S. Mukhopadhyay and R. Wentworth (2021) “Spectral Data for Spin Higgs Bundles,”
International Mathematics Research Notices, Vol. 2021, No. 6, pp. 4211-4230
Advance Access Publication January 16, 2019

doi:10.1093/imrn/rny296

Spectral Data for Spin Higgs Bundles

Swarnava Mukhopadhyay'! and Richard Wentworth?-*

ITata Institute of Fundamental Research, Homi Bhabha Road, Mumbai
400005, India and *Department of Mathematics, University of Maryland,
College Park, MD 20742, USA

*Correspondence to be sent to: e-mail: raw@umd.edu

In this paper we determine the spectral data parametrizing Higgs bundles in a
generic fiber of the Hitchin map for the case where the structure group is the special
Clifford group with fixed Clifford norm. These are spin and “twisted” spin Higgs
bundles. The method used relates variations in spectral data with respect to the Hecke
transformations for orthogonal bundles introduced by Abe. The explicit description also
recovers a result from the geometric Langlands program, which states that the fibers
of the Hitchin map are the dual abelian varieties to the corresponding fibers of the
moduli spaces of projective orthogonal Higgs bundles (in the even case) and projective

symplectic Higgs bundles (in the odd case).

1 Results
Let X be a smooth projective algebraic curve of genus g > 2 and p € X. Let Mgpin(N)(X)
denote the coarse moduli spaces of semistable Higgs bundles on X with the special

Clifford group SC(IV) as structure group and fixed Clifford norm of even (+) or odd
(—) degree, respectively. For concreteness and without loss of generality, we require the

Clifford norms to be Oy and Ox(p), respectively. Then /\/l;pin(N) is exactly the moduli

is a moduli space of twisted Spin(iV)

space of Spin(lV) Higgs bundles, whereas MSpin(N)

Higgs bundles (see Section 2.1).
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4212 S. Mukhopadhyay and R. Wentworth

The Hitchin fibration takes the form

m HO(X, K% N=2m+1
RS o Mg o —> BAV) i= Dis X
Spin(V) Spin(V) m—1 170 2i 0 m
@I HOX, K2 @ HO(X,K}) N =2m.
The maps hgpin(N) realize these moduli spaces as algebraically complete integrable

systems whose generic fibers are torsors over abelian varieties. The main goal of this
note is to describe these abelian varieties explicitly in terms of spectral data.

The problem is clearly related to the case of Higgs bundles for orthogonal
groups. Here there is a complete description (see [10, 13]). Hitchin describes the spectral
data in terms of line bundles in the Prym variety associated to the spectral curve
defined by the point in B(V). The construction, which we briefly review in Sections 2.5
and 2.6 below, involves fixing a spin structure on X. In the end, this ancillary choice is
irrelevant, but it gives a hint that hidden in the argument is actually a lift to Spin(IV) (or
SC(IV)). We shall show that these data indeed provide the extra structure of a Clifford
bundle.

To be more precise, let be B(IV) be a generic point. By the spectral curve 7 : S —
X we mean (somewhat unconventionally) the normalization of the branched cover of X
defined by b (see Sections 2.5 and 2.6). Let S = S/o, where o is the natural involution,
and let K(S,S) denote the kernel of the norm map Nmg 5 : J(S) — J(S). Then K(S,S)
is just the Prym variety P(S,S) of the cover p : S — S for N odd, whereas for N even,
P(S,S) C K(S,S) is the connected component of the trivial bundle. In both cases, J,(S)
acts additively on K(S,S) by pulling back via p*, and it acts on J,(X) via the norm map
of the covering S — X. The main result may then be stated as follows.

Theorem 1.1 (Spectral Data). For generic points be B(N), the fiber (hécpin(N))_l(B) is a

torsor over the abelian variety:
Agpinan (X, b) :=K(5,5) x 5,5 Jo(X). (1.1)
In terms of Prym varieties,

. P(S,8) x 5,5 J2(X) N odd;
ASpin(N)(X' b) = _ 2
P(S,S) xg, g, J2(X) N even,
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Spectral Data for Spin Higgs Bundles 4213

where in the even case H, ~ Z/2 is the subgroup of J,(S) generated by the line bundle
defining the étale cover S — S and H; is the annihilator of Hy in J,(S) with respect to

the Weil pairing.

The fact that the right-hand side of (1.1) is connected is not quite obvious (see

Lemma 4.2). We have the following consequence.

Corollary 1.2. The fibers of the Hitchin map for Mgpin(N) are connected.

+
In the case of Mspin(N),

fibers follows from a general result of several authors (cf. [6, 8]), whereas the fact that

that is, Spin(V)-Higgs bundles, the connectedness of the

the fiber structure is the same in the twisted case Mgpin(N) (and hence also connected)
is a consequence of Theorem 1.1. An application of this fact is the following: Hitchin's
construction [11] of a projectively flat connection on the space of generalized Spin(V)
theta functions works as well in the twisted case. This connection was used by the
authors in [15] in their study of strange duality for odd orthogonal bundles.

For a general complex reductive Lie group G, works of Donagi-Pantev [6],
Hitchin [13], and Hausel-Thaddeus [9] show that the Hitchin system associated to G
is dual to the Hitchin system associated to ©G, the Langlands dual group to G. Another
consequence of Theorem 1.1 is an explicit duality for spin bundles. Let Apgpam) (X, b)
and Apsp2m) X, 13) denote the fibers over b e B(IN) of the Hitchin map for the moduli
spaces of projective special orthogonal and projective symplectic Higgs bundles, where

N =2m or N = 2m+ 1, respectively. Then we have the following theorem (see Section 4):

Theorem 1.3 (Langlands Duality). For generic points b, we have the following dualities

of abelian varieties:
- \ -
(1) (ASpin(Zm) X, b)) >~ Apsom) (X, b);

S \V .
@) (ASpin<2m+1>(X'b)) >~ Apgpam) (X, b).

Here is a brief sketch of the main idea behind the proof of Theorem 1.1. First,
spectral data describe an orthogonal bundle V; — X in terms of a line bundle L € K (S, S).
In Section 3.2 we show that if L is modified by a line bundle defined by a generic
point p € S (and its reflection by o), then the new orthogonal bundle obtained is
exactly the Hecke transformation of V; at the point n(p) introduced by Abe [1]. The
result, Corollary 3.4, means that we can move around in the spectral data for orthogonal

bundles via elementary transformations on the bundle itself. This interpretation makes

1.20Z dUNp Gz Uo Jasn puelklep Jo ANsISAUN AQ yEGE8ZS/ L LZ1/9/LZ0Z/2101E/UIWl/WOoo"dno"oIuapes.//:SdRy WOl papeojumod
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it transparent that a choice of lift of V; to a Clifford bundle induces a lift on the
transformed bundle as well (see Corollary 3.5). In this way, a Clifford structure is
naturally defined on V;, L = M2, given one on the orthogonal bundle with “trivial”
spectral data. We then show that the dependence of this structure on M is exactly given
by the action of .J,(S) via the norm map. In Section 4, we prove directly that the abelian
varieties appearing are dual to the ones for the projective symplectic and orthogonal

cases.

2 Preliminaries
2.1 Clifford bundles
Let (V, g) be a complex orthogonal vector space, C(V) the Clifford algebra of (V, g), and
C, (V) the even part. The special Clifford group is defined as follows:
SC(V) = {g e Cy(V) | gvg teVforallve V} .

The induced action of SC(V) on V is by orthogonal transformations and gives rise to an
exact sequence

0 — C* — SC(V) — SO(V) — 0. (2.1)

The Clifford (or spinor) norm of an element g € SC(V) is defined as

Q9) = q(vy)---q(vy)

where g = vy - - vy, for v; € V (any g € SC(V) has such an expression). The spin group is
then Spin(V) := Q~!(1). The restriction of (2.1) to Spin(V) becomes

0 — Z/2 — Spin(V) — SO(V) — 0.

We set SC(V) = SC(CY), where CV has the standard orthogonal structure.

For a connected complex reductive Lie group G, let M denote the coarse moduli
space of semistable G-Higgs bundles on X. In the case G = SC(IV), the Clifford norm
induces a morphism Mgy, — Pic(X), which we also denote by Q. For an SC(N) bundle
P and L € Pic(X), we will denote by P ® L the SC(NV) bundle whose transition functions
are obtained by multiplying those of P and L. It is then clear that

QP®L) = Q(P) ® L°. (2.2)
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Fix p € X, and consider bundles Ox(dp), where d € Z. Then the preimage

by Q of the class of [Ox(dp)] € Pic(X) depends only on the parity of d. Let Mé:pin(N)

be the inverse images of the bundles [O;(dp)]l, for d = 0,1. Therefore, while by
gpin(N)
not correspond to a moduli space of G-bundles for any complex reductive G. The

definition Mgpin(N) = Mgpinay, the space M is a “twisted” component that does
connected components MéEO(N) of Mgo, are labeled by the 2nd Stiefel-Whitney class:
Ve Mgoav) < wy(V) = %1 (cf. [3, Prop. 1.3]), and the projection (2.1) induces a
morphism Mécpin(N) — Méco(N). We refer to [17, Prop. 3.4] for more details.

In this paper, we mostly regard points in Mgoav) as equivalence classes of rank
N semistable orthogonal Higgs bundles: that is, a holomorphic bundle V — X with
nondegenerate symmetric bilinear pairing (, ) : V® V — Oy, and a fixed isomorphism
detV =~ Oy, equipped with a holomorphic map ® : V — V ® Ky satisfying (dv, w) +
(v, dw) =0 forall v,w e V.

2.2 Hecke transformations of orthogonal bundles

We first recall Hecke transformations for orthogonal bundles following Abe [1]. Let V —
X be an orthogonal bundle. Choose a point p € X and an isotropic line t in the fiber vy
of V at p. Let t* denote the orthogonal subspace to 7 in Vp, and set 7; = Vp/rl. We view
7 and 7, as torsion sheaves on X supported at p. Then we may define a locally free sheaf

V7’ — X by the elementary transformation:
0— V> V-1 —0. (2.3)

Next let V¥ = (V*)*. Since the orthogonal structure gives an isomorphism V* ~ T,

dualizing (2.3) yields an exact sequence:
0—-V->V 51,—0 (2.4)

where 7, is a torsion sheaf supported at p of length 1. Now the orthogonal structure also

induces maps
VP @V — Ox(p) and V’ @ V¥ — Oy. (2.5)

Consider the subsheaf V> < V* obtained by composing V> < V in (2.3) with V < V* in
(2.4). Then V*/V" is a torsion sheaf supported at p, and the fiber at p is a rank 2 orthog-
onal space. Since V/V" is isotropic, there is a canonical splitting V*/V° ~ V/V’ @ 1,.

Finally, we define V* C V¥ to be the kernel of the map V¥ — V/V’. Equivalently, there is
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an exact sequence
0— 1V >V -1,—0. (2.6)

Then V' inherits an orthogonal structure from (2.5). Moreover, the exact sequence (2.6)
determines an isotropic line t* in the fiber of V' at p. Finally, from (2.3) and (2.6), the

trivialization of det V induces one for det V*.
Definition 2.1. The (-transform is the map: (V, t) — (V*, t%).

2.3 Hecke transformations of Clifford bundles

We wish to extend the previous discussion to Clifford bundles. For this it is useful to
have a description of the (-transform explicitly in terms of transition functions. Let P be
a special Clifford bundle and V the associated orthogonal bundle. Let A C X be a disk
centered at p, and o : A — P a section. Set X* = X \ {p}. This gives a trivialization of
P and a local frame e, ..., ey for V on A with respect to which the quadratic structure
is, say, of the form (ei,ej) = 5i+j—1,1v- Similarly, we may choose a section of P|y.. Set
A* = X*N A. Let ¢ : A* — SC(V) denote the transition function gluing the bundles
P| 5, and P| x«, and let ¢ : A* — SO(IV) be the quotient transition function for (£, g). The
transformed bundle V* is defined by modifying ¢ by ¢ : A* — SO(V), where

z
1
¢ = : (2.7)
1
Sl
Write z = exp(27i€), Im& > 0, and set
7(2) = exp(i) exp ((rig/2)(e,ey — eye)) . (2.8)

One checks thatE is well defined under & — £+1, and so it yields a map E : A* — SC(I).
Moreover, the projection (2.1) of? to SO(IV) recovers ¢. Gluing the trivial SC(V)-bundles
over A and X* via @‘(z)f(z), we define a new Clifford bundle P'. The associated orthogonal
bundle (with transition function ¢(2)¢(2)) coincides with V'. With this understood, the

main observation is the following:

Proposition 2.2. We have Q(P) >~ Q(P) ® Ox(p). In particular, w, (V") = —wy (V).
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Proof. From (2.8), Q(P") is a line bundle with transition function on A* given by
Q@) = exp(27i£) Q@(2)) Q (exp ((wi&/2)(e, ey — eye)))) = z- Q@ (2))

since exp ((i&/2)(e ey — eye;)) € Spin(IV); hence, the result . [ |

Remark 2.3 We could just as well have chosen a prefactor of exp(—ni§) in (2.8) to
obtain a Clifford bundle with norm Q(P) ®Ip, where Ip denotes the ideal sheaf of p € X.
The two Clifford bundles thus defined are isomorphic after tensoring by O (p). Later
on, however, we shall consider multiple Hecke transformations at points of a reduced,
not necessarily effective divisor D; hence, the points will have a sign. For convenience,
at each point p in the support of D we shall choose exp(£7i§) in (2.8) so that the change

of Clifford norm corresponds to the sign of p.

2.4 Spectral data for symplectic bundles

In this section, following [13] and [10], we briefly recall the explicit description of
generic fibers of the Hitchin map for the groups Sp(2m) and PSp(2m) in terms of
spectral data. Let E — X be a symplectic bundle of rank 2m with pairing (, ), and
® : E -~ E®Ky be a Higgs field such that (v, dw) + (dv, w) = 0, for all sections v, w € E.
The coefficients of the characteristic polynomial of & gives an element b e B(V),
N =2m+ 1. Let 7 : tot(Kyx) — X be the total space of the canonical bundle on X, and let

A :tot(Ky) — m*Ky denote the tautological section. The spectral curve associated to bis
§ = {w € tot(Ky) | A2™ + 7 (bA?" 2 4+ + 7 (byy) = Oatw} (2.9)

We assume that S is smooth. This implies that the last coefficient b,,, of b has simple
zeros at Z(b,,,) C X and that b,,, , is nonzero on Z(b,,,) (see [4]). Let o denote the
involution w > —won S, and S = S/o. In this case, the kernel K(S, S) of the norm map

Nmg5 : J(S) — J (S) is connected and so coincides with the Prym variety P(S,S). Let

_ 1/2
L € P(S,S), and consider U = L ® (KS ®n*K§1) . Since Ky = n*K)Z(m, a square root

of K¢ @ * ;1 can be given by a choice of theta characteristic on X. We then have the

following result of Hitchin.

Theorem 2.4 ([10, Section 5.10]). Let b € B(N) be such that b,,, has simple zeros and

-1

by is nonzero on Z(byy,). Then hgy ., .

)(13) identifies with points on the Prym variety
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P(S,S). The correspondence sends L € P(S,S) to E = n,(U), where
U=L® Kg®n*Ky') Y2 eP(s,S).

The Higgs field ® is obtained by multiplication with A. Conversely, given a symplectic
Higgs bundle (E, ®), let U — S be the line bundle

U = ker(1*E -2 7*(E ® Ky)).

Then L = U ® (Kg ® 7*Kx")/? € P(S,S).

The symplectic structure on E = 7, U is defined as follows. Let ¢ denote a
linearization of o on U. Then (6)% acts as —1 on the fibers. It suffices to define a
nondegenerate skew pairing on sections of U over open sets A C X. For two such sections

u and v, let

6“’”") . (2.10)

<u; V> = trS/X (7

Since ¢ squares to —1, we have

G (wv _ f(Vu
( dn )(Z) = —( e )(G(Z)),

and hence since trg/x(-) = trg x trs/g(-), the pairing (, ) is skew. The fact that it is

nondegenerate follows as in [10].

Let MgSp(Zm) be the moduli space of semistable Higgs bundles for PSp(2m)
that lift to Sp(2m) bundles, and let hpgpapm) : MgSp(zm) — B(N) be the Hitchin map.
Since the Higgs field take values in the adjoint bundles, the natural projection of
Sp(2m) — PSp(2m) give a natural projection Mspiam) = MgSp(Zm)‘ Now Theorem 2.4
has the following consequence:

Corollary 2.5.  The fibers of the Hitchin map hpgy(,,,) are in one to one correspondence
with points P(S, S)/J,(X), where J,(X) acts through pulling back by 7 : S — X.
2.5 Spectral data for odd orthogonal bundles

Let V be a vector bundle of rank 2m + 1 with a nondegenerate symmetric bilinear (, )

form along with a trivialization detV =~ Oy. Let & : V — V ® Ky be a Higgs field
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satisfying (v, ®w) + (®v, w) = 0. Then
det(h — @) = AA2™ 422" 2 oo 4 by,

As in the case of the symplectic bundle, we assume that the zeros Z(b,,,) of b,,, are
simple and that b,,,_, is nonvanishing on Z(b,,,). In [13, Section 4.1] Hitchin shows that
the one-dimensional zero eigenspace of ® generates the line bundle V|, isomorphic to
K™, and that the quotient V; = V/V, is of the form E ® KY? where E is a symplectic
bundle. The symplectic form (, ) on E is induced by the formula (v, v,) = (v, v,), and
the Higgs field @ restricted to E(X)K)l/2 induces a symplectic Higgs field. We again define
the spectral curve S by (2.9), and so the orthogonal bundle gives rise to L € P(S, S).
Going in the other direction, starting with a symplectic bundle (E, ®') we define

an orthogonal structure on V = V, & V; by using b,,, on V,; and

A . _1
M) 2.11)

(u,v) = trg/x ( O

[see (2.10)] on V,. Because the section A is odd, this becomes an even pairing. This only
defines the orthogonal structure on V away from the ramification locus, however, and
extending it to X requires more information. Since the details are not important for this

paper, we simply state the result.

Theorem 2.6 ([13]). Let (E, @) be a generic symplectic Higgs bundle of rank 2m. Then
an associated SO(2m + 1) Higgs bundle is determined by a vector e, € E;, ® K;n_l/z for
each point b € Z(b,,,) satisfying a certain compatibility condition with ®’. In terms of

the spectral data L of E, this is equivalent to a choice of line v, € L,, which squares to

+
SO(@2m+1)

connected component M:sto<2m+1) are isomorphic to P(S, S)/J,(S), where the J,(S)-action

the canonical trivialization of L2 at b. Moreover, the generic fibers of h for each

is via the pullback by p: S — S.

2.6 Spectral data for even orthogonal bundles

In this case, a point in B() is of the form: l; = (by,...,byy_2,Pp), N = 2m. We assume
D, has simple zeros at Z(p,,) and that b,,,_, is nonvanishing on Z(p,,). The curve

defined analogously to (2.9) is

S = {w € tot(Ky) | 22™ + (B )A2™ 2 4 o 4 ¥ (Dyyy_p)A2 + 1 (%) = Oat w]
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The zeros Z(p,,) (which we view also as points in S’) are singularities of S’. With the
assumption above these are the only singularities, and they consist of 2m(g—1) ordinary
double points. Let o be the involution on S’ sending A to —. The fixed points of o are
exactly the singularities. If S denotes the normalization of S, u : S — §’, then since the
singularities are double points, o extends to an involution of S. The relevant diagram

now is the following:
S

!

The double covering p : S — S is unramified, and hence it is determined by a
line bundle £ € J,(S). We will need the following:

™ (2.12)

o
™~

Lemma 2.7. The line bundle £ — S is in the kernel of the norm map Nmg y : JES) —
J(X).

Proof. We prove this by computing detr,Og in two different ways. First, the normal-

ization gives an exact sequence:
0 — Oy — 1,05 — Oyp,,) — 0.
Since w = 7’ o u, this implies
0 — (11,05 — 1,05 — Oy, — 0. (2.13)

Now from general facts about spectral curves, we get det(r'),Og ~ Ky Zmm=b (cf. [4,

Section 3]). So from (2.13) we have
detr,0g ~ Ky "™V @ KIF = K™Y, (2.14)
On the other hand, by the definition of £, p,Og = Og @ L. It follows that

7,05 =7, (p,05) =7,05® 7L

det,0 ~ (detT,05)" ® Nmgy L. (2.15)
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As before (except now note that S C totK%), we have 7,05 ~ @7 'K;*. Plugging this

into (2.15) we obtain
det 7,05 ~ K ™™V @ Nmg,, L.

Now comparing this with (2.14), we conclude that Nmg , £ ~ Oy. |

Returning to the spectral data, as in the symplectic and odd orthogonal cases,
for L € K(S,S) we let V = 7, U, where U = L® (Kg® 7*Ky ') ~!/2. The pairing is defined by

(2.16)

o(u)v

as in (2.10), except that now o squares to the identity so that the pairing is symmetric.
Let P(S,S) C K(S,S) denote the connected component of the identity of ker Nmg 5. Then

we have the following theorem due to Hitchin [10].

Theorem 2.8. The correspondence described above identifies a generic fiber of the

Hitchin map héto(z m) with P(S, S).

The moduli space of PSO(2m)-Higgs bundles has four connected components.
Let MgSO(Zm) denote the neutral component consisting of those bundles that lift to
Spin(2m)-bundles. As an easy corollary of Theorem 2.8 we get a description of the

spectral data:

Corollary 2.9. The generic fibers of the Hitchin map thO(Zm) : MgSO(Zm) — B(2m) are

in one-to-one correspondence with elements of the abelian variety P(S, S) [Ty (X).

3 Spin Structures From Spectral Data
3.1 Case of special spectral data

Lemma 3.1. Fix generic b € B(N). Consider the orthogonal bundles V,:

e forN=2m-+1:
chK)}m@Kierl@...@(’)X@...@K;(n*1@Km

with orthogonal structure given by the pairing of K7 with K/, and Oy an

orthogonal subbundle;
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e forN=2m:
V,=Ky" 0Ky @ 00y @ OKYy ' K™ ® Oy

where the last factor Oy is also an orthogonal subbundle.

Then V, admits a Higgs field @, such that (V,, ®,) is a stable SO(V)-Higgs bundle in the

fiber over b.

Proof. This follows from Hitchin’s construction via the principal s[(2)-embedding for
split real forms (see [12] and also [2, Sections 8.4 and 8.5]). | |

By Theorems 2.6 and 2.8, there is a line bundle L, € P(S, S) such that L. gives
spectral data for (V,, ®,).

Lemma 3.2. Recall that we have fixed a theta characteristic K)l(/ 2 Then K)l(/ 2 also
determines a lift of (V,, ®,) to Spin(V)-Higgs bundles.

Proof. The bundles V, admit quasi-isotropic decompositions W @& W~ & Oy (odd case)
and Wt @ W~ (even case), where det W+ = K;?(mﬂ)/z. Indeed, in the N odd case we take
wt = @?;lKi. For N even, we add to this a choice of isotropic line in Oy @ Oy. It is well
known that a choice of square root of det W+ determines a lift to Spin, and such a root
is determined by Ky/? (cf. [14]). [

3.2 Application of the Hecke transformation for even orthogonal bundles

In Section 2.2 we described how an orthogonal bundle V — X with a choice of isotropic
line 7 at a point p € X gives rise to a new orthogonal bundle V. In this section, we relate
the spectral data of these orthogonal bundles under this transformation. We have the

following.

Proposition 3.3. For L € K(S,S), let V, = n,U, U = L ® (Kg ® n*K;")~!/2, be the
orthogonal bundle associated to L by Theorem 2.8. Choose a point p € S outside the
ramification locus, and let L=LQ® Os(p) ® Ig(p), where Ia(p) denote the ideal sheaf of
the point o (p). The fiber of U at p corresponds to an isotropic line t in the fiber of V; at

m(p). Then V; is isomorphic to the orthogonal bundle V; in Definition 2.1.

Proof. Lett, = V;/t*. It is a skyscraper sheaf supported at 7(p) of length 1. Denote
the orthogonal structure on V; by (, ). By definition of the pairing (2.11) and (2.16),
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7, can be identified with the fiber of U at o (p). Under the direct image, the sheaf map
V, — 1, given by e — (e, 7) corresponds to evaluation U — U, . In other words, the

direct image of the exact sequence
0 —>U®ZL,p)y— U—Uyp — 0
is
0—>VZ—>VL—>‘L'1—>O.

With respect to the orthogonal structure, V]jf = (Vz)* is the direct image of U ® O(p).

Now the direct image of the exact sequence
0—U—U®0s(pp) —U,—0
is
0—>VL—>V2—>t2—>O.

By definition, V; is the kernel of the induced map Vg - V;/ VZ ~ 7, and it follows that

Corollary 3.4. LetL € K(S,S), L = L, ®M ® o*(M*) for M € J(S). Then for any generic

choice of divisor divM, V; is isomorphic to the Hecke transform V} at = (div.M).

Proof. Write the divisor D of M as

D=pi+ - +p,—q — 4

Then
—0(D) =—-0o(py) = —0op) +o(q)+ - +0(qy)
is a divisor of o*(M*), and so M ® o*(M*) has divisor
r s
R (050 © T, ) @ Q) (050 @) ©T,,)

i=1 i=1

Now apply Proposition 3.3 repeatedly. |
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Using the results of Section 2.3 (see Proposition 3.3 and recall the convention in

Remark 2.3), we also have the following:

Corollary 3.5. In addition to the hypothesis of Proposition 3.3, suppose that V; has a
lift to an SC-bundle P;. Then this determines a lift P; of V; to an SC-bundle with

Q(Pp) = QP ® Ox(p).

In particular, if L = L, ® M ® o*(M*), M € J(S), a choice of spin structure on V;_
determines a lift of V; to an SC-bundle Py, with Q(Py,) = Nmg,x (M).

Remark 3.6. Implicit in Corollary 3.4 is the following: if we modify the choice of
divisor D of M by a generic meromorphic function f then there is a natural isomorphism
of the orthogonal bundles obtained by Hecke transformations on 7 (D) and 7 (D + div(f)).
Indeed, multiplication of sections of U (in the proof of Proposition 3.3) by f/o*(f) is
an isometry with respect to the pairing (2.11) or (2.16). Furthermore, in an appropriate
local frame this isometry has the form of ¢ in (2.7), and so the SC-bundles obtained in

Corollary 3.5 are similarly isomorphic.

3.3 Application of the Hecke transformation for odd orthogonal bundles

With small modifications, the arguments of the previous section apply equally well to

the case of odd-dimensional orthogonal bundles. We note the following:

(1) As in Section 2.5, the orthogonal bundle determined by L € Prym(S, S) in the
complement of the ramification locus is isometric to V; = V, & V;, where
Vo= K;m, Vi=E® Kl/z, and E; is the symplectic bundle from Section 2.4;
namely, E; = 7,U, U = L® (Ks ® n*K5")/?. Let p € S\ 71 (Z(b,,,)). Then the
isotropic line for E; at 7w (p) determined by p gives a canonical isotropic line
in V;, and hence also V;, at 7 (p). Tensoring the exact sequences in the proof

of Proposition 3.3 by KY?

, we find as before that the orthogonal structure on
V; coincides with that on V7, L =LR0x(p)®L, (py» away from the ramification
locus.

(2) Now apply the above to the case where L has the form L, ® M ® o*(M"),
M € J(S). The gluing data in Theorem 2.6 depends on a choice of vector
vy, € L| -1 at each b € Z(b,,,,), which squares to the canonical trivialization

of L? at 71 (). Since M ® o*(M*) is canonically trivial at these points, such
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a choice for L, gives one for L as well. As opposed to the even case, because
of the gluing the extended orthogonal bundle V; depends on the choice of M,
even when M € Prym(S, S).

Finally, in this case the procedure of the previous section gives a lift of V; to an SC-
bundle away from Z(b,,,), depending on a choice of square root K)l(/2 on X. To extend

this to X, we note the following result, which is certainly well known.

Proposition 3.7. Let V — X be an orthogonal bundle (odd or even rank) on a smooth
curve X and D C X finite. A lift of V to an SC-bundle on X \ D determines a lift of V to
an SC-bundle on X. The resulting SC-bundle is uniquely determined up to twisting by

divisors supported on D.

Proof. Let P — X denote the principal orthogonal bundle associated to VV. We assume
a lift P on X \ D to a principal SC-bundle. By the uniformization theorem [7, Thm. 3]
we can find a trivialization o_ of P restricted to X \ D. Fix a lift 6_ of o_ to 13, and a
coordinate disk z € A about p € D. Let A* = A\ {p}. Identify P|, with A x SO via a
trivialization o . This also gives a lift of P to a spin bundle on A with trivialization o, .
The transition function for the bundle P identifies o_| . with a section of A x SO, and
so on A* x SO we may write o_ = g- o, for some g: A* — SO.

Now since the group SO is not simply connected the element g may not admit
a lift to g : A* — Spin. If we set z = exp(27i§), then g(z) admits a lift g(§) € Spin. If
g + 1) = g(&), then there is a well-defined map g : A* — Spin. If g(¢ + 1) = —g(§),
then exp(wi§)g(§) gives a well-defined map A* — SC with Clifford norm z. Identifying
9(2)-o, (resp. exp(wi£)g(§)-o,) with o_ defines the transition function for an SC-bundle.
This proves the existence of the extension, and the statement about uniqueness is then

clear. [ |

In the case where L = L, ® M ® o*(M™*), M € J(S), then the lifts g will be to
Spin at every point of Z(b,,,), since this is true when M is trivial. Hence, applying
Proposition 3.7 and the preceding discussion, we see that the conclusion of Corollary 3.5

holds for odd orthogonal bundles as well.

3.4 Proof of Theorem 1.1

The argument can be made uniformly in the even and odd cases. We first consider the

case of trivial Stiefel-Whitney class. Observe that

1.20Z dUNp Gz Uo Jasn puelklep Jo ANsISAUN AQ yEGE8ZS/ L LZ1/9/LZ0Z/2101E/UIWl/WOoo"dno"oIuapes.//:SdRy WOl papeojumod



4226 S. Mukhopadhyay and R. Wentworth

(1) If S — Sramified, then the squaring map surjects P(S, S)/J,(S) onto P(S, S);
(2) If S — Sis étale, then (P(S,S)/J,(S) N P(S,S)) ~ P(S,S) via squaring.

Let P be a spin Higgs bundle in the fiber over b. According to Theorems 2.6 and 2.8, the
underlying orthogonal bundle to P is of the form V;, for spectral data L € P(S,S) (in the
odd case, the dependence is on a square root of L). Recall from Lemma 3.2 that a choice
of theta characteristic determines a spin structure on V. By Corollary 3.5, if we write
L =L,®M? for M € P(S,S), then there is a lift of V; to a SC-bundle P;;. We must check
the dependence of this lift on the choice of M. By Theorems 2.6 and 2.8 and (2) above,
the ambiguity in the orthogonal bundle from the choice of M is the action of J,(S). So
consider M®p*N, for N € J,(S) such that M®p*N is in P(S, S). Let N(t) be a family in J(S),
N(0) = Ogand N(1) = N, and set M(t) = M®p*N(t) € J(S). Thus L = L, @ M (t) ® o *(M* (1))
for all t. By Corollary 3.5, we obtain a family of lifts of V;, to SC-bundles Py, with

2
Q (Pyyp) = N x (M) ® Nimg, 5 (p*N(1)) = (ng/x N(t)) . (3.1)

In (3.1) we have used two facts: first, since M € ker Nmg 5, and Nmg x = Nmg , o Nmg g,
we have Nmg,x (M) = Ox; and second,

Nmgy (p*N (1)) = Nimg,x (Nms 5 p*N(t)) — Nmg (Nz(t)) = (ng/X(N(t)))z .

Now it follows from (3.1) that
Q Py ® (Nmgx N(®) ) = Oy

3
But then Py ® (Nm§ x NV (t)) is a family of spin bundles that lift the fixed orthogonal
bundle V;. The set of such lifts is finite, so the family is necessarily constant. Evaluating
att=0and t =1, we find

Given one lift of V; to a spin bundle, the others are obtained by tensoring by elements of
J,(X). From the above, a change of M is equivalent to the action of J2(§) on J,(X). Since
Nmg )y : J,(S) — J,(X) is surjective (cf. the next section), P = Pyrgp+n for some choice
of N. The proof of the theorem for spin bundles thus follows. The proof in the twisted
case follows similarly by applying the first part of Corollary 3.5 and using the same

argument as above.
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4 Duality

We continue with the same notation as in the previous sections. We may regard J,(X) as

a subgroup of J,(S) by pullback 7*. Using this fact, and dualizing the exact sequence
1 J,(X) 2 J,(5) —> Jy(S)/J,(X) —> 1 (4.1)

we see that [J2(§)/J2(X)]v C J,(S)V. Since the pullback 7* is injective it follows that
Nmg J2(§) — J,(X) is surjective. Recall that K(S, S) = ker Nms/g, whereas the Prym

P(S,S) is the connected component containing Og.

Remark 4.1. In the case where S — S is étale, let H, denote the kernel of the map
J(S) — J(S), and recall that £ € J,(S) defines the cover. Then H; = {Og, L}. Moreover,
if H, C J,(S) denotes the annihilator of £ with respect to the Weil pairing, then pulling
back from S to S gives an identification of the two torsion points of the Prym P,(S, S) ~
H, /H, (cf. [16]).

Now consider the following variety:

K(S,8)% j,5J2(X) :=

{(a,b) € K(S,9) x J,(X)}/{(a-s,b- Nmg,x(s) ~ (a,b) | s € J,(S)}

Observe that K(S, S) X 1,5 J2(X) can be realized as a group quotient of K(S, S) x J,(X) and

hence has a natural group law. Now we define a map ¢ by
L1 P(S,8) — K(S,8) x5, Jo(X) s a > [(a D]

Lemma 4.2. The map ¢ induces the following:

(1) If S — Sis ramified, then

(O R S
L@ L] e e
(2) IfS— Sis étale, then
P(S,S)

ZK S,§ — J X X
[(H,/Hy) /T,X)]” (§,5) % 1,5 J2(X)
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In particular, in both cases, K(S, S) X 7,5 J2(X) is an abelian variety.

Proof. First, suppose S — S is ramified. Let [(a, b)] € K(S,S) X 7,3 J2(X). Since Nmg,
is surjective we can rewrite any representative in the form (a,,1), where a; = as and s
is an element of J,(S) such that Nmg /x(S) = b. In particular, ¢ is surjective. On the other
hand, ker is clearly given by the kernel of Nmg y : J,(S)Y — J,(X)V. This is precisely
[75(5) /7, (X)]v by the exact sequence (4.1).

Now we consider the case where S — S is étale. By [5, Prop. 11.4.3], the pullback
J(X) — J(S) is injective. This implies that the line bundle £ defining the étale cover is
not in the image of J,(X) under pullback. We claim that the image of J,(X) lies in H;.
Indeed, with respect to the Weil pairing (, ), if M € J,(X) then

(ﬁ*M, ,C)§ = (M,ng/x ’C)X =1,

since ng/X(E) = Ox by Lemma 2.7; hence, the claim. It follows that J,(X) injects
into H,;/H, and also that H,/H, surjects to J,(X) under the map Nmg . If [(a,b)] €
K(S,8) X 5,5 J2(X) is such that a € P(S,S), then we can find an element s € P,(S,S) such
that ng/X(s) = b. Then [a, b] = [as, 1], and clearly as € P(S,S). If, on the other hand,
a € K(S,S)\P(S,S), then there is ¢ of J,(S)\H; such that a¢ € P(S,S). By modifying ¢ with
elements in H; and using the surjectivity of Nmg, : H) /Hy — J,(X), we can furthermore
arrange that Nmg, (¢) = Ox. Then we are done with the proof of surjectivity of ¢, since in
this case [a, b] = [a¢, bl. Finally, a € ker implies that [a, 1] = [1, 1] in K(S, S) X 1, Jo(X);
hence, a is two torsion and ng/X(a) = 1, and so by Remark 4.1 the kernel of ¢ is
identified with ((H,/Hy)/J,(X))". |

Lemma 4.3. We have the following isomorphism of abelian varieties.
[P(S,5)/,X)]" ~ K(S,8) x5 Jo(X).

Proof. Let f : A — B be an isogeny of abelian varieties, and AY and BY be the
corresponding dual abelian varieties. Then there exists an isogeny of dual abelian

varieties with the following exact sequence:
1 - (kerf)” - BY - AY = 1, (4.2)

where kerf and (kerf)V are Cartier dual of each other. Consider the case, when S — S
is not étale. Applying the above with A = P(S,S)/J,(X) and B = P(S, S)/J,(S), we obtain
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an exact sequence
1 = (J,(5)/J,X)" — (P(S,8)/,(8)" — (P(S,8)/J,(X))” — 1.

It is well known that (P(S, §)/J2 (§))v ~ P(S,S). Hence, the result follows from Lemma 4.2.
If S — S is étale, then we put B = P(S, §)/(H1 /Hy) and we get an exact sequence

1 — ((H,/Hp)/J,(X))" — (P(S,5)/(H,/Hy))" — (P(S,5)/1,(X))" — 1.
In this case, P(S,S) is principally polarized and, moreover,P, (S, S) ~ H,/H,. Hence
(P(S,S)/(H,/Hy)) ~ P(S,S) ~P(S,S)".
Now using Lemma 4.2 completes the proof. |
Proof of Corollary 1.2 Immediate from Theorem 1.1 and Lemma 4.2. |

Proof of Theorem 1.3 Immediate from Theorem 1.1, Lemma 4.3, and Corollaries 2.5
and 2.9. [ |
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