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We pr es e nt a   m et h o d f or t h e c o ntr ol of   w a v es b as e d o n i n v ers e   m ulti pl e s c att eri n g t h e or y.   C o n c ei v e d as a

g e n er ali z ati o n of t h e c o n c e pt of   m et a gr ati n g,   w e c all   m et a cl ust ers t o a fi nit e s et of s c att er ers   w h os e p ositi o n

a n d  pr o p erti es ar e  o bt ai n e d  b y i n v ers e  d esi g n  o n c e   w e  h a v e  d e fi n e d t h eir r es p o ns e t o s o  m e e xt er n al i n ci-

d e nt  fi el d.   T h e p arti c ul ar f o c us is o n d esi g ni n g p assi v e   m et a cl ust ers t h at d o n ot r e q uir e a n e xt er n al s o ur c e

of  e n er g y.   T h e   m et h o d is  a p pli e d t o t h e  pr o p a g ati o n  of  fl e x ur al   w a v es i n t hi n  pl at es,  a n d t o t h e  d esi g n

of f ar- fi el d  p att er ns,  alt h o u g h its  g e n er ali z ati o n t o  a c o usti c  or  el e ctr o  m a g n eti c   w a v es is  str ai g htf or  w ar d.

N u  m eri c al  e x a  m pl es  ar e  pr es e nt e d t o t h e  d esi g n  of  u ni-  a n d  bi dir e cti o n al  “ a n o  m al o us s c att er ers, ”   w hi c h

will  b e n d t h e s c att eri n g  e n er g y  al o n g  a s p e ci fi c  dir e cti o n,  “ o d d  p ol e ” s c att er ers,   w h os e r a di ati o n  p att er n

pr es e nts  a n  o d d  n u  m b er  of  p ol es,  a n d t o t h e  g e n er ati o n  of  v orti c al  p att er ns.  Fi n all y, s o  m e  c o nsi d er ati o ns

a b o ut t h e o pti  m al d esi g n of t h es e   m et a cl ust ers ar e dis c uss e d.
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I. I  N  T  R  O  D  U  C  TI  O  N

A cti v e a n d p assi v e c o ntr ol of t h e e n er g y tr a nsf er i n el e c-
tr o  m a g n eti c  a n d   m e c h a ni c al   w a v es is  a  c h all e n gi n g  pr o b-
l e  m   wit h a l ar g e  n u  m b er  of a p pli c ati o ns, s u c h as f o c usi n g,
i  m a gi n g,  b e a  m  f or  mi n g,  cl o a ki n g  a n d  e n er g y  h ar v esti n g,
a  m o n g  ot h ers  [ 1 ].   T h e  a d v e nt  of  s o- c all e d   m et a  m at eri als
[2 ,3 ]  pr o vi d e d  a  di ff er e nt  p ers p e cti v e si n c e t h es e  arti fi ci al
str u ct ur es all o  w t h e d esi g n of   m at eri als   wit h e xtr a or di n ar y
pr o p erti es  c a p a bl e  of   m a ni p ul ati n g t h e  fl o  w  of  e n er g y i n
w a ys  t h at    w o ul d  b e  i  m p ossi bl e    wit h  c o  m  m o n    m at eri als,
e nl ar gi n g  i n  t his    m a n n er  t h e  n u  m b er  of  d e vi c es  f or  t h e
c o ntr ol  of el e ctr o  m a g n eti c a n d   m e c h a ni c al   w a v es.

M or e r e c e ntl y, t h e c o n c e pt  of “  m et as urf a c e, ” c o n c ei v e d
as arti fi ci al  pl a n ar   m et a  m at eri als,  h as attr a ct e d a n i n cr e as-
i n g  i nt er est.   B ei n g  t hi n n er  a n d  l ess  dissi p ati v e  t h a n  b ul k
m et a  m at eri als,  t h es e  str u ct ur es  all o  w  f or    m or e  e  ffi ci e nt
w a ys of   m a ni p ul ati n g t h e   w a v e e n er g y,   wit h t h e a d diti o n al
si  m pli fi c ati o n i n f a bri c ati o n t h at  pl a n ar  str u ct ur es  pr es e nt
i n c o  m p aris o n   wit h b ul k str u ct ur es [4 – 6 ].

T h e    m aj or  dr a  w b a c k  of  b ot h    m et a  m at eri als  a n d    m et a-
s urf a c es  h o  w e v er  is  t h at  t h eir  f u n cti o n alit y  is  b as e d  o n
t h e  e xtr a or di n ar y  r efr a cti v e  a n d  r e fl e cti v e  pr o p erti es t h e y
pr es e nt,  a n d    m ost  of  t h e  d e vi c es  d esi g n e d  i n  t his  fr a  m e-
w or k  r e q uir e  a  l ar g e  n u  m b er  of  s c att eri n g  el e  m e nts  i n
or d er t o f or  m a n “ e ff e cti v e ”   m at eri al   w h os e e ff e cti v e p h ys-
i c al pr o p erti es pr o vi d e   m et a  m at eri als of t h eir e xtr a or di n ar y
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pr o p erti es. I n t h e  c as e  of   m et as urf a c es, t h e  s urf a c e  h as t o
b e  gr a d u all y  str u ct ur e d  s o  t h at  t h e  e ff e cti v e  gr a di e nt  i n
t h e  s urf a c e i  m p e d a n c e  all o  ws f or t h e   m a ni p ul ati o n  of t h e
e n er g y  fl o  w.   T his l ar g e  n u  m b er  of  s c att eri n g  el e  m e nts is
a n i  m p ort a nt li  mit ati o n i n t h e  e  ffi ci e n c y  of   m et a  m at eri als
a n d   m et as urf a c es,  si n c e i n  pr a cti c e t h e  n u  m b er  of  di ff er-
e nt  s c att eri n g  el e  m e nts   will  b e li  mit e d,  es p e ci all y  o n t h e
mi cr o- or n a n os c al e.

T o  o v er c o  m e t h es e  di  ffi c ulti es, s e v er al a p pr o a c h es  h a v e
b e e n  e x pl or e d r e c e ntl y t o  si  m plif y t h e  d esi g n  of   m et as ur-
f a c es  b y   m e a ns  of  di ffr a cti o n  gr ati n gs [7 – 1 2 ], i n   w hi c h it
h as  b e e n  p ossi bl e t o  fi n d  a  c o  m pl e x  s c att er er  or  u nit  c ell
p erf or  mi n g t h e  s a  m e  f u n cti o n alit y  as  s o  m e   m et as urf a c es.
H o  w e v er, t h e d esi g n pr o c ess is still c o  m pl e x a n d f u n cti o n-
alit y is li  mit e d t o t h e  c o ntr ol  of t h e  pr o p a g ati o n  dir e cti o n
of   w a v es [ 1 3 – 1 5 ].

I n t his   w or k,   w e  pr es e nt a  g e n er ali z ati o n  of t h e c o n c e pt
of a   m et a gr ati n g b ut f or fi nit e str u ct ur es.   T h e o bj e cti v e is t o
s h o  w  h o  w, f or a  gi v e n i n ci d e nt  fi el d,   w e c a n  o bt ai n a cl us-
t er  of s c att er ers  a n d t h eir  p h ysi c al  pr o p erti es s u c h t h at t h e
s c att er e d  fi el d  pr es e nts  a  pr es el e ct e d s h a p e. If  a  p arti c ul ar
di ffr a cti o n  p att er n is  d esir e d f or a s p e ci fi c t y p e  of i n ci d e nt
w a v e,   w e pr o vi d e a   m et h o d t o d esi g n a cl ust er of s c att er ers
c a p a bl e  of tr a nsf erri n g t h e e n er g y al o n g t h e  d esir e d  dir e c-
ti o ns.   T h e  i n v ers e  d esi g n    m et h o d  pr es e nt e d  is  b as e d  o n
m ulti pl e s c att eri n g t h e or y [  1 6 ] a n d t h e  g e n er al  pri n ci pl e is
a p pli c a bl e t o  a n y  ki n d  of  cl assi c al   w a v e, i n cl u di n g  a c o us-
ti c  a n d  el e ctr o  m a g n eti c   w a v es.    We  us e  fl e x ur al   w a v es i n
pl at es  as  t h e    m o d el    m e di u  m,  d u e  t o  t h eir  p ot e nti al   wi d e
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a p pli c ati o n,  b ut  t h e  pr es e nt e d  fr a  m e  w or k  is  g e n er al  a n d
a p pli c a bl e  t o   w a v e  s c att eri n g  i n  ot h er    m e di a.   T his   w or k
t h er ef or e pr o vi d es a g e n er al pri n ci pl e f or t h e f ull c o ntr ol of
m e c h a ni c al a n d el e ctr o  m a g n eti c   w a v es b as e d o n s c att eri n g
el e  m e nts.

T h e  p a p er is  or g a ni z e d  as f oll o  ws.   Aft er t his i ntr o d u c-
ti o n,  i n   S e c.  II  w e  d e v el o p  t h e  i d e a  of  t h e  dir e ct  a n d
i n v ers e   m ulti pl e s c att eri n g  pr o bl e  m. I n  S e c. III w e e x pl ai n
h o  w t h e   m et h o d  c a n  b e  a p pli e d t o t h e  d esi g n  of  f ar- fi el d
p att er ns  a n d  i n  S e c.  I  V  w e  s h o  w  n u  m eri c al  e x a  m pl es  of
s p e ci fi c p att er ns. Fi n all y, i n S e c. V   w e s u  m  m ari z e t h e   w or k
a n d s o  m e   m at h e  m ati c al r es ults ar e  gi v e n i n   A p p e n di c es  A
a n d  B  .

II.   DI  R  E  C  T   A  N  D I  N  V  E  R S  E   M  U  L TI P  L  E
S  C  A T  T  E  RI  N  G   P  R  O  B  L  E   M

W h e n s o  m e i n ci d e nt  fi el d    ψ 0 i  m pi n g es o n a cl ust er of N
p oi ntli k e  s c att er ers, t h e t ot al  fi el d  ψ (  r )  c a n  b e  e x pr ess e d
as t h e s u  m of t h e i n ci d e nt  pl us t h e s c att er e d  fi el ds,

ψ (  r ) =   ψ 0 (r ) +   ψ s (r ). (1 )

T h e s c att er e d  fi el d is

ψ s (r ) =

N

β =  1

B β G  (r  −   R β ), (2 )

w h er e    G  (r ) =   G  (|r |)  is    Gr e e n’s  f u n cti o n  a n d  t h e  c o ef-
fi ci e nts    B β ar e   o bt ai n e d   fr o  m   t h e     m ulti pl e   s c att eri n g
e q u ati o n [ 1 7 ]

N

β =  1

[t−  1β δ α β −   G  (R α −   R β )]B β =   ψ 0 (R α ).    ( 3)

T his  pr o vi d es  a s yst e  m  of   N   e q u ati o ns   wit h  N   u n k n o  w ns.
T h e  q u a ntit y   tα is t h e  str e n gt h  of  e a c h  p oi ntli k e  s c att er er
a n d it is t h e  o nl y  q u a ntit y t h at  c o nt ai ns i nf or  m ati o n  a b o ut
its  p h ysi c al  pr o p erti es.   T his  d es cri b es t h e  dir e ct   m ulti pl e
s c att eri n g  pr o bl e  m, i n   w hi c h t h e  n u  m b er  of  s c att er ers,  N  ,
t h eir str e n gt hs tα , a n d l o c ati o ns R β ar e k n o  w n, fr o  m   w hi c h
w e  c o  m p ut e  t h e   B α c o e  ffi ci e nts  t o  fi n all y  d et er  mi n e  t h e
fi el d i n all of s p a c e.

T h e i n v ers e pr o bl e  m is as f oll o  ws.   Ass u  m e t h at t h e s c at-
t er e d fi el d c a n b e e x pr ess e d as a li n e ar c o  m bi n ati o n of b asis
f u n cti o ns φ n s u c h t h at

ψ s (r ) =

∞

n =  −   ∞

A n φ n (r ). (4 )

T h e n    w e  s p e cif y  t h e  i n v ers e  pr o bl e  m  as  d et er  mi ni n g  a
fi nit e   n u  m b er   N p of   A n c o e  ffi ci e nts  f or   n  =   1,  . . . , N p ,
s o  t h at  t h e  s c att er e d  fi el d   will  h a v e  a  s p e ci fi e d  r a di ati o n

p att er n i n t h e f ar  fi el d. I n  g e n er al, t h er e   will  b e a   m atri x  S
s u c h t h at

A n =

N

β =  1

S n β B β ; (5 )

t h er ef or e, if   w e s el e ct t h e n u  m b er N   of p arti cl es i n t h e cl us-
t er  e q u al  t o  t h e  n u  m b er  N p of    m o d es  t o  d esi g n,   E q.   ( 5)
c o nstit ut es  a  d et er  mi n at e  s yst e  m  of  N    e q u ati o ns   wit h  N
u n k n o  w ns fr o  m   w hi c h   w e c a n s ol v e f or t h e  B β c o e  ffi ci e nts.
O n c e t h es e ar e k n o  w n,   w e c a n o bt ai n t h e   tα el e  m e nts fr o  m
E q.  ( 4) as

t−  1α =
1

B α
ψ 0 (R α ) +

N

β =  1

G  (R α −   R β )B β .    ( 6)

T h us,   w e  c a n  o bt ai n t h e  p h ysi c al  pr o p erti es  of  e a c h  p arti-
cl e.   T h e   m ai n  c h all e n g e is t o  fi n d  a  cl ust er  c o n fi g ur ati o n
gi vi n g p h ysi c all y a c c e pt a bl e p arti cl es.

F or t h e c as e of  fl e x ur al   w a v es o n t hi n el asti c pl at es,  ψ   is
t h e  pl at e  d e fl e cti o n, G   is t h e s ol uti o n f or  a  p oi nt f or c e  p er
u nit ar e a a p pli e d i n t h e p ositi v e  ψ   dir e cti o n, a n d

B α =   tα ψ (  R α ) ( 7)

is   t h e   p oi nt   f or c e   p er   u nit   ar e a   of   s c att er er   α ;   s e e
A p p e n di x    A  .    T h e   p ar a  m et er  tα is   a n   e ff e cti v e   p oi nt
i  m p e d a n c e  t h at  c a n  b e  i nt er pr et e d  i n  t er  ms  of  a  si n gl e-
d e gr e e- of-fr e e d o  m s yst e  m   wit h   m ass, sti ff n ess, a n d  d a  m p-
i n g.  P h ysi c all y  a c c e pt a bl e  p arti cl es  c a n n ot s u p pl y  e n er g y,
i. e.,  t h e y    m ust  b e  p assi v e.    Ass u  mi n g  ti  m e  d e p e n d e n c e
e −  iω  t, t h e  p assi vit y  c o nstr ai nts r e q uir e t h at  o n e  or  ot h er  of
t h e f oll o  wi n g c o n diti o ns is   m et:

N

α =  1

(I  m t−  1α )|B α |2 ≤   0, ( 8 a)

I  m t−  1α ≤   0. ( 8 b)

E q u ati o n  ( 8 a) r e q uir es t h at t h e cl ust er  b e  gl o b all y  p assi v e,
m e a ni n g  t h at  s o  m e  of  t h e  s c att er ers  c a n  pr o vi d e  e n er g y,
b ut  t h er e  s h o ul d   b e  a   n e g ati v e  e n er g y   b al a n c e  a d di n g
all  t h e  c o ntri b uti o ns  of  t h e  s c att er ers.   E q u ati o n  ( 8 b),   or
e q ui v al e ntl y  I  m tα ≥   0,  is  a    m or e  r estri cti v e  c o n diti o n,
si n c e it r e q uir es t h at  all s c att er ers  b e  p assi v e s yst e  ms (s e e
A p p e n di x   A   f or  d et ails).   T h e e q u alit y  h ol ds f or z er o  dissi-
p ati o n i n  b ot h  e q u ati o ns.   T h e  g o al  of t h e i n v ers e   m ulti pl e
s c att eri n g  pr o bl e  m is t o  o bt ai n  a s et  of  p arti cl es  all si  m ul-
t a n e o usl y s atisf yi n g t h e  first c o nstr ai nt or b ot h c o nstr ai nts.
F or t h e  first  c o nstr ai nt,  gl o b al  p assi vit y,   w e  ass u  m e t h at,
alt h o u g h  s o  m e  s c att er ers   m a y  r e q uir e  e n er g y  s u p pl y, t his
e n er g y  c a n  b e tr a nsf err e d fr o  m  ot h er, l o c all y  p assi v e  o n es
(s e e   A p p e n di x A  ).
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T h e s p e ci fi c pr o bl e  m a d dr ess e d b el o  w is t o e n gi n e er t h e
cl ust er of p oi nt s c att er ers t o pr o vi d e a cl os e a p pr o xi  m ati o n
t o a d esir e d f ar- fi el d s c att eri n g r es p o ns e. I n t h e n e xt s e cti o n
w e o utli n e t h e st e ps n e c ess ar y t o a c hi e v e t his i n a n o pti  m al
s e ns e.

III.   F  A  R- FI  E  L  D   E  N  GI  N  E  E  RI  N  G

A.   Di r e ct f a r- fi el d s ol uti o n

T h e f u n cti o ns  φ n of   E q.  ( 4) ar e c h os e n as t h e i n fi nit e s et

φ n (r ) =   G  (r )e
i nθ ,    n  ∈ Z ,    ( 9)

w h er e  t h e  p ositi o n  is  e x pr ess e d  i n  p ol ar  c o or di n at es   r  =
(r, θ )  wit h r es p e ct t o  a n  ori gi n  at   r  =   0.   T his  all o  ws  us t o
u ni q u el y i d e ntif y t h e  c o e  ffi ci e nts  A n of   E q.  ( 4) as f ar- fi el d
a  m plit u d es  of t h e s c att er e d   w a v e. I n  or d er t o s e e t his,  first
n ot e t h at t h e f ar  fi el d f or a s o ur c e at  R β =   (R β , θ β ) is

G  (r  −   R β ) ≈   G  (r )e −  i k Rβ c os ( θ −  θ β ) .     ( 1 0)

T his  a p pr o xi  m ati o n  h ol ds   w h et h er   Gr e e n’s f u n cti o n is f or
t h e   H el  m h olt z e q u ati o n or f or t h e   Kir c h h o ff pl at e e q u ati o n.
I n  b ot h  c as es, t h e  f ar- fi el d  r es p o ns e  d e p e n ds  o nl y  o n t h e

l ar g e ar g u  m e nt a p pr o xi  m ati o n of H (1 )
0 (x ).   T h e s c att er e d f ar

fi el d of t h e cl ust er f oll o  ws fr o  m   E qs.  ( 2) a n d  ( 1 0) as

ψ s (r ) ≈   G  (r )f ( θ ), ( 1 1)

wit h t h e f ar- fi el d r a di ati o n f u n cti o n

f ( θ ) =

N

β =  1

B β e −  i k Rβ c os ( θ −  θ β ) .     ( 1 2)

Alt er n ati v el y,

f ( θ ) =

∞

n =  −   ∞

A n e
i nθ , ( 1 3)

w h er e t h e i n fi nit e s et of c o e  ffi ci e nts   {A n } is r el at e d t o t h e N
c o e  ffi ci e nts  {B β } b y   E q.  ( 5) wit h

S n β =   (−  i) n e −  i nθ β J n (k R β ).     ( 1 4)

F or  a  u nit  a  m plit u d e  i n ci d e nt  pl a n e   w a v e  pr o p a g ati n g  i n
t h e  dir e cti o n θ  =   0, t h e r a di ati o n  p att er n f u n cti o n s atis fi es
t h e o pti c al t h e or e  m [1 8 ]

I  m f (0 ) =   σ s c a +   σ a bs , ( 1 5)

w h er e t h e s c att eri n g cr oss s e cti o n   σ s c a a n d a bs or pti o n cr oss
s e cti o n  σ a bs ar e  d e fi n e d i n   E qs.  (  A 6 b)  a n d  (  A 6 c).  F urt h er
d et ails  c a n  b e  f o u n d  i n    A p p e n di x   A  .   T h e  cr oss  s e cti o ns
c a n  als o  b e  e x pr ess e d  dir e ctl y i n t er  ms  of t h e  c o e  ffi ci e nts

{A n }  a n d  {B β }  [s e e   E q. (  A 8)], l e a di n g t o t h e  e x pli cit f or  m
of t h e o pti c al t h e or e  m

I  m f (0 ) =
1

8 D k 2
A † A   +

N

α =  1

(−   I  m t−  1α )|B α |2 .     ( 1 6)

We  d e fi n e  t h e  e n er g y  e  ffi ci e n c y  of  a  cl ust er  as  t h e  r ati o
of  s c att er e d  t o  t ot al  i n p ut  e n er g y,    w hi c h  c a n  b e  c al c u-
l at e d fr o  m t h e  s c att eri n g  a n d  a bs or pti o n  cr oss  s e cti o ns  of
E qs.  (  A 6) as

η  =
σ s c a

σ e xt
=

σ s c a

σ s c a +   σ a bs
. ( 1 7)

B. I n v e rs e  p r o bl e  m

I n  t h e  i n v ers e  s o ur c e  pr o bl e  m   w e  ar e  gi v e n  f ( θ )  a n d
s e e k  t h e  cl ust er  t h at  o pti  m all y  r e pr o d u c es  t his  s c att eri n g
p att er n.   T h e  r a di ati o n  p att er n,  d e fi n e d  b y t h e  c o e  ffi ci e nts
{A n }  i n t h e f or  m ( 1 3), is i n fi nit e  di  m e nsi o n al,   w h er e as t h e
cl ust er  c o  m pris es  a  fi nit e  s et  of  N   s o ur c es.    We  d e fi n e t h e
err or

E   =
2 π

0

∞

n =  −   ∞

⎛

⎝ A n −

N

β =  1

S n β B β

⎞

⎠ e i nθ
2

=    A   −   S  B 2 , ( 1 8)

w h er e    X 2 =   X † X   wit h   X † t h e    H er  miti a n  tr a ns p os e  of
v e ct or   X  .    Mi ni  mi zi n g  E   f or  gi v e n  A    a n d   S   yi el ds  t h e
s ol uti o n

B   =   (S † S ) −  1 S † A  , ( 1 9)

w h er e   (S † S ) −  1 S † m a y  b e i d e nti fi e d  as t h e   M o or e- P e nr os e
i n v ers e of S .

T h e a p pr o xi  m at e d r a di ati o n  p att er n is

f (N  ) ( θ ) =

∞

n =  −   ∞

A (N  )
n e i nθ ,     ( 2 0)

w h er e   A (N  )
n , n  ∈ Z , ar e t h e el e  m e nts of

A (N  ) =   S  B  =   P  A , ( 2 1)

a n d t h e n o n- n e g ati v e  d e fi nit e   H er  miti a n   m atri x  P  is

P  =   S (S † S ) −  1 S † . ( 2 2)

We s h o  w i n   A p p e n di x    B  t h at t h e   m atri x P  is i n fi nit e di  m e n-
si o n al  b ut  fi nit e r a n k   wit h  N   n o n z er o ei g e n v al u es e q u al t o
+  1; s e e   E q.  (  B 5). It t h er ef or e a cts as a  pr oj e cti o n fr o  m t h e
i n fi nit e- di  m e nsi o n al s p a c e  of f ar- fi el d  p att er n f u n cti o ns t o
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t h e  N  - di  m e nsi o n al  s et  of  a p pr o xi  m at e  p att er n  f u n cti o ns:
f ( θ ) →    f (N  ) ( θ ).

T h e o pti  m al s ol uti o n  ( 2 1) yi el ds a n err or

E   =   A † (A   −   A (N  ) ) =    A 2 −    Q  A 2 ,     ( 2 3)

w h er e

Q   =   (S † S ) −  1 / 2 S † . ( 2 4)

I n  pr a cti c e,   w e  ar e  i nt er est e d  i n  t h e  r el ati v e  err or  E r el =
E  /   A 2 , i. e.,

E r el =   1  −
A † A (N  )

A 2
. ( 2 5)

1. I n visi bilit y ?

C a n t h e cl ust er  b e i n visi bl e, i n t h e s e ns e t h at t h er e is  n o
s c att er e d   w a v e ?  S etti n g  A   t o z er o i  m pli es t h at

0  =   S  B    =  ⇒    S † S  B  =   0.     ( 2 6)

H e n c e,   B α =   0,  a n d  t h er ef or e  tα =   0,    m e a ni n g  t h at  t h er e
ar e  n o  s c att er ers, t h e  n ull  s ol uti o n.    We  c o n cl u d e t h at t h e
i n v ers e s c att eri n g cl ust er s c h e  m e d o es n ot pr o vi d e a us ef ul
r o ut e t o i n visi bilit y  or cl o a ki n g.

C. I n v e rs e  d esi g n al g o rit h  m

B as e d   o n  t h e   a b o v e   fi n di n gs,  t h e  i n v ers e  s c att eri n g
d esi g n c a n b e f or  m ul at e d as f oll o  ws.

( 1)    T h e  N    s c att er er   p ositi o ns   R α , α  =   1,  . . . , N  ,   ar e
d e fi n e d.

( 2)    T h e  d esir e d  f ar- fi el d  p att er n  f ( θ )  is  s p e ci fi e d,  or,
e q ui v al e ntl y, t h e s et of f ar- fi el d   m o d al a  m plit u d es  {A n , n  ∈
Z } ar e gi v e n [s e e   E q.  ( 1 3)].

( 3)    T h e fr e q u e n c y ( e q ui v al e ntl y t h e   w a v e  n u  m b er k ) is
gi v e n.

( 4)    T h e   m atri c es  S  a n d  P   ar e  e v al u at e d  [s e e   E qs.  ( 1 4)
a n d  ( 2 2)].

( 5)    T h e s o ur c e str e n gt hs B α , t h e o pti  m al a p pr o xi  m ati o n
t o t h e f ar- fi el d  p att er n f (N  ) ( θ ), i. e., {A (N  )

n , n  ∈ Z }, a n d t h e
r el ati v e  err or  E r el ar e  c al c ul at e d  [s e e   E qs.  ( 1 3), ( 1 9),  a n d
( 2 5)].

( 6)    A n i n ci d e nt   w a v e fi el d ψ 0 (r ) is d e fi n e d, a n d t h e p ar-
ti cl e i  m p e d a n c es tα , α  =   1,  . . . , N  ,  ar e c al c ul at e d [s e e   E q.
( 6)].

T h e  first  t  w o  it e  ms  ar e  g e o  m etri c al,  i n d e p e n d e nt  of  fr e-
q u e n c y  a n d  t h e  i n ci d e nt    w a v e.    O n c e  t h e  fr e q u e n c y  is
d e fi n e d,  t h e  a p pr o xi  m ati o n   f (N  ) ( θ )  t o  t h e  s c att er e d  f ar
fi el d  is  o pti  m al  i n  t h e  s e ns e  of  a n   N  - di  m e nsi o n al  s ol u-
ti o n  a c c or di n g  t o  t h e  s et u p,  a n d  it  is  i n d e p e n d e nt  of  t h e
i n ci d e nt  fi el d.   T h e  f or  m  of  t h e  i n ci d e nt   w a v e,  c o  m bi n e d

wit h t h e s o ur c e a  m plit u d es   B α , d e fi n es t h e r e q uir e d p arti cl e
i  m p e d a n c es tα i n   E q. ( 6).

T h e i n v ers e al g orit h  m d e fi n es t h e   m e c h a ni c al pr o p erti es
of t h e  c o n fi g ur ati o n, i. e., t h e  tα , f or  a  gi v e n i n ci d e nt   w a v e
ψ 0 .  If  t h e  i n ci d e nt    w a v e  c h a n g es  t h e n  t h e  n e  w  s c att er-
i n g  c o e  ffi ci e nts B α ar e  d e fi n e d  b y t h e s yst e  m  of  e q u ati o ns
( 3) wit h t h e pr e d et er  mi n e d   {tα }.   R e g ar dl ess of t h e i n ci d e nt
w a v e  dir e cti o n,  t h e  pr o c ess  r e  m ai ns  r e ci pr o c al  u n d er  t h e
i nt er c h a n g e  of i n ci d e nt a n d s c att eri n g  dir e cti o ns.

T h e q u esti o n t h at   m ust b e a d dr ess e d is   w h et h er or n ot all
of t h e s c att er er i  m p e d a n c es s atisf y t h e p assi vit y c o nstr ai nts
( 8 a) or  ( 8 b).

I  V.   A P P  LI  C  A TI  O  N S

A.   F a r- fi el d  p att e r ns a n d t h e   m at ri x   P

T  w o  gr o u ps  of  cl ust er  p att er ns  ar e  c o nsi d er e d,  n a  m el y
r e g ul ar   p ol y g o ns,    w h er e   s c att er ers   ar e   u nif or  ml y   dis-
tri b ut e d  o v er  a  cir cl e,  a n d  fi nit e l atti c es,   w h er e  s c att er ers
ar e  r e g ul arl y  distri b ut e d i n  a t  w o- di  m e nsi o n al  fi nit e  gri d.
We  d es cri b e  h o  w  di ff er e nt  arr a n g e  m e nts  of t h e  s c att er ers
i n fl u e n c e t h e   m atri x P  of   E q.  ( 2 2) t h at  d e fi n es t h e  o pti  m al
a p pr o xi  m ati o n t o t h e d esir e d s c att eri n g  p att er n.

1.  S c att er ers o n a r e g ul ar p ol y g o n

L et  us  ass u  m e t h at t h e   N   s c att er ers li e  o n t h e  cir cl e  of
r a di us R  at  θ β =   2 π β / N  .   We c o nsi d er A   c orr es p o n di n g t o
e a c h  of t h e   m o d es  e i  mθ , m   ∈ Z , s o t h at   A 2 =   1  a n d  E   ≤
1   wit h  E    1 i n di c ati n g t h at t h e d esir e d s c att eri n g   m o d e is
w ell a p pr o xi  m at e d.   T h e r es ults  of  n u  m eri c al e x p eri  m e nt a-
ti o n  ar e  as f oll o  ws.  F or s  m all k R  r el ati v e t o N  , E   is s  m all
f or   m o d es m   =   0,  ±  1,  . . . , (N   −   1 / 2 )  if N   >   1 is  o d d  a n d
f or    m o d es  m   =   0,  ±  1,  . . . , (N   −   2 / 2 )  if  N    is  e v e n,    wit h
E   ≈   0. 5 f or  m   =   ±  (N  / 2 ).   T h e  a c c ur a c y  di  mi nis h es  as k R
i n cr e as es. I n ot h er   w or ds, f or s  m all k R , t h e N   u nit ei g e n v al-
u es  of  P   c orr es p o n d t o   m o d es  m   =   0,  ±  1,  . . . , (N   −   1 / 2 )
if N   >   1  is  o d d,   wit h  a n al o g o us  ass o ci ati o n  f or  N    e v e n.
Si n c e  t h e    m o d es  ar e    m ulti pl y  d e g e n er at e  ( all  of  ei g e n-
v al u e u nit y), it f oll o  ws t h at a n y li n e ar c o  m bi n ati o n of t h es e
m o d es is a n ei g e n v e ct or.

2.  S c att er ers o n a  fi nit e s q u ar e l atti c e

We  n o  w  ass u  m e t h at t h e  s c att er ers  ar e  distri b ut e d i n  a
s q u ar e  b ut  fi nit e  l atti c e.   T h e  l atti c e  is  M    ×   M    ≡   N    wit h
l atti c e s p a ci n g a . F or i nst a n c e,   wit h M    =   3  a n d  k a  =   1,   w e
fi n d t h at t h e  ni n e ei g e n v e ct ors  of  P  of ei g e n v al u e  +  1 s p a n
t h e  s p a c e 4 ≡ {  e i  mθ , m   =   0,  ±  1,  . . . , ±  4 }.   T his  r es ult  is
arri v e d  at  b y  i ns p e cti n g  t h e  err or  E   f or  e a c h    m o d e,  a n d
n oti n g t h at it is  s  m all,  of t h e  or d er  of  1  ×   1 0 −  4 t y pi c all y,
w hil e  hi g h er    m o d es  h a v e  err or  of  a p pr o xi  m at el y  u nit y.
H o  w e v er,  f or t h e  s a  m e   k a  =   1  b ut t h e l ar g er l atti c e   wit h
M    =   4  (N   =   1 6 ),   w e  fi n d  t h at  t h e  n o ntri vi al  ei g e ns p a c e
is 5 ∪ 6, 1 0 ,   w h er e 6, 1 0 i s  a  fi v e- di  m e nsi o n al  s u bs p a c e
f or  m e d fr o  m {e i  mθ , m   =   ±  6,  . . . , ±  1 0 }.
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3.   G e n er al pr o p erti es of t h e   P   m atri x

N u  m eri c al e x p eri  m e nts  o n   m atri x   P  f or  di ff er e nt s p ati al
c o n fi g ur ati o ns of t h e cl ust ers s h o  w t h at, f or l ar g e a n d   m o d-
er at e  k R , t h er e ar e e x a ctl y N   ei g e n v al u es  of  P  wit h  v al u es
cl os e  t o  1.  F or  l ar g e  k R ,  t h e  c orr es p o n di n g  ei g e n v e ct ors
(i. e., p att er ns of s c att eri n g   m o d es of t h e cl ust er) ar e hi g hl y
irr e g ul ar  a n d  s e nsiti v e  t o  b ot h  k R  a n d  s c att er er  p ositi o ns
(  w hil e t h e n u  m b er of ei g e n v al u es of v al u e 1 e q u als N  ). F or
k R c ≈   0. 5 a n d s  m all er,   w h er e  R c is t h e c h ar a ct eristi c si z e of
t h e cl ust er, t h e ei g e n v al u es of P  b e gi n t o di ff er a n d ass u  m e
v al u es  ot h er t h a n  1.  F or  k R c 1, t h e  n u  m b er  of  n o n z er o
ei g e n v al u es r e d u c es  a n d l o  w- or d er  s c att eri n g  p att er ns  ar e
pr ef err e d.

S o  m e  g e n er al r e  m ar ks  o n t h e  n u  m b er  of  s c att er ers ( N  )
a n d  s c att eri n g  pr o p erti es  of t h e  cl ust er  c a n  b e f or  m ul at e d
as  f oll o  ws.   T h e  l ar g er  N  ,  t h e  l ar g er  t h e  n u  m b er  of  cl us-
t er   m o d es; t h us,   m or e  c o  m pl e x  s c att eri n g  p att er ns  c a n  b e
r e pr o d u c e d  a c c ur at el y.   L ar g e  n u  m b er  of  s c att er ers  i n  t h e
cl ust er,  o n t h e  ot h er  h a n d,   m a y r es ult i n  o v er c o nstr ai ni n g
t h e   mi ni  mi z ati o n pr o bl e  m a n d a l a c k of l o c all y or gl o b all y
p assi v e  s ol uti o ns.  F or    m o d er at e   k R c ,  t y pi c all y  t h e  n u  m-
b er  of r e g ul ar  p att er ns ( ei g e n v e ct ors  of  P ) is si  mil ar t o N  ,
w hil e    m or e  d e g e n er at e  p att er ns  a n d/ or  a  s  m all er  n u  m b er
of si  mil ar  ei g e n v al u es ( a p pr o xi  m at el y  1)  ar e  o bs er v e d f or
l ar g e or s  m all k R c .

B.  S c att e ri n g  p att e r ns

T h e  i n v ers e  d esi g n  of    m et a cl ust ers  is  ill ustr at e d    wit h
t h e  s c att er ers  arr a n g e d  o n r e g ul ar  p ol y g o ns  or  s q u ar e l at-
ti c es,  as  o utli n e d i n  S e c. I  V   A.   H er e   w e  pr es e nt t h e t ar g et
s c att eri n g  p att er ns t h at   will  b e l at er r e pr o d u c e d  b y  pr o p er
s el e cti o n of p assi v e i  m p e d a n c es.

1.   U ni- a n d bi dir e cti o n al s c att eri n g p att er ns

U ni dir e cti o n al  s c att eri n g i n t h e  dir e cti o n   θ  =   θ 0 c orr e-
s p o n ds t o

f ( θ )  =   C 0 δ ( θ  −   θ 0 )    ⇐  ⇒    A n =
C 0

2 π
e −  i nθ 0 .     ( 2 7)

A  bi dir e cti o n al  s c att eri n g  p att er n  is  of  t h e  f or  m    f ( θ ) =
C 0 δ ( θ  −   θ 0 ) +   C 1 δ ( θ  −   θ 1 ).    We  c o nsi d er  p att er ns t h at  ar e
s y  m  m etri c  or  a ntis y  m  m etri c  a b o ut  t h e  x   dir e cti o n   ( θ  =
0 ),  c orr es p o n di n g  t o  θ 1 =   −  θ 0 a n d  C 1 =   ±  C 0 .    We    m a y
c h o os e  C 0 =   1   wit h n o l oss i n g e n er alit y, a n d d e fi n e

f± ( θ , θ 0 ) ≡   δ ( θ  −   θ 0 ) ±   δ ( θ  +   θ 0 )

⇐  ⇒    A n =

⎧
⎪⎨

⎪⎩

1

π
c os n θ 0 ,

−
i

π
si n n θ 0 .

( 2 8)

E x a  m pl es  of t h e  u ni-  a n d  bi dir e cti o n al  s c att eri n g  p att er ns
ar e s h o  w n i n  Fi gs.  1( a)  a n d  1( b) .

( a) ( b)

( c)

( e)

( d)

FI  G.  1.      E x a  m pl es  of  t h e  t ar g et  p att er ns.  S oli d  li n es  ar e  n or-
m ali z e d  a  m plit u d es,  a n d  d as h e d li n es  ar e  n or  m ali z e d  p h as es  of
t h e  p att er n f u n cti o ns ( a  fi nit e  n u  m b er  of  8 1   m o d es i n   E q. ( 1 3) is
ass u  m e d).

2.   O d d- p ol e  p att er ns

O d d- p ol e   p att er ns   h a v e    p̄   s c att eri n g  l o b es   dir e cti n g
e n er g y  t o  w ar ds  t h e  pr ef er e nti al  dir e cti o ns.   T h e  o d d- p ol e
s c att eri n g p att er n a n d t h e c orr es p o n di n g A n c o e  ffi ci e nts ar e
gi v e n as

f ( θ ) =   si n
p̄

2
θ   ⇐  ⇒    A n =

p̄  si n 2 ( ̄p / 2  +   n )( π /2 )

π  [( ̄p / 2 ) 2 −   n 2 ]
,

( 2 9)

w h er e   θ   =   θ  m o d  2  π   is  us e d t o e ns ur e t h at f ( θ ) is a  2π  -
p eri o di c f u n cti o n.
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a.   A tri p ol e.  F or  a tri p ol ar  p att er n,   p̄  =   3, t h er e  ar e t hr e e
m ai n l o b es  s p a c e d  e v er y  2  / 3 π  .   A n  e x a  m pl e  of  a tri p ol ar
p att er n is s h o  w n i n  Fi g.  1( c) .

b.   A p e nt a p ol e.  Si  mil arl y, f or   ̄p  =   5, a p e nt a p ol e s c att eri n g
p att er n is o bt ai n e d.  S e e  Fi g.  1( d)  f or t his t y p e of p att er n.

3.   A v ort e x

A v ort e x g e n er at es a u nif or  m c o nst a nt a  m plit u d e p att er n
wit h  a n gl e- d e p e n d e nt  li n e arl y  c h a n gi n g  p h as e  b e h a vi or.
T h e c orr es p o n di n g f or  m ul as f or t h e  v ort e x  of  or d er   p̄  ∈ Z
ar e

f ( θ ) =   e i ̄p θ ⇐  ⇒    A n =   δ n p̄ .     ( 3 0)

Dir e cti o n al c h ar a ct eristi cs of a  m plit u d es a n d p h as es f or t h e
v ort e x  p att er n ar e s h o  w n i n  Fi g.  1( e) .

C.   F ull   m et a cl ust e r  d esi g ns

D esi g ni n g  a    m et a cl ust er  r e q uir es  fi n di n g  all    tα f or  a
gi v e n  cl ust er t o p ol o g y  a n d t h e  d esir e d  s c att eri n g  p att er n.
T h e  pr o c e d ur e  o utli n e d i n  S e c.   III   C  is  e  m pl o y e d  h er e t o
fi n d  tα .   We first pr es e nt   m et a cl ust er s c att eri n g p att er ns c or-
r es p o n di n g t o t h e d esir e d p att er ns fr o  m S e c. I  V   B, o bt ai n e d
f or  di ff er e nt cl ust ers c o n fi g ur ati o ns.  Si n c e t h e i n v ers e  pr o-
c e d ur e fr e q u e ntl y l e a ds t o a cti v e p arti cl es,   w e n e xt i  m p os e
c o n diti o n  ( 8 b) t o  fi n d l o c all y  p assi v e  o pti  m al   m et a cl ust ers
a n d  pr es e nt  t h eir  s c att eri n g  r es p o ns es.  F or  all  pr es e nt e d
e x a  m pl es,   w e  i ntr o d u c e  t h e  i n ci d e nt   w a v e   —  wit h o ut  l oss
of  g e n er alit y   — ass u  m e d  t o  b e  a  pl a n e    w a v e  i n  t h e   −  x
dir e cti o n  ( θ  =   π ) .

1.  S c att eri n g p att er ns f or o pti  m al   m et a cl ust ers

S c att eri n g  p att er ns  o bt ai n e d f or s el e ct e d  cl ust er t o p ol o-
gi es ar e s h o  w n i n Fi g.  2 .   Ver y g o o d a gr e e  m e nt b et  w e e n t h e
d esir e d  p att er ns  of  Fi g.  1  c a n  b e  s e e n,  pr o vi n g t h e  e ff e c-
ti v e n ess  of  t h e  d esi g n  pr o c e d ur e.    H o  w e v er,  s o  m e  of  t h e
c orr es p o n di n g  i  m p e d a n c es   — c o  m p ut e d  usi n g  t h e  i n v ers e
a p pr o a c h   of   S e c.   III    C— ar e   a cti v e   a n d   h e n c e  r e q uir e
e n er g y  s u p pl y.    We  n e xt  a n al y z e  a n d  a d o pt  t h e  i n v ers e
pr o c e d ur e f or s e e ki n g o nl y l o c all y p assi v e s ol uti o ns.

2.   A n o pti  miz ati o n  pr o bl e  m f or p assi v e   m et a cl ust ers

O ur  d esi g n  o bj e cti v e  is  t h e  s et  of  p oi nt  i  m p e d a n c es
{tα , α  =   1,  . . . , N  }.   We ai  m at f ul filli n g t h e l o c al  p assi vit y
c o n diti o n,   E q.  ( 8 b).   D e fi n e

u α =   t−  1α , ( 3 1 a)

p α =   B −  1
α ψ 0 (R α ), ( 3 1 b)

( a) ( b)

( d)( c)

( e)

(f)

FI  G.  2.      E x a  m pl es  of t h e  o pti  m al  f ar- fi el d  p att er ns  f or  s q u ar e
3  ×   3  a n d  4  ×   4  arr a ys (l atti c e  s p a ci n g  a )  a n d  cir c ul ar  arr a n g e-
m e nts    wit h  8  a n d  1 0  p arti cl es  (r a di us    a )  f or  k a  =   1  b as e d  o n
E qs.   ( 2 0)  a n d  ( 2 1).  I n ci d e n c e  a n gl e θ  =   π   (t h e  −  x  dir e cti o n).
F or t h e  v ort e x,  Fi g.   2( e) ,  cir c ul ar  s h a p es  ar e  a  m plit u d e  pr o fil es
w hil e t h e s pir als i n t h e c e nt er ar e p h as es of t h e s c att eri n g p att er n.
All p att er ns ar e n or  m ali z e d.

s α =   B −  1
α

N

β =  1

G  (R α −   R β )B β .     ( 3 1 c)

T h e n   E q.   ( 6)  b e c o  m es  u α =   p α +   s α , α  =   1,  . . . , N  .   C o n-
si d er pl a n e-  w a v e i n ci d e n c e ψ 0 (r ) =   p 0 e

ik ·r f or s o  m e   w a v e
n u  m b er  k .   T h er e  is  a  f urt h er  d e gr e e  of  fr e e d o  m  t h at  h as
n ot  b e e n  us e d.   T his  c o ul d  b e  c o nsi d er e d  as t h e  a  m plit u d e
a n d  p h as e  of t h e i n ci d e nt   w a v e, i. e., t h e  c o  m pl e x  n u  m b er
p 0 .   Alt er n ati v el y, if   w e  fi x p 0 =   1 t h e n t h er e is  a  si  mil ar
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d e gr e e  of fr e e d o  m i n  h o  w   w e  n or  m ali z e t h e f ar- fi el d  p at-
t er n  f u n cti o n  f ( θ ).   T his  h as  t h e  e ff e ct  of  s c ali n g  A   a n d
h e n c e  B   b y  a  c o  m pl e x  n u  m b er.   T his  s c ali n g r e d e fi n es  p α

b ut  h as  n o  e ff e ct  o n  s α of   E q.  ( 3 1 c).   T h er ef or e,   wit h  n o
l oss  i n  g e n er alit y,   w e  ass u  m e  t h at  t h e  i n ci d e nt   w a v e  h as
u nit a  m plit u d e,

ψ 0 (r ) =   e
ik ·r , ( 3 2)

a n d r e  writ e   E q.  ( 6), t h e s ol uti o n  of t h e i n v ers e  pr o bl e  m, t o
i n c or p or at e t his a d d e d d e gr e e of fr e e d o  m, as

u α =   z p α +   s α ,    α  =   1,  . . . , N  .     ( 3 3)

H er e t h e c o  m pl e x  n u  m b er   z  d e fi n es t h e s c ali n g  of t h e  p at-
t er n  f u n cti o n,   w hi c h  g o es  as  z −  1 .   T h e  i  m p ort a nt  p oi nt  is
t h at z c a n b e c h os e n ar bitr aril y; i n p arti c ul ar,   w e us e it as a n
o pti  mi z ati o n  p ar a  m et er.   T h e f a ct t h at t h e  p att er n f u n cti o n
a  m plit u d e is i n v ers el y  pr o p orti o n al t o  |z | f or  a  u nit  a  m pli-
t u d e i n ci d e nt   w a v e s u g g ests t h at s  m all er |z | is pr ef err e d f or
m a xi  mi zi n g t h e e  ffi ci e n c y of e n er g y c o n v ersi o n.

T h e  o pti  mi z ati o n  pr o bl e  m  is  as  f oll o  ws:  gi v e n  t h e   N
c o  m pl e x  n u  m b ers  p α ass o ci at e d    wit h  t h e  i n ci d e nt    w a v e
a n d t h e  N   c o  m pl e x  n u  m b ers  s α ass o ci at e d   wit h t h e  p oi nt
s o ur c es,  fi n d  z  of    E q.   ( 3 3)  t h at  e ns ur es  t h at  I  m u α ≤   0
f or  all  α .  If  t his  c a n  b e  a c hi e v e d  t h e n  t h e  o pti  m al  s ol u-
ti o n  is  t h e  o n e   wit h  t h e    mi ni  m u  m  v al u e  of  |z |,  e ns uri n g
m a xi  m u  m  a  m plit u d e f or t h e  p att er n f u n cti o n. It   mi g ht  n ot
b e  p ossi bl e  usi n g t h e  si n gl e  c o  m pl e x  n u  m b er  z  t o  o bt ai n
all  of t h e  c o  m pl e x  n u  m b ers  u α i n t h e  n e g ati v e i  m a gi n ar y
h alf- pl a n e.  If t his is  n ot  a c hi e v a bl e i n  pr a cti c al  e x a  m pl es
t h e n t h e  c o nstr ai nt   m a y  b e  r el a x e d,  f or i nst a n c e, t o   mi n-
i  mi z e t h e   m a xi  m u  m i nst a n c e  of  p ositi v e  I  m u α .   T h e n t h e
“ n e ar est ”  p assi v e  c o n fi g ur ati o n  c a n  b e  i d e nti fi e d  b y  s et-
ti n g I  m u α t o  z er o f or t h os e  p arti cl es   wit h  p ositi v e I  m u α .
A n ot h er  alt er n ati v e  c o ul d  b e  b as e d  o n  c o n diti o n   ( 8 a), i. e.,
w h e n t h e   m et a cl ust er is  gl o b all y  p assi v e,   m e a ni n g t h at t h e
n et e n er g y s u p pli e d t o t h e cl ust er is n o n p ositi v e.

I n c as es   w h er e t h e s e ar c h  pr o c e d ur e f or tα f ail e d t o  fi n d
l o c all y  p assi v e   m et a cl ust ers,  a ri gi d r ot ati o n is  a p pli e d t o
t h e  cl ust er  ( e q ui v al e nt  t o  c h a n gi n g  t h e  i n ci d e n c e  a n gl e)
a n d t h e s e ar c h is r e p e at e d.

3.   E x a  m pl e:  a p assi v e o pti  m al   m et a cl ust er f or  u ni- a n d
bi dir e cti o n al p att er ns

N u  m eri c al  e x p eri  m e nt ati o n  s h o  ws t h at t h er e  ar e   m et a-
cl ust er  c o n fi g ur ati o ns  f or    w hi c h  t h e  i n v ers e  i  m p e d a n c e
s ol uti o ns ar e all p assi v e.   E x a  m pl es of t h e u ni- a n d bi dir e c-
ti o n al  s c att eri n g  p att er ns  f or  a  s q u ar e  l atti c e    m et a cl ust er
ar e  s h o  w n  i n  Fi g.  2 .    M or e  d et ail e d  i n v esti g ati o ns  s h o  w
t h at,  f or i nst a n c e,  a  s q u ar e  arr a y   wit h l atti c e  p ar a  m et er  a
d esi g n e d t o  dir e ct  a   w a v e i n ci d e nt fr o  m t h e  θ  =   π   dir e c-
ti o n  i nt o  a  s c att er e d    w a v e  pr ef er e nti all y  dir e ct e d  t o  w ar d
θ  =   3 / 4 π   h as t ot all y p assi v e s ol uti o ns f or 1. 9  ≤   k a  ≤   2. 8.

( a) ( b)

FI  G.  3.      T h e  o pti  m al  p att er n  f u n cti o ns  f or  t h e  p assi v e  2  ×   2
m et a cl ust er at t  w o fr e q u e n ci es  b o u n di n g a  b a n d  wi dt h  of  p assi v e
d esi g ns,  k a  ∈ { 1. 9, 2. 8 }  ( a),  a n d t h e  c orr es p o n di n g  dis pl a c e  m e nt
fi el d  g e n er at e d  at   k a  =   1. 9  ( b).   A d  mitt a n c es  of  t h e  cl ust er  ar e
gi v e  i n   T a bl e  I.   T h e  e  ffi ci e n ci es  of  t h e  e n er g y  c o n v ersi o ns  ar e
η k a =  1. 9 =   0. 6 0 a n d  η k a =  2. 8 =   0. 3 5.

T h e  o pti  m al  p assi v e a d  mitt a n c es  t−  1α ar e fr e q u e n c y  d e p e n-
d e nt,   wit h  v al u es  at t h e  e n d  of t h e  p assi v e i nt er v al s h o  w n
i n   T a bl e I.   T h e  ass o ci at e d  o pti  m al  s c att eri n g  p att er ns  ar e
s h o  w n i n  Fi g. 3 . I n all e x a  m pl es   w e t a k e a  =   1  a n d  D   =   1.

T h e  e x a  m pl es  i n  Fi g.   3  a n d   T a bl e  I  ar e  b as e d  o n  t h e
v al u e   of   z   i n    E q.  ( 3 3)  f or    w hi c h  t h e  l ar g est   v al u e   of
I  m t−  1α i s  z er o.   T his  o pti  mi z es  t h e  p assi v e  arr a y  i n  t er  ms
of  its  e  ffi ci e n c y  i n  c o n v erti n g  t h e  i n ci d e nt  e n er g y  i nt o  a
dir e ct e d f ar- fi el d  p att er n.   T h e   m et a cl ust er  dissi p at es   w a v e
e n er g y b ut i n a   w a y t h at is   m ost e  ffi ci e nt a  m o n g all p assi v e
o pti o ns.  F or t h e  cl ust er s h o  w n i n  Fi g.  3 , t h e  v al u es  of t h e
e  ffi ci e n c y  p ar a  m et er  η  of   E q.  ( 1 7)  ar e  η k a =  1. 9 =   0. 6 0  a n d
η k a =  2. 8 =   0. 3 5.

Si  mil arl y,  i n  Fi g.   4  w e  s h o  w  a  p assi v e  o pti  m al  2   ×   2
m et a cl ust er  t h at  c o n v erts  t h e  i n ci d e nt  pl a n e   w a v e  i nt o  a
s y  m  m etri c  bi dir e cti o n al  p att er n.   Alt h o u g h t h e   m et a cl ust er
s c att eri n g  p att er n  r o u g hl y  a p pr o xi  m at es  t h e  d esir e d  f ar-
fi el d  f u n cti o n,  all  a d  mitt a n c es  ar e  p ur el y  r e al,  i n di c ati n g
n o  dissi p ati o n  i n  t h e  s yst e  m.    C o ns e q u e ntl y,  t h e  e n er g y
e  ffi ci e n c y f or t his cl ust er is o pti  m al,  η  =   1.

T  A  B L E  I.      T h e  a d  mitt a n c es   t−  1α f or t h e  2 ×   2  arr a y  of  p assi v e
p arti cl es s e n di n g t h e   w a v e i n ci d e nt  at  θ  =   π   i nt o t h e θ  =   3 / 4 π
dir e cti o n at t  w o fr e q u e n ci es; s e e  Fi g.  3 .

t−  1α

R α k a  =   1. 9 k a  =   2. 8

(−  0. 5 0,  −  0. 5 0 )    0. 0 6 6 2  −   0. 0 0 5 0 i    0. 0 4 3 8  −   0. 0 0 0 0 i
(−  0. 5 0, 0. 5 0 )    −  0. 0 2 4 3  −   0. 0 0 0 0 i    0. 0 2 1 4  −   0. 0 6 1 8 i
(0. 5 0,  −  0. 5 0 )    0. 1 1 2 0  −   0. 0 0 0 0 i    −  0. 0 6 5 1  −   0. 1 1 3 8 i
(0. 5 0, 0. 5 0 )    −  0. 0 4 1 3  −   0. 0 3 1 6 i    −  0. 0 5 2 4  −   0. 0 0 0 9 i
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( a) ( b)

FI  G.  4.      T h e  o pti  m al  p att er n  f u n cti o n  f or  t h e  p assi v e  2  ×   2
m et a cl ust er  ( a),  a n d  t h e  c orr es p o n di n g  dis pl a c e  m e nt  fi el d  g e n-
er at e d  at  k a  =   3. 1  ( b).   A d  mitt a n c es  of  t h e  cl ust er  ar e  gi v e n  i n
T a bl e  II.   T h e e n er g y e  ffi ci e n c y f or t his s et u p is η  =   1.

F urt h er e x p eri  m e nt ati o n s h o  ws t h at t h e o bt ai n e d o pti  m al
s ol uti o ns ar e  v er y s e nsiti v e t o t h e s c att er ers’  p ositi o ns a n d
i  m p e d a n c es.   Als o, r e q uir e  m e nts  of s y  m  m etri c  cl ust ers  ar e
o v er c o nstr ai n e d,   m ost  oft e n r es ulti n g i n at l e ast  o n e a cti v e
p arti cl e, es p e ci all y f or a l ar g e n u  m b er of p arti cl es  N  .

4.   E x a  m pl e: a p assi v e o pti  m al   m et a cl ust er f or o d d- p ol ar
p att er ns

A n al o g o usl y t o t h e pr e vi o us s e ar c h,   w e l o o k f or o pti  m al
p assi v e  cl ust ers  c a p a bl e  of  g e n er ati n g  a s c att eri n g tri p ol e.
I n  Fi g.  5   w e  s h o  w  t h e  t ar g et  a n d  t h e  a ct u al  s c att eri n g
p att er ns  f or  t h e  tri p ol e  o bt ai n e d  f or  a  s q u ar e  2  ×   2  cl us-
t er  of  s c att er ers.   T h e  o pti  m al  p ositi o ns  a n d  a d  mitt a n c es
of t h e  s c att er ers  ar e  s h o  w n i n   T a bl e  III.   T h e  a d  mitt a n c es
h a v e  n e arl y  t h e  s a  m e  p assi v e  d a  m pi n g  pr o p erti es.    T h e
c orr es p o n di n g  dis pl a c e  m e nt  fi el d  p att er n  g e n er at e d  b y t h e
m et a cl ust er  is  s h o  w n  i n  Fi g.    5 .    T h e  e n er g y  c o n v ersi o n
e  ffi ci e n c y is  η  =   0. 1 7.

I n  Fi g.  6  w e  s h o  w  a   m et a cl ust er  d esi g n e d  f or  g e n er at-
i n g  a  p e nt a p ol e  p att er n.   T h e  cl ust er  c o nsists  of  a  cir c u-
l ar  arr a n g e  m e nt  of  fi v e  s c att er ers    wit h  o pti  m al  p ositi o ns
a n d  i  m p e d a n c es  list e d  i n    T a bl e   I  V.    Cl e arl y,  t h e  cl ust er
is  l o c all y  p assi v e.  It  is  i  m p ort a nt  t o  n ot e  t h at  t his    m et a-
cl ust er  s et u p,  r es ulti n g i n  a  n e arl y  p erf e ct  p e nt a p ol e  [r e d

T  A  B L E  II.      T h e  a d  mitt a n c es   t−  1α f or  t h e  2 ×   2  arr a y  of  p as-
si v e  p arti cl es tr a nsf or  mi n g t h e i n ci d e nt   w a v e i nt o a  bi dir e cti o n al
s y  m  m etri c p att er n at  θ  =   3 / 4 π  ; s e e  Fi g. 4 .

R α t−  1α (k a  =   3. 1)

(−  0. 5 0,  −  0. 5 0 ) −  0. 0 0 3 8
(−  0. 5 0, 0. 5 0 ) −  0. 0 0 3 8
(0. 5 0,  −  0. 5 0 ) −  0. 0 1 1 1
(0. 5 0, 0. 5 0 ) −  0. 0 1 1 1

( a) ( b)

FI  G.  5.      T h e  o pti  m al  p att er n  f u n cti o n  f or  t h e  p assi v e  2  ×   2
m et a cl ust er ( a), a n d t h e c orr es p o n di n g  dis pl a c e  m e nt  fi el d  g e n er-
at e d at  k a  =   5. 4 ( b).   A d  mitt a n c es of t h e cl ust er ar e gi v e i n   T a bl e
III.   T h e e n er g y e  ffi ci e n c y p ar a  m et er is η  =   0. 1 7.

d as h e d  li n e  i n  Fi g.  6( a) ],  h as  b e e n  o bt ai n e d  a c ci d e nt all y
w h e n  l o o ki n g  f or  t h e  v ort e x-t y p e  s c att eri n g  p att er n  [ dif-
f er e nt t h a n t h e  p e nt a p ol e  p att er n;  s e e t h e  bl a c k  s oli d li n e
i n  Fi g. 6( a) ].   T h e  l att er  is  a  c o ns e q u e n c e  of  r el a xi n g  t h e
r e q uir e  m e nt  of  e nf or ci n g t h e t ar g et  p h as e  of t h e  s c att er e d
fi el d a n d i n di c at es t h at   m u c h   m or e c o  m pl e x s c att eri n g p at-
t er ns  t h at  ar e  still  l o c all y  p assi v e    m a y  b e  o bt ai n e d  f or
d esir e d  a  m plit u d e- o nl y  r at h er  t h a n  a  m plit u d e- a n d- p h as e
t ar g et   fi el ds.    T his   cl ust er   als o   dis pl a ys   a   hi g h   e n er g y
c o n v ersi o n e  ffi ci e n c y of  η  =   0. 8 4.

5.   E x a  m pl e:  a p assi v e o pti  m al   m et a cl ust er f or a v ort e x
p att er n

Fi n all y,   w e pr es e nt a l o c all y p assi v e   m et a cl ust er c a p a bl e
of tr a nsf or  mi n g t h e i n ci d e nt   w a v e fi el d i nt o t h e  first- or d er
v ort e x,   p̄  =   1,  as  s h o  w n  i n  Fi g.   7 .  It  c a n  b e  s e e n  fr o  m
Fi g.   7( a)  t h at  d es pit e  t h e  f a ct  t h at  t h e  a  m plit u d e  p att er n
is  n ot  p erf e ctl y  pr es er v e d, t h e  p h as e  b e h a vi or  [ Fi g.  7( b) ]
r e c o v ers  t h e  li n e arl y  d e p e n d e nt  a n g ul ar  c h ar a ct eristi c  of
t h e  v ort e x. I n  Fi gs. 7( c)  a n d  7( d)  w e  s h o  w  dis pl a c e  m e nts
a n d p h as es of t h e   w a v e fi el ds g e n er at e d b y t h e   m et a cl ust er.
It  is    w ort h   n oti n g  t h at  t his  r el ati v el y  c o  m pl e x  s c att er-
i n g  p att er n is  o bt ai n e d  b y  o nl y  f o ur  p assi v e i  m p e d a n c es.

T  A  B L E III.      T h e a d  mitt a n c es  t−  1α f or t h e  2 ×   2 arr a y  of  p assi v e
p arti cl es  s e n di n g t h e   w a v e i n ci d e nt  at  θ  =   π   f or  k a  =   5. 4 i nt o
t h e tri p ol e p att er n; s e e  Fi g. 5 .

R α t−  1α (k a  =   5. 4)

(0. 5 0,  −  0. 5 0 ) −  0. 0 0 7 8  −   0. 0 2 1 1 i
(−  0. 5 0,  −  0. 5 0 ) 0. 0 0 2 9  −   0. 0 2 1 5 i

(0. 5 0, 0. 5 0 ) −  0. 0 0 7 8  −   0. 0 2 1 1 i
(−  0. 5 0, 0. 5 0 ) 0. 0 0 2 9  −   0. 0 2 1 5 i

0 1 4 0 5 1- 8
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( a) ( b)

FI  G.  6.      T h e  o pti  m al  p att er n  f u n cti o n  f or  t h e  p assi v e  cir c ul ar
m et a cl ust er  of  fi v e  p arti cl es ( a), a n d t h e c orr es p o n di n g  dis pl a c e-
m e nt  fi el d  g e n er at e d  at   k a  =   5. 3 ( b).   A d  mitt a n c es  of t h e  cl ust er
ar e  gi v e n i n   T a bl e  I  V.   T h e e n er g y e  ffi ci e n c y is η  =   0. 8 4 f or t his
cl ust er c o n fi g ur ati o n.

T h e  cl ust er  e  ffi ci e n c y  is   η  =   0. 1 4  f or  t his  s et u p,  b ei n g  a
c o ns e q u e n c e of   m o d er at e d a  m pi n g i n all s c att er ers.

V.  S  U   M   M  A  R  Y

We   h a v e   s h o  w n  t h at   a n  i n v ers e    m ulti pl e   s c att eri n g
m et h o d  c a n  b e  a p pli e d f or t h e  d esi g n  of t h e r a di ati o n  p at-
t er ns  of  cl ust ers  of  s c att er ers.    W hil e  t h e  d esi g n  pr o c ess
is  c o  m pl e x  a n d  p assi v e  s ol uti o ns  ar e  n ot  e as y t o  fi n d, t h e
a p pr o a c h h as still   m or e d e gr e es of fr e e d o  m t o e x pl or e.   T h e
s p e ci fi c  c as e  of  fl e x ur al    w a v es  i n  t hi n  el asti c  pl at es  h as
b e e n  c o nsi d er e d,   wit h t h e t ar g et  pr o bl e  m  of  d esi g ni n g t h e
f ar- fi el d p att er ns, alt h o u g h it is e as y t o s h o  w t h at n e ar- fi el d
p att er ns  c a n  als o  b e  c o nsi d er e d.  Si  mil arl y,  t h e    m ulti pl e
s c att eri n g f or  m ul ati o n is  n ot  u ni q u e t o  fl e x ur al   w a v es, a n d
t h e  a p pr o a c h  i ntr o d u c e d  h er e  c a n  b e  e asil y  e xt e n d e d  t o
ot h er  cl assi c al    w a v es,  li k e  o pti c al  or  a c o usti c al.  F urt h er
a n al ysis  usi n g cl ust ers  of  fi nit e-si z e s c att er ers is i  m p ort a nt
f or  p h ysi c al r e ali z ati o n  of t h e  dir e cti vit y  e ff e ct.    W hil e t h e
a n al ysis  of s u c h att a c h  m e nts r e q uir es i ntr o d u cti o n  of s c at-
t eri n g   m atri c es f or e a c h  o bj e ct, t h e str u ct ur e  of t h e fr a  m e-
w or k pr o p os e d h er e r e  m ai ns u n c h a n g e d b ut b e c o  m es   m or e
i n v ol v e d.    H o  w e v er,  s o  m e  si  m pli fi c ati o ns   c a n   b e    m a d e

T  A  B L E  I  V.      T h e  a d  mitt a n c es   t−  1α f or t h e  fi v e- el e  m e nt  cir c ul ar
arr a y of p assi v e p arti cl es s e n di n g t h e   w a v e i n ci d e nt at  θ  =   π   f or
k a  =   5. 3 i nt o t h e p e nt a p ol e p att er n; s e e  Fi g.  6 .

R α t−  1α (k a  =   5. 3)

(0. 9 5, 0. 3 1 ) 0. 0 0 0 7  −   0. 0 0 2 0 i
(0. 0 0, 1. 0 0 ) 0. 0 0 0 9  −   0. 0 0 2 1 i

(−  0. 9 5, 0. 3 1 ) 0. 0 0 1 1  −   0. 0 0 2 0 i
(−  0. 5 9,  −  0. 8 1 ) −  0. 0 0 4 5  −   0. 0 0 0 2 i
(0. 5 9,  −  0. 8 1 ) 0. 0 0 6 4  −   0. 0 0 0 3 i

( a) ( b)

( c) ( d)

FI  G.  7.      T h e  o pti  m al  p att er n  f u n cti o n  f or  t h e  p assi v e  2  ×   2
m et a cl ust er:  a  m plit u d e ( a)  a n d  p h as e ( b);  a n d t h e  c orr es p o n di n g
dis pl a c e  m e nt  fi el d  g e n er at e d  at  k a  =   5. 5:  dis pl a c e  m e nt    m a g ni-
t u d e  ( c)  a n d  p h as e  ( d).   A d  mitt a n c es  of t h e  cl ust er  ar e  gi v e n i n
T a bl e  V  .   T h e e n er g y e  ffi ci e n c y is η  =   0. 1 4.

f or  l o  w-fr e q u e n c y  a p pr o xi  m ati o ns  of   fi nit e-si z e  s c att er-
ers, r e d u ci n g t h e i n fi nit e  s c att eri n g   m atri x t o  o nl y  s e v er al
t er  ms  d es cri bi n g   m o n o p ol es,  di p ol es, et c.   T h es e iss u es ar e
u n d er c urr e nt i n v esti g ati o n, a n d   w e e x p e ct t o r e p ort o n t h e
a c o usti c a n al o g i n t h e n e ar f ut ur e.

T h e pr o p os e d   m et a cl ust ers c a n b e c o nsi d er e d a g e n er al-
i z ati o n  of t h e  n oti o n  of  a   m et a gr ati n g,   w h er e t h e i n v ers e
d esi g n  is  p erf or  m e d  i n  t h e  a  m plit u d e  of  t h e  di ffr a cti o n
or d ers  a n d t h e  str u ct ur es  ar e  p eri o di c  gr ati n gs.   H o  w e v er,
i n c o ntr ast   wit h t h e i n fi nit e  n u  m b er  of s c att eri n g  el e  m e nts
i n  a   m et a gr ati n g, t h e  pr es e nt r es ults  ar e  b as e d  o n  cl ust ers
of  v er y  f e  w  s c att er ers.  I n  li g ht  of  t h e  s  m all  n u  m b er  of

T  A  B L E   V.      T h e  a d  mitt a n c es   t−  1α f or t h e  2 ×   2  s q u ar e  arr a y  of
p assi v e p arti cl es s e n di n g t h e   w a v e i n ci d e nt at  θ  =   π  f or k a  =   5. 5
i nt o t h e v ort e x p att er n; s e e  Fi g. 7 .

R α t−  1α (k a  =   5. 5)

(0. 2 8,  −  0. 6 5 ) 0. 0 6 8 3  −   0. 0 1 6 0 i
(−  0. 6 5,  −  0. 2 8 ) −  0. 0 6 5 8  −   0. 0 0 6 8 i

(0. 6 5, 0. 2 8 ) 0. 0 5 3 6  −   0. 0 3 4 1 i
(−  0. 2 8, 0. 6 5 ) 0. 0 6 7 6  −   0. 0 1 9 5 2 i

0 1 4 0 5 1- 9
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el e  m e nts e  m pl o y e d, t h e s c att eri n g dir e cti vit y is r e  m ar k a bl e
i n  o ur  o pi ni o n.    Wit h  t h e  alt er n ati v e  pr es e nt e d  h er e    w e
c o ul d  d esi g n  n ot  o nl y  fi nit e  gr ati n gs  b ut  als o  fl at  l e ns es,
b e a  m  s plitt ers,  a n d  e v e n  cl o a ki n g  d e vi c es.    We  t h er ef or e
c o nsi d er t h at t his   w or k  c o ntri b ut es t o  a  dir e cti o n t o  w ar ds
t h e  d esi g n  of  p assi v e  d e vi c es f or t h e  c o ntr ol  of   m e c h a ni c
a n d el e ctr o  m a g n eti c e n er g y.

A  C  K  N  O   W  L  E  D  G   M  E  N  T S

A.  N.  N.  a c k n o  wl e d g es  s u p p ort  fr o  m  t h e    N ati o n al  S ci-
e n c e   F o u n d ati o n   t hr o u g h    E F  RI     Gr a nt     N o.   1 6 4 1 0 7 8.
P. P. a c k n o  wl e d g es s u p p ort fr o  m t h e   N ati o n al  S ci e n c e   C e n-
tr e  i n  P ol a n d  t hr o u g h    Gr a nt    N o.  2 0 1 8/ 3 1/  B/ S T 8/ 0 0 7 5 3.
D. T.  a c k n o  wl e d g es  fi n a n ci al s u p p ort t hr o u g h t h e  “  R a  m ó n
y   C aj al ” f ell o  ws hi p u n d er   Gr a nt   N o.   R  Y  C- 2 0 1 6- 2 1 1 8 8 a n d
fr o  m t h e   Mi nistr y  of  S ci e n c e, I n n o v ati o n a n d   U ni v ersiti es
t hr o u g h  Pr oj e ct   N o.   R TI 2 0 1 8-  0 9 3 9 2 1-  A-  C 4 2.

A P P  E  N  DI  X   A:   P  L  A T  E   E  Q  U  A TI  O  N S   A  N  D   E  N  E  R  G  Y
B  A  L  A  N  C  E

T h e   pl at e   h as   t hi c k n ess    h ,   b e n di n g   sti ff n ess   D  [=
EI  /( 1  −   ν 2 )],  a n d  d e nsit y ρ .   Ti  m e- h ar  m o ni c   m oti o n e −  iω  t

i s  ass u  m e d, s o t h at t h e  fl e x ur al   w a v e  n u  m b er k  is  d e fi n e d
b y  k 4 =   ω 2 ρ h / D  .    We  ass u  m e t h at t h er e  ar e N   p oi nt  s c at-
t er ers l o c at e d  at R α wit h i  m p e d a n c es   tα , α  =   1, 2,  . . . , N  .
T h e t ot al dis pl a c e  m e nt  ψ   s atis fi es

D  [ 2 ψ (  r ) −   k 4 ψ (  r )] =

N

α =  1

tα ψ (  R α ) δ (r  −   R α ).    (  A 1)

A  g e n eri c  att a c h  m e nt  i  m p e d a n c e   t m a y  b e    m o d el e d  as  a
si n gl e  d e gr e e  of fr e e d o  m   wit h   m ass  M   , s pri n g sti ff n ess κ ,
a n d d a  m pi n g c o e  ffi ci e nt  ν .   T  w o p ossi bl e c o n fi g ur ati o ns ar e

t =

⎧
⎪⎨

⎪⎩

1

M   ω 2
−

1

κ  −   iω ν

−  1

,    c as e ( a),

M   ω 2 −   κ  +   iω ν  ,     c as e ( b).

(  A 2)

I n  c as e  ( a)  t h e    m ass  is  att a c h e d  t o  t h e  pl at e  b y  a  s pri n g
a n d d a  m p er i n p ar all el.   M o d el ( b) ass u  m es t h at t h e   m ass is
ri gi dl y att a c h e d t o t h e pl at e, a n d t h at b ot h ar e att a c h e d t o a
ri gi d f o u n d ati o n  b y t h e s pri n g a n d d a  m p er i n  p ar all el [1 9 ].
A n  i  m p ort a nt  li  mit  is  a  pl at e  pi n n e d  at   R α , ψ (  R α ) =   0,
w hi c h  c orr es p o n ds t o   t →    ∞   .   T h e  ( a)  a n d  ( b)  os cill at ors
c o ul d als o b e att a c h e d i n p ar all el, e. g., o n eit h er si d e of t h e
pl at e, t o gi v e  t =   ta +   tb .

Gr e e n’s  f u n cti o n  is  t h e  p arti c ul ar  s ol uti o n    ψ   =   G   f or
a  si n gl e  s o ur c e  of  t h e  f or  m  δ ( r )  o n  t h e  ri g ht- h a n d  si d e
of  (  A 1):

G  (r ) =
i

8 k 2 D
[H (1 )

0 (kr ) −   H (1 )
0 (i kr)].     (  A 3)

T h e f oll o  wi n g i d e ntit y   m a y b e f o u n d st arti n g fr o  m t h e pl at e
e q u ati o n  (  A 1)  usi n g t h e  pr o c e d ur e  of   N orris  a n d   Ve  m ul a

[1 8 ] f or t h e a n al o g o us c as e   wit h o ut s o ur c e t er  ms:

I  m D
∂ A

[ψ ∗ (r )∇    ψ (  r ) −    ψ (  r )∇  ψ ∗ (r )] · n ds

=

N

α =  1

(I  m tα )|ψ (  R α )|2 . (  A 4)

T a ki n g  t h e  li  mit  as  t h e   b o u n di n g  s urf a c e    ∂ A   t e n ds  t o
i n fi nit y, a n d usi n g   E qs. ( 1), ( 1 1),  a n d ( 3 2) yi el ds

I  m f (0 ) =

2 π

0 |f ( θ )|2 d θ

1 6 π  D k 2
+

N

α =  1

(I  m tα )|ψ (  R α )|2 .    (  A 5)

D e fi n e

σ e xt =   I  m f (0 ), (  A 6 a)

σ s c a =
1

1 6 π  D k 2

2 π

0

|f ( θ )|2 d θ ,     (  A 6 b)

σ a bs =

N

α =  1

(I  m tα )|ψ (  R α )|2 .     (  A 6 c)

T h e n t h e e n er g y b al a n c e b e c o  m es

σ e xt =   σ s c a +   σ a bs . (  A 7)

N ot e t h at

σ s c a =
1

8 D k 2
A (P ) † A (P ) ,

σ a bs =

N

α =  1

(−   I  m t−  1α )|B (P )
α |2 ,

(  A 8)

w h er e  t h e  i n fi nit e   v e ct or    A (P ) a n d   N    v e ct or   B (P ) ar e
s ol uti o ns f or t h e p assi v e s et of i  m p e d a n c es.

A  s ort  of  e q ui v al e nt  r e as o ni n g  c a n  b e  d eri v e d  fr o  m
E q.  ( 6) b y r e  writi n g it i n t h e   m atri x f or  m

N

α =  1

t−  1α |B α |2 =   B † ψ 0 +   B † G  B  ,     (  A 9)

w h er e   G   = {  G  (R α −   R β )}  a n d  ψ 0 = {  ψ 0 (R α )}.  Fr o  m  E q.
(  A 9)  w e  ar e  i nt er est e d  o nl y  i n  t h e  i  m a gi n ar y  p art,  as  it
d e fi n es t h e  p assi v e  or  a cti v e  c h ar a ct er  of t h e  cl ust er.   N ot e
t h at t h e i  m a gi n ar y p art of t h e q u a dr ati c f or  m i n   E q. (  A 9) is
B † I  m(G  )B   a n d I  m (G  ) ∝   J 0 ;  h e n c e, I  m(G  )  is r e al  v al u e d
a n d  s y  m  m etri c.  Fi n all y, f or  a  gl o b all y  p assi v e  cl ust er,   w e

0 1 4 0 5 1- 1 0
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r e q uir e t h at

N

α =  1

(I  m t−  1α )|B α |2

=   B † I  m(G  )B  +
1

2
(B † ψ 0 −   B T ψ ∗

0 ) ≤    0.     (  A 1 0)

S atisf yi n g  I  m  t−  1α ≤   0  f or  all  i n di vi d u al  p arti cl es   α   c or-
r es p o n ds  t o   a  l o c all y   p assi v e    m et a cl ust er.   Fr o  m    E qs.
(  A 1)  a n d   ( 7),  it    m a y   b e   n ot e d  t h at  B α is   a   c o  m pl e x
f or c e  a  m plit u d e  t h at  a cts  o n  t h e  pl at e.   T h e  p assi vit y  of
a  si n gl e  s c att er er  c a n  b e  s e e n  t hr o u g h  t h e  P o y nti n g  v e c-
t or   — c h ar a ct eristi c  of t h e  dir e cti o n  of  e n er g y  fl o  w.   Ti  m e-
a v er a g e d e n er g y fl o  w t hr o u g h t h e p oi nt at   w hi c h a s c att er er
is pl a c e d is

=   − 1
2

R e  (B α ˙ψ †
α ) = 1

2
ω  ψ †

α ψ α I  m tα ,     (  A 1 1)

w h er e, f or I  m  tα ≥   0,   w e h a v e    ≥   0, s o e n er g y fl o  ws fr o  m
t h e pl at e t o  w ar ds t h e s c att er er, i. e., t h e s c att er er is p assi v e.
H er e    c a n b e s e e n as t h e p o  w er a bs or b e d b y t h e s c att er er.

A P P  E  N  DI  X   B:  S  O   M  E   M  A T  RI  X   P  R  O P  E  R  TI  E S

It f oll o  ws fr o  m t h e d e fi niti o n of S  i n   E q. ( 1 4) a n d   Gr af’s
a d diti o n t h e or e  m f or   B ess el f u n cti o ns [s e e   E q. ( 9. 1. 7 9)  of
[2 0 ] ] t h at S † S  si  m pli fi es t o

(S † S ) α β =

∞

n =  −   ∞

J n (k R α )J n (k R β )e i n( θα −  θ β )

=   J 0 (k R α β ), (B  1 )

w h er e    R α β = |  R α −   R β |.    N ot e  t h at  J 0 (k R α β ) ≈   1  at  l o  w

fr e q u e n c y,  i n di c ati n g  t h at  S † S   b e c o  m es  si n g ul ar  i n  t his
li  mit.   N u  m eri c al e x a  m pl es s h o  w t his i n t er  ms of t h e   m atri x
c o n diti o n  n u  m b er t h at b e c o  m es l ar g e at l o  w fr e q u e n c y.

T h e  N   ×   N   m atri x   S † S  is t h er ef or e r e al, s y  m  m etri c, a n d
n o n- n e g ati v e  d e fi nit e, a n d c a n b e e x pr ess e d as

S † S  =

N

α =  1

λ α u α u †
α (  B 2)

wit h  p ositi v e  ei g e n v al u es   λ α >   0  a n d  n or  m ali z e d  ei g e n-

v e ct ors  of  l e n gt h   N  , u
†
α u β =   δ α β .    Usi n g   E q. (  B 2)  i n  t h e

d e fi niti o n  of  P ,  E q. ( 2 2) yi el ds

P  =

N

α =  1

λ −  1
α V α V †

α , (B  3 )

w h er e t h e i n fi nit e- di  m e nsi o n al  v e ct ors   V α ar e

V α =   S u α ,    α  =   1,  . . . , N  .    (  B 4)

T h es e  ar e  ort h o g o n al,   V †
α V β =   λ α δ α β ,  b ut  n ot  ort h o n or-

m al.   We d e fi n e t h e ort h o n or  m al s et

U α =   λ −  1 / 2
α S u α ,    α  =   1,  . . . , N  ,    (  B 5)

s o t h at P  is i n c a n o ni c al f or  m,

P  =

N

α =  1

U α U †
α . (B  6 )

H e n c e,   P  is fi nit e r a n k   wit h N   n o n z er o ei g e n v al u es e q u al t o
+  1.   Alt er n ati v el y,  P  is a pr oj e cti o n o nt o t h e N  - di  m e nsi o n al
s u bs p a c e s p a n {U α , α  =   1,  . . . , N  }, a n d s atis fi es t h e pr oj e c-
t or pr o p ert y

P 2 =   P . (B  7 )

We  n ot e  s o  m e  ot h er  pr o p erti es  of    P   a n d r el at e d   m atri c es.
M ulti pl yi n g   E q.   ( 2 2) o n t h e ri g ht b y  S  a n d o n t h e l eft b y  S †

gi v es

P S  =   S ,    S † P  =   S † . (B  8 )

T h e  f u n d a  m e nt al    m atri x   S   of    E q.   ( 1 4)  h as  a n  i nt er est-
i n g  f or  m  i n  t er  ms  of  t h e  fi nit e-  a n d  i n fi nit e- di  m e nsi o n al
n or  m ali z e d ei g e n v e ct ors:

S  =

N

α =  1

λ 1 / 2
α U α u †

α . (B  9 )

T h e   M o or e- P e nr os e i n v ers e of  S  is

(S † S ) −  1 S † =

N

α =  1

λ −  1 / 2
α u α U †

α .     (  B 1 0)

Si  mil arl y, t h e   m atri x  Q   of   E q.  ( 2 4) is

Q   =

N

α =  1

u α U †
α . (  B 1 1)

It f oll o  ws fr o  m t his,  or fr o  m its  d e fi niti o n i n   E q. ( 2 4), t h at
t h e   m atri x Q   s atis fi es

Q † Q   =   P ,    Q  Q † =   I N ,     (  B 1 2)

w h er e   I N is t h e i d e ntit y o n s p a n{U α , α  =   1,  . . . , N  }
Fi n all y,  t h e  p h ysi c al  v e ct ors  f or  t h e  f ar- fi el d  p att er n

f u n cti o n  a n d  s o ur c e  str e n gt hs  of   E qs.  ( 2 1)  a n d  ( 1 9)  ar e
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r es p e cti v el y

A (N  ) =

N

α =  1

a α U α ,

B   =

N

α =  1

b α u α ,

(  B 1 3)

w h er e

a α =   U †
α A  ,    b α =   λ −  1 / 2

α a α .     (  B 1 4)
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