [C* — C%9] vanishes in
cohomology. Hence,

0= [Can - Calg] . [wan] _ Z(m;m . m?lg)/z w2 > Z(m;m . m?lg) 7
j i j

lg

and therefore m? = mj" for all j. This proves the first statement. The second

statement follows as in the proof of Lemma 3.9. U

4.4. Continuity of ®. We now put together the results of the previous several
subsections to prove continuity of the map ®. The main result of this section
is the following.

Theorem 4.11. The map ® : M — ]\/ZHYM defined at the end of Section 4.1
s continuous and surjects onto My

We begin with the following.

Lemma 4.12. The images of the maps ¥ and ® lie in the gauge theoretic
compactification M gy

Proof. 1t follows directly from Propositions 4.5 and 4.7 that if ¢; — ¢ in
Z,, where ¢; : H — F; — 0 is a locally free, stable quotient for each i, then
lim; 00 ¥(gi) = V(goo). Since U(q;) € My by construction, it therefore
follows that ¥(gso) € Muyn. Since any element of Z, is a limit of this kind,
this implies that im(W) C Myyy and hence that im(®) C Myyy by (4.2). O

Proposition 4.13. The map U: Z, — Myym is continuous.

Proof. Let ¢; : H — F; — 0 be a sequence of quotients in Z, converging to
Qoo : H — Foo — 0. We must show ¥(q;) — ¥(goo). By compactness it suffices
to show that any subsequential limit of ¥(g;) equals ¥(gs). Hence, without
loss of generality we can assume ¥(g;) has an Uhlenbeck limit in Mygyy. Now
we don’t assume that the F; are locally free, but for each i there is a sequence of
quotients g;  : H — F;j, — 0 with F;  locally free and p-stable of topological
type E, so that ¢; — ¢; in Z,. As in the proof of the previous lemma, we
have limy 00 U(gix) = ¥(g;). Choose a subsequence {k;} such that g; x, = goo
in Z,. As in the proof of Proposition 3.20, we may arrange that @(q@ki) has
the same Uhlenbeck limit as W(g;). Again using Propositions 4.5 and 4.7 we

conclude that ¥(g; ;) — ¥(gso). The result follows. O

Proof of Theorem 4.11. We claim that W\Z—O : Zo — M'" is a quotient map in
the analytic topology. Once this is established, ® is continuous if and only if
W is (cf. (4.2)), and the latter holds by Proposition 4.13. For surjectivity, we



64 GREB, SIBLEY, TOMA, AND WENTWORTH

then note that by Proposition 3.20, any point in My is a limit of points in
the image of ®. Since M"" is compact and ® is continuous, surjectivity follows
as well.

In order to see that W\Z—O . Z, — M" is a quotient map in the analytic
topology we remark that as in the proof of |7, Thm. A.7] it follows from Lang-
ton’s theorem, from the defining properties of the Quot scheme, and from
the observation that any holomorphic map from a smooth variety into a re-
duced scheme Y lifts to the weak normalisation® Y™ of Y, that the pair
(Zd, 7T|Z AR M”), where Zd denotes the closure of Z, inside the weak
normalisation of the Quot scheme, fulfills property (£) in the sense of [7, Def.
A.8|. The claim hence follows from [7, Proposition A.9| O

Remark 4.14. As noted in the Introduction, since Myyy is the image of a
compact space under a continuous map, it is in fact compact rather than just
sequentially compact.

Corollary 4.15 (cf. [38, Thm. 5]). If dim X = 2, the map ® : M" — Muywm
18 a homeomorphism.

Proof. Theorem 4.11 implies that ® is continuous, proper, and onto; hence in
order to prove the lemma it suffices to show that it is one-to-one. This however
follows from [30, Thm. 5.5 and Prop. 5.8|. O

Remark 4.16. As a consequence of the previous corollary, on surfaces we
may identify the two moduli spaces M' and Myyy using the map @. In
particular, we may think of elements of M" as equivalence classes [(€,C)]
of pairs. Moreover, we note that it follows from the corollary that in the
surface case M" is homeomorphic (but not necessarily biholomorphic) to the
compactification constructed by Jun Li in [38, §3], the potential difference in
complex structures stemming from the fact that we consider the determinant
line bundle on the weak normalisation of the Quot scheme, not the Quot scheme
itself.

5. A COMPLEX STRUCTURE ON M pym

In this section we prove Theorem 1.2 by analysing the natural finite equival-
ence relation on the space M" provided by the map ®. We do this by studying
sections of the line bundle .%,_1 in more detail.

In Section 5.1 we define a natural candidate for the structure sheaf on M gym
and state a criterion for this to be the structure sheaf of an actual complex

6Note also that the complex space (Y¥™)e™ associated with Y™ is the weak normalisation
of the complex space Y*" associated with Y.
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space. In the following subsections we verify this criterion in our case by con-
structing certain saturated neighbourhoods (see Definitions 5.7 and 5.6 and
Proposition 5.14 of Section 5.3) around each point of M" and morphisms to
projective spaces which are constant on this relation (see Section 5.8 and in
particular Lemma 5.24 and Proposition 5.25). These maps are constructed by
"ifting" sections from certain well chosen curves which lie inside of certain
complete intersection surfaces S in X to obtain sections of .Z,_1, (see Sections
5.5 and 5.6). We then check the maps are constant on the relation by com-
paring them to the corresponding (global) morphism on the moduli space of
p-semistable sheaves on S (see Proposition 5.25 and Section 5.7). The lifting
procedure can only be performed away from a certain proper subvariety of 2.,
due to the loss of flatness of the universal sheaf upon successive restrictions.
We therefore require that we be able to construct this non-flatness locus in
such a way that the sections we obtain from lifting extend over it. We give
various results about restriction and flatness in Sections 5.2 and 5.4. Finally,
to show the criterion holds, we need to know that (products of) the locally
defined maps in question separate the points of Myyy. This will follow from
Proposition 5.25 once we know that an element of Myyy is determined by
its restriction to a finite number of appropriately chosen complete intersection
surfaces S; (see Corollary 5.13 and Lemma 5.27).

5.1. The fibres of ® and the equivalence relation on M". We begin by
introducing some standard terminology regarding equivalence relations.

Definition 5.1. An equivalence relation R on a locally compact (Hausdorff)
space X is called proper if for every compact set K C X, its saturation R(K)
under the equivalence relation is compact. Equivalently, when endowed with
the quotient topology, X/R is locally compact (in particular, Hausdorff), and
the quotient map 7 : X — X/R is proper. A proper equivalence relation with
finite equivalence classes is called finite.

Remark 5.2. If X and Y are locally compact spaces, and if f: X — Y is a
continuous proper map, then the equivalence relation defined by f, i.e., x ~y
if and only if f(x) = f(y), is proper.

Returning to the specific situation at hand, by Proposition 2.23, the map
& : M" — My is finite to one. Explicitly, for each [(£,C)] in Muyy, there
is an injection 571([(5, C)]) < mo(x~1(C)) where we recall that

X : Quot(E,7¢ — 1) — Cp—2(X)

is the natural Quot to Chow morphism defined in Section 2.8.
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We define an equivalence relation R C M" x M" on the space M", defined
by the property ([Fi],[F2]) € R if and only if [F1] and [F2| are in the same
fibre of ®. By Remark 4.14, My is compact, and hence locally compact. By
construction there is a bijection ia /R =~ Myym, where ia /R is the topolo-
gical quotient of M" given by identifying all points in an equivalence class of
R. By Theorem 4.11 and the universal property of the quotient topology, this
is a homeomorphism. We conclude that R is a finite equivalence relation.

In order to put a complex structure on Myyy it therefore suffices to un-
derstand the equivalence relation R and under what conditions the quotient
of a complex analytic space by a proper equivalence relation can be endowed
with a sheaf of functions making it into a complex space. As a first step in
this direction, we make X/R into a ringed space: given a proper equivalence
relation R on a reduced complex space X and an open subset U C X/R, we
set Ox/p(U) := Ox (7=1(U))®, where the latter is the algebra of R-invariant
holomorphic functions on 7= 1(U).

In order to see that the resulting ringed space (X/R,Ox/g) is in fact a
complex space, we will use the following fundamental result of Henri Cartan,
see |8, Main Theorem)|.

Theorem 5.3 (CARTAN’S CRITERION). Consider a proper equivalence relation
R on a reduced complex space X with quotient map 7 : X — X/R. In order that
the ringed space X/R be a complex space, it suffices that each point of X/R
has an open neighbourhood V such that the R-invariant holomorphic maps
7Y V) — Z (Z being a complex space) separate the equivalence classes in

T (V).

Then, in order to prove that Myyy is a complex space it suffices to prove
that the equivalence classes of the relation R C M x M locally over M gy
can be separated by R-invariant holomorphic maps. We will in fact prove the
stronger claim that locally over My there exists holomorphic maps to some
complex spaces having as fibres exactly the given equivalence classes (see Claim
5.23). The proof of this fact will occupy the remainder of Section 5.

5.2. Restriction theorems. Throughout the remainder of this section we
will need to consider the restriction of sheaves to various subvarieties of X.
We begin with the following crucial semistable restriction theorem.

Theorem 5.4 (Langer, [36]). Let X be a smooth projective variety, and let
Ox (1) be an ample line bundle on X. Let {F;}ics be a family of p-(semi)stable
sheaves on X with fived rank and Chern classes. Then, there is a positive
integer ko which is independent of i, so that for any k > ko and any smooth
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diwisor D € |Ox (k)|, if (Gr F;)|p is torsion free for some Seshadri graduation
of Fi, then F;|p remains p-(semi)stable.

This follows immediately from [36, Thm 5.2 and Cor. 5.4| by noticing that
the right hand side of the inequality provided there depends only on the rank
and Chern classes of the sheaf in question.

A higher-dimensional, slightly weaker analogue of the following result will
be proven in Proposition 5.12 and Corollary 5.13 below.

Proposition 5.5. Let {F,}ics be a set of u-semistable sheaves on a polarised
surface (S, Og(1)) with fixed rank and Chern classes. Then there is a positive
integer ko > 0 which is independent of i, such that for all k > kg there is a
finite subset ¥ C |Og(k)| consisting of smooth curves such that for any two
sheaves F;,, Fi,, there exists a curve C' € ¥ such that

(1) sing(Gr(F,)) N C = sing(Cr(Fi)) N C =0,
(2) Fi,lc and Fi,|c remain semistable,
(3) Gr(F;,)VY = Gr(Fi,)VV if and only if Fi,|c and Fi,|c are s-equivalent.

Proof. Since the family {F;}ics is in particular a bounded family, the argu-
ments of Section 2.5.5 imply that the number of singular points of the sheaves
{Gr(F;) }ies is bounded as i ranges over the set S. Here we have chosen arbit-
rary Seshadri filtrations of the F;, but we recall that the cycles associated to
Gr(F;)VV/ Gr(F;), and in particular the sets sing(Gr(F;)), are independent of
this choice. Fix an upper bound m for the maximum number of points of such
a singular set. Fix a number k that satisfies the hypotheses of Theorem 5.4,
and choose n > 4m curves in |Ox (k)| so that no three have a common intersec-
tion point. Then for any two fixed sheaves F;, and F;,, there must be a curve
C' among the chosen curves that misses the singularities of both Gr(F;,) and
Gr(Fi,), and in particular (GrF;,)|c and (GrF;,)|c are locally free (and in
particular torsion free) and therefore F;, | and F, | are semistable. Moreover,
the summands of each of Gr(F;,)|c and Gr(Fi,)|c remain slope stable, all of
equal slope, and are the quotients of the restricted filtrants of the respective
Seshadri filtrations. This means that the restrictions of the Seshadri filtrations
to C remain Seshadri filtrations for F;, |¢ and Fi,|c. Notice that on C, the
notion of Seshadri filtration is the same for slope or GM-stability. We therefore
obtain

Gr(Fi,)V|e =2 Gr(Fi,) Ve <= Gr(Fy)|e = Gr(Fy)lc
= Gr(Filco) = Gr(Filo) <= gr(Filo) = gr(File) -
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We claim that
Gr(‘Fil)vv‘C = Gr(fiQ)Vv’C — Gr(fil)vv = Gr(]:i2>vv .

One direction is obvious. For the other, we consider the bounded family of
locally free sheaves {&;, i, := Hom/(Gr(F;, )"V, Gr(Fi,)VV) }iyises. By possibly
increasing the size of k, we can ensure using Serre vanishing and duality that
HY(S,&;,.i,(—kH)) = 0 for all choices of i; and is. Now considering the exact
sequence

0— 5i17i2(_kH) — gil,iz — 5i1,i2|C —0,

and the induced long exact sequence in cohomology, we see that H%(E;, ;,) sur-
jects onto HY(&;, iy|c). Therefore, any isomorphism Gr(F;,)"V|c = Gr(Fi,)"V|c
can be lifted to a map Gr(F;,)¥Y — Gr(F;,)"Y, which turns out to be an iso-
morphism for example by the arguments laid out in step 3 and 4 of the proof
of Proposition 5.1 in the preprint version of [28]. O

Proposition 5.5 is very close to being the same as [30, Lemma 5.4], but the
important point that we wish to bring out here is that we may choose k to be
independent of the sheaves in question as we range over a bounded family. The
conclusion, however, is somewhat weaker. Namely, for each pair of sheaves in
the family we only ask that there be one curve in the chosen finite set having
the stated property holds, rather than this holding for a generic curve in the
linear system.

5.3. Admissible flags and neighbourhoods in Myyy. In this subsection
we give some preliminary definitions required to understand the case of higher
dimensions in the next subsection. In the following we will try to exploit
properties of the moduli space of semistable sheaves on projective surfaces. We
will reduce ourselves to the surface case by successively cutting with (smooth)
hypersurfaces in X. Recall that a hypersurface X’ in X is regular for a coherent
sheaf F on X, or F-regular, if the natural morphism F(—X') — F is injective.
This is the case if and only if X’ contains none of the associated points of F
(cf. |33, page 8|).

In order to motivate the next definition recall that by [34, Formula V 3.20]
the singularity sets of a coherent sheaf S as defined in [34, V.(5.5)] are related
to the supports of the local Ext sheaves as follows:

Sm(S) = U supp(S:rtf%((S,wX)), 0<m<n;

d>n—m

cf. the discussion in Section 2.5.2 above.
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Definition 5.6. Let [(£,C)] be a point in Myyy, where £ is a polystable
reflexive sheaf and C is a codimension 2 cycle on X. A smooth surface S
embedded in X will be called admissible for [(£,C)] if dim(S N |C|) < 0 and
dim(S Nsing(€)) < 0. An admissible surface S for [(€,C)] will be called fully
admissible for [(€,C)] if additionally £ is locally free in a neighbourhood of S.

Definition 5.7. Let [(£,C)] be a point in Myyy, where € is a polystable
reflexive sheaf and C is a codimension 2 cycle on X. A flag of smooth complete
intersections (X(l))lglgn,% X0 .= ﬂﬁlei, of hypersurfaces X1,..., X,,_o in
X will be called admissible for [(£,C)] if for each I = 1,...,n—2 both X' N |C]
and X Nsing(&) are of codimension at least two in X(). An admissible flag
(XWY)1<1<n_o for [(€,C)] will be called fully admissible for [(€,C)] if in addition
for each [ = 1,...,n — 2 the complete intersection X is E|xa-v-regular and

q
ExtX(l_l)

X0 = x XM = X’ The flag (X(l))lggn,g is said to be of multi-degree
(di)1<i<n—2 if the hypersurfaces X; are taken in the linear systems |Ox(d;)|,
where Ox (1) is a fixed ample line bundle on X.

(&l xa-1,wyxa-1)-regular for all ¢ > 0, where we use the notation

Definition 5.8. Let F be a torsion free sheaf on X. Similar to the above, a
flag of complete intersections (X(l))lggn_27 X0 .= ﬂlilei of smooth general
hypersurfaces Xi, ..., X,,—o in X will be called fully admissible for F if for
each | = 1,...,n — 2 the complete intersection X is Flxa-v-regular and
5xt§((l_1)(f|x(z_1) , Wy a1 )-regular for all ¢ > 0. Every member X of a fully
admissible flag will be called fully admissible for F.

Remark 5.9. For later usage, we note the following facts:

(1) A flag of complete intersections (X(l))lglgn_g, X0 .= Ni_,X; of smooth
general hypersurfaces Xy, ..., X,,—2 in X is admissible for [(£,C)] if and only if
its last member X (™~2) is admissible for [(£,C)].

(2) If a flag (X)) <j<pp_o is fully admissible for [(£,C)], then its last member
X (=2) is fully admissible for [(£,C)].

(3) If a flag (X)) <1<, is admissible for [(£,C)], then the condition that X ()
contains no irreducible components of |C| N X =1 implies that |C|N X ® is the
support of a codimension 2 cycle on X® | cf. [25, Sect. 2.3]: Indeed, the first
hypersurface X’ C X, whose associated Cartier divisor we will denote by D,
contains no irreducible component Z; of |C|. Hence, C-D =} ;n;(Z; N X')
is a well-defined Cartier divisor on |C|. On the other hand, C - D also defines a
well-defined intersection cycle on X', which we will also denote by C|x/. Since
it is a divisor on |C| it must be a codimension 2 cycle C’ on X’. The hypothesis
now similarly allows us to inductively construct codimension 2 cycles C) :=
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cl=1 . D0 on X where PO is the divisor associated to the hypersurface
X0 - x-1),

(4) If a flag (X(l))lggn,g is fully admissible for [(£,C)], then the restrictions
E| xw are reflexive sheaves on their respective supports X @) by [33, Cor. 1.1.14].
We will denote the induced pair (€|, C(l)) consisting of a polystable sheaf
and a codimension 2 cycle on X&) by (&,C)|xa)-

(5) If a flag (X (l))lglgn_g is fully admissible for a torsion free sheaf F, then
for each I = 1,...,n — 2 the intersection X N sing(F) is of codimension at
least two in X,

The following result establishes a link between restriction of cycles and cycles
associated with restricted sheaves via the construction given in Section 2.5.3.
For simplicity we state it only for two-codimensional coherent sheaves.

Lemma 5.10. Let A be a pure coherent sheaf of codimension two on X and
X' a smooth hyperplane section of X not containing any irreducible component
of the support cycle C4. Then, we have the following equality of cycles on X':

Cialy) = Ca)lxr - (5.1)

Proof. Using the definition of multiplicity as in [30, Rem. 5.3], the statement
is easily checked when X' is a general element in its linear system.

Suppose now that X’ contains no irreducible component of the support cycle
C4 of A. This and the purity of A imply the existence of an exact sequence of
the form

0= A-X")—A—Alx —0.

Each element X/ in a sufficiently small Zariski open neighbourhood 7" of X’ in
its complete linear system will be smooth and will not contain any irreducible
component of the support cycle C4. By the above and by [33, Lemma 2.1.4] it
follows that the family of sheaves A|x;, is flat over T'.

By the observation made at the beginning of the proof, for ¢t € T' general we
have the equality

Ciarey = Ca)lx; - (5.2)

Moreover, support cycles vary continuously in flat families of coherent sheaves,
cf. [5], as do the intersection cycles appearing on the right hand side of (5.2),
cf. part (3) of Remark 5.9. Thus, we get the desired equality (5.1) by passing
to the limit on both sides of (5.2). O

Next, we will introduce a terminology that is useful in formulating some
of the technical results below. If |H| is a basepoint free linear system on
X and Y C X is a subvariety, we will denote by |H|y the restricted linear
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system, i.e., the divisors arising from sections in the image of the restriction
map H(X,Ox (H)) = H(Y, (Ox(H))|y).

Definition 5.11. Let Ox (1) be an ample line bundle on X with corresponding
ample divisor H, and dy, ..., d,—2 positive natural numbers. A property P is
said to hold for any sufficiently general tuple (X1,...,Xp—2) € |[di1H| x ... X
|dn—oH| if there exists a nonempty open subset U; C |dy H| such that for every
X1 € Uy, there exists a nonempty open subset Us C |doH|x, such that for
every Xo € Us, there exists a nonempty open subset Uz C |d3H |y (), ..., such
that for every X,,_o € U,_9 property P holds for the tuple (X1,...,X,—2).

If H is a very ample divisor on X, if dy,...,d,_o are given positive natural
numbers, and if F is a torsion free sheaf on X, then, since the restriction
of |[dH| to any subvariety of X stays basepoint free for any positive natural
number d, prime avoidance holds for these restricted linear systems, and hence
any sufficiently general tuple (Xi,..., X, _2) € [d1H| X --- X |dp—2H| is fully
admissible for F.

The following two results are higher-dimensional analogues of Proposition
5.5 above and are important for producing the holomorphic maps required by
Cartan’s criterion, Theorem 5.3; see the proof of Claim 5.23 below.

Proposition 5.12. Let H be a very ample divisor on X, and let k > 2 be a
positive integer. Let moreover S be a bounded set of reflexive sheaves on X and
let [(€o,Co)] be a point in Myyn, where & is a polystable reflexive sheaf and Cy
1s a codimension 2 cycle on X. Then, there exists a positive natural number N
such that for any sequence d1, . ..,d,_o of positive natural numbers and for any
choice of N sufficiently general tuples (X1, -+, Xp—2) € |[diH| X -+ X |dp—2H|
with associated flags (XW)1<i<n_2) the following holds:

(1) The flags are fully admissible for [(Eo,Co)].

(2) If X is the chosen finite set of flags, then for any choice of k—2 sheaves
Es,..., & from S as well as any choice of two points [(€1,C1)] and
[(E2,C2)] from Myym some element of ¥ is in addition fully admissible
for [(&1,C1)] and [(E2,C2)] as well as fully admissible for all the sheaves
Es,.. &

Proof. Let n be the dimension of X, which we may suppose to be bigger than 2.
We start by choosing the first members X’ € |dy H| of the flags in . The first
constraint on X' is given by the full admissibility for [(£y, Cy)], which is a Zariski
open condition. In order to additionally ensure admissibility for [(£1,Cq)] and
[(&2,C2)] as well as for &s,...,E, it is sufficient that X’ contains neither of the
associated points of the sheaves Ext% (&, wx), i € {1,...,k}, ¢ > 0, nor any of
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the irreducible components of the cycles Cy, Co; cf. part (5) of Remark 5.9. For
an element £ € S denote by A(E) the set of subvarieties of X arising from such
associated components, and define A(E,C) analogously for (£,C) € My
Since £ and (<€~’ , 5) run through bounded families, the arguments of Section
2.5.5 imply that the number of elements of the corresponding sets A(E) and
A(E,C) are simultaneously bounded by some m; € N.

Choose n; > knm; smooth hypersurfaces in |d;H| fully admissible for
(&0,Co) and such that no n 4+ 1 of them have a common intersection point,
both of which are open conditions. Then, it follows that for any choice of two
points (£1,C1) and (&2, Cz) from Myyy and any choice of k —2 sheaves &s,...,E
from S, there must be a hypersurface X’ among the chosen ones containing
none of the elements of A(&1,C1) U A(E2,Co) U A(E3) U -+ U A(Ek).

The argument for higher codimension is analogous and hence omitted. [

The following is a consequence of the proof of Proposition 5.12.

Corollary 5.13. Let H be a very ample divisor on X, and let [(£0,Co)] be a
point in Muym, where &y is a polystable reflexive sheaf and Cy is a codimension
2 cycle on X. Then, there exist a positive natural numbers dg and N such that
for any tuple (di,da,...,d,—2) of natural numbers d; > do and for any choice
of N sufficiently general tuples (X1, -+ ,Xn—2) € |[d1H| X «-- X |dy—oH| with
associated flags ((X(l))lglgn,g) the following holds:

(1) All the flags are fully admissible for [(Ey,Co)].

(2) If X is the chosen finite set of flags, then for any choice of two points
[(£1,C1)] and [(E2,Ca)) from Myuyn some element (XW) of ¥ is in
addition fully admissible for [(£1,C1)] and [(E2,C2)].

(3) If X(=2) 45 a4 2-dimensional member of any of the chosen flags, we
have

& =26& if and only if Eilxm-2 = & xm-2. (5.3)

Proof. As the reflexive sheaves £ appearing as first entries for a tuple [(€,C)] €
My range over a bounded set S, the corresponding set of reflexive homo-
morphism sheaves Hom(&1, £2) is likewise bounded. We may therefore choose a
positive natural number dy such that the conclusion of the "general Enriques-
Zariski Lemma", [43, Prop. 3.2], holds for any of the sheaves Hom(&1, &),
where & and & are in S.

Let di > dy. Then, the first step of the proof of Proposition 5.12 shows
that for a general choice of ny smooth hypersurfaces X j’ € |d1H| the following
property holds: for any choice [(£1,C1)],[(€2,C2)] € Muyw, there exists an
index j such that X is fully admissible for [(£1,C1)], [(€2,C2)] and also for
Hom (&1, E2). Tt follows that €1|ij, , 52|X§, hence Hom(51|X]/,,52|X§), and also
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Hom(&1, E)| x/ are reflexive. Moreover, admissibility implies that X} does
not contain any component of the singularity set of & or &, and therefore
the reflexive sheaves Hom(El\Xj/_,SﬂXJ/_) and Hom(&y, 52)|X]/_ agree on an open
subset of X ]’ whose complement has codimension at least 2 in X ]’-, and hence
they coincide. Therefore, if & | X! = & X! via an isomorphism ¢, by the choice
of dy and by [43, Prop. 3.2| we can lift ¢ to a homomorphism ® € Hom(&1, &),
which turns out to be an isomorphism for example by the arguments laid out
in step 3 and 4 of the proof of Proposition 5.1 in the preprint version of [28].
We conclude that & = & if and only if 51])(]/, x~ 52|X]/_.

Noticing that the set of reflexive sheaves {£] X | X7 is fully admissible for £}
is again bounded, we may argue in a similar fashion to see that the claims holds
for any sufficiently general tuple (X1, -+, Xp—2) € |d1H| x -+ X |dp—2H|, as
long as dj > dp for all j =1,...,n — 2. O

The following crucial result allows us to define open neighbourhoods of a
given equivalence class in M" on which the equivalence relation induced by
the comparison map ® is controlled by invariant holomorphic functions.

Proposition 5.14. Let S be a surface embedded in X. Then the set
U{g = {[(E,C)] S MHYM | S is admissible fO’f’ [((‘:,C)]} C MHYM

is open in My with respect to the topology defined in Section 3.5. In partic-
ular, the preimage Ug := 671(Ué) is open and R-saturated in M".

Proof. By the definition of the topology of Mgy, the claim is equivalent to
the statement that if S is admissible for [(£,C)] and [(&;,C;)] is a sequence
of (isomorphism classes of) ideal connections converging to [(£,C)], then S
remains admissible for [(&;, C;)] for ¢ sufficiently large. This in turn breaks into
two separate conditions on the pairs [(&;,C;)]: first, that dim(S N |C;]) < 0,
and second, that dim(S N sing(&;)) < 0, whenever these two properties are
satisfied for C and £. Since the C; converge to a subcycle of C in the cycle
space, their supports converge to the support of this subcycle in the Hausdorff
sense, from which the first item follows. On the other hand, the second item
is a consequence of Lemma 3.18. Il

5.4. Extension of sections and flat restriction. Below we construct SL(V')-
invariant sections of the line bundle .%,, 1 — Z away from a subvariety T C Z.
Since we want sections on all of Z, we will require the following lemma from
[30], which gives a criterion for when these sections extend over 7.

Lemma 5.15 ([30, Lemma 2.12]). Let G be is connected algebraic group, R a
weakly normal G-variety, and L — R a G-linearised line bundle. Then there
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ezists a finite set of closed, irreducible G-invariant subvarieties {R;}", of R
with the following property: if T C R is a closed G-invariant subvariety with
codim(T NR;) > 2 in Ry, then any section o € HO(R\T,L)C extends to a
section over all of R.

The following is a slight modification of [30, Cor 3.2].

Lemma 5.16. Let G be a connected algebraic group, and & — X X R be
a G-linearised flat family over a parameter space R, and H a very ample
polarisation. Let [(£,C)] € Muyn. Suppose {Rj}gnzl s a finite set of closed,
irreducible G-invariant subvarieties of R so that for each i there is a point
r; € R; such that &, is torsion free. Then, for any choice of positive integers
di,...,dn—o and any sufficiently general tuple (X1, , Xp—2) € |[diH| x -+ x
|dn—oH| the following holds:
(1) The associated flag (XD)1<i<n_o is fully admissible for [(€,C)], (and
50 in particular the end term S = X ™=2) is fully admissible for [(€,C)].
(2) There exists a closed subvariety T C R such that for each j we have
codimp (T N'R;) > 2, and for each | the family &|ya)gr remains flat
over R\T."

(3) Each of the sheaves &, |xu remains torsion free.

Proof. We will strictly follow the strategy of [30, proof of Lemma 3.1] with
the additional constraint that the flags will be required to be fully admissible
for [(£,C)]. In line with Definition 5.11, the conditions we have to impose on
the flag in order to fulfill the claims made in the formulation of the Lemma
are analysed inductively, in particular, the problem of maintaining flatness of
the successive restrictions of the family & on X x R to the members of a flag
X % R. For this purpose, we define

Rif :={r € R| F, is torsion free on X} .

If X’ C X is a smooth hypersurface, then the restriction of & to X' x Ry
remains flat. In fact, flatness of the restricted family at a point r € R is
equivalent to the &.-regularity of X’ by [33, Lemma 2.1.4] and this in turn is
implied by the torsion freeness of &..

We wish to construct a closed subvariety 7/ C R whose intersection with
any of the subvarieties R; has codimension at least 2 in Z;. This is secured by
firstly choosing some "main reference" fibers &;,, where the r; € R; are as in
the statement of the lemma, and then choosing our hypersurface X’ such that
&,|x’ remains torsion free on X’. This is true for every element X’ in a dense
open set of the linear system |H| by [33, Lemma 1.1.12 and Corollary 1.1.14].

"This subvariety may depend on the flag.
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Now notice that R;\R;s is not dense in R; for any ¢, and that, by the previous
discussion, the restriction &|x/y (g, sNR;) remains flat. However, it still may
happen that codimg,(R;\R:s) = 1. To construct the set 7', whenever a set
(Ri)\R:s has codimension one in (R;) we choose some "secondary reference"
point s, € R;\R¢s and ask that the hypersurface X’ also be %, -regular, in
addition to having the property that &;,|x’ remains torsion free on X’. This
can still be achieved for X’ in a dense open subset of |H|, again by [33, Lemma
1.1.12 and Corollary 1.1.14]. By the same reference, a dense open subset of
such X”’s is in addition fully admissible for [(£,C)] in the sense of Definition
5.7. The construction of the set 7/ C R then proceeds in the same way as in
the proof of Lemma 3.1 of [30], by setting
T =R\(RyyulJ,_, N(X"7D) .

where N (X', r}) is an open neighbourhood of 7} in R, where the restriction to
X'’ remains flat. This set has the desired property with respect to the R;. Set
X' =xW.

We will repeat this procedure to find successive elements of the flag. Let
RW c R be the flatness locus of this restricted family, (i.e. R = R\T"),
so that &|ya) g is flat. We again choose secondary reference points TZ(Q) €
RW NR;. Then, for a general hypersurface Xy € |H| the intersection X (2 =
XM N Xy is & 2-regular for each i and also fully admissible for [(€,C)].

As above, we can then construct a nonflatness locus 7 ¢ R fulfilling
codimp, (T® NR;) > 2 and such that, setting R?) = RW\T@)| the restric-
ted family &y (2) g2 remains flat. Now inductively, for each successive RE=D

=1) N R;. Then, for a general hy-

we find secondary reference points rgl) e R
persurface X; € |H| the intersection X = X=X is & @-regular and also
fully admissible for [(£,C)]. To each of these is associated a nonflatness locus
7O ¢ RU=D with codimg, (TH NR;) > 2. We then define RV = RU-D\T1
so that &)y e remains flat. We repeat this procedure until we get down
to X("=2) = G,

We conclude that a sufficiently general flag {X®} is fully admissible for
[(£,C)] (and in particular for §), and setting T :Uln:_l2 TO for the subsets
T introduced in the procedure described above, that & | X R\T remains flat
for all [, as desired. O

In the previous proof, note that we may keep the same "main reference"
sheaves &, on which we ask torsion freeness at any section, whereas we may
need to choose new sets of "secondary reference" points rz(l) c (RWNR;) on
which we ask regularity for the next section X “+1), 1 <[ < n—3. In particular,
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if & is the universal sheaf  — X x Z the restriction to X’ remains flat since
s is by definition torsion free for all s € Z. In this case, in the notation
used above we have Z/ = Z, however not all the fibers of the restricted family
will remain torsion free on X', so we may not apply the same argument to get
flatness for the next restriction to X(2) x 2’. It is therefore necessary to follow
the argument above for all further restrictions.

In the same vein, if .%, is torsion free for all r, and X = S is a surface then
there is no nonflatness locus 7T, since flatness is preserved by restricting to any
curve C' C S.

Remark 5.17. If the &, are not just torsion free but semistable, for any
di,...,dn—1 and any sufficiently general tuple (X1,...,X,—1) € |[d1H| X -+ X
|dn—1H| the restriction of any of the associated graded sheaves Gr(&,) to
each term of the flag X will remain torsion free. Hence, if the sequence
di,...,dn—1 is sufficiently increasing, then by Langer’s Theorem, Theorem
5.4, the restriction of each &, to X("~2) will remain semistable. We will say

in this case that the flag satisfies Langer’s conditions.

The following lemma follows directly from the proof of Lemma 5.16, but as
we shall see, it is useful to separate out the case of curves.

Lemma 5.18. Let % — X x Z be the universal sheaf, and let [(€,C)] € Mywm.
Let Z; C Z be the finite set of holomorphic subvarieties provided by Lemma
5.15, let {X(l)}lggn,g be a sufficiently general flag of complete intersections
with X(=2) = S together with the subvariety T produced by Lemma 5.16; and
let ZW c Z be the subspaces from the proof of Lemma 5.16. We also write
zi € Z; for the main reference points, so that in particular %.,|s is torsion free.
Suppose C C S is a smooth curve such that there are points zgn_l) e 2=z,
such that C' is Uzgnq) |s-regular. Then, there is a closed holomorphic subvariety

To C Z such that
(1) codimg, (Tc N 2Z;)>2 for each i, and
(2) % |cxz\70uT Temains flat.

5.5. Lifting sections from curves I: the method of [30]. The construction
of the space M" in [30] requires the existence of sections of £ for some
power of k. In particular if one considers all such sections for all powers of
k then these provide a map to projective space defining M". In comparing
this space to Myyw, instead of considering all sections we will need to restrict
our attention to a certain linear system of sections that comes from "lifting"
sections from complete intersection curves. We therefore need to review the
procedure by which sections of Zf_’a are constructed in the first place.
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The main idea is that for a smooth curve C' C X, GM- and slope semista-
bility of sheaves on C' are equivalent, which means that the point in the Quot
scheme parametrising quotients on C' corresponding to a p-semistable sheaf
on C is GIT semistable for the appropriate determinant line bundle on C,
provided that this line bundle can be constructed (see Section 2.6), and in
particular this is the case for any complete intersection curve C' = X (n—1),

What is required for the construction is that the restriction of the universal
family to C remain flat. By Lemma 5.18, this can be achieved away from a
certain proper subvariety 7 U To C Z, provided C' is well chosen. GIT then
produces nonvanishing sections of this determinant line bundle (see Lemma
5.19 below), which can then be lifted to give sections of a power of of %, 1
away from 7 U7T¢ (see Lemma 5.20 below). One then has to know that 7U7¢
can be chosen in such a way that these sections extend over T U T¢, to give
sections on all of Z. This will be obtained from the stated properties of T U7T¢
in Lemma 5.18 by applying Lemma 5.15.

We now make this more precise. Consider the universal family % — X X
Z, and choose a flag {X(l)}lggn,g as in Lemma 5.16. In particular, write
X(=2) — S for the end-term of this flag. Now we extend this flag to a flag
{X®Y, 1,1 by choosing a curve X(»~Y = C C S.

Let ¢ € K(X)um be a class with ¢; = ¢;(¢) = ¢;(E). Write ¢"~Y = ¢|¢, and
7E,c for the the Hilbert polynomial determined by =1 with respect to Oc(1).
Take m(™~1 to be a (large) positive integer, and write Vo = (CTE’C(m(n_l)), and
correspondingly He = Vo ® Oc(—m("_l)), and let Q¢ C Quot(Hce, 7r,c) be
the subscheme consisting of m("~V-regular quotients ¢p : He — F with de-
terminant J|¢ such that ¢ induces an isomorphism V¢ =, HO (F (m("fl))).
Applying the discussion of Section 2.6 to the universal quotient Ho ® O¢c —
% — 0 we obtain a line bundle fao =%,c — Qc € Pic(Qc).

The point is that because the two notions of stability are equivalent on C,
GIT semistability of points in )¢ suffices to produce sections of a sufficiently
large tensor power of % . Explicitly, we have the following result, see [33,
top of p. 223], [30, Lemma 3.8], and especially [49] for detailed explanations.

Lemma 5.19. For a sufficiently large choice of m™ Y for any quotient qr
Ho — F giving a point qr € Q¢, the sheaf F is semistable with the property
that the natural map Vo — HO(F(m("=Y)) is an isomorphism iff qF is GIT
semistable for the SL(Ve) linearisation of Lo ¢, i.e., iff there exists a positive
integer r, and an SL(Ve) invariant section o € HO(ZO?g) that does not vanish
at qr. Furthermore, suppose qr,,qr, € Qc are quotients satisfying any of the
equivalent conditions above, so that in particular the sheaves Fi and Fo are
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semistable. Then there is an SL(Ve) invariant section o € HO(Zy5) for some
positive integer k such that 0 = o(F1) # o(F1), (that is, sections of some
tensor power of £y ¢ separate qr, and qr,) iff F1 and Fa are not s-equivalent.

We now state the following key lemma, which produces sections of a tensor
power of %, 1 from the sections given by the previous lemma. This is implicit
in [30], but we find it useful to formulate an explicit statement concerning this
point here.

Lemma 5.20. Let C C S be a curve satisfying the hypotheses of Lemma
5.18, so that in particular C is the end-term of a flag {X(l)}lglgn,l such
that % |cx z\(TuT ) 1 flat. There exist positive integers ko, kn—1 such that for
all k € N there exist natural linear "lifting” maps

E%,C . HO(QC7$0(§7§CICI€0)SL(VC) SN HO(Z,gf_kfn_l>SL(V)

such that the following holds: If (qr : H — F) € Z\(T U T¢) is a quo-
tient, qr., : Hc — Fc is a quotient realisation of Fo = Flco, and o €
HO(QC,ZO?CMO)SZ(VC) is a section, then Ly o(0)(qF) # 0 if and only if o(qr,.) #
0. In particular, if qr € Z is a quotient such that F|xq) remains semistable

for all members of the flag, then for k large enough there is a section of
H%Z,fﬁf"‘l)s"(v) that does not vanish at qr.

Proof. The construction of the lifting map is in [30, Sect. 3.3], the numbers
kn—1 and ko are determined by [30, Eq. (3.15)]. This gives a section in the
space HO(Z\T U T, £2%1)SL) By the construction of the sets T and
To, and Lemma 5.15, these sections extend to all of Z. The second statement
follows directly from the existence of the lifting map and Lemma 5.19. 0

We will refer to elements of H°(Z, fﬁf"’l)s"(v) that are lifted from sec-
tions in HO(QC,.,?O@C]MO)SL(VC) in this way as 0-functions of level kk,_1 lifted
from C. Note that since the moduli space M#%% is constructed using sections
of the ffﬁf "~ any f-function o with o(qr) # 0 descends to a section of some
tensor power® of Opzuss(1), which does not vanish at [F]. We will continue to
refer to these induced sections as 0-functions (lifted from C).

5.6. Lifting sections from curves II: the method of [38]. We collect here
some information on an alternative way of "lifting" sections (cf. [38, p. 433-4]),
and its compatibility with the construction described in the previous subsec-
tion. This will later allow us to use very fine results concerning separation
properties of sections in determinant line bundles for families of sheaves on
surfaces obtained by Jun Li in [38] (see the proof of Proposition 5.21 below).

8See Diagrams (5.5) and (5.6) below for a computation of the exact tensor power.
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As mentioned in Section 2.8, the space M*** comes equipped with an ample
line bundle Oppuss(1) and a number N = N,,_; with the property that any flat
family & — X x T° of semistable sheaves (with 7° weakly normal) gives rise
to a unique classifying morphism g : T° — MH#*** so that

Vi (Onguss (1)) = Mg (un—1(c, [On])*". (5-4)

Without loss of generality, as explained in [30, Sect. 4.2|, we may assume that
the section ring of Opsuss (1) is generated in degree one. This induces a "lifting"
map % : HO(MHS, Oppuss (1)) — HO(T°, Mg (un—1(c, [On]))®N). Tt is clear
that if the family & — X xT° is linearized with respect to some G-action on 7°,
then ¢ is G-invariant and so are the sections in % (H?(M#*5, Opuss(1))). The
above applies in particular to the case when T° = Z, & = U and G = SL(V)
and the induced map w:i is an isomorphism. It also applies to the case when
X = Cis acurve, T° = QF, & is the restriction of the universal quotient
bundle % to C x Q¢ and G = SL(V¢) giving an isomorphism @b:;?.

Let now P — T° denote the frame bundle associated to the locally free sheaf
pra«(&(1)). We have a commutative diagram of natural morphisms

p—* .z

P

T° M Hss

As in [33, page 224] and [30, proof of Lemma 3.8] by pulling back through ¢
and pushing down through p for all k € N5 we get a linear map

Le : H(2,. 225N V) — HO(T°, Mg (un—1(c, [On])®N)
which by construction sits in the following commutative diagram
N
HO(ngr?fl )SL(V)

e

HO(T®, Ag (1 (¢, [O)))#) HOMP S, O ()

*

Ve

showing that in this case the two ways of lifting sections are compatible.

Let now X be n-dimensional and let {X(l)}lglgn,l be a flag of complete
intersections with X(»=2) = § and X(»~1) = C. Denote by Ex @ and Jxa)
the restrictions of the smooth bundle E and holomorphic bundle J to X@.
Let T° be a weakly normal base of a flat family & — X x T° of semistable
sheaves, such that its restrictions &0 — X©® x T° to all terms of the flag



80 GREB, SIBLEY, TOMA, AND WENTWORTH

remain flat families of semistable sheaves. By the same arguments as above
and in a canonical way we obtain a map:

Lo H(Qc, Zy 50V — HO(T°, s (un—1(c, [On])*™).

As before, if the family & — X xT° is linearized with respect to some G-action
on T, then the image of Lg ¢ lies inside HO(T°, Ag(un—1(c, [On]))®F1)C.
From the above, we also obtain a commutative diagram

0 1SS w;:c
HY (Mg »OMg'*"'(’fON))
v
o Leq,c
HO(Qo, ZgEoNN0)SHVE) —E HO(T°, Mg, (uo(cle, [Om] o)) 20N M)
L
Lo ¢ £ gl by [30, Eq. (3.5)] (5.5)
Lg

HO(2,. 2,7 NS = HO(T°, A (w1 (e, [O]))or-r 20N

*
Vo

HO(MH#5%, O ppuss (Kn—1Np)) Y

where Ny plays the role of N for the moduli space ME™ (see eq. (5.4)). Here
we have used that HO(Q%S,XO?SO)SL(VC) = HO(QC,,?O?SD)SL(VC) in order to
construct the map ¢ (see [14, Sect. 8.2|).

Moreover these maps are compatible with those arising from the intermedi-
ate spaces X (V)| and in particular from S, in the following sense. Indeed, using
the fact that T is also base for the restricted flat family &gx7o of semistable
sheaves on S and the isomorphism of determinant line bundles proved in [30,
Sect. 3.2.2] we get for the appropriate powers of determinant sheaves a com-
mutative diagram of the form

HO(M#3, Opguss (Fp—1 NoN1) —= HO(T°, Mg (un—1(c, [Og]))Ern-1NoN1N)

i -

HO(MgSS, OMAC{SS(H()NN1)> —_— HO(TO, )\Lg"c (UO(C|C, [OH]C))[@HONNlNO) (56)

i |

HO (M, Opgpss (51 NoN)) ——= H(T°, Mgy (ua(cls, [On]s)) 170N ),

1R

where N; is defined similarly to N and Ny (see again (5.4)).

In the situation of the proof of Lemma 5.20 we may set T° to be equal to
Z\T UTc and & = % . In this case, the map Le in (5.5) is the restriction
map.
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5.7. The 2-dimensional case. The next proposition deals with moduli spaces
of slope-semistable sheaves on surfaces and is implicitly contained in Li’s paper
[38] although not explicitly stated there.

As remarked at various junctures, the construction of the moduli space M#**
proceeds by finding nonvanishing equivariant sections of tensor powers of .%,,_1.
Proving the separation properties of this moduli space therefore amounts to
finding such sections that separate the appropriate quotients (see Section 2.8).
The point of the following proposition is that in the case of surfaces, this may
in fact be achieved by only considering the #-functions that are lifted from a
finite number of fixed curves.

Proposition 5.21. Let (S,O0g(1)) be a polarized smooth complex projective
surface, (r,c1,c2) € Zsg x NS(S) x H*(S,Z) fived topological invariants, let
Mgss be the moduli space of slope semistable sheaves on S with the given
topological invariants and with fized determinant Js. Let A C S be finite.
Then there exist positive integers k and | (depending on k), and smooth curves
CcW ..., c™ ¢ |0x (k)| not intersecting A such that the linear system

Ws € HY(ME**, Oppuss (151.Np))
defined as the span of all 0-functions on Mg* of level ki NoNy lifted from the
curves C .., C™) gives an injective morphism
vg: ME™ — P(W3) .
Proof. Let Z be the weak normalisation of
R C Quot(H, 7(r,c1,¢2)) ,

and consider the family {F;}icz of sheaves parametrised by Z. Choose k >
0, n, and smooth curves CM), ... CM0) ¢ |kH| satisfying the conclusion of
Proposition 5.5. Note that the curves may be chosen such that they in addition
avoid the set A. Let F = F; for some i € Z. By Proposition 5.5 there exists

an index o € {1,...,ng} such that the sheaf F| () remains semistable and
hence by Lemma 5.19 determines a section in HO(QC(M,,iﬂol’]gl(iv)o’“o)s'-(vc<a))

that does not vanish at F| ). Consequently, by Lemma 5.20 we obtain a
section in H°(Z ,fé'illNlNO)SL(V) not vanishing at any quotient associated to
F. This implies that there exists a positive integer [ such that the linear
system Wg defined as the span of all -functions of level (k1 N1 Ny lifted from
the curves C) | ..., C("0) has no base points on Méfss and thus gives a morphism
vg : ME™ — P(W{).

Moreover, it follows from Proposition 5.5 and Lemmas 5.19 and 5.20 that,
after increasing [ if necessary, this morphism separates points of the form
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[(&1,C1)], [(&2,C2)] as soon as & and & are not isomorphic. Namely, if
& = (GrFR)YY and & = (GrF)YY, then by Proposition 5.5 there exists
an a € {1,...n} such that the restrictions of F; and F» to C® are not
s-equivalent, and therefore by Lemma 5.19 there is a section of

0 ®lro N1 No\SL(V . (o
H (Qc(a),fo’c’?g)l 0) Vo)

that separates them on C®, and hence there is an induced lifted section in
HO(2, £ NNoySLV) which separates them on S by Lemma 5.20.

We thus only need to show that by increasing [ again if necessary and by
adding #-functions lifted from further curves C(®) € |kH| avoiding A to this
linear system also points of the form [(£,C1)], [(€,C2)] with C; # Ca get sep-
arated. By a Noetherian induction argument for this it suffices to show that
two fized distinct points [(€,C1)], [(€,C2)] € Wg may be separated by adding
O-functions lifted from further curves as above. This will be done using [38,
Lemma 3.6] by noticing that its proof actually shows that the added curves
may be chosen to avoid A.° Indeed, in order to prove the desired separation, Li
uses f-functions lifted from two general members Dy, , D;, of a pencil of curves
generated by two elements Dy, Dy € |kH| chosen as follows (see [38, p. 441]):
ifCy =30 miP/,Co=>7 m/P"and P = P] = P{ is such that m} # m/
then it is asked that P € Dy and P ¢ Dy, but otherwise Dy, D; are general
in |kH|, in particular disjoint from A\{P}. Thus general elements Dy, Dy, in
this pencil will be disjoint from A. O

Remark 5.22. In particular, in our global setup, for any smooth surface
S C X we obtain by restriction an injective map, still denoted vg, giving an em-
bedding of M's C Mg™ into P(W¢). Here, S is polarised by Og(1) = Ox(1)]s,
the invariants (r,c1, c2) are determined by F|g, and the fixed determinant Jg
is given by J|s.

5.8. The higher dimensional case. The following claim deals with the
higher dimensional case and is the main technical statement of this section. It
will be proved in the sequel.

Claim 5.23. For every point p € M" there exist an open R-saturated neigh-
bourhood U C M", complex vector spaces W;, 1 <3 < m and holomorphic

9See [33, Lemma 8.3.4] for a comparison of the determinant line bundles used. Strictly
speaking, Jun Li works in the case of rank two sheaves with zero first Chern class, but his
computations remain valid in the general case as well, cf. [33, pp. 229/230]. The possibility
of avoiding A in the general case can also be concluded from the less direct argument for
separation presented in [33, proof of Prop. 8.2.13] (in the situation discussed there, let C run
through all smooth curves avoiding A).
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maps v : U — P(W}) such that the fibers of
V=11 X .. XUy :U—P(W])x..xP(W))
are precisely the equivalence classes of R inside U.

The idea will be to consider different surfaces Si, ..., S, arising as last terms
of flags of complete intersections in X, which are moreover fully admissible for
p=[(€,C)], and their corresponding respective domains of admissibility U J’ C
Myuyw, U; C M", j=1,...,m, and to construct morphisms vj: Uj = P(V;)
induced by restriction to the surfaces S; in a way to be made precise. Then,
we will simply define vy X ... X vy, on U = N7, U; and show that the collection
of v;’s has the desired collapsing and separation properties.

We now describe the construction of the surfaces S; and of the morphisms
vj. While we start by explaining how to construct one surface, later we will
see why several such surfaces may be needed. We begin by fixing our setup.

Setup. Let p € M" and ®(p) = [(€,C)] be its image in Myyy. Letdy, ..., dy_o
be a sequence of positive natural number, and (X(l))lglgn,g be a flag of com-
plete intersections of hypersurfaces X; € |Ox(d;)| such that

(1) (XW)1<j<p_o satisfies the conclusions of Lemma 5.16 with respect to
(£,C), the universal family % — X x Z, the subvarieties Z2() C Z
provided by Lemma 5.15, and chosen main reference points z; in 2 (@),

(2) the flag satisfies Langer’s conditions; i.e., the sequence of integers
di,...,dy_o is sufficiently increasing for a repeated application of The-
orem 5.4, and the restrictions of the main reference sheaves to S are
semistable (cf. Remark 5.17).

The following will provide us with the building blocks for the R-invariant
maps we need to construct in order to prove Claim 5.23.

Lemma 5.24. In the Setup, if we denote the last term of the flag by X"~ =
S C X and we let CV), ..., C"0) be the finite set of curves and 1 be the natural
number provided by Proposition 5.21, then the linear system W of sections of
L1 — Z provided by lifting theta functions of level lkgNgN1Np_1 from the
c@ to 2 giwes a rational map n : Z --» P(W§), into the projective space
associated with the linear system Wg, which descends to a rational map

v: M" -—s P(W3)
that is well-defined at the images in M" of the points z; € Z.

Proof. Since %4 — X x Z has the property that %, is torsion free for each
z € Z, choosing arbitrary main reference points z; € Z(®), we see that the
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assumptions of Lemma 5.16 are satisfied. We therefore obtain flatness of % on
restriction to S x Z\T, with 7 C Z the closed subvariety obtained in Lemma
5.16. Moreover, we will assume that the conclusion of Remark 5.17 holds; i.e.,
the restrictions of the main reference sheaves to S are semistable.

According to Lemma 5.18, for any well chosen curve C, we obtain flatness of
the restriction of the universal sheaf to C' x Z\(7T U7¢), where TUTc C Z is a
nonflatness locus which has the property required by Lemma 5.15 for extension
of sections. More precisely, this is the case if the curve C' is chosen regular
with respect to some "secondary reference" sheaves %Zgn_l) |s. This regularity

is guaranteed once the curve C' contains none of the associated points of the
sheaves 02/2@71) |s, which in turn will be the case if C avoids some fixed closed

points on S, one on each associated component of the sheaves %S n-1|s. We fix

A; to be such a (finite) subset of points of S. Moreover, let Ay be the finite set
containing the singular points of the Seshadri graduations of the restrictions
U|s and set A := Ay U As.

Let k be a positive integer as guaranteed by Proposition 5.21 and such that
the conclusion of Theorem 5.4 holds, and let (), .... C(0) be the curves
provided by Proposition 5.21. Let

W HU(Z’gf_lf;n—lNNON1>SL(V)

be the span of all theta functions of the appropriate level obtained by lifting

sections in HO(QC(O‘M‘ZOKOC%(]Z)JleO)SL(VC(a)) and

Wx C HO(M*5%, Opguss (k11N Ny))

the corresponding linear system on M#*; see the discussion in Section 5.6,
especially Diagrams (5.5) and (5.6), which also shows that naturally

P(W*) = P(WE) = P(WZ) . (5.7)

Note that these linear systems are nontrivial, since the flag (X (l))lglgn,g and
the curves C(®) have been chosen so that for each i, the sheaves %, remain
semistable on C(®). By the natural identifications listed in (5.7), the linear
system W gives rise to a rational map 7 : Z --» P(W{) defined at the z;, which
descends to the rational map v : M#** --» P(W§) associated with W, and
hence by restriction yields a rational map v : M" --» P(W§). By construction,
v is defined at the images of the z;, as desired. (|

The following proposition gives the required collapsing property for the map
v. When combined with Corollary 5.13, it will also imply the required separa-
tion property regarding "the double-dual component" of elements of the gauge
theoretic moduli space.
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Proposition 5.25. The rational map v : M'" --» P(W§) constructed in
Lemma 5.24 is well-defined and hence holomorphic on the open set Ug defined
i Proposition 5.14 above.

Moreover, given any polystable sheaf F with [F] € Ug there is a polystable
sheaf F|5 on S such that the map

rug : Us = Mgt [F] = [Fs] ,

1s well-defined and extends the natural rational map Ug --» Mg given by re-
stricting locally free stable sheaves to S. This map makes the following into a
commutative diagram, where vg is as defined in Proposition 5.21 and Remark
5.22:

M
/ TTUS (5.8)
P(W3) » Us .

The map 1y is R-invariant. In particular, v : Us — P(W§) is R-invariant.

Proof. Let p € Ug be an arbitrary point, let F be a polystable representative
of p and set & := FVV.

Recall from Definition 2.11 that v(F) = (F¥Y,Cx), where Cr is the sup-
port cycle of the sheaf Qr = FYV/F. As also introduced there, we set
@f = Qr/T(QF). Note that the associated points of @f correspond to the
irreducible components of Cx. The admissibility of the surface S for ®([F])
hence implies that the hypersurface X’ is regular for 0 7. By [33, Cor. 1.1.14]
the restriction &£|x/ is torsion free on X’. Using this as well as the long exact
sequence induced by restricting the defining sequence of Qr to X', we obtain
an inclusion supp(Torsp , (F|x)) C Supp(’Tor?X(Qf, Ox/)). As X’ does not
contain any 2-codimensional associated point of Qr, the latter subvariety is
at least three codimensional in X, from which we conclude that the torsion of
F|x» on X" will be supported in codimension at least two on X’. Thus v(F|x/)
has a meaning according to Definition 2.11. Setting!'®

Y(F)xr = ((Elx)", (Cr)|x + Cie ) (5.9)
we claim that
(P)x] = [v(Flx)] - (5.10)

As F and & coincide outside of a subvariey of codimension two in X whose
codimension two part is the support of @7, and as X’ intersects this support
in codimension two, equality in the sheaf component follows from reflexivity.

10The definition (5.9) extends the one given in Remark 5.9 in the fully admissible case.
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In order to prove equality in the cycle component, note first that (Cr)|x =
(Cox)lx» = (C5,)|x’, and second that by Lemma 5.10 the last cycle is equal

to C(@f)le’ which is computed on X’. We thus have to show that

C(@;)| = C((QF)‘X’) =—C(F|x/) - Ceelyr) -

X/

Applying Lemma 2.14 to the morphism F|x+ — &|xs one gets —C(F|x/) —
Cielyn) = C(QF)|x1) —C(TOT?X(Q]:, Ox)), so it will be enough to check that

C((QF)lxr) = C((QF)|xr) — C(Tory* (QF, Ox1)) -

For this, we consider the following commutative diagram with exact rows and

columns

0 0
0 —= Tor%*(T(Qr), Ox1) —> Tor®*(Qr, Ox/) 0
0 T(Qr)(-X") Qr(~X') Or(—X") —=0

(5.11)

0 T(QF) o Or 0
0 T(QF)|x Qr|x OF|x 0

0 0 0,

which incorporates the fact that Tor,?x (@;,OX/) = 0 for £k = 1,2 due to
the regularity noticed at the beginning of the argument. Using again that
TOT?X (Qr, Ox) has codimension at least three in X, a computation with the
help of Lemma 2.13 yields the desired equality on the cycle level and finishes
the proof of (5.10).

Note that the above considerations, the admissibility of S for v(F), and the
fact that supp(C(g|,,)) C sing(€) N X’ together imply that S is admissible for
Y(F)|x: as well.

We will next prove the following claim, from which all the statements of the
proposition will follow relatively quickly.

Claim 5.26. In the situation of Lemma 5.24, if F is a polystable sheaf with
[F] € Ug, then on each XU there exist a polystable sheaf FO such that S is
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admissible for v(F®) and such that for 0 <1< n — 3 we have

H(FD)xan] = HFY xan)] = FED)] (5.12)
where FO) .= F, and where v(FY) is defined as in (5.9).

Proof of Claim 5.26. We start by constructing the sheaf 7" on X’. If the re-
striction F|x is torsion free, we just put F' := F|x-, since it is then polystable
by the assumptions of Lemma 5.24 and Langer’s Theorem, Theorem 5.4, as we
noticed in the first paragraph of this proof. The other requirements on F’ are
also satisfied by the discussion preceding the Claim.

If F|xs is not torsion free, we will replace F|x/ by a torsion free sheaf F’
on X' such that [y(F")] = [y(F|xs)]. For this, we recall from Definition 2.21
that M" is the closure of M* inside M**. It follows that [F] is the limit of
points represented by locally free, stable sheaves and that F may be realized
as the central fiber of a one dimensional subfamily of Z all of whose other
fibers are locally free and stable (cf. the discussion at the end of Section 4.1).
The restriction of this family to X’ remains flat since F is torsion free. By
Langton’s Theorem the special fiber F|x: of the restricted subfamily may be
replaced by a sheaf F’ which is semistable on X’. Following the proof of that
theorem presented in [33, Appendix 2B| we will check that (F') = v(F|x/)
on X’. In our case it will turn out to be in fact sufficient to follow the proof
up to the point where one finds a torsion free central fiber . For this we will
proceed along the way sketched in 33, Exercise 2B2|.

We will write .%# for a flat family of sheaves on X’ parameterized by the
unit disk A € C. We suppose that all fibers over A* = A\{0} of .F are
semistable sheaves, that the fiber .%; has torsion and that %,/ Tors(.%#) is
polystable. We consider the torsion filtration 0 C (%) C -+ C Tp—1(Fp) =
Fo of Fy as in [33, Def. 1.1.4]. The idea is to replace the central fiber %
successively by sheaves having no zero-dimensional torsion to begin with, then
no one-dimensional torsion, and so on. So supposing that F(%y) # 0, set
Z ' to be the kernel of the composition of the natural projections .# — %y —
Fo/T(Fo). One gets two exact sequences

0 — R(F0) — Fo — Fo/ T(Fy) — 0,
0 — Fo/ T(Fo) — Fo — To(Fo) — 0
from which one infers with the help of Lemma 2.14 that
FY = (ZH)VY  and  C(F)) =C(F) . (5.13)

If Z¢ continues to have zero-dimensional torsion we construct the sheaf .72
starting from .#! and so on until we obtain some .ZJ"* which has no torsion.
The argument in [33, Appendix 2B| ensures that this happens for some m €
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N. By (5.13) above we have [y(Z)V)] = [v(#J")]. We then look at one-
dimensional torsion and so on. Eventually we obtain a subsheaf .#' C %
coinciding with .# over A* and such that its central fiber .%] is torsion free
with [v(%0)] = [v(Z#})]. Hence, if we set F' := .Z{, then from this equality
together with (5.10) we infer that

V(F)] = W (Flx)] = [y (F)lx] - (5.14)

Recall from the observation made right before Claim 5.26 that S is admissible
for v(F’). Moreover, F' is polystable, since (F')VV = (FYV|x/)VV by (5.13).
Thus, the sheaf F’ fulfills the conditions of Claim 5.26 at level [ = 0.

The sheaves F2) ... F("=2) are now constructed inductively by the same
procedure, using the above family over the disk. O

Now we use Claim 5.26 to prove Proposition 5.25. We again work in the
setup of Lemma, 5.24.

As a first observation, note that if a point p admits a locally free polystable
representative F, then for all o the restriction F|,@) remains semistable on
C(®) . Hence, corresponding sections in .%,_; will exist that do not vanish at p,
and therefore v is defined at such points. For such points we set Fjg := F

S?
and the equality

v([F]) = vs([Fs]) (5.15)
holds by definition of the relevant linear systems and the compatibility of
lifting maps discussed at the end of Section 5.6 (see the proof of Lemma 5.24,
especially the isomorphism (5.7)). In fact, the above holds more generally for
points p admitting a polystable representative F such that the flag is fully
admissible for F, since then F|yu will be semistable on all the X ) by the
assumptions made in the formulation of Lemma 5.24 and Langer’s Theorem,
Theorem 5.4.

Now let p = [F] € Us be arbitrary. We define the sheaf 75 on S to be the
sheaf F("=2) produced by Claim 5.26 in the case | = n — 2. Then p = [F] is a
limit

p=[F] = lim [F;] (5.16)

1—00
of points [F;] € M" with F; locally free and p-stable, and such that
lim [Fils] = [Fjs] € M . (5.17)

As F|s is polystable, there exists an element of Wy that does not vanish at
[Fjis]- Using egs. (5.16) and (5.17), together with the observation made in the
first paragraph of the proof, especially (5.15), and continuity of theta functions
we see that the corresponding element in Wx does not vanish at p. The map
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v is therefore well-defined and hence holomorphic at p, as claimed. Moreover,
again by continuity we conclude that

v(p) = v([F]) = vs([Fys])

which proves commutativity of Diagram (5.8), once we have established that
ryg is well-defined.

To see that ry, is well-defined, let F; and F» be polystable such that [Fi] =
[F2] € Us. By Proposition 2.22 and Remark 2.12 we then get [y(F1)] = [v(F2)],
which together with an recursive application of eq. (5.12) implies

HF )] = W(F)].

We therefore obtain from the surface case of Proposition 2.22 that [.7:1(”_2)] =
[.7:2(”_2)], as needed.

To see that ry is R-invariant, note that if 7, F2 are polystable such that
[F1], [F2] € Ug are in the same R-equivalence class, then by definition this
means that [y(F1)] = [y(F2)] (see the remark made after eq. (4.2)). Hence,
the same reasoning as in the previous paragraph implies that

rus (1)) = [FU2] = [FS2) = rus (1),

The R-invariance of v now follows by the commutativity of Diagram (5.8).
This concludes the proof of Proposition 5.25. OJ

To complete the proof of the main claim, we will have need of one further
lemma, which says that the cycle components C are determined completely by
their restrictions to appropriately chosen complete intersection surfaces. Its
proof, omitted here, follows easily by Noetherian induction.

Lemma 5.27. Let X be a smooth projective variety and Ox (1) be an ample
line bundle. Assume that Ox (k) is very ample. Let Cy be an element in the
variety € := €,—2,4(X) of codimension 2 cycles of degree d on X and for any
surface in X denote by UG C € the open subset of cycles meeting S in at most
finitely many points. Then for any fixed multi-degree divisible by k there exists
a positive natural number m such that the following holds for every sufficiently
general choice of m smooth complete intersection surfaces Si,...,Sm of the
given multi-degree in X :
(1) Cy € ﬂTle”j, and
(2) for allCy,Co € ﬂ;-”leé’j we have C1 = Cq if and only if C1NS; = C2NS;
forallj=1,....m.

After these preparations, we are now in the position to give the proof of the
main technical result of this section, Claim 5.23.



90 GREB, SIBLEY, TOMA, AND WENTWORTH

Proof of Claim 5.23. Fix a point p € M" and let Ug be one of the neighbour-
hoods of p provided by Proposition 5.14. We will write p = [F], for F a
polystable sheaf, and ®([F]) = [(£,C)].

Choose a sequence 0 < d] < do < -+ < dy_o of positive integers that is
sufficiently increasing such that a repeated application of Langer’s Theorem,
Theorem 5.4, and an application of Corollary 5.13 is possible. Let N be the
natural number provided by Corollary 5.13 and assume without loss of general-
ity that it coincides with the maximal number m provided by applying Lemma
5.27 to the cycle spaces €,_24(X), where d runs through the finite set of de-
grees of cycles C forming the second entry in a pair [(£,C)] € Mgywm (cf. Section
2.5.5). Choose m (general) flags satisfying the assumptions made in the Setup
and such that furthermore the conclusion of Corollary 5.13 holds. Denote the
chosen set of flags by ¥. Denote by Si,...,5, the end terms of the flags
contained in X, and by v; : Ug; — P(W)) := P(ngj) and vg; : ng — P(W})
the maps provided by Lemma 5.24 and Proposition 5.21, respectively; see also
Proposition 5.25. Set U :=Ug, N---NUg,, and let

Vi=UL X XUy U —P(W]) x - x P(W)))

be the product map, which is R-invariant by Proposition 5.25. It therefore
remains to show that v separates different R-equivalence classes.

First, let F1, F2 be two polystable sheaves representing points [Fi], [F2] €
M" such that & := Gr(F;)YY and & := Gr(F»)Y" are not isomorphic. Then,
there exists a flag (X(®)) in ¥ that is fully admissible for both [y(F})] =
[(£1,C1)] and [y(F2)] = [(&2,C2)]. Let S; C X be the corresponding sur-
face. If we let U, Us;, — ng be the map produced by Proposition 5.25,
the j-th component of v is equal to

vi([F)) = ng(rUSj ([Fi])) for i =1,2. (5.18)

Since [y(F™ ] = [v(F)ls] # [(F)ls] = H(F2)], it follows from Corol-
lary 5.13 and Claim 5.26 that ru; ([F1]) = [F{""?] and ry, ([F]) = [F5" 7]
define different points in the moduli space M’gj (cf. Remark 4.16). From the
defining property of vg; (see Proposition 5.21) and from eq. (5.18) above we
hence conclude that v([F1]) # v([F2]).

Second, write [F] and [F»] as above for two points of M", where F; and
Fy are polystable, and let [y(F1)] = [(£1,C1)], [v(F2)] = [(£2,C2)] be such
that C; # C3. Note that by the definition of admissibility for any ['] € U
with associated point ®([€]) = [(£,C)] € Muym, we have C € Ué’j for all

j € {1,...,m}. By the choice of m made above there exists an index j €
{1,...,m} such that Ci|s, # Cals,, and therefore [(€1,C1)[s;] # [(£2,C2)ls;]-
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Applying Proposition 5.25 and using injectivity of vg; again, similar to the
first step we obtain

vi([71]) = vs, (rus, ([F1]) # vs; (rus, ([F2]) = v;([F2]) -
This concludes the proof of Claim 5.23. O

Proof of Theorem 1.2. The existence of a complex structure on M yyy mak-
ing the map ® : M" — Mpyyy holomorphic follows from Cartan’s criterion,
Theorem 5.3, together with Claim 5.23.

To prove the other statements, recall that we endowed M}y, with the com-
plex structure such that ® : M*® — My, becomes biholomorphic. Con-
sequently, the induced map ®“" : (M*)"" — (Mjyy)*" of weak normalisa-
tions is likewise biholomorphic. From the discussion in the paragraph before
Definition 2.21 we hence conclude that we have a natural map ¢ : (Mfy)*" —
My fitting into the following commutative diagram:

(Ms)'um( Mﬂ

@wniw lcb

(Miiyy)*™ ——= Muyy -

As the image of (M?®)¥™ is a ®-saturated subset on which the equivalence
relation R built from & is trivial, ¢ is an open embedding, whose complement
is the image of M"\(M?)*™ under ®, and hence Zariski closed.

The natural map (MGM)“’" — M" (see (2.17)) and its birationality have
already been discussed at the end of Section 2.8. 0

Proof of Corollary 1.3. Since ® is finite and surjective, and since M" is pro-
jective and therefore in particular Moishezon, the complex space Myyn is
likewise Moishezon (see [1, Chap. V., Cor. 11], but note that the proof is much
easier for finite maps than for the general case). It hence follows from a result
of Artin (see [2, Thm. 7.3]) that M vy is the analytification of a proper algeb-
raic space. The generalisation of Serre’s GAGA to holomorphic maps between
analytifications of proper algebraic spaces (see again loc. cit.), then implies that
@ is (induced by) a morphism of algebraic spaces. The final statement follows
from the corresponding statement in the analytic category, which is contained
in Theorem 1.2, and the fact that the analytification of the algebraic weak
normalisation of M? is naturally biholomorphic to the weak normalisation of
M? as a complex space (cf. [30, Sect. 2.3]). O
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