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DELIGNE PAIRINGS AND FAMILIES OF RANK ONE
LOCAL SYSTEMS ON ALGEBRAIC CURVES

GERARD FREIXAS I MONTPLET & RICHARD A. WENTWORTH

Abstract

For smooth families X — S of projective algebraic curves and
holomorphic line bundles £, M — X equipped with flat relative
connections, we prove the existence of a canonical and functo-
rial “intersection” connection on the Deligne pairing (£, M) — S.
This generalizes the construction of Deligne in the case of Chern
connections of hermitian structures on £ and M. A relationship is
found with the holomorphic extension of analytic torsion, and in
the case of trivial fibrations we show that the Deligne isomorphism
is flat with respect to the connections we construct. Finally, we
give an application to the construction of a meromorphic connec-
tion on the hyperholomorphic line bundle over the twistor space
of rank one flat connections on a Riemann surface.

1. Introduction

Let 7 : X — S be a smooth proper morphism of smooth quasi-
projective complex varieties with 1-dimensional connected fibers. Let
£ be a holomorphic line bundle on X, and denote by wy /g the relative
dualizing sheaf of the family 7. In his approach to understanding work
of Quillen [31] on determinant bundles of families of J-operators on
a Riemann surface, Deligne [13] established a canonical (up to sign)
functorial isomorphism of line bundles on S

(1) det R (£)%12 225 (wys, wi/s) ® (£,£ @ wy ).

The isomorphism refines to the level of sheaves the Grothendieck-Rie-
mann-Roch theorem in relative dimension 1. It relates the determinant
of the relative cohomology of £ (on the left hand side of (1)) to cer-
tain “intersection bundles” (£, M) — S (on the right hand side of (1)),
known as Deligne pairings, which associate line bundles on S to pairs
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of holomorphic bundles £,M — X. The relationship with Quillen’s
construction in Deligne’s approach is in part inspired by Arakelov ge-
ometry, where metrized line bundles play a central role. Given smooth
hermitian metrics on wy,g and £, there is an associated Quillen metric
on det Rmy(£). The relevant input in the definition of this metric is
the (holomorphic) analytic torsion of Ray-Singer: a spectral invariant
obtained as a zeta regularized determinant of the positive self-adjoint
O-Laplacians for £ and the chosen metrics. We will call the associ-
ated Chern connection the Quillen connection on det Rm,(£). Also, the
Deligne pairings in (1) inherit hermitian metrics, defined in the style of
the archimedean contribution to Arakelov’s arithmetic intersection pair-
ing. Using the Chern connections associated to these hermitian metrics,
the cohomological equality

(2) a1 (L, M) = m (e1(£) U er(M))

becomes an equality of forms for the Chern-Weil expressions of ¢; in
terms of curvature. For these choices of metrics, the Deligne isomor-
phism (1) becomes an isometry, up to an overall topological constant.
Consequently, the isomorphism is flat for the Chern-Weil connections,
i.e. preserves these connections. This picture has been vastly general-
ized in several contributions by Bismut-Freed [5, 6], Bismut-Gillet-Soulé
[4, 7, 8], Bismut-Lebeau [9], and others. They lead to the proof of the
Grothendieck-Riemann-Roch theorem in Arakelov geometry, by Gillet-
Soulé [20].

In another direction, Fay [17] studied the Ray-Singer torsion as a
function on unitary characters of the fundamental group of a marked
compact Riemann surface X with a hyperbolic metric. He showed that
this function admits a unique holomorphic extension to the complex
affine variety of complex characters of m(X). He goes on to prove
that the divisor of this function determines the marked Riemann sur-
face structure. As for the classical Ray-Singer torsion, the holomor-
phic extension of the analytic torsion function to the complex character
variety can be obtained by a zeta regularization procedure, this time
for non-self-adjoint elliptic operators. Similar considerations appear in
[27, 11, 30, 12], and in more recent work [23], where Hitchin uses
these zeta regularized determinants of non-self-adjoint operators in the
construction of a hyperholomorphic line bundle on the moduli space of
Higgs bundles.

From a modern perspective, it is reasonable to seek a common con-
ceptual framework for the results of Deligne, Fay and Hitchin, where
the object of study is the determinant of cohomology of a line bundle
endowed with a flat relative connection instead of a hermitian metric.
Hence, on the left hand side of (1), one would like to define a connec-
tion on the determinant of the cohomology in terms of the spectrum
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of some natural non-self-adjoint elliptic operators, specializing to the
Quillen connection in the unitary case. On the right hand side of (1),
one would like to define natural connections on the Deligne pairings,
specializing to Chern connections in the metric case. The aim would
then be to show that the Deligne isomorphism is flat for these con-
nections. This is the first motivation of the present article, where we
achieve the core of this program. Specifically, we address the following
points:

e we define an intersection connection on the Deligne pairing
(L,M) — S of line bundles £, M — X equipped with flat rela-
tive connections (see Definition 2.3);

e in the case of trivial families X = X x .S, we build a holomorphic
connection on the determinant of cohomology by spectral methods.
We then show that the Deligne isomorphism is flat with respect to
this connection and intersection connections on Deligne pairings;

e we recover some of the results of Fay and Hitchin as applications
of our results.

In a separate paper [18], the ideas developed here are used to construct
an intersection theory for flat line bundles on arithmetic surfaces, and
we establish an arithmetic Riemann-Roch in this formalism. The second
raison d’étre of the present article is thus providing the foundations that
sustain this new arithmetic intersection formalism.

We now state the main results and outline of this paper more pre-
cisely. Let £ — X be a holomorphic line bundle! . Let V be a smooth
connection on the underlying smooth bundle L that is compatible with
the holomorphic structure on £ in the sense that its (0,1) part V%!
coincides with the Dolbeault operator 97, induced by £. Suppose in ad-
dition that the curvature Fy of V vanishes on the fibers Xsof 7 : X — S,
we wish to define an associated compatible connection on the Deligne
pairing (£, M). The existence of the Deligne pairing, the construction
of which we briefly review in Section 2.3, relies on the Weil reciprocity
law for meromorphic functions on Riemann surfaces. Similarly, the con-
struction of a connection on (£, M) requires a corresponding property of
V which we will call Weil reciprocity for connections, or (WR) for short
(see Definition 3.1). It turns out that not every connection satisfies this
condition! However, suppose Vy g is a compatible flat relative connec-
tion on L; that is, a family of connections on the restricted line bundles
L|x9 to the fibers of 7 : X — S which varies smoothly in s, and such
that the connections on each fiber are flat and are compatible with the
restricted holomorphic bundles £ ‘DCS (see Definition 2.3). Then we shall
show that Vy,g can always be extended to a smooth connection V on

!Throughout the paper, script notation such as £, M, etc., will be used for holo-
morphic bundles, whereas roman letters L, M denote underlying C*° bundles.
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L that is compatible with £ and which satisfies (WR). Moreover, this
extension is functorial with respect to tensor products and base change
(we shall simply say “functorial”). The extension is unique once the
bundle is rigidified, i.e. trivialized along a given section; in general we
characterize the space of all such extensions. It is important to stress
that the extension is in general not a holomorphic connection: even if
the initial flat relative connection varies holomorphically in s, the ex-
tension will in general only have a smooth (meaning C*°) dependence
on the base parameters of the family X — S.
The precise result may be formulated as follows.

Theorem 1.1 (TRACE CONNECTION). Let £, M be holomorphic line
bundles on m: X — S. Assume we are given:

e g sectiono:S — X;

e a rigidification o*L ~ Og;

e a flat relative connection Vy g on £, compatible with the holomor-
phic structure on L in the sense described above (see also Defini-
tion 2.3).

Then the following hold:

(i) there is a unique extension of Vy g to a smooth connection on L
that is compatible with the holomorphic structure, satisfies (WR)
universally (i.e. after any base change T — S) and induces the
trivial connection on o*L;

(ii) consequently, Vx5 uniquely determines a functorial connection
V?Z’W on the Deligne pairing (L, M) that is compatible with the
holomorphic structure;

(i4) in the case where Vy g is the fiberwise restriction of the Chern
connection for a hermitian structure on L, then v?ﬁ,M) coincides

with the Chern connection for Deligne’s metric on (L, M) (and
any metric on M).

We shall use the term trace connection for the connections V'zz ) that

arise from Theorem 1.1 (see Definition 3.3 for a precise definition). The
extension result makes use of the moduli space of line bundles with flat
relative connections and the infinitesimal deformations of such, which
we call Gauss-Manin invariants Vagumy. These are 1-forms on S with
values in the local system H},(X/S) that are canonically associated to a
flat relative connection Vy g (see Section 2.2). In Section 3 we formalize
the notion of Weil reciprocity and trace connection, and we formulate
general existence and uniqueness theorems in terms of Poincaré bundles.
This provides an explanation for why our constructions are canonical,
and it demonstrates as well the importance of the functoriality condi-
tions. In Section 4 we attack the proof of Theorem 1.1. The main result
is Theorem 4.6, where we show that a certain canonical extension of
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Vy /s satisfies all the necessary requirements. A closed expression for
the curvature of a trace connection on (£, M) is given in Proposition
4.15.

In the symmetric situation where both £ and M are endowed with
flat relative connections, VDLC /s and VZD\C/[/ g» say, the construction in Theo-
rem 4.6 can be modified to produce a connection on the Deligne pairing
(L,M) which takes into account both VjLC/S and V%S. We call these
intersection connections (see Definition 3.13). In the special case where
the V§ /s and Vg‘g/ g are the Chern connections of hermitian structures
on £ and M, the intersection connection is simply the Chern connec-
tion on Deligne’s metric on (£, M). Thus, intersection connections give
a generalization of Deligne’s construction. We formulate this in the
following

Theorem 1.2 (INTERSECTION CONNECTION). Let £, M, be holo-
morphic line bundles on w : X — S with flat relative connections V§/S
and V%S compatible with the holomorphic structures. Then there is a

uniquely determined connection V?L‘tm on (L, M) satisfying:
(i) VZ{KWD s functorial and compatible, and it is symmetric with re-
spect to the isomorphism (£, M) ~ (M, L);
(i) the curvature of VZ(’KW is given by

1
(3) FV?KM) = Tm T (VGMVL U vGMVM) s

where Vaomvrn and Vamvy are the Gauss-Manin invariants of £
and M, respectively, and the cup product is defined in (47);
(iii) in the case where V%S is the fiberwise restriction of the Chern

connection for a hermitian structure on M, then V?th,M) = V?Z}m
(where the trace connection is from Theorem 1.1 and exists under
these hypotheses);

(iv) in the case where both V§/S and V&/[/S are the restrictions of Chern

connections for hermitian structures, then Véztm) is the Chern
connection for Deligne’s metric on (L, M).

We call Vé%fjm the intersection connection of ng/s and V%S. In
Section 5 we illustrate the construction in the case of a trivial family
X = X xS, where the definition of the connections on (£, M) described
in Theorems 1.1 and 1.2 can be made very explicit. Given a holo-
morphic relative connection on £ — X x S, there is a classifying map
S — Pic’(X), and det R, (L) is the pull-back to S of the corresponding
determinant of cohomology. Viewing the jacobian J(X) = Pic?(X) as
the character variety of U(1)-representations of m1(X), and choosing a
conformal metric on X, the determinant of cohomology carries a nat-
ural Quillen metric and associated Chern connection. If we choose a
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theta characteristic x on X, k®2 = wy, and consider instead the map
S — Pic9™}(X) obtained from the family L&k — X, then det R, (L®k)
is the pull back of O(—©). Using a complex valued holomorphic version
of the analytic torsion of Ray-Singer, T'(x ® k), we show that the tensor
product of the determinants of cohomology for X and X (the conju-
gate Riemann surface) admits a canonical holomorphic connection. On
the other hand, in this situation the intersection connection on the ten-
sor product of (£, L) with its counterpart for X is also holomorphic.
In Theorem 5.11 we show that the Deligne isomorphism, which relates
these two bundles, is flat with respect to these connections. The impor-
tance of working with both X and X simultaneously appears as well in
related constructions of Cappell-Miller [12]. The precise relationship of
[12] to the present work will be explained in our second paper [18].
Finally, again in the case of a trivial fibration, we point out a link
with some of the ideas in the recent paper [23]. The space Mjr(X) of
flat rank 1 connections on X has a hyperkéhler structure. Its twistor
space A : Z — P! carries a holomorphic line bundle £z, which may be
interpreted as a determinant of cohomology via Deligne’s characteriza-
tion of Z as the space of A-connections (see Definition 5.14). We will
show how the connection obtained from the intersection connection on
the Deligne pairing of the universal bundle on Myr(X) gives a proof of
the following result (see Theorem 5.15 for a more precise statement).

Theorem 1.3 (Hitchin, c¢f. [24, Theorem 3]). The line bundle Lz
admits a meromorphic connection with logarithmic singularities along
the preimage A"1{0,00}. The curvature of this connection restricted to
each fiber of A over C* is a holomorphic symplectic form. The residue
of the connection at X = 0 (resp. A = 00) is the Liouville 1-form on
T*J(X) (resp. T*J(X)).

Similar methods will potentially produce a higher rank version of this
result; this will be the object of future research.

We end this introduction by noting that considerations similar to the
central theme of this paper have been discussed previously by various
authors. We mention here the work of Bloch-Esnault [10] on the de-
terminant of deRham cohomology and Gauss-Manin connections in the
algebraic setting, and of Beilinson-Schechtman [3]. Complex valued ex-
tensions of analytic torsion and reciprocity laws do not seem to play a
role in these papers. Gillet-Soulé [19] also initiated a study of Arakelov
geometry for bundles with holomorphic connections, but left as an open
question the possibility of a Riemann-Roch type theorem.

Acknowledgments. The authors would like to thank Ignasi Mundet i
Riera for an important comment concerning rigidification, Dennis Eriks-
son for his valuable suggestions concerning connections on Deligne pair-
ings, and Scott Wolpert for pointing out reference [17]. R.W. is also
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2. Relative connections and Deligne pairings

2.1. Preliminary definitions. Let 7 : X — S be a submersion of
smooth manifolds, whose fibers are compact and two (real) dimen-
sional. We suppose that the relative complexified tangent bundle T} ¢
comes equipped with a relative complex structure J : Tr¢c — Trc,
so that the fibers of m have the structure of compact Riemann sur-
faces. It then makes sense to introduce sheaves of (p, q) relative differ-
ential forms A&";}S, p,q € {0,1}. There is a relative Dolbeault operator

0: A& — Agc’/ls, which is just the projection of the exterior differential to

Agc’/ls. The case most relevant in this paper and to which we shall soon
restrict ourselves is, of course, when 7 is a holomorphic map of complex
manifolds. Then, the relative Dolbeault operator is the projection to
relative forms of the Dolbeault operator on X.

Let L — X be a C'* line bundle. We may consider several additional
structures on L. The first one is relative holomorphicity.

Definition 2.1. A relative holomorphic structure on L is the choice
of a relative Dolbeault operator on L: a C-linear map 9, : AY(L) —

A%}S(L) that satisfies the Leibniz rule with respect to the relative 0-

operator. We will write £ for a pair (L,d7), and call it a relative
holomorphic line bundle.

Remark 2.2. In the holomorphic (or algebraic) category we shall
always assume the relative Dolbeault operator is the fiberwise restriction
of a global integrable operator 9y, : A%(L) — A%I(L), so that L — X
is a holomorphic bundle. In order to stress the distinction, we will
sometimes refer to a global holomorphic line bundle on X.

The second kinds of structure to be considered are various notions of
connections.

Definition 2.3.

(i) A connection on L — X is a C-linear map V : AY(L) — Ay(L)
satisfying the Leibniz rule: V(fe) = df ® e + fVe, for local C*
functions f and sections e of L. Its curvature is Fy := VAV € A%C,
and V is called flat if Fy = 0.

(ii) A relative connection on L — X is a C-linear map Vy /g : AS(L) —
Al /S(L) satisfying the Leibniz rule with respect to the relative

exterior differential d : Agc — A%C /s



482
(iii)
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A relative connection on L — X is called flat if the induced con-
nection on L’xg is flat for each s € S.

If Vy/g is a relative connection on a line bundle L — X, then a
smooth connection V on L is called an extension of Vy,g if the
projection to relative forms makes the following diagram commute:

A

Vax/s

If #: X — S is a holomorphic map of complex manifolds, given
a global holomorphic line bundle £ = (L,dr) on X, a connection
V on £ is called compatible with the holomorphic structure if the
(0,1)-part of the connection V%! = 9.

Given the structure of a relative holomorphic line bundle £ =
(L,d1) (see Definition 2.1), a relative connection on L is a relative
connection on the underlying C'*° bundle L that is compatible with
£, in the sense that the vertical (0, 1) part satisfies: (Vy/g)” = 0L
(relative operator).

If 7 : X — S is a holomorphic map of complex manifolds and £ —
X is a global holomorphic line bundle on X, a relative connection on
£ is called holomorphic if it induces a map Vy/g: L — £ ® Q%C/S.

Remark 2.4.

(i)
(i)

(iii)

Note that a holomorphic connection in the sense of part (vii) above
is automatically flat.

If £ is a relative holomorphic line bundle and Vy /g is a flat rel-
ative connection, then its restrictions to fibers are holomorphic
connections.

The important special case (vii) above occurs, for example, when
Vs is the fiberwise restriction of a holomorphic connection on £.
This is perhaps the most natural situation from the algebraic point
of view. However, the more general case of flat relative connections
considered in this paper is far more flexible and is necessary for
applications, as the next example illustrates (see also Remark 5.1
below).

Example 2.5. Let L — X be a holomorphic line bundle with relative
degree zero. Then there is a smooth hermitian metric on £ such that
the restriction of the Chern connection V., to each fiber is flat, and
for a rigidified bundle (i.e. the choice of a trivialization along a given
section) this metric and connection can be uniquely normalized (by
imposing triviality along the section). Abusing terminology slightly, we
shall refer to the connection V., as the Chern connection of L — X.
The fiberwise restriction of V., then gives a flat relative connection
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Vy,s. Note that outside of some trivial situations it is essentially never
the case that Vy g is holomorphic in the sense of Definition 2.3 (vii).

2.2. Gauss-Manin invariant. Let 7 : X — S be as in the preced-
ing discussion, and suppose it comes equipped with a fixed section
o : S — X. The problem of extending relative connections to global
connections requires infinitesimal deformations of line bundles with rel-
ative connections. In our approach, it is convenient to introduce a mod-
uli point of view. Let L — X be a fixed C°° complex line bundle that
is topologically trivial on the fibers and is endowed with a fixed trivial-
ization along o. We set

(4) Mar(X/S) = {moduli of flat relative connections on L}.

Consider the functor of points: {T" — S} — Myr(Xr/T), where T' — §
is a morphism of smooth manifolds and X7 is the base change of X
to T. This functor can be represented by a smooth fibration in Lie
groups over S. To describe it, let us consider the relative deRham co-
homology H},(X/S). This is a complex local system on S, whose total
space may be regarded as a C'*° complex vector bundle. The local sys-
tem Rlm,(2miZ) — S is contained and is discrete in H}5(X/S). We
can thus form the quotient: H},(X/S)/R'm,(2miZ) — S. This space
represents 1I' — Myr(X7/T) by the Riemann-Hilbert correspondence.
Indeed, using the base point we have a well-defined logarithm of the
holonomy map Hom(m(X/S,0),C/2miZ) — S, and the assertion fol-
lows by duality. Therefore, given a pair (£, Vy,g) (or more generally
(£, Vo, 1)) formed by a relative holomorphic line bundle together with
a flat relative connection, there is a classifying C°° morphism

v:S — Hin(X/S)/R'r.(2miZ).

Locally on S, this map lifts to 7 : U — HJ,(X/S). For future refer-
ence (e.g. Proposition 4.15), we note that since the quotient involves
purely imaginary integral forms, Re 7 is well-defined independent of the
lift. Applying the Gauss-Manin connection gives an element Vam? €
H!o(X/S) ® A}, Now since VaumR'm(2miZ) = 0, it follows that the
above expression is actually well-defined globally, independent of the
choice of lift (and we therefore henceforth omit the tilde from the nota-
tion). We define the Gauss-Manin invariant of (£, Vy,g) by

(5) Vamv € Hjp(X/S) ® Aj.
We mention an intermediate condition that is also natural:

Definition 2.6. A flat relative connection will be called of type (1,0)
if Vaur € Hip(X/S) @ Ag.

It will be useful to recall the following, known as the Cartan-Lie for-
mula (cf. [34, Section 9.2.2]). A local expression for Vgymv is computed
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as follows: let s; be local coordinates on U C S and 0, a lifting to
Xy of the vector field 9/0s;. Suppose V is a connection with curvature
Fy such that the restriction of V to the fibers in U coincides with the
relative connection Vy,g. Then

(6)  Vaur = [ty (Fo)|g| @ dsi € Hip(X/8) @ AL,

where “int” is the interior product of vector fields with forms. With
this formula in hand, one easily checks that the Gauss-Manin invariant
is compatible with base change. Let ¢ : T' — S be a morphism of
manifolds. Then there is a natural pull-back map ¢* : H},(X/S)®AL —
H}po(Xr/T) ® AL. Under this map, we have

(7) ©* (Vamr) = Vau(e™v),

where ©*v corresponds to the pull-back of (£, Vy,g) to Xr. Finally, we
introduce the following notation. Let

(8) (Vamv) =M'Vayr € Hyg(X/S) @ AL,
(9) (Vaur)' =T'Vayy € HYy(X/S) © Ak,

where IT', II” are the projections onto the (1,0) and (0, 1) parts of Vv
under the relative Hodge decomposition of C'*° vector bundles

Hip(X/S) = HY(X/S) o H* (X/S).

2.3. Deligne pairings, norm and trace. Henceforth, we suppose
that 7 : X — S is a smooth proper morphism of smooth quasi-projective
complex varieties, with connected fibers of relative dimension 1. Let
L, M — X be algebraic line bundles. The Deligne pairing (£, M) — S
is a line bundle on S defined as follows. As an Og-module, it can
be described locally for the Zariski or étale topologies on S (at our
convenience), in terms of generators and relations. In this description,
we may thus localize S for any of these topologies, without any further
comment:

e Generators: local generators of (£, M) — S are given by symbols
(¢, m) where ¢, m are rational sections of £, M, respectively, with
disjoint divisors that are finite and flat over S. We say that ¢ and
m are in general position.

e Relations: for f € C(X)* and rational sections ¢, m, such that
ff, m and £, m are in general position,

(10) <f£7m> = Ndivm/S(f)<f7m>
and similarly for (¢, fm). Here Ngiy /s : Odivm — Og is the norm
morphism.

The Deligne pairing has a series of properties (bi-multiplicativity, com-
patibility with base change, cohomological construction a la Koszul,
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etc.) that we will not recall here; instead, we refer to [14] for a careful
and general discussion.

Remark 2.7. There is a holomorphic variant of Deligne’s pairing in
the analytic category, defined analogously, which we denote temporarily
by (-, ). If “an” denotes as well the analytification functor from alge-
braic coherent sheaves to analytic coherent sheaves, there is a canonical
isomorphism, compatible with base change, (£, M)2" = (L2 MaM)an,
Actually, there is no real gain to working in the analytic as opposed
to the algebraic category, since we assume our varieties to be quasi-
projective. Indeed, the relative Picard scheme of degree d line bundles
Pic?(X/S) is quasi-projective as well. By use of a projective compact-
ification S of S and P of Pic?(X/S) and Chow’s lemma, we see that
holomorphic line bundles on X of relative degree d are algebraizable.
For instance, if £ is holomorphic on X, after possibly replacing S by a
connected component, it corresponds to a graph I in $2* x Pic?(X/S)2".
By taking the Zariski closure in S° x P, we see that I is an algebraic
subvariety of S x Pic?(X/S)?", and then the projection isomorphism
I' — 52" is necessarily algebraizable. Therefore, the classifying mor-
phism of £, $* — Pic?(X/S)", is algebraizable. For the rest of the
paper we shall interchangeably speak of algebraic or holomorphic line
bundles on X (or simply line bundles). Similarly, we suppress the index
“an” from the notation.

The following is well-known (cf. [15, Thm. 1.1.1]).

Lemma 2.8. Let m : X — S, L, M be as above. Locally Zariski
over S, the Deligne pairing (£, M) is generated by symbols (¢, m), with
rational sections £, m whose divisors are disjoint, finite and étale over
S. In addition, if 0 : S — X is a given section, one can suppose that
div ¢ and divm avoid o.

The relevance of the lemma will be apparent later when we discuss
connections on Deligne pairings. While the defining relations in the
Deligne pairing make use of the norm morphism of rational functions,
the construction of connections will require traces of differential forms.
This is possible when our divisors are finite étale over the base: for a
differential form w defined on an open neighborhood of an irreducible
divisor D < X that is finite étale over S, the trace trp,g(w) is the
map induced by inverting the map 7«* : A’fg — .Alb (which is possible
because D — S is finite étale). The trace is extended by linearity to
WEeil divisors whose irreducible components are finite étale over the base.
The following is then clear:

Lemma 2.9. If D is a Weil divisor in X whose irreducible compo-
nents are finite étale over S, then dlog Np,s(f) = trp/s(dlog f).



486 G. FREIXAS I MONTPLET & R. A. WENTWORTH

2.4. Metrics and connections. We continue with the previous nota-
tion. Suppose now that £, M are endowed with smooth hermitian met-
rics h, k, respectively. For both we shall denote the associated norms
|| - |]. Then Deligne [13] defines a metric on (£, M) via the following
formula:

(11) log [[(¢,m) || = s (log [|m]| 1(£L, k) +log [|€]| daivm) ,

where ¢1 (£, h) = (i/27)Fy is the Chern-Weil form of the Chern connec-
tion V of (£, h) and 7, denotes fiber integration. For the convenience of
the reader, we recall the value of the Chern connection of (£, h) on a non-
vanishing local holomorphic section e is: dlog h(e,e). The curvature is
the (1, 1)-form locally given by Fy = ddlog h(e,e) = ddlog h(e,e). The
expression in parentheses in (11) is log ||¢]| % log ||m|| as defined in [20].
If V is flat on the fibers of X, namely Fy vanishes on fibers, then

log [[(¢,m)||* = 7. (1og [|€]|*6aivm) = traivm/s (log [1€]|)

and

V¢
(12) Dot = tras (0108 1112) = tramys ()
Given a flat relative connection on £, not necessarily unitary, we wish
to take the right hand side of (12) as the definition of a trace connection
on the pairing (£, M). In this case, we define

(13) V{l,m) = tTdiym/s <V€€) ® (L, m).

We extend this definition to the free C°°(S)-module generated by the
symbols, by enforcing the Leibniz rule:

(14) V(p(l,m)) :==dp & ({,m) + oV {{,m)

for all p € C*°(S). Later, in Section 3, we will see that this is the only
sensible definition whenever we neglect the connection on M. To show
that (13) gives a well-defined connection on (£, M), we must verify com-
patibility with the relations defining the Deligne pairing. Because of the
asymmetry of the pair, this amounts to two conditions: compatibility
with the change of frame ¢, which is always satisfied, and compatibility
with the choice of section m, which is not.

Let us address the first issue. Consistency between (10) and (14)
requires the following statement:

Lemma 2.10. With V defined as in (13) and (14), then
V(fﬁ, m> = deivm/S(f) ® <€7 m> + Ndivm/S(f)v<£7 m)
for all f € C(X)* for which the Deligne symbols are defined.
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Proof. By Lemma, 2.9, the right hand side above is
Ndivm/S(f) trdivm/S(leg f) ® <€7 m>

A4
+ Ndivm/S(f) trdivm/S <£> ® <€7 ’I’)’L)
daf V¢
= trdivm/s <f + €> ® (fl,m).
By (13), the left hand side is
V(f¢ d VY
trdivm/S <§¢-£)) ® <f€7m> = trdivm/S (]{ + €> ® <f£7m>
by the Leibniz rule for the connection on £. q.e.d.

The second relation is consistency with the change of frame m +— fm,
f € C(X)* (whenever all the symbols are defined). By Lemma 2.9 and
(14), we require

V{, fm V{,m d
) i)~y s ()
By (13),
V{, fm) Ve - Vg m) Ve
T fmy traiv(fm)/s <£> = m) + tTaiv £/5 <€) .

So (15) is satisfied if and only if

Y24 d
I(f,6.V) = traiv /s <€> — Wdives/s (;) = 0.

Note that under a change ¢ — gf, with div g locally in general position
(i.e. relative to some nonempty Zariski open subset of the base), we
have

I(fagga v) = I(f,E,V) +trdivf/51 (dgg> _trdivg/S (i{) .

But taking the logarithmic derivative of the equation of Weil reciprocity
Naiv /5(9) = Naivgys(f) we obtain trgyy r/5 (dg/g) = traigs (df/f),
and so I(f, ¢, V) is actually independent of ¢ and is defined for all f. In
particular, I(f, V) := I(f,¢, V) depends only on the isomorphism class
of V. Moreover, I(fg,V) = I(f,V)+ I(g9,V). Thus, extending the
trace trivially on vertical divisors, f — I(f, V) gives

I(V): C(X)C — Agg) = lim{I"(U, AL): Zariski open U C S}.

We will say that a connection V on £ — X satisfies Weil reciprocity
(WR) if I(V) = 0. In the next section we elaborate on this notion
as well as a functorial version, whose importance will be seen in the
uniqueness issue. So far, we have shown the following
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Proposition 2.11. If V as above satisfies (WR), then for any line
bundle M — X, V induces a connection on (L, M).

Example 2.12. The Chern connection V., on £ from Example 2.5
induces a well-defined (Chern) connection (£, M) for all M, by using
Deligne’s metric. Notice from (11) that this is independent of a choice
of metric on M. We then clearly have I(V.,) = 0. To see this explicitly,
note that if A is the metric on £ in the frame ¢, then

\Y44
traiv /s V3

= trdivf/s(f)log h) = a(Ndivf/S lOg h) = a’ﬂ'* (log ”£H25d1vf)

= Oy <10g 1)) (21,88 log ]f\2>> (by Poincaré-Lelong)
i

—om. ( (500108 1) tog 17
27
=0, (log ]f]Q(Sdivg) (since Vy g is relatively flat)

= traive/s (i{) .

3. Trace connections and intersection connections

3.1. WEeil reciprocity and trace connections. Consider a smooth
and proper morphism of smooth quasi-projective complex varieties 7 :
X — S, with connected fibers of dimension 1. We suppose 7 is endowed
with a section ¢ : S — X. Let £ — X be a holomorphic line bundle.
Assume also that £ is rigidified along o; that is, there is an isomorphism
o*(L) = Og, fixed once for all.

Let V : AS(L) — A% (L) be a connection on £ (recall for holomorphic
line bundles we usually assume compatibility with holomorphic struc-
tures). We say that V is rigidified along o if it pulls back to the trivial
connection under the fixed isomorphism ¢*(£) = Og. For technical
reasons, we require an enlargement of the notion of Weil reciprocity
from the previous section. The precise definition is the following.

Definition 3.1. We say that the rigidified connection V satisfies Weil
reciprocity (WR) if for every meromorphic section ¢ of £ and meromor-
phic function f € C(X)*, whose divisors div ¢ and div f are étale and
disjoint over a Zariski open subset U C .S with div ¢ disjoint from o, the
following identity of smooth differential forms on U holds:

AV d
(16) traiv £/ (€) = traiv /v <ff> :
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We say that V satisfies the (WR) universally if for every morphism
of smooth quasi-projective complex varieties p : T'— S, the pull-back
(rigidified) connection p*(V) on p*(£) also satisfies Weil reciprocity.

Remark 3.2.

(i) In the definition above and in the sequel, we allow an abuse of
notation such as writing p*(£). Indeed, the actual notation should
be p™* (L), where p': X7 — X is the natural projection induced
from p: T — S. Also, to simplify the presentation, we will write
V instead of p*(V).

(ii) There is a nonrigidified version of this definition. It is also possible
to dispense with the compatibility with the holomorphic structure
of £ (in this case, (WR) is much a stronger condition).

(iii) The assumption that div ¢ be disjoint from o is not essential, but
it simplifies the proof of the theorem below.

(iv) Similarly, it may be possible to prove directly the compatibility
with base change; again, the assumption of universal Weil reci-
procity made here simplifies the arguments.

(v) Condition (16) is highly nontrivial: it relates a smooth (1,0) dif-
ferential 1-form on the left hand side to a holomorphic 1-form
on the right.

Definition 3.3. A trace connection for £ consists in giving, for every
morphism of smooth quasi-projective complex varieties p : T — S and
every holomorphic line bundle M on X7 of relative degree 0, a connection
Dyt on (p*(£), M), compatible with the holomorphic structure on £,
subject to the following conditions:

e (FUNCTORIALITY) If ¢ : T — T is a morphism of smooth quasi-
projective complex varieties, the base changed connection ¢*(Dy()
corresponds to Dgx(pp) through the canonical isomorphism

q*(p" (L), M) = (¢"p* (L), ¢"(M)).

e (ADDITIVITY) Given Dy and Dy as above, the connection Dy
corresponds to the “tensor product connection” Dy®id + id ® Dy
through the canonical isomorphism

(p*(£), M@ M) == (p*(£), M) ® (p"(£), M').

e (COMPATIBILITY WITH ISOMORPHISMS) Given a (holomorphic)
isomorphism of line bundles (of relative degree 0) ¢ : M — M’
on X, the connections Dy and D) correspond through the in-
duced isomorphism on Deligne pairings: (id, ¢) : (p*(£), M) ==
(p*(£), M),

We shall express a trace connection as an assignment (p : 7' — S, M) —
Dy, or just M — Dyy.
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Remark 3.4.

(i) It is easy to check that the additivity axiom implies that Do,
corresponds to the trivial connection through the canonical iso-
morphism (£, Ox) = Og.

(ii) The compatibility with isomorphisms implies that Dy, is invariant
under the action of automorphisms of M on (p*£L,M).

In case that £ is of relative degree 0, a trace connection for £ au-
tomatically satisfies an extra property that we will need in the next
section. In this situation, for a line bundle on X coming from the base
7*(N), there is a canonical isomorphism: (£, 7*(N)) =% N& 48 = 04
(see the proof in the lemma below). With these preliminaries at hand,
we can state:

Lemma 3.5. Suppose that L is of relative degree 0. Then, for any
(p:T — S,M) as above, with M = 75(N), the connection Dy cor-
responds to the trivial connection through the canonical isomorphism
(p*L, M) = Or.

Proof. The statement is local for the Zariski topology on T, so we can
localize and suppose there is a trivialization ¢ : N =% Op. This trivi-
alization induces a trivialization ¢ : 75.(N) = Oy,.. The isomorphism
(p*L, M) = Or is such that there is commutative diagram:

(p*L, M) —— Or

(id,@i lid

(p*L, Ox,) —=— Or.

Observe that if we change ¢ by a unit in O, then the degree 0 assump-
tion on £ ensures (id, ¢) does not change! This is compatible with the
rest of the diagram being independent of . Now we combine: a) the
compatibility of trace connections with isomorphisms, b) the triviality
of DOxT through the lower horizontal arrow, c¢) the commutative dia-
gram. We conclude that Dy corresponds to the canonical connection
through the upper horizontal arrow. q.e.d.

Now for the characterization of connections satisfying (WR) univer-
sally in terms of trace connections. Let V be a rigidified connection
on L satisfying (WR) universally, p : T — S a morphism of smooth
quasi-projective complex varieties, and M a line bundle on X7 of rela-
tive degree 0. If £ and m are rational sections of p*(£) and M whose
divisors are étale and disjoint over an open Zariski subset U C T, and
div ¢ is disjoint with p*o, we define (¢f. (13))

(17> DM<€7 m> = <€7 m> ® tI‘divm/U <v€€> :
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Theorem 3.6. The definition (17) gives a bijection between the fol-
lowing types of data:

o A rigidified connection V on L satisfying (WR) universally.
o A trace connection for L.

Remark 3.7. In Section 2.4 we guessed the formula (13) from the
Chern connection of metrics on Deligne pairings. The theorem above
shows that this is indeed the only possible construction of trace con-
nections, once we impose some functoriality. The functoriality require-
ment is natural, since Deligne pairings behave well with respect to base
change.

Proof of Theorem 3.6. Given a rigidified connection satisfying (WR)
universally, we already know that the rule (17) defines a trace con-
nection for £. Indeed, the condition (WR) guarantees that this rule
is compatible with both the Leibniz rule and the relations defining the
Deligne pairing (Proposition 2.11). The compatibility with the holo-
morphic structure of the trace connection is direct from the definition.

Now, let us consider a trace connection for £, i.e. the association
(p: T — S,M) — Dy, on (p*(£),M), for M a line bundle on X7 of
relative degree 0. Let us consider the particular base change 7 : X — S.
The new family of curves is given by p; : X xg X — X, the projection
onto the first factor. The base change of £ to X xg X is the pull-back
p5(L). The family p; comes equipped with two sections. The first one
is the diagonal section, that we denote §. The second one, is the base
change of the section o, that we write 0. Hence, at the level of points,
o(x) = (x,om(z)). See (18).

p3(L) L

(18) DCXSDC&DlC
( J» W Do

X S

The images of these sections are Cartier divisors in X x g X, so that they
determine line bundles that we denote O(J), O(c). Let us take for M
the line bundle O(§—&), namely O(§)®0O(5)~!. By the properties of the
Deligne pairing, there is a canonical isomorphism (p3(£),0(6 — 7)) =
§*p3(L) ® a*p3Lt. But now, ped = id, and pod = om. Using the

rigidification 0*(£) == Og, we obtain an isomorphism
(19) (p3(£),0(6 =) = L.
Through this isomorphism, the connection Dys_g5) corresponds to a

connection on £, that we temporarily write Vg. It is compatible with
the holomorphic structure, as trace connections are by definition. More
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generally, given a morphism of smooth quasi-projective complex vari-
eties p : T — S, the same construction applied to the base changed
family X7 — T (with the base changed section o) produces a connec-
tion V7 on p*(£), and it is clear that Vo = p*(Vs). We shall henceforth
simply write V for this compatible family of connections. It is important
to stress the role of the rigidification in the construction of V.

First, we observe that the connection V is rigidified along o. Indeed,
on the one hand, by the functoriality of the Deligne pairing with respect
to base change, there is a canonical isomorphism

(20) o"(p3(£),0(0 — 7)) == (£,070(0 — 7)) ~ (£, 0s).

Here we have used the fact that the base change of § and ¢ along
o both coincide with the section o itself, so that ¢*O(6 — o) ~ Og
(recall our abuse of notation for base change, c¢f. Remark 3.2). On
the other hand, the functoriality assumption on trace connections and
compatibility with isomorphisms ensure that through the isomorphism
(20) we have an identification o*(Dg5—5)) = Dog. But we already
remarked that Do, corresponds to the trivial connection through the
isomorphism

(21) (£,0s5) = Os.

Now, the rigidification property for V follows, since the composition of
o* (19)—(21) gives back our fixed isomorphism ¢*(£) == Og.

Second, we show that V satisfies (WR) universally. Actually, we will
see that for (p : T'— S, M), the connection Dy is given by the rule

Dag(tym) = (6m) @ iy ()
for sections ¢ and m as in the statement. Using the fact that Dy, is
a connection (and hence satisfies the Leibniz rule) and imposing the
relations defining the Deligne pairing, this ensures that (WR) for V is
satisfied.

To simplify the discussion, and because the new base T will be fixed
from now on, we may just change the meaning of the notation and
write S instead of T'. Also, observe that the equality of two differential
forms can be checked after étale base change (because étale base change
induces isomorphisms on the level of differential forms). Therefore, after
possibly localizing S for the étale topology, we can suppose that divm =
>_; niD;, where the divisors D; are given by sections o3, and the n; are
integers with >, n; = 0. Because M ~ O}, niD;) ~ ), O(o; — 0)®™,
the additivity of the trace connection and the trace trqjy /5 with respect
to m, and the compatibility with isomorphisms, we reduce to the case
where M = O(0; — o) and m is the canonical rational section 1 with
divisor o; — 0. In order to trace back the definition of V, we effect the
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base change X — S. By construction of the connection V on £ (that,
recall, involves the rigidification), we have

Doi-5 (P36, 1) VL o do*({)
(p3l,1) S ot )’

where we identify ¢*(¢) with a rational function on S through the rigid-

ification. We now pull-back the identity (22) by o;, and for this we

remark that the base change of § by o; becomes o;, while the base

change of o by o; becomes ¢! Taking this into account, together with
the functoriality of Deligne pairings and trace connections, we obtain

Do@=o)(b1) o (VEY _ aoe (45O _ o (VO _ L (VE
T\ )T o ) T%\ ) 7\

\Y4
= traivy/s 7 )

In the second inequality we used that V is rigidified along o, that we
already showed above. This completes the proof of the theorem. q.e.d.

(22)

Remark 3.8. Notice that the above notions do not require £ to
have relative degree 0. It may well be that the objects we introduce
do not exist at such a level of generality. In the relative degree 0 case
we have shown that connections satisfying (WR) universally on £ do
indeed exist and can be constructed from relative connections that are
compatible with the holomorphic structure of £. The latter, of course,
always exist by taking the Chern connection of a hermitian metric. In
the next section, we confirm the existence in relative degree 0 by other
methods, and we classify them all.

Corollary 3.9. Let M — Dy be a trace connection for the rigid-
ified line bundle L. Then there is a unique extension of the trace
connection to line bundles M of arbitrary relative degree, such that
Doy corresponds to the trivial connection through the isomorphism
(L£,0(0)) ~ 0*(L) ~ Og. This extension satisfies the following proper-
ties:

(i) if V is the connection on L determined by Theorem 3.6, the ex-

tension is still given by the rule (17);
(ii) the list of axioms of Definition 3.3, i.e. functoriality, additivity
and compatibility with isomorphisms.

Proof. Let V be the rigidified connection on £ corresponding to the
trace connection M +— Djy¢. Then we extend the trace connection to
arbitrary M by the rule (17). The claims of the corollary are straight-
forward to check. q.e.d.

3.2. Reformulation in terms of Poincaré bundles. In case £ is
of relative degree 0, the notion of trace connection can be rendered
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more compact by the introduction of a Poincaré bundle on the relative
Jacobian. Let m : X — S be our smooth fibration in proper curves, with
a fixed section ¢ : § — X. We write p : J — § for the relative Jacobian
J =J(X/S), and P for the Poincaré bundle on X x g J, rigidified along
the lift ¢ : J — X x g J of the section ¢. This rigidified Poincaré bundle
has a neat compatibility property with respect to the group scheme
structure of J. Let us introduce the addition map w:J xgJ — J. If
T — S is a morphism of schemes, then at the level of T' valued points
the addition map is induced by the tensor product of line bundles on
Xp. If p1,p2 are the projections of J xg J onto the first and second
factors, then there is an isomorphism of line bundles on X xg J xg J,

(23) pP = (p7P) @ (p2P).

In particular, given a line bundle £ on X and its pull-back £ to X x S
J Xg J, there is an induced canonical isomorphism of Deligne pairings,

(L, w*P) = (L, piP) @ (L, piP).

Let M — Dy be a trace connection for £. Then, we can evalu-
ate it on the data (p : J — S,P), thus providing a connection Dy on
(p*L,P). By the functoriality of trace connections, we have p*Dp =
D»p, piDp = Dprp, p3Dp = Dpsp. Furthermore, by the compatibil-
ity with isomorphisms and additivity, there is an identification through
(23): w*Dyp = (p;Dp) ® id +id @(p5Dp). We claim the data M +— Dy
is determined by Dp. For if ¢ : T — S is a morphism of smooth
quasi-projective complex varieties, and M a line bundle on X7 of rel-
ative degree 0, then we have a classifying morphism ¢ : T" — J and
an isomorphism M =% (¢*P) ® (7507M). This induces an isomor-
phism on Deligne pairings (¢*£, M) == (¢*L, (¢*P) ® (7j.07:M)). But
now, because L is of relative degree 0, there is a canonical isomor-
phism (¢*L,7;07M) == Op, and the connection Dys gz is trivial
by Lemma 3.5. Hence, through the resulting isomorphism on Deligne
pairings (¢*L, M) = ©*(p*L,P), we have an identification of connec-
tions ¢* Dp = Dy. Moreover this identification does not depend on the
precise isomorphism M = (¢*P) ® (75.05M), by the compatibility of
trace connections with isomorphisms of line bundles (and hence with
automorphisms of line bundles). The next statement is now clear.

Proposition 3.10. Suppose that L is of relative degree 0. The fol-
lowing data are equivalent:

e A trace connection for L.

e A connection Dy on the Deligne pairing (p*L,P) (compatible with
the holomorphic structure), satisfying the following compatibility
with addition on J:

(24) p* Dy = (p1 D7) ® id +id ®(p3 D).
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The equivalence is given as follows. Let Dy as above, ¢ : T — S a
morphism of smooth quasi-projective complex varieties, and M a line
bundle on X7 of relative degree 0 and ¢ : T" — J its classifying map,
so that there are isomorphisms M = ¢*P @ (75.07M), (¢*L, M) ==
©*(p*L,P). Then, through these identifications, the rule: M —— ¢*Dgp
on (¢*L, M), defines a trace connection for £. The proposition justifies
calling Dy a universal trace connection.

The formulation of trace connections in terms of Poincaré bundles
makes it easy to deal with the uniqueness issue. Let M — Dy and
M — D) be trace connections. These are determined by the respective
“universal” connections Dp and D7,. Two connections on a given holo-
morphic line bundle, compatible with the holomorphic structure, differ
by a smooth (1,0) differential one form. Let § be the smooth (1,0) form
on J given by Dy — D/,. Then, the compatibility of universal trace con-
nections with additivity imposes the restriction on 6: p*0 = pi6 + p30.
We say that 6 is a translation invariant form and denote the space of
such differential forms by Inv(.J)19) c T'(J, A(lj’o).

It remains to consider the problem of existence. The line bundle
(p*L,P) on J is rigidified along the zero section and compatible with
the relative addition law on J. In particular, (p*£,P) lies in JY(S), the
S-valued points of the dual abelian scheme to J. Equivalently, it is a
line bundle on J of relative degree 0. Now (p*£,P) admits a hermitian
metric that is invariant under addition. The resulting Chern connec-
tion is invariant under addition and compatible with the holomorphic
structure. We thus arrive at the following theorem.

Theorem 3.11 (STRUCTURE THEOREM). The space of trace con-
nections for L, and thus of rigidified connections on L satisfying (WR)
universally, is a torsor under Inv(.J)(10),

In Section 4 we will provide a constructive approach to Theorem 3.11.

3.3. Intersection connections. We continue with the notation of the
previous sections. In particular, L — X — S is a holomorphic line
bundle of relative degree zero. In Theorem 3.6 we have related rigidified
connections on £ satisfying (WR) universally and trace connections for
L, as equivalent notions. We have also given a structure theorem for
the space of such objects (Theorem 3.11). There is, of course, a lack
of symmetry in the definition of a trace connection M +— Dy, since
the holomorphic line bundles M require no extra structure. In this
section, we show that given a relatively flat connection on £ satisfying
(WR) universally, we can build an intersection connection “against”
line bundles with connections (M, V). Moreover, if V' is relatively flat
and also satisfies (WR), then the resulting connection is symmetric with
respect to the symmetry of the Deligne pairing. Recall from Definition
2.3 that Fy denotes the curvature of a connection V.
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Theorem 3.12. Let V be a compatible connection on L — X satisfy-
ing (WR), not necessarily rigidified, and such that its vertical projection
Vy,s is flat. Let V' be a connection on another line bundle M — X of
arbitrary relative degree. Then:

(i) on the Deligne pairing (L, M), the following rule defines a connec-
tion compatible with the holomorphic structure:

Dim) i (V'm Ve
) T <m " FV) v m/s (f) |

where w, s integration over the fiber;

(1) if both connections V and V' are unitary for some hermitian struc-
tures, then D is the Chern connection of the corresponding metrized
Deligne pairing;

(1i1) if V satisfies (WR) universally, then the construction of D is com-
patible with base change and coincides with a trace connection when
restricted to line bundles with unitary connections (M, V').

Proof. To justify that the rule D defines a connection, it is enough to
show the compatibility between Leibniz’ rule and the relations defining
the Deligne pairing. One readily checks the compatibility for the change
{ — fl for f a rational function. For the change m — fm, the trace
term in the definition of D already satisfies (WR). We thus have to
show the invariance of the fiber integral under the change m — fm, or
equivalently

f

It will be useful to compare V to the Chern connection V., on £ from
Example 2.5, which we assume is relatively flat (the rigidification is
irrelevant for this discussion). The connection V., also satisfies (WR)
(see Example 2.12). We write: V =V, +60, Fy = Fy_, +df. Then 6 is
of type (1,0) and has vanishing trace along divisors of rational functions.
We exploit this fact, together with the observation that since Fy _, is of
type (1,1) it is O-closed. Write:

T s (i{ A Fv> = T, <C‘l]{ A FVch> + Ty <Cj{ A d9>

(27) = om.(log | f|*Fy,,) + 7« (‘j{ A d9> :

(26) T (df A Fv> =0.

Because Fy,, is flat on fibers,

(28) m.(log|f|*Fv.,) = 0.
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Furthermore, by the Poincaré-Lelong formula for currents on X,
d0log | f|* = 2mi - daiy ¢ Hence, by type considerations,
df

T <f A d9> = . (9log|f|* A 00)

=, (001og|f|* A 6) — Om. (0log |f|* A 6)
(29) = 27 trgiy £/5(0) — Omy (91og IfI? A 0) .

The trace term vanishes by the Weil vanishing property of 6, and the
second term vanishes because the integrand is of type (2,0) and 7 re-
duces types by (1,1). Combining (27)—(29) we conclude with the desired

(26).
The second assertion follows by construction of D, and the third item
is immediate. q.e.d.

Definition 3.13 (INTERSECTION CONNECTION). Suppose that a rel-
atively flat connection V on £ satisfies (WR) universally, and let V' be
an arbitrary connection on M, where M can have arbitrary relative de-
gree. Both connections are assumed to be compatible with holomorphic
structures. Then the connection V?EM) := D on (£L,M) constructed
in Theorem 3.12 is called the intersection connection attached to (£,V)
and (M, V). We write ((£,V), (M, V")) for the Deligne pairing of £
and M with the intersection connection.

The next result is a direct consequence of the Poincaré-Lelong for-
mula.

Proposition 3.14. The curvature of the intersection connection
VZ(ZL:?VD attached to (£,V) and (M, V') is given by: FVZQT,W = 5= (Fy A
Fyr).

Intersection connections satisfy the expected behavior with respect
to tensor product and flat isomorphisms. Furthermore, if £ and M are
line bundles endowed with connections V, V' that satisfy (WR), one
might expect a symmetry of the intersection connections on (£, M) and
(M, L), through the canonical isomorphism of Deligne pairings

(30) (L, M) = (M, L).
This is indeed the case.

Proposition 3.15. Suppose the connections V, V' on L and M both
satisfy (WR) and are relatively flat. Then, the symmetry isomorphism
(30) is parallel (or flat) with respect to the intersection connections.

Proof. Let £, m be a couple of sections providing bases elements (¢, m)
and (m, /) of (L, M) and (M, L), respectively. We denote by T; and
T, the currents of integration against V¢/¢ and V'm/m, respectively.
These currents have disjoint wave front sets. The same holds for the
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Dirac currents dqiv¢ and Ogivm, as well as dqive and V'm/m, etc. For
currents with disjoint wave front sets, the usual wedge product rules
and Stokes’ formulas for differential forms remain true. Applying the
Poincaré-Lelong type equations for T, and T;,, we find the chain of equal-
ities
Vg )
(¢, m)

= lﬂ' v'm NFEFg | + tr Zg
= o * m v divm/S /
1 V'm V'm A4
= — Ty ANdTy | + tl"divg/s + tI"divm/S —
27 m m l
VO nar,) +t VA Ly Vim
/ m Tdivm/S / Tdive/s m

i (Ve vim\ Vgm0
= %ﬂ'* <£ /\Fv/> +trdiv€/5‘ ( m > = <m7€> .

The proof is complete. q.e.d.

= —ﬂ'*
s

For later use, it will be useful to study the change of intersection con-
nections under change of connection on £.

Proposition 3.16. Assume that M has relative degree 0. Let 0 €
(S, A¢%). Then ((£,V +70), (M, V")) = (£, V), (M, V")).

Proof. Let (¢, m) be a local basis of the Deligne pairing. We observe
that . (V/Wm Ad (7?*6)) =T, <Vlm> Adf = 0. The vanishing of the last

m

fiber integral is obtained by counting types: V'm/m is of type (1,0) and
7 reduces types by (1,1). Also, because divm is of degree 0, we have
trdivm/s(770) = (degdivm)d = 0. These observations together imply
the proposition. q.e.d.

4. Proofs of the main theorems

4.1. The canonical extension: local description and properties.
In this step, we work locally on S for the analytic topology. We replace
S by a contractible open subset S°. Hence, local systems over S° are
trivial. We write X° for the restriction of X to S°, but to ease the no-
tation, we still denote £ for the restriction of £. For later use (in the
proof of Theorem 4.6), we fix a family of symplectic bases {a;, 3;}Y_;
for Hi(Xs), that is flat with respect to the Gauss-Manin connection.
Observe that this trivially determines a symplectic basis after any base
change T' — S° that is also flat. We may assume that these are given
by closed curves based at o(s). We view these curves as the polygo-
nal boundary ofv a fundamental domain F, C f)st in the local relative
universal cover X — X°, in the usual way:
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A

an

a(s) ™

In the figure we have written &(s) for a lift of the section o(s) to a
fundamental domain F,. Let v : § — E(X/S) be the C* classifying
map corresponding to (£,Vy/g). By the choice of S°, v |ge lifts to
7:S8° — HIp(X/S). We identify the fundamental groups 1 (Xs, o(s)),
s € 5°, to a single I'. Then to  there is associated a smooth family of
complex valued holonomy characters of I'

xs(’y):eXp<—/ﬂs>, yel, se€85°,
Y

where the integral is taken with respect to any de Rham representative
of U5. Observe that the definition of x5 only depends on v, and not the
particular choice of the lift 7. We can thus write v in the integral. With
this understood, local smooth sections ¢ of £L — X are identified with
smooth functions ¢ on X satisfying the equivariance rule:

(31) l(v%,s) = xs(v)"U(Z,5), v€T, se5°

Rational sections are meromorphic in z € D~CS, for fixed s. Notice that
for every s € S°, we have a holomorphic structure ds on Xs.

Remark 4.1.
(i) We clarify this important construction. Choose a lift 5(s) to X,
lying in &s. The rigidification 0*£ ~ Og gives a nonzero element
ec £|&(S). Using the relative flat connection Vy,, e extends to a
global frame e of L s — f)VCS. Then the pullback of a section ¢ can
be written ¢(Z2)e.
(i) If two lifts of o(s) are related by d2(s) = 7 - 71(s), then ey =
x(v)~'e1, and therefore fo = x(v)f1.
(iii) With the identification above, the relative connection Vy g is given

by ¢ — 0 : Vst/l < dl/?, projected to A%’?SO.

To extend the relative connection we must differentiate ¢ with respect
to s, as well as the factor s — exp ( fv Vs), all in a way which preserves

the condition (31). Note that the dependence on ~ factors through
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homology. Hence, we regard ~ as a parallel section of (R'7,Z)Y on S°.
Then, by the very definition of the Gauss-Manin connection,

(32) dexp(Ly):exp(Ly)dLa:exp(Ly)AVGMV.

Here, the “integral” over v C X; means the 1ntegral of the part of
Vemv in H),(X/S). Now choose any frame {[m]}22, of the local system
H!o(X/S) on S°. Then we may write: Vomy = lel[m] ® b;, 0; €
Aéo. For each s € S§° and ¢« = 1,...,2g, there is a unique harmonic
representative 1;(z, s) of [1;](s) on the fiber Xy (this is a relative form;
recall that harmonic one forms on surfaces depend only on the conformal

structure). For 7 € X, we consider a path joining 5(s) to Z in X,. Then
we set

(33) / Vo =) {/U(S) m(z,s)}@i,

where we have abused notation and wrote n; for its lift to the universal
cover. This expression varies smoothly in s € S° and Z. It is inde-
pendent of the choice of local frame. Indeed, if [f;] = >, Ai;[n;] for
a (constant) matrix (A;;), then 7;(z,s) = >, Aijnj(2,s) (uniqueness
of harmonic representatives), and hence ), Aijéi = §; (since Vgmv is
intrinsically defined). It follows that, since (A;;) is constant,

S o [ e

=1
29 ~
= Z {/( )ﬁj(Z»S)}AijOi

3,j=1

—Z{/ n]zs}ej.

With this understood, on X we extend the relative connection Vy/s by
the following (see Remark 4.1): if 7 € Xs,

(34) Ve =Leo— [ vaur
¢ l a(s)

We claim that this expression descends to a 1-form on X° and is inde-
pendent of the choice of lift of o(s). Both facts follow from the same

argument. Suppose, for example, that go(s) = v (§) are two choices of
local lifts. Then by Remark 4.1 (ii), it follows that £(2) = x(7) 41 (%),
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and therefore dfy/ly = df1 /1 + dlog x(7y). On the other hand,

z Yo1
/ Vomy = Vaemr —/ Vemy — Vemr
701

/ VGMV—/VGMV

g1
= / Vaomv + dlog x(v),
g1

where we have used (32). It follows that V//¢ in (34) is independent of
the lift. The fact that V¢/¢ descends to a 1-form on X° follows by the
same argument. This proves the claim.

From the previous discussion it also follows that given overlapping
contractible open subsets of S, say S7 and S5, the corresponding exten-
sions V1 and V4 agree over the intersection, so that they can be glued
together. Therefore, there exists a smooth connection V: L — L ® A%C
that, locally on contractible open subsets of S, is of the form (34).

Definition 4.2. The extended connection V on L — X given by the
procedure above will be called the canonical extension of Vy,g to X.

Remark 4.3.

(i) It is immediate that V indeed satisfies the Leibniz rule and is a
smooth connection. It is also trivially rigidified along o.

(ii) It is, however, perhaps not so clear that V is compatible with the
holomorphic structure on £, and this will be checked below in
Theorem 4.6.

(iii) From now on, for notational convenience we confound points on
fibers of X° — S° with their lifts to fundamental domains of univer-
sal covers. Therefore, we will write expressions such as VoM.

o(s)
Lemma 4.4. The construction of the canonical extension V is com-
patible with base change.

Proof. The lemma follows from the expression (34) and the compat-
ibility of the Gauss-Manin invariant with base change (7). q.e.d.

Because the line bundle £ — X is of relative degree 0, we can endow
it with the rigidified Chern connection V., which is flat on fibers. We
next show that the Chern connection is the canonical extension of its
vertical projection, as given by the preceding construction.

Lemma 4.5. Suppose that the flat relative connection Vy g is in-
duced by a hermitian structure h on L whose Chern connection is flat
on the fibers, i.e. by the Chern connection Vo, of (£,h) in the sense of
Ezxzample 2.5. Then V¢, coincides with the canonical extension (34) of

Vass-
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Proof. This essentially follows from the construction outlined in Re-
mark 4.1. Choose a point 0 € S, and let X = Xy. We assume a local
C™ pointed trivialization of a restriction X° over a contractible sub-
set 0 € S° of S: hence, X° ~ X x S° with the section o(s) mapping
to a fixed point ¢ = ¢(0) € X. We fix a hermitian metric on a bun-
dle L — X with a fixed C'°° trivialization, so that we have a nowhere
vanishing smooth section 1 of L with ||1|| = 1. The connection V.,
gives a family of fiberwise flat unitary connections on £ — X°, and
up to isomorphism we may assume that the pull-back of £ to X x S°
is isometrically identified with the trivial extension of L to X x S°.
Hence, on L — X we have a family V; of flat unitary connections.
Let X denote the universal cover of X , and o a lift of the base point
o =0(0) € X. Let d denote the trivial connection on L with respect
to its trivialization, i.e. d(1) = 0. Then we may write Vg = d 4+ A5. By
again applying a unitary gauge transformation, we may assume that Ag
is a harmonic 1-form on X for each s. Set e; = exp (— f; As) -1. Then
the extension e of es to X x 5° is a vertically flat section, well-defined
on X x S°. Let A be the difference of the Chern and trivial connections
on X x S° and ds; the de Rham operator on the S° factor. Then on
X x5, Vagpe=(—A—ds [ A)e+ Ae = (—d, [ A) e. By definition
of the integral in (33), <—ds f;(s) A) L:O = (= JZ Vauven) ‘8:0, where
Vamven is the Gauss-Manin invariant for the Chern connection. We
conclude that V. e/e = — fUZ VaumVen at s = 0. On X, the equivariant

function ¢ on X x S° associated with a section ¢ satisfies: £ = /- e, and
SO

Vel dl Ve dl /
(35) 7 7 + o 7 i GMVch
at s = 0. Since the choice of base point 0 € S was arbitrary, this
completes the proof. q.e.d.

Theorem 4.6 (CANONICAL EXTENSION). The canonical extension
V is compatible with the holomorphic structure on L, and it satisfies
(WR) universally. Moreover, it is rigidified along the section o.

Proof. Again we work locally on contractible open subsets S° of S.
For the first statement, it suffices to show that for any meromorphic
section ¢ of £, (V€/€)®* = 0. The restriction of this form to the fibers
of X° vanishes; hence, with respect to local holomorphic coordinates
{si} on S° we may write

(36) (%) - > s

for functions ¢; on X°. We wish to prove that the ¢; vanish identically.
Write V = Vi + 0, where V is the Chern connection as in the proof of
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Lemma 4.5. By the construction (34) of the canonical extensions,
ol ol : :
37 Ol==-_Zy / (Vamro)™ — / (Vamr)"t.
e o Jo(s) a(s)
Now from the definition of the Gauss-Manin integral (33), for fixed s

z

the expression / (VGMV)O’l is a harmonic function of z. Similarly for
o(s)
vp. Taking 90 of (37), it then follows that the dz A dz term of 990%!
vanishes. But by Lemma 4.5, %! = (V£/0)™ — (Vol/0)™ = (Ve/0)™,
and so in (36), 0,0zp; = 0 for all i. Hence, the ¢; are harmonic, and
therefore constant along the fibers of X°. But they also vanish along o,
and so vanish identically, and the first statement of the theorem follows.
It remains to prove that V satisfies (WR) universally. By the com-
patibility of the construction of V with base change (Lemma 4.4), it is
enough to work over S°. Also, in the proof we are allowed to do base
changes of S° induced by étale base changes of S, since equalities of
differential forms are local for this topology. For the proof we follow
the argument for classical Weil reciprocity for Riemann surfaces. Recall
that for a holomorphic differential w and nonzero meromorphic function
f on a Riemann surface X with homology basis {«;, 5;}, we have (cf.
[22, Reciprocity Law I, p. 230])

o o T owin [ - [41)

pediv(f)

where the left hand side is independent of the base point o because
degdiv(f) = 0. The divisor of f is understood to be restricted to the
fundamental domain delimited by the curves representing the homology
basis. We note two generalizations of this type of formula:

(i) in (38), we may use an anti-holomorphic form @ instead of w.
Indeed, the periods of df/f are pure imaginary, and the assertion
follows by conjugating both sides;

(ii) in families, if div f/S is finite étale over S, then after étale base
change we can assume the irreducible components are given by
sections. Applying this, the previous comment, and the Hodge
decomposition to the cohomological part of Vamy, we have for
each s,

p(s)
omi Y ordy)(f) / " Vemy =

p(s)ediv(f(-;s))
df df
VGMV/ —/ - VGMV> .
Z( o i f a; f Bi

i=1

(39)
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Here {ay, 3;} is a parallel symplectic basis of (R'7.Z)" on S° as
fixed in the beginning of Section 4.1.
There is a second version of Weil reciprocity (cf. [22, p. 243]) for pairs
f, g of meromorphic functions

2mi Z ordy(g) log f(q) — 2mi Z ord,(f)logg(p) =
q€ediv(g) pediv(f)
(40) g

Z:(/ac.l){ ﬁiilg_/aidgg/ii{v’

1

which applies also to families (after possible étale base change, to as-
sume the components of the divisors are given by sections). Again, the
divisors are taken in the fundamental domain delimited by the homology
basis.

We now apply (40) in the case where div f/S is finite étale and g =
{ (regarded as an equivariant meromorphic function fiberwise). We
observe that the periods of df/f are constant functions on the base S°
(they belong to 27iZ). Taking derivatives and appealing to (32) and
(39), results in the string of equalities

27ritrdiv€/3° <C‘i]{> — 27Titrdivf/so (?)

S (4 e 5o

z
= 27Titrdivf/so </ VGMV> .
o

Therefore by (34), traiv/se (df /f) = traiy 750 (VE/L). In other words,
V satisfies (WR). The rigidification property is immediate from the
construction (34). This completes the proof of Theorem 4.6. q.e.d.

\
=&
SN—

Bi

4.2. The canonical extension: uniqueness. In this section we prove

the uniqueness of the extension obtained in the previous section. In fact,

we will prove a little more. Let 6 € .Agc satisfy the following properties:

(V1) rigidification: o*(6) = 0;

(V2) the pull-back of # to any fiber Xy, s € S, vanishes;

(V3) vanishing along rational divisors, universally: given a smooth mor-
phism of quasi-projective complex varieties p : T'— S, and a mero-
morphic function f on the base change X7 whose divisor is finite
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étale over T', we have trg;, r/7(p*0) = 0. Here we write p*f for the
pull-back of 8 to X7 by the induced morphism X7 — X. We call
this the Weil vanishing property, and it appeared already in the
proof of Theorem 3.12.

Proposition 4.7 (VANISHING PROPERTY). Let 6 be a smooth com-
plex differential 1-form on X, satisfying properties (V1)—(V3) above.
Then 0 vanishes identically on X.

Proof. The vanishing of a differential form is a local property, so we
may assume that Q}g is a free sheafon S. Let 61, ..., 6, be a holomorphic
frame for Qf. Then, 01,...,0,,01,...,0, is a frame for A}. Because 0
vanishes on fibers by (V2), on X we can write 0 = >, fir*0;+>_, gim*0;,
for some smooth functions f;, g; on X. Observe that f;, g; vanish along
the section o (V1) (by the independence of 61, ...,60,,01,...,0,). They
also satisfy the Weil vanishing property (V3). For this, we need to
observe that for a smooth morphism p : T" — S, the differential forms
p*0;, p*0; are still stalk-wise independent, so are their pull-backs to
X7 (because X7 — T is smooth).?2  We want to show these functions
identically vanish. We are thus required to prove that a smooth complex
function ¢ : X — C satisfying (V1) and (V3) automatically satisfies
(V2), and therefore vanishes.

Let us observe that Weil vanishing for functions implies something
more. Let D be a divisor in X, finite and flat over T'. Then the trace:
trp,r(), can still be defined as a continuous function on 7', by aver-
aging on fibers and taking multiplicities into account (for this one does
not even need 7' — S to be smooth). Hence, if trp 7 (¢) vanishes over a
Zariski dense open subset of T', then it vanishes everywhere by continu-
ity. This is the case for D = div f, where f is a rational function on Xp
with finite flat divisor over 7. Indeed, there is a dense (Zariski) open
subset U C T such that D is finite étale over U. This means that the
WEeil vanishing property holds for rational divisors whose components
are only finite and flat.

Recall that the relative Jacobian J := J(X/S) — S is a fibration
of abelian varieties over S, representing the functor T+ J(T') of line
bundles on X7 of relative degree 0, modulo line bundles coming from
the base. Here, we will exploit the fact that the total space J is smooth
(because S is smooth), and therefore can be covered by Zariski open
subsets U, which are smooth and quasi-projective over S! The natural
inclusion of a Zariski open subset U — J corresponds to the universal
rigidified (along o) Poincaré bundle restricted to Xy, and for small
enough U, one can suppose this line bundle is associated to a divisor in
Xy, finite flat over U. We will call this “a universal” finite flat divisor

2Note, however, that this property is lost in general if p : T — S is not smooth.
This explains the restriction to smooth base change in (V3).
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over U. It is well defined only up to rational equivalence (through
rational divisors which are finite flat over the base).

We proceed to extend ¢ : X — C to a continuous function ¢ : J — C,
whose restriction on fibers is a continuous morphism of (topological)
groups (for the analytic topology). Let U be a Zariski open subset of
J, such that Xy affords a “universal” finite flat divisor of degree 0 over
U. Denote this divisor Dy. Then, trp, /;7(¢) is a continuous function
on U. Moreover, it only depends on the rational equivalence class of
Dy, by the Weil vanishing property (extended to finite flat rational
divisors). Because of this, given U and V intersecting open subsets
in J(X/S), we also have trp, /7 (¢) [unv= trp, v (¢) [unv. Therefore
these functions glue into a continuous function ¢ : J — C. The linearity
of the trace function with respect to sums of divisors, guarantees that
@ is compatible with the group scheme structure. Namely, given the
addition: p: J xgJ — J, and the two projections p; : J xgJ — J, the
following relation holds: p*¢ = pj@ + p5p. This in particular implies
that @ is a topological group morphism on fibers and immediately leads
to the vanishing of @ on fibers; hence, everywhere. Indeed, a given
fiber Js (s € S) can be uniformized as C9/A, for some lattice A. The
corresponding arrow C9 — C induced from @ is a continuous morphism
of topological abelian groups, and it is therefore a linear map of real
vector spaces! Because the map factors through Js, which is compact,
its image is compact, and hence is reduced to {0}.

Finally, let ¢ : X < J be the closed immersion given by the section o.
Because of the rigidification of ¢, we have ¢ = ¢t*¢ = 0. This concludes
the proof of the proposition. q.e.d.

Corollary 4.8 (UNIQUENESS). Suppose that we are given Vi,Va
smooth connections on L — X (hence non-necessarily compatible with
the holomorphic structure) satisfying the following properties:

(E1) they are both rigidified along the section o;
(E2) they coincide on fibers Xs, s € S;
(E3) they satisfy the Weil reciprocity for connections, universally.

Then V1 = Va. Therefore, the canonical extension is unique.

Proof. Indeed, we can write V1 = Vo460, where 6 is a smooth 1-form.
Then properties (E1)—(E3) ensure that 0 satisfies (V1)-(V3). By the
vanishing lemma, 6 = 0, so V1 = V3 as required. The consequences for
the canonical extension follow, since they satisfy (E1)-(E3). q.e.d.

A second application of the vanishing lemma is an alternative proof of
the compatibility of a connection V on £ with the holomorphic structure
(see Theorem 4.6).
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Corollary 4.9 (COMPATIBILITY). Let £ — X be a holomorphic line
bundle with smooth connection V (non-necessarily compatible with the
holomorphic structure on L) which:

(H1) is rigidified along the section o;
(H2) is holomorphic on fibers;
(H3) and satisfies the Weil reciprocity for connections, universally.

Then V is compatible with the holomorphic structure on L. In particu-

lar, the canonical extension is compatible with the holomorphic structure
of L.

Proof. Because V is holomorphic on fibers, £ is of relative degree 0
and can be endowed with a Chern connection V.,. We can suppose
V., is rigidified along the section o (H1) (because £ is rigidified). We
already know that V., satisfies (H2)—(H3) (see Example 2.12). Also,
Ven is compatible with the holomorphic structure £, by definition of
Chern connections. Hence it is enough to compare V and V.. Let
us write V. = V., + 6. We decompose 6 into types (1,0) and (0,1):
0 = 6 + 60", and we wish to see that §” = 0. But now, observe the
following facts:

e 0*0 = 0 and pull-back by o respects types, so that oc*0' = —o*6”
has to vanish;

e (" vanishes along the fibers, because V and V., are holomorphic
along the fibers;

o 0 satisfies the Weil vanishing universally. Because the trace along
divisors trp r respects types of differential forms, we deduce that
it vanishes for 6”.

Hence, 6" satisfies the properties (V1)-(V3) above, and it therefore van-
ishes. It follows that V = V., + ¢ is compatible with the holomorphic
bundle £. q.e.d.

4.3. Variant in the absence of rigidification. In case the morphism
7w : X — S does not come with a rigidification, we can still pose the prob-
lem of extending connections and impose (WR) universally. We briefly
discuss this situation. Locally for the étale topology, the morphism 7
admits sections. Etale morphisms are local isomorphisms in the ana-
lytic topology. Therefore, given a relative connection Vy g, there is an
analytic open covering U; of S, and connections V; on Lin extending
Vx5 and satisfying (WR) universally. On an overlap Uy; := U; N Uy,
the connections V; and V; differ by a smooth (1,0)-form 6;; on Xy,
The differential form 6;; satisfies the vanishing properties (V2)—(V3) of
Section 4.2. By the vanishing lemma (Proposition 4.7), 6;; comes from
a differential form on U;;: 60;; € F(Uij,.Ag’O). This family of differen-
tial forms obviously verifies the 1-cocycle condition, and hence gives a
cohomology class in H'(S, A}g’o). But fl}g’o is a fine sheaf, because it is
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a C°°(S)-module. Therefore, this cohomology group vanishes and the
cocycle {6;;} is trivial. This means that, after possibly modifying the
connections V; by suitable (1, 0) differential forms coming from the base,
we can glue them together into a connection V on £, extending Vy/g.
Because any differential form coming from the base S has vanishing
trace along divisors of rational functions (more generally, along relative
degree 0 divisors), this connection V still satisfies (WR) universally.
Two such connections differ by a differential form in I'(.S, .A}q’o). Again,
differential forms coming from S have zero trace along degree zero di-
visors, and so this implies the induced trace connections on Deligne
pairings (£, M) don’t depend on the particular extension, as long as M
has relative degree 0. We summarize the discussion in a statement.

Proposition 4.10. In the absence of a section of m : X — S, the
space of extensions of Vy g satisfying (WR) universally is a torsor un-
der IT'(S, .A}g’o). To Vs there is an intrinsically attached trace connec-
tion on relative degree zero line bundles M (still denoted V  ypyer ).

Remark 4.11. The proposition refines Theorem 3.11, when we are
interested in connections on £ satisfying (WR) universally and extend-
ing a given flat relative connection Vy/g.

Completion of the Proof of Theorem 1.2 (i). Let now Vy g be a flat rel-
ative connection, and let V be any extension satisfying (WR) univer-
sally. Attached to (£,V) there is a trace connection for the Deligne
pairings against line bundles of relative degree 0. This trace connection
does not depend on the choice of extension Vy,g, as we saw above.
By a similar argument, if (£, V% /S) and (M, V%S) are line bundles
with relatively flat connections on X — .S, Propositions 4.10, 3.15 and
3.16 together show that there is an intrinsically attached intersection
connection V?KM) on (L, M). q.e.d.

4.4. Relation between trace and intersection connections. We
now fill in the proof of Theorem 1.2 (iii), which asserts that if M — X
has relative degree 0, then the trace connection on (£, M) is a special
case of an intersection connection. We state the precise result in the
following

Proposition 4.12. Let L — X be equipped with a flat relative con-
nection Vé/s. Let M — X be a hermitian, holomorphic line bundle with

Chern connection V% whose restriction V%S to the fibers of m: X — S
z'sﬂat. Let VIEZJVD be the trace connection associated to VDLC/S, and
V?’ij the intersection connection associated to VJLC/S and V&/[/S. Then

Viean = Vit
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Proof. An equality of connections is local for the étale topology, and
our constructions are compatible with base change. Therefore, we can
assume there is a section o and that £ is rigidified along o. Let V1, be
the canonical extension of V& /s By the definition eq. (25), it suffices
to show that for all rational sections m of M,

(41) T (vf‘i(m) A FVL> = 0.

Let || - || denote the metric on M, and write V, = VL +6, where VL is
the Chern connection, and 6 is of type (1,0) and holomorphic on fibers.
Then using the fact that FVL} is 0-closed, we have

vM
Ty <c};)§m) A FVL> =T, (Blog HmH2 A FVL)
= or, (1og lm|2 - Fvgh) + 1, (9log ||ml|2 A db) .

The first term vanishes, since V(fh is flat on the fibers. For the second
term, as in the proof of Theorem 1.2 we find

™ (0log |[m|* A df) = . (dlog ||m||* A 09)
(42) = O, (3log|]m||2 AB) + T, (5610g\|m||2/\0)
(43) = Ty (FV% A0) + 2mi trdivm/s(e),
where we have used that the first term on the right hand side of (42)
vanishes because of type, and we apply the Poincaré-Lelong formula to

the second term on the right hand side of (42) to derive (43). Locally
on contractile open subsets of S, we can apply (38) to obtain

(44) 2mi ord, ( / 9‘2( / / din [ din >

pediv m)

Let Vamrays denote the Gauss-Manin invariant for VJD‘C/I/ g- We now dif-
ferentiate the equation above, and obtain:

(45)

271 trgiy m (0) + 271 ord( / Vaumb =
pedlv(m

Z(/ VGM9/ dfn— dfn/ VGM9>
o1 \a ;T o M JB;
g
+Z</ H/VGMVM—/VGMVM/Q).
i1 Vo I Q; Bi
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A comment is in order to clarify the meaning of Vgumf and its path
integrations. The differential form 6 is closed on fibers, and even holo-
morphic. Hence, it defines a relative cohomology class to which we can
apply Vam. This we write Vgumf. The meaning of integration along
non-closed paths involves representing Vgnf in terms of a family of
harmonic forms, exactly as in Section 4.1. After this clarification, we
also note that equation (44) holds for Vaumé as well. We subtract this
variant from (45), and deduce

g
270t iy /5 (0) = Z (/ 0 ] Vaemvm —/ VGMVM/B 9>
i= a; i a; i

1
= T4 (0 VAN VGMVM) = —Tx (9 /\th}{1> ,

where to obtain the last equality we use the fact that V% corresponds
to the canonical extension of V% ¢ (Lemma 4.5). Hence, the right hand
side of (43) vanishes, and so therefore does (41). This completes the
proof. q.e.d.

4.5. Curvatures. In this section we compute the curvature of inter-
section and trace connections on (£,M). In particular we establish
Theorem 1.2 (ii). Let £,M — X be rigidified line bundles with flat
relative connections VDLC /s and V% > respectively (the rigidification is

not essential here). Denote the Gauss-Manin invariants by Vaumyr and
VamVur, and recall from Section 2.2 that Re vy, Re vy are well-defined.
We will also need the following. Let

(46)  KS(X/S) = Veull' = ~Veull” € End (H}p(X/9)) @ A"

denote the derivative of the period map of the fibration X — S, where
IT', T1” are as in (8) and (9). Finally, define the operation

(47)  (Hip(X/S) ® A%) x (Hip(X/S) @ AL) ~2 Hig(X/S) ® AGY

is given by the cup product on relative cohomology classes and the wedge
product on forms, whereas . denotes the fiber integration: H25(X/S) —
C*°(5). One easily verifies that

(48) KS(a) = —KS(@),
(49) T (¢ UKS(B)) = —mi (KS(a) U B) .

With this understood, we have the following

Proposition 4.13. The curvature of the intersection connection
V’&fm on (L, M) is given by: 2mi - Fvéth> = 7« (Vamrr UVaemrva)

(see (3)).
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Proof. By (34) and (33), the curvature of the canonical extension is
given by

z 29
—d/ VGMV:_ZUi/\Hi+"'a
a(s) i=1

where the --- indicates forms that are annihilated by vertical tangent
vectors. The first term on the right hand side represents Vgnmy. From
Proposition 3.14, the only term that survives the fiber integration is
Vaurr, UVamVym. q.e.d.

The following is then an immediate consequence of the curvature
formula.

Corollary 4.14. If the flat relative connections on L and M are
of type (1,0) (see Definition 2.6), then the intersection connection on
(L, M) is holomorphic, i.e. its curvature is of type (2,0).

Next, we turn to trace connections, where the calculation is a bit
more involved.

Proposition 4.15. Assume L is given a rigidification. Then the
trace connection V?Z NORL (L, M) has curvature:

(50)

Fy

]_ -
oo = 27”.W*{(Vcn\/ﬂ/L)' U (Vemvm)” = (Vemrvr)” U (Vamvm )

—2Revpy U (KS(:X:/S) VAN VGMVL)}-

Remark 4.16. As shown in Section 4.4, the trace connection is a
special case of an intersection connection. However, the above gives a
more general formula where v is not necessarily associated to a unitary
connection. The trace connection on (£, M) is independent of a choice
of relative connection on M. Using (48) and (49), one verifies that (50)
is indeed independent of the choice of Vg‘g/ g- Moreover, by specializing

to the Chern connection on M, (50) reduces to (3).
We also point out the following;:

Corollary 4.17. If (Vaguv)” vanishes identically then the trace con-
nection on (£,L) is flat.

Proof. Differentiate the equation 0 = (Vauv)” = II"Vaumvy, to find
0= Veull” AVauv + HNV%}MV = —KS(X/S) A Vemr + H”VéMV.
Since V%M = 0, the result follows. q.e.d.

Proof of Proposition 4.15. First, since the calculation is local in S for
the analytic topology, we can work over a contractible open subsets
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S°. Let vg be a lift of vy (the classifying morphism of (L,Vg/s)),
and xs : m(Xs,0(s)) — C* denote the associated character at s € S°:
Xs(v) = exp(— fv Us), namely the holonomy character. Similarly for M.
Choose a homology basis as in Section 4.1. Let m be a meromorphic
section of M, whose divisor is finite and étale over (an open subset of) S.
After étale base change, we may assume that divm is given by sections.
Using (39), we then have

i {/.(VGMVL)//& dﬁm —/ai Ci?/ﬁi(v(;MuL)’},

2mi Z ordy, m/ (Vamrr)” =

a(s)

—i{/ (Vamvr)' /ﬁﬁln—/acf: ﬁZ(VGMVL) }

Hence,
Dj
_27ri20rdpj m/ VGMVL —
; o(s)
J

g
Z{RelogXM(Bi)/ [(VGMVL)/ - (VGMVL)”]

i=1 i

— Relog XM(O%)/ [(Vamrr) — (Vaurr)”] }

+Z {ZImlOgXM Bi) / Vamvr — i Imlog x (o / VGMVL}
=1

(the choice of log is immaterial). Using the flatness of the Gauss-Manin

connection, d/ Vaomvr = /VéMVL = 0, and egs. (13) and (34), we

gl gl
find
: : d(t, m) : P
27TZFV122’M> = 2md T giy 1/ 0 W = —2mi Z ordy; m /U(S) Vamrr

9

(51) Z{dRe log x s (Bi) A / [(Vamrr) — (Vamrr)”]

=1

— dRelog x () /\/ [(Vamrr) — (VGMVL)”]}

7
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g
Z {zdIm log xm(Bi) N | Vamrr —idImlog xar(ov) /\/ vGMVL}
Bi

€7

Z
+ Z{log Ixar(B:)] /ai VoM [(VGMVL)/ _ (VGMVL)”]

=1
—log |x ()| /B Vam [(VGMVL)' _ (VGMVL)’/} }

Now

1

dRelog xa () = —2/VGMVM + VaMmlu,
v

. 1 o
idImlog xar(y) = —5 / Vemvm — Vemvu -
v

Substituting this into (51), and using (46), we have

— 271 - S =
Vi

g

;Z{/B [VGMVM + Vamrm /\/ [(VGMVL), — (VGMVL)”}
i=1 i a

i

_/ [Vemvar + Vauva| /\/ [(VGMVL)/_(VGMVL)H]}

13
QZ{/ Vamvm — Vamvm /\/ Vamrr

/ [Vamram — Vauvm| A VGMVL}

Bi

g
Z{IOg|XM Bl [ KS(X/S) A Vemrr

23

—log |xar(ai)] /6 KS(X/S) A VGMVL}

Z{ VGMVM/\/ (Vemvr) — VGMVM/\/ (VGMVL)"}
o Bi a;

=1

g
Z{/ VGMVM/\/(VGMVL /VGMVM/\/(VGMVL)"}
=1 51 7

—QZ{IOgb(M(ﬁi)’ KS(X/S) A Vaemrr
i=1 @

— log |xar(as)] /ﬁ KS(X/S) A VGMVL}.
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By the Riemann bilinear relations the right hand side is

_ i {/i(VGMVM)” /\/ai(VGMVL)I _/i(VGMVM)H /\/C”(VGMVL)H}
B Z {/ai(vGMVM)”/\/Bi(VGMVL)/—/M(VGMVM)”/\/&(VGMVL)”}

g
—QZ{log Ixam(Bi)| | KS(X/S)AVemrr
i=1

a;

— log |[xnm () KS(X/S) /\VGMVL}'
Bi

Collecting terms and applying the bilinear relations again, the formula
now follows. q.e.d.

5. Examples and applications

5.1. Reciprocity for trivial fibrations. Throughout this section, we
consider trivial families X = X xS, where X is a fixed compact Riemann
surface X of genus g > 1 with a prescribed point o € X. Using the
Hodge splitting we shall give explicit formulas illustrating the main
construction of this paper in this simple case. In particular, we shall
give a direct proof of Weil reciprocity for the connection defined in
Section 4.1.

The de Rham moduli space Mgr(X) of rank 1 flat connections on X is
isomorphic to H'(X,C)/H'(X,2miZ) (see (4)). We shall always assume
a rigidification, or trivialization of our bundles at o. If we take as base
S = Myg(X), then there is a universal line bundle £ — X equipped
a universal relative connection. Choose a symplectic homology basis
{aj, Bj }?:1, and normalized abelian differentials w; with period matrix
Q. Then J(X) = C9/729 + 79Q. Given [V] € Myr(X), we have its
associated holonomy character x, : m1(X,0) — C* : v — exp (— fv 1/).
We regard x, as an element of the Betti moduli space,

(52) Mp(m(X,0)) :=Hom(m (X,0),GL(1,C)) ~ (C*)29,

with its structure as an algebraic variety. The Riemann-Hilbert corre-
spondence above gives a complex analytic (though not algebraic) iso-
morphism Myr(X) ~ Mp(mi(X,0)). As before, we have chosen a lift
of v from HY(X,C)/HY(X,2niZ) to H(X,C). In fact, we choose a
harmonic representative of this class in .A}(, and continue to denote this
by v. Since we have chosen a basis {w;} for H'%(X), we have local



DELIGNE PAIRINGS AND RANK ONE LOCAL SYSTEMS ON CURVES 515

holomorphic coordinates (t;, s;) for Myr(X); namely, we write

g
(53) V= Z t,w; + S;00;
i=1
for the flat connection V = d + v. It follows that
g
(54) Vomy = Zwi Q dt; + w; ® ds;.
i=1

Let X be the universal cover of X. According to the discussion in
Section 4.1, we view sections £ of £ as functions ¢ on X x Myr(X) that
satisfy

(55) {(yz,v) = exp < L y> U(z,v)

(note that the bundle is invariant with respect to the integral lattice
H(X,2miZ)). The universal connection V : QX L) — QYX, L) is
defined as follows (see (34)): given ¢ satisfying (55), let

(56) Vi(z,v) = dl(z,v) — /Z Vamv - Uz, v).

One can check directly that V/(z, ) indeed satisfies the correct equivari-
ance, and that the connection is independent of the choice of fundamen-
tal domain. A change of homology basis has the same effect as pulling
Vamv back by the corresponding action on Myg(X); and therefore V
is independent of this choice.

Remark 5.1. This is the connection defined in (34). Notice that
this is not a holomorphic connection (see Remark 2.4): (Vamv)” =
Y9 wi(z) @ ds;.

The flat connection corresponding to v is V = d+v, and Oy = 0+
is the corresponding d-operator for the holomorphic line bundle £ de-
fined by V. The map 7 : Mygr(X) — J(X) which takes a holomorphic
connection to its underlying holomorphic line bundle realizes Myg(X)
as an affine bundle over J(X). We wish to write this map explic-
itly. First, we identify the Jacobian variety J(X) with the space of flat
U(1)-connections, or equivalently, as the space of U(1)-representations
of m (X, o). The Chern connection on £, is dg = d +v” — ", and this
defines a unitary character x, : m1(X) — U(1). Let

2mia; = —log xu(oy) = / V=

&g

27mib; = —log xu(Bj) = / V=

Bj
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Then the point [u] € J(X) corresponding to [V] € Myr(X) is given by

(57) u="b—a.
In terms of these coordinates, one calculates:
(58) 27riaj =8 — §j,
g
(59) 27Tibj = ZSkaj - ngkj,
k=1
1
(60) Uj = ——Sg Im ij,
T
(61) s; = —mug(Im Q)];jl.

Remark 5.2. Notice that there is a smooth section y : J(X) —
Myr(X) defined by [u] — [v] : v = Y9 | (—8i)w; + siw;, where s; is
given by (61). The image Ugr(X) C Myr(X), which consists of the
unitary connections, is a totally real submanifold.

Since the notion above will be used later on, we recall the definition.

Definition 5.3. Let M be a smooth manifold, dimg M = 2m, with
an integrable almost complex structure J. A smooth submanifold U C
M is called totally real if at each point p € U, T,U N JT,U = {0}. In
particular, if dimg U = m and U is totally real, then T,U © JT,U =
T,M.

Next, we express meromorphic sections of £, — X in terms of mero-

morphic functions on X satisfying the equivariance (55). Let E(z,w)
be the Schottky prime form associated with {a;, 8;} (cf. [16, eq. 19]).

For a meromorphic section ¢ of £, with divisor Zf\;l p; — q; we have
N s

(62) Z/ G=u+m+n'Q , m,necz9.
=1 i

Lemma 5.4. Define

=Bt (5[ 47)

Then £ is a meromorphic function on X with multipliers x;;* and divisor
projecting to div (/).

A particular case of the above formula is a meromorphic function
f(2) with divisor Zf\il x; —y; and Zf\il fyxl & =m+nQ, m,n € 729,
Then f can be expressed

(63) f(z) = lm exp {—2m’ﬁt /Uw} .
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With this understood, we are ready to give a direct proof of (WR) in
this setting:

Proposition 5.5. Let £ be a meromorphic section of the universal
bundle L — X and f a meromorphic function on X. Then

Wi df
trdiv £/ My A = traive/Myp 7))

Proof. Fix v = 39 | tiw; + s;;. Then v/ + 1" = Y9, (t; + 5;)w;.
Using (58) we see that, up to a nonzero multiplicative constant,

(64) U(z) = lmexp{(HsY /:LD’—Qm'nt /Uw}

(note that m,n and m,n are locally constant in the ¢; and s;). Hence

exp{(t+s)tz @’—2m’nt2/ d)’}
' i=17Yi

exp {(t + s)"(m + n'Q) — 2rin' (R'Q) }

since n'm € Z. Similarly, using (60),
Ly B, p) Ey;, i)
Now (t+3s)!(m+n'Q) —2in' (s Im Q) = >°7_, tjv;+s;0;, where v = m+
n'Q, so that ¢(div f) = f(div¢)exp (3°9_; tjv; + s;v;). Differentiating

with respect to (z,v),

dg(div f) = wg<dlv f) + (Z dtj'l)j + deUj) E(diV f)

f(dive) exp {2in'(s' Im Q) — 2min’ (n'Q)} .

i=1
On the other hand,

z M T; g
(/ Vaomv)(div f) = Z/ dt;w; + ds;w; = Z dt;v; + dsj;v;.
20

i=1"7Yi i=1

The result now follows from the definition of V. q.e.d.

5.2. Holomorphic extension of analytic torsion. As mentioned
in the Introduction, one motivation for this paper was to derive an
interpretation of the holomorphic extension of analytic torsion in terms
of Deligne pairings. In this section, we review the construction of torsion
and give explicit formulas, generalizing those in [17] and [23]. In the
next section, we explain the relationship with our construction.
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First, we review the definition of analytic torsion for the non-self-
adjoint operators we consider. Fix an arbitrary hermitian, holomorphic
line bundle M — X with Chern connection V = v + Oy. Given a
flat connection on £ — X with holonomy x, we regard smooth sections
¢ of L ®M as x !-equivariant sections ¢ of the pull-back of M to X
satisfying (55). Pick a lift v € H'(X, C) of the character, hence x(vy) =
exp(— f,y v), and set G, (z) = exp (= [7v) (cf. [26]). Then for any l,

notice that G, (2)(z) is a well-defined smooth section of M — X. Define
the operators

TLPYUX, M) — QPLX, M) s a - GOy (Gua) ,
D' Q%(X, M) — QYIYX, M) : = G, 10y (GL5).

Fix a conformal metric on X, and let * denote the Hodge operator.
We define the Laplacian associated to v and M by O, gni(s) = —2i *
D'D"(s), for smooth sections s of M. This is an elliptic operator that is
independent of the choice of base point ¢. In case v is unitary, G, has
absolute value = 1, and via (55) gives a unitary equivalence between
Uy, enm and the ordinary O-Laplacian for £ ® M. In particular, the
spectra of these two operators is the same in this case. For v not unitary,
Uy, @ is not a symmetric operator. Since the symbol of [, gy is the
same as that of the scalar Laplacian, however, the zeta regularization
procedure applies to give a well-defined determinant det [, . For a
nice explanation of this, we refer to [1, Section 2.5]; we sketch the ideas
here for convenience. First, the following holds (¢f. [2] and [12, Lemma
4.1]).

Lemma 5.6. For v in a compact set there are at most finitely many
eigenvalues X of U, gy with Re X < 0. Moreover, there is B > 0 such
that —B <Im\ < B.

Assume [, g has no zero eigenvalues. Then by Lemma 5.6, we
wish to show that det [, g is independent of a choice of Agmon angle
0, by which we mean a ray from the origin into the half plane Rez <0
which misses the eigenvalues. Indeed, if {\;})Y; are the eigenvalues of
Oy, g with negative real part, {y;} the eigenvalues with positive real
part. Then by Lidskii’s theorem [29] which guarantees that the trace is
a sum over eigenvalues,

C(DXV®J\/T99)(S) 1= try (DXD®M) = AT H A+ Z i ®

for Res > 1. Here, the eigenvalues are counted with their algebraic
multiplicities, that is, the dimension of the generalized eigenspace. The
cut @ gives a branch of the logarithm which is used to define the powers
A; ° and the usual logarithm (real on the positive real axis) is used to

define the rest. By Lemma 5.6 and the result of Seeley [32], (0, ,,.0)(5)
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has a meromorphic continuation to the plane that is regular at s = 0.
Any other choice 6 of Agmon angle gives a zeta function of the form

o0
GOy, o) (8) = AT T2 o A 1R 7,
i=1

for integers k;. But then _CEDXV®M79)(O) = _CEDXV®M79)(O) +2mi Zfil k;,

and so det [y g := exp(—CEDXL@Mﬁ) (0)) is independent of the choice
of . We also note that a different choice of lift v gives Gy = G, - F,
where pointwise |F'| = 1. Hence, F gives a unitary automorphism of
L*(X) such that O,,en = F o Oy, en o F~1; hence, the eigenvalues
of Oy, are the same as those of [l gy, and so the determinants
agree. Finally, since U, gy depends holomorphically on v, so does
det Oy, g (see [28]), and since it agrees with the usual determinant
when v is unitary, det (], gat is a holomorphic extension of the usual
analytic torsion.

As in Section 5.1, let X be a compact genus g > 1 Riemann sur-
face with a conformal metric and a choice of symplectic homology basis
{aj, Bj}?:r This gives a period matrix €2, theta function ¥(Z, ), and
a Riemann divisor kg of degree g — 1, 2kg = wx (cf. [17, Theorem 1.1]).
Let xy : m1(X) — U(1) be a unitary character whose holomorphic line
bundle corresponds to the point v € J(X) as in (57). The choice of
conformal metric gives kg a hermitian structure. Then the torsion of
the 0-Laplacian on Y, ® kg is given by

(65) T(xu ® ko) = det Oy, e, = C(X)[[0]%(u, ),

where C'(X) is a constant depending on the Riemann surface X and the
conformal metric. Recall the definition of the norm:

19]1%(u, ) = exp (=27 Imu” (Im Q) Im ) [9]?(u, Q).
In terms of periods, this is
(66) 1912 (u, Q) = exp (—27raT(Im Q)a) [9)%(b — aTQ, Q).

Now suppose x : m(X,0) — C* is a complex character with periods
x(aj) = exp(—2miaj), x(B;) = exp(—2mib;), aj,b; € C/Z. Then we
have the following definition:

(67)

T(x ® ko) := C(X) exp (—2ma’ Im Q)a) I(b — a” Q, Q)I(b — a’ Q, Q).

By the transformation properties of the theta function, one verifies that
the expression in (67) indeed depends on the values of aj,b; modulo
Z. The subspace Ug(mi(X,0)) C Mp(m(X,0)) of unitary characters
(S1)29 C (C*)% is totally real. The following is clear:
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Proposition 5.7 (cf. [24]). The function v — T(x, ® ko) is a holo-
morphic extension of the torsion on unitary characters. In particular,
T(xv ® ko) = det Oy, ek, -

Next we consider the holomorphic extension of the torsion T'(x). For
this we need to choose a basis of Prym differentials n;(z,x 1) on X
and 7;(z,x) on X, i =1,...,9 — 1 (x nontrivial). We choose these to
vary holomorphically in x, and for convenience we require 7;(z, x) =
ni(z, x~1) for x unitary. For x unitary we have a natural inner product

(68) O () = /X () AT XD,

For general characters x, define the pairing on Prym differentials on X
and X by

(69) (O () = / ni(5 XY A (2, X)-
X

Choose generic points p1,...,py, and set ug = kg — Zfz_ll p;. Then
for x, unitary, the torsion is given by
T(xu) = 472C(X) |det wi(p;)|* exp (47 Imug - a — 27a” (Im Q)a)
(70) et () 9t uo, Q)P
|det mi(pjs x=DIF [32, 2,9 (uo, Qwi(pg)[*

where it is understood that in the expression, det7;(p;), 1 <j < g—1.
As before this leads to the definition of holomorphic torsion. For x an
arbitrary character, define

(71)
T(x) = 47r20(X) |det wi(pj)|2 exp (47r Imug - o — 27raT(Im Q)a)
det(n;(x71), ni(x)) I(B—al Q4ug, VI(B — aTQ — 1y, —Q)
det n(p;, x 1) det ni(py, X) 529 02,0 (ug, Q)w;(py)|”

Proposition 5.8 (cf. [17]). The function x — T(x) is a holomorphic
extension to Myr(X) of the torsion on unitary characters.

5.3. Holomorphic torsion and the Deligne isomorphism. We
next explain how the holomorphic extension of analytic torsion is re-
lated to the Deligne isomorphism (1) and the intersection connection.
To begin, from (54) and (56) we have that the curvature of the universal
connection is

g
Fy = —ZwiAdtieri/\dsi E.A%C
i=1
(recall the coordinates (53)). Computing directly from this, or alter-
natively using Proposition 4.13, it follows that the curvature of the
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intersection connection on (£, £) is given by

(72) sznt

(£,L)

9
=—— Z ImQ”(dtz VAN de).
=

Note that the intersection connection is holomorphic, coming from the
fact that Vv is of type (1,0), as in Corollary 4.14.

Let us suppose, to simplify the following discussion, that the genus
g > 2. Choose a uniformization X = I"'\H, where H C C is the upper
half plane and T' C PSL(2,R) is a cocompact lattice ~ 71(X, o). Then
let X = T'\L, where L C C is the lower half plane. If X =X x Mgp(X),
and 7 : X — Myr(X) the projection, we define the universal bundle
L — X, where the fiber over X x {v} is the line bundle associated
to the character x;,'. Then (£, L) is also a holomorphic line bundle
on Myr(X). By the Riemann-Hilbert correspondence, there are com-
plex analytic isomorphisms: Myr(X) == Mp(T') <=~ Myr(X), where
Mp(T) is defined in (52). We therefore regard (£, £) and (£, L) as holo-
morphic bundles on Mpg(T'). On X, the imaginary part of the period
matrix ImQ is unchanged, but the coordinates (¢;,s;) — (—s;, —t;).
Hence, by (72),

9
(73) szztﬁ) = — Z Im Qij<dti A de).
2,7=1
In particular, the intersection connection on (£, L) ® (£, L) is flat!

Next, we have

Lemma 5.9. For any choice of theta characteristic k (i.e. 2k = wx ),
there is the following functorial isomorphism

(74) [det R, (£ @ k) ® det Rrr. (1) "] %™ 25 (£, £)%5.

Proof. From compatibility of the Deligne pairing with tensor prod-
ucts,

(L Ok LK WY/
~ LR LR D (L, LR D@ (kLR
~ (£,£) @ (L, K1) @ (k,£) @ (1) = (£,) @ (i, 1) .
SlmllarlY? <WDC/57MX/S> <H7 H>®4 By (1)7
det R, (L @ r)®12
~ (wy /s, wi/s) © (L@ kR,LOK® Wx/g>®6
~ (), k) @ (L, L)% @ (k, k)70 ~ (£, L) @ (k, k)72

On the other hand, det R, (x)®'2 ~ (k,x)®* @ (k, k10 ~ (K, k)72
The result follows. q.e.d.
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Remark 5.10. There is a refinement of Deligne’s isomorphism [13,
Théoreme 11.4] to virtual bundles of virtual rank 0, such as L&k —k. In
this case, the lemma can be refined to a more natural looking isomor-
phism, canonical up to sign: [det Rm,.(£ ® k) ® det RT['*(K,)_I]@Q =
(L£,L). Consequently, the isomorphism of the lemma is canonical and
there is no sign ambiguity (since we take the 6th power of the latter).

We may now give a geometric interpretation of the holomorphic exten-
sion of torsion. To simplify the notation, let A(X, k) = det Rm (L ®K)®
det R, (k)~!. Considering both X and X, by (74) we have a canonical
isomorphism

(75) ¢ [MXr) @ AKX, R)]F = [(£, L) ® (L, 0)]°.

By (72) and (73), the intersection connections give a flat connection
on right hand side of (75). On the other hand, A\(X, x) ® A\(X, &) has
a canonical flat connection given by the form —dlogT(x ® k), in the
canonical (up to a constant) frame determined by the relation with theta
functions (see 67). With this understood, we have the following

Theorem 5.11. The Deligne isomorphism ¢ in (75) is flat with re-
spect to the connections defined above.

Proof. We first show, by explicit calculation, that ¢ is flat when re-
stricted to the unitary connections Ugr(X) C Myr(X). Recall from
Lemma 4.5 that the connection on (£, £) coincides with the Chern con-
nection along Uyr(X). The difference between the connection we have
defined on A\(X, k) ® A\(X, %) and the Quillen connection is given by the
(1,0) form

(76) dlog |:TX(Xu ® 8)Tx(x, ' @ m)} .

T(x ® k)

Since the Deligne isomorphism (for the Quillen metric) is an isometry, it
suffices to show that the expression in (76) vanishes when x is unitary.
Let V = d + B be a flat connection, where B = Y7 | t;w; + s;w;. Let
XB € Mgr(X) be the associated character. Notice that

g
2mia; :/ B=tj+s;, 2mb; = / B = Zthk]’ +5k§kj-
4 B; k=1
From this expression and the interchange € +— —(), we see that the
character x~! on X corresponds to the change of coordinates (t;,s;)
(=84, —tj)-

Next, consider the map Myr(X) — J(X). This takes [V] to the
isomorphism class [V”] of the underlying holomorphic line bundle. In
terms of flat connections, [d + B] — [d + B"” — B”]. Rewriting (66) and
(67) in the coordinates above, we have

Tx (xu ® 1) = C(X) exp (g5 (s — 5)" (ImQ)(s — 5)) [0]* (7 (Im Q)s, ©)
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T (xy' ®F) = C(X)exp (o (t — DT (Im Q) (¢t — 1)) [9* (£ (Im Q)t, — Q)
T(x) = C(X) exp (=t + )T (M O)(t +9))
x 9(%(Im Q)s, Q)9 (2 (Im Q)t, —).

We now calculate:
g
Oy log T'(xu ® k) = % Z (Im€2);;(s; — 5;)ds;
+ 1 29: 0z,9((1/7)(Im Q)s, Q) (Im 2);;ds;,
Tii=
B log T (' ©F) = — i (Im Q)i (4 — £2)dt,
T
+1 zg: 97,9((1/) (Im Q)t, — ) (Im Q) dt;,
T ig=1
OylogT(x ® k) = 1 Zg: (Im €2);;(t; + si)(dt; + ds;)
T

P((1/7)(Im Q)s, Q) (Im Q);5ds;

Z’L9 1/7T ImQ)t —Q)(ImQ)Udtj

=u~

33 om0

Hence, restricted to the unitary connections Uyr(X) C Myr(X) defined
by t; = —5; (see Remark 5.2),

A 1og T(x ® k) = Oy log T(xu ® k) + Oy log T (x,, ' ® F).

It follows that V¢ restricted to Uyg(X) vanishes. Now there is a (1,0)
form Q such that for any local section o of [A(X,r)® A(X )]®12,
(Vo)(o) = Q- ¢(o). Moreover, since the connections deﬁned on the
left and right hand side of (75) are flat, 2 is closed. We may therefore
locally write 2 = 9f for a holomorphic function f, where by the result
above, f‘UdR (X) is constant. Next, we appeal to the following standard
result.

Lemma 5.12. Let U C M be a totally real submanifold of a connected
complex manifold M with dimg U = dime¢ M (see Definition 5.3). Then
a holomorphic function on M that is constant on U is constant.

Since Ugr(X) is totally real (Remark 5.2), we conclude from the lemma
that f is constant, and so V¢ = 0. q.e.d.
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Remark 5.13. An analogous result to Theorem 5.11 holds for the
holomorphic torsion 7'(x) and the determinant bundle det R, (£). The
idea of the proof is the same, where the calculation making use of (71)
is somewhat more lengthy.

5.4. The hyperholomorphic line bundle on twistor space. In this
section we show how the intersection connection leads quite naturally to
the construction of a meromorphic connection on the hyperholomorphic
line bundle over the twistor space of Myr(X). This result is inspired
by Hitchin’s exposition in [23, 24], to which we refer for more context
and detail.

We begin with a quick review of the basic set-up. Recall that Mg (X)
has a hyperkéhler structure (for much more on this, see [21]). In terms
of the coordinates introduced above, the symplectic structures are:

. g
; ~ _
Oy = ]ZI Im Qi (dt; A dij + dsi A dsj),

N IR
dy + iP5 = ; Z Im Qijdsi AN dtj.

3,j=1

Let Z = Mup(X) x P! denote the twistor space of Myp(X), and A : Z —
P! the projection. Then Z has the structure of a complex manifold with
respect to which X is holomorphic, but the tautological complex struc-
ture is not a product. The fiber A~1(1) is biholomorphic to Myr(X),
whereas the fiber A=1(0) is biholomorphic to T*J(X), the space of rank
1 Higgs bundles on X. Similarly, A\=!(c0) ~ T*J(X). Each fiber has a
holomorphic symplectic form given by

(77) D = Oy + iD3 + 2iIAD| + \2(Dy — iD3)

(see [25, Theorem 3.3]).
Next, recall the following (see [33]).

Definition 5.14 (Deligne). Let S be smooth algebraic, and set X =
X xS. Suppose we are given a function A : S — Al. Then a A-connection
on a line bundle £ — X is a C-linear map V) : L - L ® Q%C/S of Ox-
modules satisfying Va(f¢) = Adf @ L+ f - VL, for f € Ox and £ € L.

By a result of Simpson, the functor which associates to A : § — Al
the set of rank one A-connections on X is representable by a scheme
Mpoq(X) with a morphism A : Mp.(X) — Al. By considering
Mp104(X) and a gluing procedure with respect to the anti-holomorphic
involution A — —A~!, one constructs the Deligne moduli space of \-
connections A : Mpe(X) — PL Moreover, there is a biholomor-
phism Mpe(X) ~ Z. This is achieved by finding holomorphic sections

AY — Mp,q(X) of A, compatible with the anti-holomorphic involution.
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For example, in the case of the flat connection V = d + v, v harmonic,
the family of A-connections is given by:

Vit =0+ %(()\ + 1)+ (A= 1)),
(78) 1 _
V' =20+ S (L+ ) + (1= )07,

Let X = X X Mpe(X), m: X — Mpe(X) the projection. We further-
more assume a rigidification. Then the universal bundle £ — X admits
a universal A-connection. Let s be a theta characteristic as in the pre-
vious section, and use the same notation for the pull-back to X — X.
We define the hyperholomorphic line bundle on Mpe(X) by

(79) Lz :=det Rm,(£ ® k) ® det R, (k)1

Consider the divisor D = DyU Do, = A71(0) UX"1(00). We shall use
the construction of this paper to obtain an explicit realization of the
following property of the hyperholomorphic line bundle (Theorem 1.3
of the introduction).

Theorem 5.15 (Hitchin, c¢f. [24, Theorem 3]). The line bundle £z
admits a meromorphic connection with logarithmic singularities along
the divisor D. The curvature of this connection restricted to the fibers
of Z—D — C* is \~1®, where ® is the HKLR form (77). The residue
of the connection at A = 0 (resp. A = 00) is the Liouville or tautological

1-form on T*J(X) (resp. T*J(X)).

Proof. There is a holomorphic map Z — D — Myr(X) obtained by
sending a holomorphic bundle with A-connection V) to the same holo-
morphic bundle with holomorphic connection A='Vy. By Remark 5.10,
L?u is naturally isomorphic to the pull-back of (£, £)®%, and there-
fore the pull-back of the intersection connection gives a holomorphic
connection on £z over Z — D. The statement about the curvature fol-
lows from the fact that the HKLR form is the pull-back of the holo-
morphic symplectic form on Myr(X). We shall verify this directly
using the coordinates above. Let (7;,0;) be holomorphic coordinates
on Myr(X). It will be convenient to locally parametrize Z — Do, by
(ti, si, A), where (t;, s;) are the holomorphic coordinates on 7*J(X), and
the A-connection is given by, Vg’l =0+ad" +\", Vi’o = \N0o+d)+.
Here, o’ = Y9 | si0;, a/ = —d”, ¢/ = >0 tiw;, ¥ = /. In these
coordinates, the map Z — D — Myp(X) is given by 7, = —5; + A7 ¢,
o; = 8; + )\{z Then

dr; = —ds; + \7rdt; — A\ 724d) | doy = ds; + M + Lid),
from which
dr; Adoj = ds; Nd5; + dt; A dt; + N"tdt; A dsy — Mds; A di
+ Ei(—ds; + A7) A dh + X 2t(dsj + AdE) A dA.
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Using (72), it follows that restricted to the fibers,

Fy =201 + A" 1Dy +iD3) + A(Py — iP3).

fiber

Z

For the residue at A = 0, note that from (64),

dg t z
7= (dT)t/ W+ Ttd/ @+ regular terms,

while — [ Vamr = —(dr)! [7& — (do)! [7 &, Tt follows that

(e

AV ¢ z
trdivm/s A =7d tTdivm/s W | + regular terms

A
Z (Im Q);t;ds; + regular terms.
T

1,j=1

The residue of the connection at oo is calculated similarly. This con-
cludes the proof. q.e.d.

1]
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