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We present a method for the control of waves based on inverse multiple scattering theory. Conceived as a
generalization of the concept of metagrating, we call metaclusters to a finite set of scatterers whose position
and properties are obtained by inverse design once we have defined their response to some external inci-
dent field. The particular focus is on designing passive metaclusters that do not require an external source
of energy. The method is applied to the propagation of flexural waves in thin plates, and to the design
of far-field patterns, although its generalization to acoustic or electromagnetic waves is straightforward.
Numerical examples are presented to the design of uni- and bidirectional “anomalous scatterers,” which
will bend the scattering energy along a specific direction, “odd pole™ scatterers, whose radiation pattern
presents an odd number of poles, and to the generation of vortical patterns. Finally, some considerations
about the optimal design of these metaclusters are discussed.

DOL: 10.1103/PhysRevApplied.15.014051

L INTRODUCTION

Active and passive control of the energy transfer in elec-
tromagnetic and mechanical waves is a challenging prob-
lem with a large number of applications, such as focusing,
imaging, beam forming, cloaking and energy harvesting,
among others [1]. The advent of so-called metamaterials
[2,3] provided a different perspective since these artificial
structures allow the design of materials with extraordinary
properties capable of manipulating the flow of energy in
ways that would be impossible with common materials,
enlarging in this manner the number of devices for the
control of electromagnetic and mechanical waves,

More recently, the concept of “metasurface,” conceived
as artificial planar metamaterials, has attracted an increas-
ing interest. Being thinner and less dissipative than bulk
metamaterials, these structures allow for more efficient
ways of manipulating the wave energy, with the additional
simplification in fabrication that planar structures present
in comparison with bulk structures [4-6].

The major drawback of both metamaterials and meta-
surfaces however is that their functionality is based on
the extraordinary refractive and reflective properties they
present, and most of the devices designed in this frame-
work require a large number of scattering elements in
order to form an “effective™ material whose effective phys-
ical properties provide metamaterials of their extraordinary
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properties. In the case ol metasurfaces, the surface has to
be gradually structured so that the effective gradient in
the surface impedance allows for the manipulation of the
energy flow. This large number of scattering elements is
an important limitation in the efficiency of metamaterials
and metasurfaces, since in practice the number of differ-
ent scattering elements will be limited, especially on the
micro- or nanoscale.

To overcome these difficulties, several approaches have
been explored recently to simplify the design of metasur-
faces by means of diffraction gratings [7—12]. in which it
has been possible to find a complex scatterer or unit cell
performing the same functionality as some metasurfaces.
However, the design process is still complex and function-
ality is limited to the control of the propagation direction
of waves [13—15].

In this work, we present a generalization of the concept
of a metagrating but for finite structures. The objective is to
show how, for a given incident field, we can obtain a clus-
ter of scatterers and their physical properties such that the
scattered field presents a preselected shape. If a particular
diffraction pattern is desired for a specific type of incident
wave, we provide a method to design a cluster of scatterers
capable of transferring the energy along the desired direc-
tions. The inverse design method presented is based on
multiple scattering theory [16] and the general principle is
applicable to any kind of classical wave, including acous-
tic and electromagnetic waves., We use flexural waves in
plates as the model medium, due to their potential wide
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application, but the presented framework is general and
applicable to wave scattering in other media. This work
therefore provides a general principle for the full control of
mechanical and electromagnetic waves based on scattering
elements.

The paper is organized as follows. After this introduc-
tion, in Sec. Il we develop the idea of the direct and
inverse multiple scattering problem. In Sec. Il we explain
how the method can be applied to the design of far-field
patterns and in Sec. [V we show numerical examples of
specific patterns. Finally, in Sec. V we summarize the work
and some mathematical results are given in Appendices A
and B.

11. DIRECT AND INVERSE MULTIPLE
SCATTERING PROBLEM

When some incident field vy impinges on a cluster of ¥
pointlike scatterers, the total field yr(r) can be expressed
as the sum of the incident plus the scattered fields,

Y(r) = Yp(r) + ¥,(r). (1

The scattered field is

N
Vilr) =) ByG(r — Ry), (2)
g=1

where Gi(r) = G(|r|) is Green's function and the coef-
ficients By are obtamned from the multiple scattering
equation [17]

N
D I3'%p — G(Ry — R)1Bs = Yo(Ra).  (3)
B=1

This provides a system of N equations with N unknowns.
The quantity #, is the strength of each pointlike scatterer
and it is the only quantity that contains information about
its physical properties. This describes the direct multiple
scattering problem, in which the number of scatterers, N,
their strengths £, and locations Rg are known, from which
we compute the B, coefficients to finally determine the
field in all of space.

The inverse problem is as follows. Assume that the scat-
tered field can be expressed as a linear combination of basis
functions ¢, such that

o

Pe(r) = App(r). 4)
20

n=—

Then we specify the inverse problem as determining a
finite number N, of A, coefficients for n=1,... N,
so that the scattered field will have a specified radiation

pattern in the far field. In general, there will be a matrix §
such that

N
Av=)_ SupBp: (5)
f=1

therefore, if we select the number N of particles in the clus-
ter equal to the number N, of modes to design, Eq. (5)
constitutes a determinate system of N equations with N
unknowns from which we can solve for the Bz coefficients.
Once these are known, we can obtain the £, elements from
Eq. (4) as

1 N
= B—(Wo(Ra) + Z G(R; — Rﬁ}Bg), (6)
o =i

Thus, we can obtain the physical properties of each parti-
cle. The main challenge is to find a cluster configuration
giving physically acceptable particles.

For the case of flexural waves on thin elastic plates, o is
the plate deflection, G is the solution for a point force per
unit area applied in the positive ¥ direction, and

Bﬂ = tn'f!' (Rﬂ) {7}

is the point force per unit area of scatterer a. see
Appendix A. The parameter f, is an eflective point
impedance that can be interpreted in terms of a single-
degree-of-freedom system with mass, stiffness, and damp-
ing. Physically acceptable particles cannot supply energy,
Le., they must be passive. Assuming time dependence
€™ the passivity constraints require that one or other of
the following conditions is met:

N
2 (me B, <0, (8a)

Ims! <0,

[ G

(8b)

Equation (8a) requires that the cluster be globally passive,
meaning that some of the scatterers can provide energy,
but there should be a negative energy balance adding
all the contributions of the scatterers. Equation (8h), or
equivalently Im#, = 0, is a more restrictive condition,
since it requires that all scatterers be passive systems (see
Appendix A for details). The equality holds for zero dissi-
pation in both equations. The goal of the inverse multiple
scattering problem is to obtain a set of particles all simul-
taneously satisfying the first constraint or both constraints.
For the first constraint, global passivity, we assume that,
although some scatterers may require energy supply, this
energy can be transferred from other, locally passive ones
(see Appendix A).
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The specific problem addressed below is to engineer the
cluster of point scatterers to provide a close approximation
to a desired far-field scattering response. In the next section
we outline the steps necessary to achieve this in an optimal
sense.

IIIL FAR-FIELD ENGINEERING

A. Direct far-field solution

The functions ¢, of Eq. (4) are chosen as the infinite set

$u(r) = G(r)e™, nek, (9)
where the position is expressed in polar coordinates r =
(r.8) with respect to an origin at r = 0. This allows us to
uniquely identify the coefficients 4, of Eq. (4) as far-field
amplitudes of the scattered wave. In order to see this, first
note that the far field for a source at Rg = (Rg, ) is

G(r — Ry) = G(r)e s st (10)

This approximation holds whether Green’s function is for
the Helmholtz equation or for the Kirchhoff plate equation.
In both cases, the far-field response depends only on the

large argument approximation of H&l '(x). The scattered far
field of the cluster follows from Eqgs. (2) and (10) as

Vs(r) = G(r)f (9), (11)

with the far-field radiation function

1\1
f @) = Zﬂﬁe—lkﬂpwﬂﬂ—ﬂp)_ (12)
A=l
Alternatively,
w .
f@)y =" A, (13)

R=—00

where the infinite set of coefficients {4,] is related to the N
coefficients {Bg) by Eq. (5) with

Sup = (—i)"e ™8 J, (kRp). (14)

For a unit amplitude incident plane wave propagating in
the direction & = 0, the radiation pattern function satisfies
the optical theorem [18]

Imf (0) = Osca + Oabs, (15)

where the scattering cross section ., and absorption cross
section oy, are defined in Eqs. (A6b) and (A6c). Further
details can be found in Appendix A. The cross sections
can also be expressed directly in terms of the coefficients

{An} and {Bg) [see Eq. (A8)], leading to the explicit form
of the optical theorem

N
1
t 1 2
Imf(0) = 3 sz A+ E (—Im7")|B,|". (16)

=1

We define the energy efficiency of a cluster as the ratio
of scattered to total input energy, which can be calcu-
lated from the scattering and absorption cross sections of
Eqs. (A6) as

n = = -
Taxt Teca + Tybs

B. Inverse problem

In the inverse source problem we are given f (6) and
seek the cluster that optimally reproduces this scattering
pattern. The radiation pattern, defined by the coefficients
{A,} in the form (13), is infinite dimensional, whereas the
cluster comprises a finite set of N sources. We define the

error
I oo N 2
E=f > [ 4n =D SusBy e‘"‘"|
0 =" A=1
= |A —SB|, (18)

where |X|? = XX with X' the Hermitian transpose of
vector X. Minimizing E for given A and § yields the
solution

B=(88)"'s%A, (19)

where [S'S)"S* may be identified as the Moore-Penrose
inverse of 8.
The approximated radiation pattern is

o0
F®@y =Y AW, (20)
R=—00
where AW, n € Z, are the elements of
A™ — SB = PA. (21)
and the non-negative definite Hermitian matrix P is
P =ss's)-Ist (22)
We show in Appendix B that the matrix P is infinite dimen-
sional but finite rank with N nonzero eigenvalues equal to

+1: see Eq. (B3). It therefore acts as a projection from the
infinite-dimensional space of far-field pattern functions to
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the N-dimensional set of approximate pattern functions:
f®) — f*@).

The optimal solution (21) yields an error
E=AA-AY) = AP —QA), @3
where
Q = (s's)~12¢7, 24)

In practice, we are interested in the relative error £y =
E/NAIR, ie.,

AtA™ .
Eg=1-— W (25)
1. Invisibility?

Can the cluster be invisible, in the sense that there is no
scattered wave? Setting A to zero implies that
0=SB =— SSB=0. (26)
Hence, B, =0, and therefore ¢, = 0, meaning that there
are no scatterers, the null solution. We conclude that the
inverse scattering cluster scheme does not provide a useful
route to invisibility or cloaking,

C. Inverse design algorithm

Based on the above findings, the inverse scattering
design can be formulated as follows.

(1) The N scatterer positions Ry, @ =1,... N, are
defined.

(2) The desired far-field pattern f(8) is specified, or,
equivalently, the set of far-field modal amplitudes {4,. n
Z) are given [see Eq. (13)].

(3) The frequency (equivalently the wave number ) is
given.

(4) The matrices S and P are evaluated [see Egs. (14)
and (22)].

(5) The source strengths B, the optimal approximation
to the far-field pattern £ M (@), i.e., (AN, n € Z}, and the
relative error Ey are calculated [see Egs. (13), (19), and
(25))-

(6) Anincident wave field Y(r) is defined, and the par-
ticle impedances #,, @ = 1,.... N, are calculated [see Eq.

(6)].

The first two items are geometrical, independent of fre-
quency and the incident wave. Once the frequency is
defined, the approximation f™)(@) to the scattered far
field is optimal in the sense of an N-dimensional solu-
tion according to the setup, and it is independent of the
incident field. The form of the incident wave, combined

with the source amplitudes By, defines the required particle
impedances 1, in Eq. (6).

The inverse algorithm defines the mechanical properties
of the configuration, i.e., the 1. for a given incident wave
Yrg. If the incident wave changes then the new scatter-
ing coefficients B, are defined by the system of equations
(3) with the predetermined {#,}. Regardless of the incident
wave direction, the process remains reciprocal under the
interchange of incident and scattering directions.

The question that must be addressed is whether or not all
of the scatterer impedances satisfy the passivity constraints
(8a) or (8b).

IV. APPLICATIONS

A. Far-field patterns and the matrix P

Two groups of cluster patterns are considered, namely
regular polygons, where scatterers are uniformly dis-
tributed over a circle, and finite lattices, where scatterers
are regularly distributed in a two-dimensional finite grid.
We describe how different arrangements of the scatterers
influence the matrix P of' Eq. (22) that defines the optimal
approximation to the desired scattering pattern.

1. Scatterers on a regular polygon

Let us assume that the N scatterers lie on the circle of
radius R at 0y = 2w B/N. We consider A corresponding to
each of the modes €™, m € Z, so that |A)> =1 and £ <
| with E < | indicating that the desired scattering mode is
well approximated. The results of numerical experimenta-
tion are as follows. For small &R relative to NV, E 15 small
formodesm=0,%1,...,(N —-1/2)if N > | is odd and
for modes m=0,%1....,(N —2/2) if N is even, with
E 7= 0.5 for m = £(N/2). The accuracy diminishes as kR
increases. In other words, for small kR, the N unit eigenval-
ues of P correspond to modes m =0, +1,...,(N —1/2)
if N = 1 is odd, with analogous association for N even.
Since the modes are multiply degenerate (all of eigen-
value unity), it follows that any linear combination of these
modes is an eigenvector.

2. Scatterers on a finite square lattice

We now assume that the scatterers are distributed in a
square but finite lattice. The lattice is M x M = N with
lattice spacing a. For instance, with M = 3 and ka = 1, we
find that the nine eigenvectors of P of eigenvalue +1 span
the space Q4 = (¢, m = 0,%1,...,+4). This result is
arrived at by inspecting the error £ for each mode, and
noting that it is small, of the order of 1 x 10~ typically,
while higher modes have error of approximately unity.
However, for the same ka = 1 but the larger lattice with
M =4 (N = 16), we find that the nontrivial eigenspace
is €25 U Qg 10, where Qg 10 is a five-dimensional subspace
formed from {€™®, m = %6,...,£10).
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3. General properties of the P matrix

Numerical experiments on matrix P for different spatial
configurations of the clusters show that, for large and mod-
erate kR, there are exactly N eigenvalues of P with values
close to 1. For large kR, the corresponding eigenvectors
(1.e., patterns of scattering modes of the cluster) are highly
irregular and sensitive to both kR and scatterer positions
{while the number of eigenvalues of value | equals NV). For
kR, == 0.5 and smaller, where R.. is the characteristic size of’
the cluster, the eigenvalues of P begin to differ and assume
values other than 1. For kR, < 1, the number of nonzero
eigenvalues reduces and low-order scattering patterns are
preferred.

Some general remarks on the number of scatterers (N)
and scattering properties of the cluster can be formulated
as follows. The larger N, the larger the number of clus-
ter modes: thus, more complex scattering patterns can be
reproduced accurately. Large number of scatterers in the
cluster, on the other hand, may result in overconstraining
the minimization problem and a lack of locally or globally
passive solutions. For moderate R, typically the num-
ber of regular patterns (eigenvectors of P) is similar to V,
while more degenerate patterns and/or a smaller number
of similar eigenvalues (approximately 1) are observed for
large or small AR,

B. Scattering patterns

The inverse design of metaclusters is illustrated with
the scatterers arranged on regular polygons or square lat-
tices, as outlined in Sec. IV A. Here we present the target
scattering patterns that will be later reproduced by proper
selection of passive impedances.

1. Uni- and bidirectional scattering patterns

Unidirectional scattering in the direction 8 = &y corre-
sponds to

fO=ChE—t) = A=t @)
A bidirectional scattering pattern is of the form f(8) =
Cod(0 — 6y) + C,8(0 — 8)). We consider patterns that are
symmetric or antisymmetric about the x direction (# =
0), corresponding to &) = —&) and C; = £Cy. We may
choose Cy = 1 with no loss in generality, and define

Sf1(8,6h) = 8(6 — o) £ (6 + bh)

lo::u:rs.'ﬂ.‘?o,
= A,= ; (28)

L
— — sin nfy.
b3

Examples of the uni- and bidirectional scattering patterns
are shown in Figs. 1(a) and 1(b).

a (b)
@ w2 /2
3/4m 1 Tl aa- 1 w4
T \ 0 m 0
S5/4x THdr  5/4x T4+
6/4x 6/4x

Bidirectional
synumefrie at “ib_-'-'lr

(c) /2 (d) /2
34 1 w4 34= 1 /4

Unidirectional at 3/47

T 0 = 0
S5/dw Ti4r  SMdw Tidm
6/4x 6/d=

Tripale Pentapols
w2
©) 3, ~_ 4

r 0

S5/ lan
6/4xn
Vortex

FIG. 1. Examples of the target patterns. Solid lines are nor-

malized amplitudes, and dashed lines are normalized phases of
the pattern functions (a finite number of 81 modes in Eq. (13) is

assumed).

2. Odd-pole patterns

Odd-pole patterns have p scattering lobes directing
energy towards the preferential directions. The odd-pole
scattering pattern and the corresponding 4, coefficients are
given as

- - - 2 -
(P, _ psin“(p/2+n)(w/2)

S (#) =sin (29) = A= G —m]
(29)

where 8" = 8 mod 21 is used to ensure that f (0) is a 25-
periodic function,
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a. A tripole. For a tripolar pattern, p = 3, there are three
main lobes spaced every 2/3m. An example of a tripolar
pattern is shown in Fig. 1(c).

b. A pentapole. Similarly, for p = 5, a pentapole scattering
pattern is obtained. See Fig. 1(d) for this type of pattern.

3. A vortex

A vortex generates a uniform constant amplitude pattern
with angle-dependent linearly changing phase behavior.
The corresponding formulas for the vortex of orderp € Z
are

f@) =" = A,=8;. (30)
Directional characteristics of amplitudes and phases for the
vortex pattern are shown in Fig. 1(e).

C. Full metacluster designs

Designing a metacluster requires finding all ¢, for a
given cluster topology and the desired scattering pattern.
The procedure outlined in Sec. 1l C is employed here to
find . We first present metacluster scattering patterns cor-
responding to the desired patterns from Sec. IV B, obtained
for different clusters configurations. Since the inverse pro-
cedure frequently leads to active particles, we next impose
condition (8b) to find locally passive optimal metaclusters
and present their scattering responses. For all presented
examples, we introduce the incident wave —without loss
of generality—assumed to be a plane wave in the —x
direction (f = ).

I. Scattering patterns for optimal metaclusters

Scattering patterns obtained for selected cluster topolo-
gies are shown in Fig. 2. Very good agreement between the
desired patterns of Fig. 1 can be seen, proving the effec-
tiveness of the design procedure. However, some of the
corresponding impedances—computed using the inverse
approach of Sec. IIl C—are active and hence require
energy supply. We next analyze and adopt the inverse
procedure for seeking only locally passive solutions.

2. An optimization problem for passive metaclusters

Our design objective is the set of point impedances
{te, & = 1,... ., N}. We aim at fulfilling the local passivity
condition, Eq. (8b). Define

(3la)

Pe = B, Y0(Ry), (31b)

b
(@) /e ®) w2

3/4w 1 w4 34 1 /4

T 0 = 0
5/4n Tar 5/n 7/4x
6/4x 674
Unidirectional at 3/4m Bidirectional

d syinmetric at §/4x
(c) /2 (d)
3/4m 1 mi4
T 0
5/4n THam
6/4r 6/dx
Tripole Pentapole
(e) w2

6/4x

Vortex

FIG. 2. Examples of the optimal far-field patterns for square
3 % 3 and 4 x 4 arrays (lattice spacing a) and circular arrange-
ments with 8 and 10 particles (radius a) for ka = 1 based on
Egs. (20) and (21). Incidence angle # = m (the —x direction).
For the vortex, Fig. 2(e), circular shapes are amplitude profiles
while the spirals in the center are phases of the scattering pattern.
All patterns are normalized.

N
S« =B,"Y G(R, —Ry)By.
f=1

(31c)

Then Eq. (6) becomes wg = py + S, ¢ = 1,...,N. Con-
sider plane-wave incidence ¥q(r) = p;}e"‘" for some wave
number K. There is a further degree of freedom that has
not been used. This could be considered as the amplitude
and phase of the incident wave, i.e., the complex number
pPo. Alternatively, if we fix py = | then there is a similar
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degree of freedom in how we normalize the far-field pat-
tern function [ (#). This has the effect of scaling A and
hence B by a complex number. This scaling redefines p,
but has no effect on s, of Eq. (31c). Therefore, with no
loss in generality, we assume that the incident wave has
unit amplitude,

Vo(r) = €7, (32)
and rewrite Eq. (6), the solution of the inverse problem, to
incorporate this added degree of freedom, as

Uy = ZPg =+ Sas a=1,....N. (33)
Here the complex number z defines the scaling of the pat-
tern function, which goes as z~!. The important point is
that z can be chosen arbitrarily: in particular, we use it as an
optimization parameter. The fact that the pattern function
amplitude 1s inversely proportional to |z| for a unit ampli-
tude incident wave suggests that smaller |z| is preferred for
maximizing the efficiency of energy conversion.

The optimization problem is as follows: given the N
complex numbers p, associated with the incident wave
and the N complex numbers s, associated with the point
sources, find z of Eq. (33) that ensures that Imu, <0
for all @. If this can be achieved then the optimal solu-
tion is the one with the minimum value of |z|, ensuring
maximum amplitude for the pattern function. It might not
be possible using the single complex number z to obtain
all of the complex numbers u, in the negative imaginary
half-plane. If this is not achievable in practical examples
then the constraint may be relaxed, for instance, to min-
imize the maximum instance of positive Imu,. Then the
“nearest” passive configuration can be identified by set-
ting Imu, to zero for those particles with positive Im .
Another alternative could be based on condition (8a), i.e.,
when the metacluster is globally passive, meaning that the
net energy supplied to the cluster is nonpositive.

In cases where the search procedure for 7, failed to find
locally passive metaclusters, a rigid rotation is applied to
the cluster (equivalent to changing the incidence angle)
and the search is repeated.

3. Example: a passive optimal metacluster for uni- and
bidirectional patterns

Numerical experimentation shows that there are meta-
cluster configurations for which the inverse impedance
solutions are all passive. Examples of the uni- and bidirec-
tional scattering patterns for a square lattice metacluster
are shown in Fig. 2. More detailed investigations show
that, for instance, a square array with lattice parameter a
designed to direct a wave incident from the 0 = m direc-
tion into a scattered wave preferentially directed toward
f = 3/4m has totally passive solutions for 1.9 < ka < 2.8,

/4

5/dw

Tl4r

6 -3 0 3 &6
x/A
Displacement
magnitude at ka = 1.9

(Normalized}
== Pattern at ka = 1.9
== Pattern at ka = 2.8
== Target Pattern

FIG. 3. The optimal pattern functions for the passive 2 x 2
metacluster at two frequencies bounding a bandwidth of passive
designs, ka < {1.9,2.8} (a), and the corresponding displacement
field generated at k@ = 1.9 (b). Admittances of the cluster are
give in Table 1. The efficiencies of the energy conversions are
Nika=19 = 0.60 and nje—25 = 0.35.

The optimal passive admittances £, ' are frequency depen-
dent, with values at the end of the passive interval shown
in Table I. The associated optimal scattering patterns are
shown in Fig. 3. In all examples we takea = land D = 1.

The examples in Fig. 3 and Table | are based on the
value of z in Eq. (33) for which the largest value of
lmr;' is zero. This optimizes the passive array in terms
of its efficiency in converting the incident energy into a
directed far-field pattern. The metacluster dissipates wave
energy but in a way that is most efficient among all passive
options. For the cluster shown in Fig. 3, the values of the
efficiency parameter n of Eq. (17) are ng,—1.0 = 0.60 and
Nka=28 = 0.35.

Similarly, in Fig. 4 we show a passive optimal 2 x 2
metacluster that converts the incident plane wave into a
symmetric bidirectional pattern. Although the metacluster
scattering pattern roughly approximates the desired far-
field function, all admittances are purely real, indicating
no dissipation in the system. Consequently, the energy
efficiency for this cluster is optimal, n = 1.

TABLE . The admittances ;' for the 2 x 2 array of passive
particles sending the wave incident at # = & into the # = 3 /4w
direction at two frequencies; see Fig. 3.

i
R, ka=19 ka =28
(—0.50,—0.50) 0.0662 — 0.0050i 0.0438 — 0.00004
(—0.50,0.50) —0.0243 — 0.0000: 0.0214 — 0.0618i
{0.50, —0.50) 0.1120 — 0.0000¢ —0.0651 —0.1138;
(0.50,0.50) —0.0413 — 0.0316;  —0.0524 — 0.00091
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5/4r

7/ar
6/4m x/ A
(Normalized) Displacement
== Pattern at ka = 3.1 magnitude at ka = 3.1
w—Target Pattern

FIG. 4. The optimal pattern function for the passive 2 x 2
metacluster (a), and the comesponding displacement field gen-
erated at ko = 3.1 (b). Admittances of the cluster are given in
Table 11. The energy efficiency for this setup is n = 1.

Further experimentation shows that the obtained optimal
solutions are very sensilive to the scatterers’ positions and
impedances. Also, requirements of symmetric clusters are
overconsirained, most often resulting in at least one active
particle, especially for a large number of particles V.

4. Example: a passive optimal metacluster for odd-polar
parterns

Analogously to the previous search, we look for optimal
passive clusters capable of generating a scattering tripole.
In Fig. 5 we show the target and the actual scattering
patterns for the tripole obtained for a square 2 x 2 clus-
ter of scatterers. The optimal positions and admittances
of the scatterers are shown in Table Ill. The admittances
have nearly the same passive damping properties. The
corresponding displacement field pattern generated by the
metacluster is shown in Fig. 5. The energy conversion
efficiency is p = 0.17.

In Fig. 6 we show a metacluster designed for generat-
ing a pentapole pattern. The cluster consists of a circu-
lar arrangement of five scatterers with optimal positions
and impedances listed in Table IV. Clearly, the cluster
is locally passive. It is important to note that this meta-
cluster setup, resulting in a nearly perfect pentapole [red

TABLE 1l. The admittances f,' for the 2 x 2 array of pas-
sive particles transforming the incident wave into a bidirectional
symmetric pattern at & = 3 /4m; see Fig. 4.

a
@ w2
3/4m 1

5/4x

6/dr
(Normalized)
== Pattern at ka = 5.4
= Target Pattern

X/ A
Displacement
magnitude at ka = 5.4,

FIG. 5. The optimal pattern function for the passive 2 x 2
metacluster (a), and the corresponding displacement field gener-
ated at ka = 5.4 (b). Admittances of the cluster are give in Table
[I1. The energy efliciency parameter is n = 0.17.

dashed line in Fig. 6(a)]. has been obtained accidentally
when looking for the vortex-type scattering pattern [dif-
ferent than the pentapole pattern: see the black solid line
in Fig. 6(a)]. The latter is a consequence of relaxing the
requirement of enforcing the target phase of the scattered
field and indicates that much more complex scattering pat-
terns that are still locally passive may be obtained for
desired amplitude-only rather than amplitude-and-phase
target fields. This cluster also displays a high energy
conversion efficiency of n = 0.84.

3. Example: a passive optimal metacluster for a vortex
pattern

Finally, we present a locally passive metacluster capable
of transforming the incident wavefield into the first-order
vortex, p = 1, as shown in Fig. 7. It can be seen from
Fig. 7(a) that despite the fact that the amplitude pattern
is not perfectly preserved, the phase behavior [Fig. 7(b)]
recovers the linearly dependent angular characteristic of
the vortex. In Figs. 7(c) and 7(d) we show displacements
and phases of the wavefields generated by the metacluster.
It is worth noting that this relatively complex scatter-
ing pattern is obtained by only four passive impedances.

TABLE IIl. The admittances 1, for the 2 x 2 array of passive
particles sending the wave incident at @ = for ka = 5.4 into
the tripole pattern; see Fig. 5.

R, t.! (ka=3.1) R, t.! (ka=54)
(—0.50, —0.50) —0.0038 (0.50, —0.50) —0.0078 — 0.0211i
(—0.50,0.50) —0.0038 (—0.50, —0.50) 0.0029 — 0.0215i
(0.50,—0.50) —0.0111 (0.50,0.50) —0.0078 — 0.0211i
(0.50,0.50) —0.0111 (—0.50,0.50) 0.0029 — 0.0215i
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5/4n T4

_ 6/4x .
{Normalized)
w— Pattorn at o = 5.3

x /A
Displacement
magnitude at ko = 5.3,

m— Target Pattern

FIG. 6. The optimal pattern function for the passive circular
metacluster of five particles (a), and the corresponding displace-
ment field generated at fa = 5.3 (b). Admittances of the cluster
are given in Table IV. The energy efficiency is 5 = 0.84 for this
cluster configuration.

The cluster efficiency is n = 0.14 for this setup, being a
consequence of moderate damping in all scatterers.

V. SUMMARY

We have shown that an inverse multiple scattering
method can be applied for the design of the radiation pat-
terns of clusters of scatterers. While the design process
is complex and passive solutions are not easy to find, the
approach has still more degrees of freedom to explore. The
specific case of flexural waves in thin elastic plates has
been considered, with the target problem of designing the
far-field patterns, although it is easy to show that near-field
patterns can also be considered. Similarly, the multiple
scattering formulation is not unique to flexural waves, and
the approach introduced here can be easily extended to
other classical waves, like optical or acoustical. Further
analysis using clusters of finite-size scatterers is important
for physical realization of the directivity effect. While the
analysis of such attachments requires introduction of scat-
tering matrices for each object, the structure of the frame-
work proposed here remains unchanged but becomes more
involved. However, some simplifications can be made

TABLE IV. The admittances 17! for the five-element circular
array of passive particles sending the wave incident at # =  for
ka = 5.3 into the pentapole pattern; see Fig. 6.

R, ;' (ka =53)
(0.95,0.31) 0.0007 — 0.0020i
(0.00, 1.00) 0.0009 — 0.0021;

(—0.95,0.31) 0.0011 — 0.0020i
(—0.59, —0.81) —0.0045 — 0.0002i
(0.59, —0.81) 0.0064 — 0.0003i

(a)
w2
RIGE - /4 a4
w D ] 0
5/dx 747w 5/4rx T/ax
6/dx 6/4xn
Magnitude Phase (Normalized)

(Normalized) == Pattern at ka = 5.5
== Patrern at ka = 5.5 = Target Pattern
- Toropt .
(c) arget Pattern (d)

-6 -3 0 3 & -6 -3 0 3 6
X/ A XA
Displacement Displacement phase at
magnitude at ke = 5.5. ke = 5.5.

FIG. 7. The optimal pattern function for the passive 2 x 2
metacluster: amplitude (a) and phase (b); and the corresponding
displacement field generated at ka = 5.5: displacement magni-
tude (¢) and phase (d). Admittances of the cluster are given in
Table V. The energy efficiency is 5 = 0.14.

for low-frequency approximations of finite-size scatter-
ers, reducing the infinite scattering matrix to only several
terms describing monopoles, dipoles, etc. These issues are
under current investigation, and we expect to report on the
acoustic analog in the near future.

The proposed metaclusters can be considered a general-
ization of the notion of a metagrating, where the inverse
design is performed in the amplitude of the diffraction
orders and the structures are periodic gratings. However,
in contrast with the infinite number of scattering elements
in a metagrating, the present results are based on clusters
of very few scatterers. In light of the small number of

TABLE V. The admittances ¢,' for the 2 x 2 square array of
passive particles sending the wave incidentaté = o forka = 5.5
into the vortex pattern; see Fig. 7.

R, ! (ka = 5.5)
(0.28, —0.65) 0.0683 — 0.0160i
(—0.65, —0.28) —0.0658 — 0.0068;
(0.65,0.28) 0.0536 — 0.0341i

(—0.28,0.65) 0.0676 — 0.019 52i
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elements employed, the scattering directivity is remarkable
in our opinion. With the alternative presented here we
could design not only finite gratings but also flat lenses,
beam splitters, and even cloaking devices. We therefore
consider that this work contributes to a direction towards
the design of passive devices for the control of mechanic
and electromagnetic energy.
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APPENDIX A: PLATE EQUATIONS AND ENERGY
BALANCE

The plate has thickness h, bending stiffness D[=
Ef/(l — uz}], and density p. Time-harmonic motion e~
1s assumed, so that the flexural wave number & is defined
by k* = @’ ph/D. We assume that there are N point scat-
terers located at R, with impedances #,, & = 1,2,... N.
The total displacement 1 satisfies

N
DA™ (r) — k' (] = Dt (R)S(r — Ry). (A1)

a=1

A generic attachment impedance f may be modeled as a
single degree of freedom with mass M, spring stiffness &,
and damping coeflicient v. Two possible configurations are

-1
) , case(a),

case (b).

| 1
t= (sz Kk —iwv
Maw® — ik + iwv,

(A2)

In case (a) the mass is attached to the plate by a spring
and damper in parallel. Model (b) assumes that the mass is
rigidly attached to the plate, and that both are attached to a
rigid foundation by the spring and damper in parallel [19].
An important limit is a plate pinned at R, ¥ (R;) =10,
which corresponds to ¢ — co. The (a) and (b) oscillators
could also be attached in parallel, e.g., on either side of the
plate, to give t = 1, + Ip.

Green’s function is the particular solution Y = G for
a single source of the form d(r) on the right-hand side
of (Al)
——[H" (kr) — Hy" (ikr)].

G(r) = (A3)

k’*’-D
The following identity may be found starting from the plate
equation (Al) using the procedure of Norris and Vemula

[18] for the analogous case without source terms:

D [ [ OVAY() — AY(OIVY ()] - nds

N
= Y (me) ¥ (R (Ad)

a=l

Taking the limit as the bounding surface 34 tends to
infinity, and using Eqgs. (1), (11), and (32) yields

L r@Pde &

Imf (0 Im¢, (A5
mf (0) = S5 —rh— +§{ mt,)|¥(R,)*. (AS5)
Define
Oexr = Imf (0), (A6a)
1 x 2
Ogca = Wﬁ |F (8)]"de, (A6b)
N
Oabe = Y _ (Im 1) ¥ (Re) . (Abc)
a=1
Then the energy balance becomes
Oext = O + O (A7)
Note that
1 t
(AT AP
Toeq = SDF: A A
(A%)

by = E{— Im#;")|BP,

a=1

where the infinite vector A” and N vector B are
solutions for the passive set of impedances.

A sort of equivalent reasoning can be derived from
Eq. (6) by rewriting it in the matrix form

N
> 6" 1BaI* = B, + B'GB, (A9)

a=1

where G = {G(Rz — Rg)} and ¥ = {¥0(R,)}. From Eq.
(A9) we are interested only in the imaginary part, as it
defines the passive or active character of the cluster. Note
that the imaginary part of the quadratic form in Eq. (A9) is
B Im(G)B and Im(G) oc Jy; hence, Im{G) 1s real valued
and symmetric. Finally, for a globally passive cluster, we
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require that
N
Y (me,")|B, )
w=I

— B Im(G)B + %(BH&O —-Biyp < 0. (Al0)

Satisfying Im ;! < 0 for all individual particles & cor-
responds to a locally passive metacluster. From Eqgs.
(Al} and (7)., it may be noted that B, is a complex
force amplitude that acts on the plate. The passivity of
a single scatterer can be seen through the Poynting vec-
tor—characteristic of the direction of energy flow. Time-
averaged energy flow through the point at which a scatterer
is placed is

& = —1 Re(Ba}) = Jovrl v Imt, (A11)

the plate towards the scatterer, i.e., the scatterer is passive.
Here @ can be seen as the power absorbed by the scatterer.

where, forIm#, = 0, we have @ = 0, so energy flows from

APPENDIX B: SOME MATRIX PROPERTIES

It follows from the definition of § in Eq. (14) and Grafs
addition theorem for Bessel functions [see Eq. (9.1.79) of
[20]] that S'S simplifies to

e 4]
(S"S)ap = Y JulkRy )y (kRg)e™ P09

=00

= Jo(kRqp), (BI)
where Rog = [Ry — Rg|. Note that Jo(kRgg) =~ 1 at low
frequency, indicating that S'S becomes singular in this
limit. Numerical examples show this in terms of the matrix
condition number that becomes large at low frequency.
The N x N matrix S'S is therefore real, symmetric, and
non-negative definite, and can be expressed as

N
sts = Z?..wuqu; (B2)

a=1

with positive eigenvalues A, > (0 and normalized eigen-
vectors of length N, u.tuﬂ = 8. Using Eq. (B2) in the
definition of P, Eq. (22) vields

N
P=3"4,'V,V], (B3)
a=1
where the infinite-dimensional vectors V,, are
V, = Sug, a=1,....N. (B4)

These are orthogonal, VI Vg = 3,845, but not orthonor-
mal. We define the orthonormal set

Up=4,"Su,, a=1,...,N, (B5)
so that P is in canonical form,
N
P=>"U,UL (B6)

a=l

Hence, P is finite rank with N nonzero eigenvalues equal to
+1. Alternatively, P is a projection onto the N-dimensional
subspace span{U,, & = 1,..., N}, and satisfies the projec-
tor property

Pl =P (B7)
We note some other properties of’ P and related matrices.
Multiplying Eq. (22) on the right by § and on the left by S
gives
s'p=s".

PS =S8, (BS)

The fundamental matrix S of Eq. (14) has an interest-
ing form in terms of the finite- and infinite-dimensional
normalized eigenvectors:

N
S= E AUl (B9)
=l
The Moore-Penrose inverse of S is
N
(S'S)7'st =% "o u, Ul (B10)
=1
Similarly, the matrix Q of Eq. (24) is
N
Q=) uU. (B11)
a=1

It follows from this, or from its definition in Eq. (24), that
the matrix Q satisfies

Q'Q=P, QQ"=1, (B12)
where 1y is the identity on span{U,, a = 1,...,N]
Finally, the physical vectors for the far-field pattern

function and source strengths of Eqs. (21) and (19) are
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respectively
N
AN =3 "a,U,,
=1 !
B (B13)
B=)"byu,,
a=1
where
ae =ULA, by =2]"a,. (B14)
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