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a b s t r a c t

Longitudinal wave propagation is considered in a pair of waveguides connected by bilinear spring
systems. The nature of the nonlinearity causes the compressive and tensile force–displacement
relations of the bilinear spring to behave in a piecewise linear manner, and all transmitted and
reflected waves scale linearly with the incident wave amplitude. We first concentrate on a single
bilinear spring connecting two waveguides. By controlling the bilinear stiffness parameters it is possible
to convert a time harmonic incident wave into a transmitted wave of the same period but with
particle displacement of a single sign, positive or negative, an effect we call unilateral transmission.
Nonreciprocal wave phenomena are obtained by introducing spatial asymmetry. A simple combination
of a single bilinear spring with a mass and a linear spring shows significant nonreciprocity with
transmission relatively high in one direction and low in the opposite direction.

© 2020 Elsevier Ltd. All rights reserved.
1. Introduction

Reciprocity is a fundamental physical principle of wave motion
n the presence of time-reversal symmetry: the same incident
ave traveling in opposite directions should result in the same
ransmitted wave. However, reciprocity limits the control over
ave propagation. Violation of this principle can enable a va-
iety of useful and tunable nonreciprocal wave dynamics such
s transmission manipulation [1], energy localization [2], phase
hifters [3,4] and topological protection [5].
The diode-like component which shows one-way acoustic or

lastic wave propagation is the most fundamental nonrecipro-
al application. Active approaches to breaking reciprocity op-
rate by either introducing moving flow into the propagation
edium [6,7], or applying spatial and/or temporal modulations of

he medium properties [8–10]. However, the first type of active
ethods could result in phase shifts [6] or power splitting [7],
hich are not the properties of diode; The second approach
sually modulates the whole propagation medium and then takes
dvantage of the modifications in dispersion relations, operating
n a different manner from diode-like component. Similar to their
lectronic counterpart, the acoustic and elastic diodes usually
ave a spatially compact region to achieve the one-way en-
rgy transmission. Passive nonlinear systems provide a practical
lternative.

∗ Corresponding author.
E-mail address: zhaocheng.lu@rutgers.edu (Z. Lu).
ttps://doi.org/10.1016/j.eml.2020.101087
352-4316/© 2020 Elsevier Ltd. All rights reserved.
Passive violation of reciprocity requires a departure from lin-
earity combined with spatial asymmetry of the system. The first
significant passive acoustic diode was a nonlinear medium at-
tached to a linear periodic waveguide [11], designed so that
the nonlinear part generates the second harmonic falling in the
bandpass of linear periodic waveguide. The first bifurcation-based
acoustic rectifier and switch were experimentally demonstrated
in a granular chain with a point defect to generate waves at
lower frequencies in the bandpass of the structure [12]. However,
this rectification mechanism is only clearly evident with a defect
placed at certain location, which limits the application of the
design for sound and vibration isolation. Recent works have over-
come this with systems composed of two linear media connected
by a compact nonlinearity. The spatially asymmetric nonlinear
part can be a cubic spring–mass chain [13], a linear array of
spherical granules [14] or vibro-impact induced elements with
unequal grounding springs [15]. However, all of these nonlinear
systems are highly amplitude-dependent.

Here we propose an amplitude-independent diode-like struc-
ture comprising two semi-infinite bars connected by a spatially
asymmetric bilinear spring–mass system. The bilinear spring dis-
plays different linear load-deformation relations depending on
whether the deformation is a state of compression or extension.
This simple either-or nonlinearity has the unique and important
property that the response scales linearly with the amplitude of
the incident wave. However, the discontinuous piecewise linear
constitutive relation is a strong nonlinearity making it difficult
to find analytical solutions as compared with weakly nonlinear

models for which perturbative methods can be used. Examples
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f the latter include cubic nonlinearity [16] and Hertzian normal
ontact [17]. However, as we show here it is possible to find
semi-analytical solution for nonreciprocal wave transmission
nd reflection. To realize the geometric asymmetry, we simply
se a bilinear and a linear spring in series and connected by a
ass. This idea comes from our previous bilinear spring–mass
hain system with spatial stiffness modulation in [18], showing
onreciprocal pulse propagation. Additionally, we present an in-
eresting reciprocal phenomenon of an oscillatory incident wave
onverted into a transmitted wave with particle displacement of
single sign.
The outline of this paper is as follows. Section 2 concentrates

n the case of a single bilinear spring mechanically coupling two
emi-infinite waveguides. The system is nonlinear but still recip-
ocal. However, an interesting phenomenon of unilateral trans-
ission is introduced. The diode-like property is then achieved by

ntroducing spatial asymmetry in the system. Section 3 discusses
the nonreciprocal case where the connection is a simple chain of
a mass and two springs, one bilinear and one linear. Significant
nonreciprocal transmission is demonstrated using computational
and semi-analytical methods. Section 4 concludes the paper.

. Pulse transmission through a bilinear spring

We begin with the case of a single bilinear spring coupling
wo semi-infinite one-dimensional waveguides (bars), Fig. 1(a). In
his paper, we suppose that the spring is much smaller than the
avelength, and hence its size can be ignored. The displacements

n the bars are

(t, x) =

{
f (t −

x
c ) + R(t +

x
c ), x < 0,

T (t −
x
c ), x > 0,

(1)

where f , R and T represent the incident, reflected and transmitted
waves, respectively, and c is the wave speed. For the moment the
incident wave is an arbitrary pulse defined by the differentiable
function f ∈ C1.

The bilinear spring force relation is, see Fig. 1(a),

F (t, ±0) = κ[u] , (2)

where [u] is the extension,

[u] ≡ u(t, +0) − u(t, −0)

= T − R − f , (3)

and κ is the bilinear spring stiffness

κ =

{
κ−, [u] < 0 ,

κ+, [u] > 0 .
(4)

The stiffness κ− for [u] < 0 is associated with a compressive (neg-
ative) stress at the interface, while κ+ for [u] > 0 corresponds to
a tensile (positive) stress. F (t, ±0) is the force in the continuous
medium on either end of the spring. The bars are similar with
Young’s modulus E and cross-section A, so that

F (t, x) = EA
∂u
∂x

. (5)

Eq. (2) implies that the spring at x = 0 connecting the two semi-
infinite bars experiences the same force on either end, F (t, +0) =

F (t, −0). Hence, R′
− f ′

= −T ′, which can be integrated to yield

R + T = f . (6)

Combining Eqs. (2) (3) and (6), using F (t, +0) = −T ′EA/c ,
implies an ordinary differential equations for R,

R′
+ αR = f ′ , (7)
2

Fig. 1. Reciprocal model and transmission design. (a) Model of two semi-infinite
waveguides connected by a bilinear spring. (b)–(c) Examples of transmission
coefficients with parameters satisfying equation (21), ensuring that T ≥ 0. Note
hat the maximum value is Tmax = f (τ+) since T + R = f and R = 0 at non-
imensional time τ = τ+ . (b) τ+/2π = 0.275, (α+, α−) = ω(0.2728, 6.3130).
c) τ+/2π = 0.375, (α+, α−) = ω(0.2257, 0.8349).

here

=
2cκ
EA

=

{
α−, [u] < 0,
α+, [u] > 0.

(8)

Noting from Eqs. (3) and (6) that [u] = −2R, it follows that the
value of κ (and α) depends on sgn(−R) and switches at times
when R is zero. In summary,

R > 0
R < 0

}
⇔

{
spring is compressed, α = α−,

spring is extended, α = α+.
(9)

Eq. (7) may be integrated for R in an interval of time where α

is single valued, which is appropriate to the bilinear spring. The
reflection R is therefore a sequence of solutions for the purely
linear system, stitched together at the instances when R (and [u])
changes sign. Let tj, j ∈ N, be such a time, i.e. R(tj) = 0, then in
the interval t ∈ (tj, tj+1) for which R subsequently is of one sign,
positive or negative, we have T = f − R and

R = f − e−α(t−tj)f (tj) − αe−αt
∫ t

tj

eαsf (s) d s. (10)

The sign of R in this interval depends upon the derivative of R at
t = tj. Hence from (7), sgn R′

= sgn f ′(tj) in this interval. Note
that Eqs. (6) and (7) together imply

T ′
= αR , and T ′′

= αf ′ when R = 0 . (11)

It follows that zeros of R correspond to stationary points of T and
the value at the stationary point is T (t ) = f (t ). Furthermore, T
j j
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s a local maximum (minimum) at a zero of R if f ′ is negative
positive).

We now specialize the incident wave to be time harmonic,
tarting at t = 0. Before considering the bilinear model, it is
nstructive to first examine the linear spring.

.1. Linear spring

Assuming a sinusoidal incident wave of frequency ω, introduce
he non-dimensional time τ = ωt so that f (t) → f (τ ),

(τ ) = H(τ ) sin τ , (12)

nd H is the Heaviside step function. The response is

R =
[
Rss(τ , θ ) + Rtr(τ , 0, θ )

]
H(τ ),

T =
[
Tss(τ , θ ) + Ttr(τ , 0, θ )

]
H(τ ).

(13)

ere ‘‘ss’’ is the steady state solution and ‘‘tr’’ the transient
equired to satisfy the initial conditions at τ = 0, with

Rss(τ , θ ) = cos θ sin(τ + θ ),
Tss(τ , θ ) = − sin θ cos(τ + θ ),

(14)

where θ is parameter used to satisfy relations such as Eqs. (6) and
(7)

tan θ =
α

ω
, (15)

and

Rtr(τ , τ0, θ ) = −Rss(τ0, θ ) e−(τ−τ0) tan θ ,

Ttr(τ , τ0, θ ) = −Tss(τ0, θ ) e−(τ−τ0) tan θ .
(16)

ote that τ0 = 0 in Eq. (13) but we include the dependence on
he parameter τ0 in Eq. (16) for later use.

The exponential decay of the transient implies that the so-
ution (13) quickly tends to the steady state R = Rss, T = Tss.
n the steady state limit the scattered energy flux averaged over
cycle equals the averaged incident flux, leading to the energy
onservation relation

R′2
ss⟩ + ⟨T ′2

ss ⟩ =
1
2

, (17)

where ⟨g(τ )⟩ =
1
2π

∫ 2π
0 g(τ ) d τ , see Appendix.

2.2. Bilinear spring

With the same incident wave of (12), we have for the interval
τ ∈ (τj, τj+1), j ∈ N+, that T = f − R and

R =
[
sin(τ + θ ) − e−(τ−τj) tan θ sin(τj + θ )

]
cos θ. (18)

Note that θ of Eq. (15) depends on the sign of R through Eq. (9).
Specifically, θ = θ− for R > 0 and θ = θ+ for R < 0,
corresponding to α = α− and α = α+, through Eq. (15). Since
the incident wave is zero for τ < 0 it follows that τ1 = 0 with
κ = κ− in the interval τ ∈ (τ1, τ2).

After several cycles of f the values of R and T become periodic
with the same period as f . The value of T varies 2π-periodically
between maximum and minimum values defined by two neigh-
boring zero-times of R, e.g. f (τj) and f (τj+1). The range of the
transmission coefficient is therefore contained within the range
of f , i.e. (−1, 1).
3

2.3. Transmission design: Unilateral displacement

Of interest first are springs with only positive values of trans-
mitted displacement. In order to simplify the issue we ignore the
initial transient and focus on the long-time steady state response
which is periodic of period 2π in terms of the non-dimensional
time τ . Each period comprises a part with θ = θ− and a part
with θ = θ+. Let τ± be the onset time for θ±, then with no loss
in generality, taking τ− < τ+, we have T = f − R and

R =

{
Rss(τ , θ−) + Rtr(τ , τ−, θ−), τ ∈ (τ−, τ+),
Rss(τ , θ+) + Rtr(τ , τ+, θ+), τ ∈ (τ+, 2π + τ−).

(19)

By definition, at the onset times the value of R changes sign, and
is therefore zero, implying

Rss(τ+, θ−) + Rtr(τ+, τ−, θ−) = 0,
Rss(2π + τ−, θ+) + Rtr(2π + τ−, τ+, θ+) = 0.

(20)

Single sided transmission for which the displacement is non-
negative, or equivalently, unilateral transmission, requires as de-
scribed above that τ− = 0 (by setting this, we can guarantee that
the minimum value of T is zero based on Eq. (11)), and hence the
remaining parameters τ+, θ− and θ+ satisfy

eτ+ tan θ− sin(τ+ + θ−) = sin θ−,

e−(2π−τ+) tan θ+ sin(τ+ + θ+) = sin θ+.
(21)

his describes a one parameter set of bilinear springs which
ive unilateral transmission. The set can be parametrized by the
urnover time τ+ when R changes sign in terms of which θ+ and
− are uniquely defined by (21). The corresponding values of the
odified stiffnesses α+ and α− follow from (15).
Solutions exist for τ+ ∈ ( π

2 , π ) with two examples shown in
Fig. 1(b)–(c). The largest range of T ≥ 0 is obtained for τ+ close
o but greater than π

2 since Tmax = f (τ+). This requires large α−

and small α+, e.g. α−/α+ ≈ 23 for the case in Fig. 1(b).
Note from (7) and (15) that the stiffnesses κ+ and κ− scale

ith the frequency of the incident time harmonic wave. One
an therefore think of the solutions of (21) as defining a unique
requency ω for a given bilinear spring such that the transmitted
isplacement is unilateral with T strictly positive (negative) if
+ < κ− (κ+ > κ−).
Given that the transmitted displacement T can be made to

e positive or negative, it is natural to ask if the same can
e achieved for other quantities. The reflected displacement R
annot be of a single sign since it is proportional to the derivative
f the periodic function T through Eq. (11). However, Fig. 1(b)
llustrates that the reflection can be predominantly of one sign,
ith the values of the opposite sign relatively small.

. Transmission through a bilinear spring–mass system

.1. System assumptions

The significant diode-like transmission happens when we in-
roduce spatial asymmetry to the gap between x = −0 and
= +0. This can be simply realized by adding another linear

pring and an additional mass to the previous case. From now
n, the coupling between the waveguides is a simple spring–mass
hain system of mass m, a bilinear spring κ (−) and a linear spring
(+), see Fig. 2(a).
Let v = v(t) be the mass displacement, so that the equilibrium

quation for the mass is

v′′
= F (t, +0) − F (t, −0) , (22)

here the spring forces are

(t, ±0) = κ (±)
[u(±)

] , (23)
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Fig. 2. Nonreciprocal wave system and numerical results. (a) Model of two
prings with a mass between them. (b) and (c) Effect of nonreciprocity for
ifferent parameter sets in Table 1. The bilinear stiffness-related ratio αdif =

α
(−)
− /α

(−)
+ parameterizes the bilinear spring and αm is a mass dependent param-

eter (see Eqs. (27) and (28)); 2 ⟨T ′ 2
⟩
(+) is the fraction of energy transmitted, and

T ′ 2
⟩
(+)/⟨T ′ 2

⟩
(−) is a measure of nonreciprocal energy transmission.

able 1
ave frequency (unit of rad/s) and the parameters (units of 1/s see Eqs. (27)

nd (28)) considered for the asymmetric nonreciprocal system of Fig. 2(a).

ω α
(−)
− α

(−)
+ α(+) αm

1 5 ∼ 25 0.2 0.5 1 ∼ 5

with extensions (see Eq. (1))

[u(+)
] = T − v ,

[u(−)
] = v − R − f .

(24)

Alternatively, using Eqs. (1) and (5) allows us to write the mass
equilibrium equation as

mv′′(t) = −
EA
c

(
T ′

+ R′
− f ′

)
, (25)

hich may be integrated once. Combined with the two equations
or F (±) in terms of R, T and f , we obtain a system of three ODEs
4

for the unknowns R, T and v in terms of the incident wave f :

R′
=

1
2
α(−)(v − R − f

)
+ f ′, (26a)

′
=

1
2
α(+)(v − T

)
, (26b)

v′
= αm

(
f − R − T

)
, (26c)

here following Eqs. (7) and (8), since there are now a bilinear
spring and a linear one, we have

α(−)
=

2cκ (−)

EA
=

{
α
(−)
− , [u(−)

] < 0,
α
(−)
+ , [u(−)

] > 0,
(27)

nd

(+)
=

2cκ (+)

EA
, αm ≡

EA
mc

. (28)

he corresponding equations for incidence from the right are the
ame as (26) but with α(−) and α(+) swapped between (26a) and
(26b).

3.2. Nonreciprocal transmission

We quantify wave nonreciprocity from the perspective of en-
ergy flux by finding the transmission coefficients for incidence
from opposite directions: 2 ⟨T ′ 2

⟩
(±), where (−) means incidence

from the left and (+) from the right. A large transmission co-
efficient indicates high transmission capability, and the ratio of
two transmission coefficients is a measure of nonreciprocal wave
propagation. Here we assume that the transmission coefficient
for propagation from the right is the greater one of the two in
terms of energy transmission: ⟨T ′ 2

⟩
(+) > ⟨T ′ 2

⟩
(−). Therefore, sig-

nificant nonreciprocal transmission occurs when both 2 ⟨T ′ 2
⟩
(+)

and ⟨T ′ 2
⟩
(+)/⟨T ′ 2

⟩
(−) are as large as possible.

Extreme bilinearity and asymmetry can be realized with one
stiffness of the bilinear spring much larger than the other stiff-
ness. Here we assume the stiffness of the bilinear spring is much
greater in compression than in tension and also much greater
than the linear spring stiffness: α

(−)
− ≫ α(+) > α

(−)
+ . The mass in

the middle also has a strong effect on the nonreciprocity. Based
on these observations we consider the parameters in Table 1, with
associated numerical results in Fig. 2(b) and (c).

3.3. Dynamic analysis

Fig. 3 presents results for a particular model that displays
a huge difference in transmission properties for incidence from
opposite directions. In this case, we have 2 ⟨T ′ 2

⟩
(+)

≈ 50% and
⟨T ′ 2

⟩
(+)/⟨T ′ 2

⟩
(−)

= 3.85. Fig. 3(a) and (c) show the dynamic
properties for incidence from the left, and Fig. 3(b) and (d) from
the right. It is clear that the transmitted wave T , reflected wave
R and the displacement of the central mass v have different
responses for the different incident directions. The behaviors of
T ′ vs. time, which are relevant to the transmitted energy flux,
also show a significant difference for incidence from opposite
directions. Let us examine these time histories more closely.

From the perspective of displacement, when incidence is from
the left, the spring on the left is compressed first. Since the stiff-
ness in compression is the largest among all stiffnesses (α(−)

− ≫

α
(−)
+ , α(+)), the mass in the middle is pushed to the right direction

with large displacement as Fig. 3(a) shows. The spring on the
right is then compressed, which causes the transmitted wave to
have positive displacement. Once the incident forcing puts the left
spring in tension, the mass is drawn back and moves to the left
but with smaller displacement. The transmitted displacement has
the same behavior. Similarly, when incidence is from the right,
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Fig. 3. Nonreciprocal dynamic properties for the model of Fig. 2(a) with
arameters (α(−)

− , α
(−)
+ , α(+), αm) = (15, 0.2, 0.5, 5). For (a) and (c) the incident

ave f (red dashed line) is from the left, and for (b) and (d) from the right. (a)
nd (b) show the reflected wave R (black dashdotted lines), transmitted wave
(blue line) and mass displacement v (red dotted line) vs. time. (c) and (d)

epict the changes of T ′ and v − T over one period; Also, the corresponding
(±) values are labeled (the intervals are separated by the vertical black lines in
d) according to the bilinear stiffness property). The significant nonreciprocity
s thought to be realized in this case because of (1) the obvious difference in
he dynamic behaviors of (a) and (b), and (2) the small time interval with large
alues of the energy-related parameter T ′ occurring only in (d) instead of (c).

he spring on the right is compressed first. The mass in the middle
s pushed to the left and the spring on the left is compressed.
owever, the mass displacement to the left is small because the
ompressive stiffness of the spring on the right is small and that
f the spring on the left is large. Then the mass has a drastic move
5

towards the right with larger displacement because of the small
tensile stiffness of the left and right springs.

From the perspective of energy flux, the transmitted energy
flux ⟨T ′ 2

⟩ mainly depends on the values of α(+) for incidence
from the left and α(−) from the right, as the second expression
in Eq. (26) shows. Since α

(−)
− ≫ α

(−)
+ , the significant differ-

nce between the T ′ vs. time for incidence from the opposite
irections is clear in Figs. 3(c) and (d): the relatively small time
nterval with large values of T ′ in Fig. 3(d) results in the large
nergy flux ⟨T ′ 2

⟩
(+); However, this phenomenon does not occur

n Fig. 3(c); We therefore get the nonreciprocal energy flow
T ′ 2

⟩
(+) > ⟨T ′ 2

⟩
(−).

.4. Semi-analytical solution

The dynamics of a bilinear spring can be described by piece-
ise linear solutions patched together at the instants the bilinear
tiffness changes. Using this observation we show that the steady
tate dynamic behavior of the system in Fig. 2(a) can be solved
sing semi-analytical methods.
Since the time harmonic incident wave f = sinωt , the system

q. (26) can be simplified in matrix form

(t)′ = M V (t) + Re
[
F e−iωt] , (29)

here time dependent and constant vectors are

=

(R
T
v

)
, F =

1
2

⎛⎝2ω − iα(−)

0
i 2αm

⎞⎠ , (30)

ith constant matrix

=
1
2

⎛⎝−α(−) 0 α(−)

0 −α(+) α(+)

−2αm −2αm 0

⎞⎠ . (31)

The solution of the system Eq. (29) within a given piecewise linear
interval can be written as the sum of a homogeneous solution
V (1)

= V (1)(t) plus a particular solution:

V = Re
[
V (0) e−iωt ]

+ V (1) , (32)

here V (0) is the constant coefficient vector. Note that V with
he subscript denotes a constant vector and with the superscript
time-dependent vector.
The vector V (0) associated with the particular solution satisfies

iω I + M)V (0) = −F . (33)

ince (iω I + M) is invertible, it follows that

(0) = −
(
iω I + M

)−1 F . (34)

The homogeneous solution in Eq. (32) satisfies
(1) ′

= M V (1) , (35)

nd the solution can be expressed as
(1)

= V (1) + eM (t−tj) V (2) , (36)

here both V (1) and V (2) are constant, and tj is the starting time of
nterval j. The first constant vector satisfies M V (1) = 0, implying
V (1) = 0 and

V (1)
= eM (t−tj) V (2) . (37)

The remaining vector can be found by the initial condition for
each interval at the start time t = tj, such that

(1)
V (2) = V (tj) , (38)
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F

Fig. 4. Comparison of numerical and analytical results. (a) shows the sign of
[u(−)

], indicating that the dynamic process over one period is split into two
intervals of piecewise constant stiffness. Intervals are separated by the vertical
black lines in (b) - (d) which show the reflected wave R, transmitted wave T and
displacement of central mass v, respectively. The black dashdotted lines depict
the computed numerical results V ; the blue lines are the pure analytical solution
(the particular solution in Eq. (32)), Re[V (0) e−iωt

]; the red solid lines show the
remainder V−Re[V (0) e−iωt

]; the red dots show the semi-analytical results of this
remaining part (the homogeneous solution part in Eq. (32)) V (1) . The calculated
and semi-analytical results match well over the full period, verifying Eq. (40).

the exact value of which can only be found numerically from

V (1)(tj) = V (tj) − Re
[
V (0) e−iωtj

]
. (39)

In summary, Eqs. (32), (34) and (37)–(39) imply

V = − Re
[(
iω I + M

)−1 F e−iωt ]
+

eM (t−tj)
(
V (tj) + Re

[(
iω I + M

)−1 F e−iωtj
])

. (40)
6

Fig. 4 shows an example of applying the semi-analytical
method to the case shown in Fig. 3(b) for incidence from the right.
Fig. 4(a) shows the sign of [u(−)

] vs. time indicating that the dy-
namic process over one period comprises two linear intervals in
which the stiffness related parameter α(−) is piecewise constant.
Only one period is plotted starting with [u(−)

] = 0, the first inter-
val of which is [u(−)

] > 0 and the second [u(−)
] < 0. The intervals

are separated by the vertical black lines. Figs. 4(b) to (d) depict
the comparison of the semi-analytical homogeneous solution V (1)

and the difference between the computed numerical results and
pure analytical particular solution V − Re[V (0) e−iωt

]. These two
sets of values match very well in both intervals. Figs. 4(b), (c) and
(d) depict information for the reflected wave R, transmitted wave
T and displacement of central mass v, respectively.

4. Conclusion

Using a single bilinear spring element in an otherwise linear
system we have demonstrated the possibility of passive ampli-
tude independent nonreciprocal wave effects. The amplitude in-
dependence means that the output signal scales linearly with the
input. While the bilinear spring provides the necessary nonlinear
property for achieving nonreciprocity, the sufficient condition of
spatial asymmetry is obtained using a single linear spring to offset
the bilinear one. Significant nonreciprocity is observed when the
bilinearity is strong in the sense that the stiffnesses in compres-
sion and in tension are highly dissimilar. The nonreciprocal wave
system is amenable to a semi-analytic solution that takes advan-
tage of the piecewise linear nature of the dynamics. This property
also makes the system unique among passive nonreciprocal wave
systems. When the connection between the waveguides is a
single bilinear spring the system becomes reciprocal, although it
can still display interesting wave effects, such as the phenomenon
of unilateral transmission discussed here for the first time.
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Appendix. Energy considerations

The dynamic equation for u(t, x),

EAu,xx − ρAu,tt = 0 (A.1)

becomes, after multiplication by velocity u,t ,

∂tE + ∂xF = 0, (A.2)

where E and F are the energy density and energy flux

E =
1
2
A
(
Eu2

,x + ρu2
,t

)
, F = −EAu,xu,t . (A.3)

or a traveling wave, e.g. u = T (t − x/c) the flux reduces to

F = ρcAT ′2. (A.4)

In the steady state limit the associated energy is the average of
the flux over one period.
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