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Abstract. In this paper, we extend Deligne’s functorial Riemann-Roch isomorphism for
Hermitian holomorphic line bundles on Riemann surfaces to the case of flat, not necessarily
unitary connections. The Quillen metric and ⋆-product of Gillet-Soulé are replaced with
complex valued logarithms. On the determinant of cohomology side, we show that the
Cappell-Miller torsion is the appropriate counterpart of the Quillen metric. On the Deligne
pairing side, the logarithm is a refinement of the intersection connections considered in a
previous work. The construction naturally leads to an Arakelov theory for flat line bundles
on arithmetic surfaces and produces arithmetic intersection numbers valued in C/πiZ.
In this context we prove an arithmetic Riemann-Roch theorem. This realizes a program
proposed by Cappell-Miller to show that their holomorphic torsion exhibits properties
similar to those of the Quillen metric proved by Bismut, Gillet and Soulé. Finally, we give
examples that clarify the kind of invariants that the formalism captures; namely, periods of
differential forms.

Résumé. Dans cet article nous étendons l’isomorphisme de Riemann-Roch fonctoriel pour
les fibrés en droites holomorphes Hermitiens, dû à Deligne, au cas des fibrés plats non
nécessairement unitaires. La métrique de Quillen et le produit ⋆ de Gillet-Soulé sont
remplacés par des logarithmes à valeurs complexes. Sur le déterminant de la cohomologie,
nous montrons que la torsion de Cappell-Miller est l’analogue approprié de la métrique
de Quillen. Sur les accouplements de Deligne, les logarithmes raffinent les connexions
d’intersection introduites dans un travail précédent. La construction conduit naturellement
à une théorie d’Arakelov pour les fibrés plats sur les surfaces arithmétiques, et produit
des nombres d’intersection arithmétique à valeurs dans C/πiZ. Dans ce contexte, nous
démontrons une formule de Riemann-Roch arithmétique. On réalise ainsi un programme
proposé par Cappell-Miller visant à montrer que leur torsion holomorphe possède des
propriétés analogues à celles de la métrique de Quillen établies par Bismut, Gillet et Soulé.
Finalement, nous donnons des exemples qui clarifient le type d’invariants que ce formalisme
encode: des périodes de formes différentielles.
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1. Introduction

Arithmetic intersection theory was initiated by Arakelov [1] in an attempt to approach
the Mordell conjecture on rational points of projective curves over number fields by
mimicking the successful arguments of the function field case. The new insight was the
realization that an intersection theory on arithmetic surfaces could be defined by adding
some archimedean information to divisors. This archimedean datum consists of the Green’s
functions that arise from smooth Hermitian metrics on holomorphic line bundles. The use
of a metric structure is also natural for diophantine purposes, as one may want to measure
the size of integral sections of a line bundle on an arithmetic surface.

Arakelov’s foundational work was complemented by Faltings, who proved among other
things, the first version of an arithmetric Riemann-Roch type formula [13]. Later, in a
long collaboration starting with [17], Gillet and Soulé vastly extended the theory both to
higher dimensions and to more general structures on the archimedean side. Their point of
view is an elaboration of the ideas of Arakelov and is cast as a suitable “completion” of
the usual Chow groups of classical intersection theory over a Dedekind domain. Their
formalism includes arithmetic analogues of characteristic classes of Hermitian holomorphic
vector bundles [18, 19]. This led them to develop and prove a general Grothendieck-
Riemann-Roch type theorem in this setting [20]. A key ingredient is the analytic torsion
of the Dolbeault complex associated to a Hermitian holomorphic vector bundle over a
compact Kähler manifold. Their proof requires deep properties of the analytic torsion
due to Bismut and collaborators [2, 3, 4, 5, 6, 7]. In [12], Deligne proposed a program to
lift the Grothendieck-Riemann-Roch theorem to a functorial isomorphism between line
bundles that becomes an isometry when the vector bundles are endowed with suitable
metrics. This goal was achieved in the case of families of curves. He established a canonical
isometry between the determinant of cohomology of a Hermitian vector bundle with
the Quillen metric and some Hermitian intersection bundles involving, in particular, the
Deligne pairings of line bundles.

In our previous work [16], we produced natural connections on Deligne pairings of line
bundles with flat relative connections on families of compact Riemann surfaces. These
were called intersection connections, and they reduce to Deligne’s constructions in the
case where the relative connections are the Chern connections for a Hermitian structure.
As in the case of Deligne’s formulation, intersection connections are functorial, and via
the Chern-Weil expression they realize a natural cohomological relationship for Deligne
pairings. Moreover, we showed that in the case of a trivial family of curves, i.e. a single
Riemann surface and a holomorphic family of flat line bundles on it, we could interpret
Fay’s holomorphic extension of analytic torsion for flat unitary line bundles [14] as the
construction of a Quillen type holomorphic connection on the determinant of cohomology.
This can be recast as a statement that the Deligne-Riemann-Roch type isomorphism is flat
with respect to these connections. The relevant contents of [16] are summarized in Section
2 below.

The results in [16] on intersection and Quillen type connections are vacuous for a
single Riemann surface and a single flat holomorphic line bundle, since there are no
interesting connections over points! To proceed further, and especially with applications
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to Arakelov theory in mind, we establish “integrated” versions of the aforementioned
connections. The nature of such an object is what we have referred to above as a logarithm
of a line bundle L→ S over a smooth variety S. This takes the place of the logarithm of a
Hermitian metric in the classical situation. More precisely, a logarithm is an equivariant
map LOG : L× → C/2πiZ. It has an associated connection which generalizes the Chern
connection of a Hermitian metric, but which is not necessarily unitary for some Hermitian
structure. Although the notion of a logarithm is equivalent simply to a trivialization of
the Gm-torsor L×, it nevertheless plays an important role in the archimedean part of the
arithmetic intersection product, as we explain below.

1.1. Quillen-Cappell-Miller and intersection logarithms. Let (X, p) be a compact Rie-
mann surface with a base point, X the conjugate Riemann surface, and Lχ → X, Lc

χ → X
rigidified (at p) flat complex line bundles with respective holonomies χ−1 and χ, for
some character χ : π1(X, p)→ C×. Applied to these data, Deligne’s canonical (up to sign)
isomorphism for Lχ and Lc

χ gives

D :
{
λ(Lχ − OX) ⊗C λ(Lc

χ − OX)
}⊗2 ∼−−→ 〈Lχ,Lχ ⊗ ω−1

X 〉 ⊗C 〈Lc
χ,L

c
χ ⊗ ω−1

X
〉 (1)

where λ denotes the determinant of coherent cohomology and 〈 , 〉 denotes the Deligne
pairing (see Section 2 below for a review of Deligne’s isomorphism). After choosing a
metric on TX, a construction of Cappell-Miller [11] produces a trivialization of the product
of determinants of cohomologies, and hence gives rise to a logarithm denoted LOGQ. For
unitary characters, the Cappell-Miller trivialization is equivalent to the Quillen metric.
We call LOGQ the Quillen-Cappell-Miller logarithm. Regarding the right hand side of (1),
we shall show in Section 4 that the intersection connection of [16] can be integrated to an
intersection logarithm LOGint. The first main result is the following (see Theorem 5.10):

Theorem 1.1 (Deligne Isomorphism). The map (1) is compatible with LOGQ and LOGint,
modulo πiZ. That is,

LOGQ = LOGint ◦D (2)

in C/πiZ.

The idea of the proof is to deform the line bundles to the universal family over the Betti
moduli space MB(X) = Hom(π1(X, p),C×). Over MB(X), both LOGQ and LOGint turn out to
be holomorphic. Moreover, through Deligne’s isomorphism, they agree along the totally
real subvariety consisting of unitary characters. This forces the coincidence everywhere.
There is however a sign ambiguity, due to the sign ambiguity of Deligne’s isomorphism.
This explains the equality modulo iπZ instead of 2πiZ.

The holomorphic behavior of LOGQ over MB(X) is established in Section 5. We follow
the method of Bismut-Gillet-Soulé [6], which shows that Bismut-Freed’s connection [2, 3] is
the Chern connection of the Quillen metric with respect to the holomorphic structure on the
determinant of cohomology given by the Knudsen-Mumford construction [25]. However,
these authors work with Hermitian vector bundles and self-adjoint Laplace type operators.
Since the operators here are not self-adjoint their arguments do not directly apply. The
presentation below exhibits a holomorphic dependence with respect to parameters in
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MB(X). In this context, Kato’s theory of analytic perturbations of closed operators [23,
Chap. VII] turns out to be well-suited and provides the necessary alternative arguments to
those in [6].

Theorem 1.1 gives a positive answer to the question of Cappell-Miller as to whether
their torsion element plays an analogous role to the Quillen metric in the work of Bismut-
Gillet-Soulé. It also shows the relevance of Deligne’s functorial formalism adopted
here.

Finally, we emphasize that Fay’s holomorphic extension of analytic torsion is replaced
with the approach of Cappell-Miller. While for flat line bundles on Riemann surfaces the
torsion in both cases may be compared, the latter is defined in any dimension and any
rank and is therefore more suitable to generalizations of the work presented here.

1.2. The Arithmetic-Riemann-Roch theorem. The second aim of this paper is to use the
results above to initiate an Arakelov theory for flat line bundles on arithmetic surfaces
(Section 6). The quest for such a theory was made more conceivable by Burgos’ cohomo-
logical approach to Arakelov geometry, which interprets Green’s currents as objects in
some truncated Deligne real cohomology [9]. This evolved into the abstract formalism of
Burgos-Kramer-Kühn [10], allowing one to introduce integral Deligne cohomology instead.
Despite these developments, to our knowledge, the attempts so far have been unsuccessful.
It turns out that the intersection logarithm is the key in the construction of an arithmetic
intersection pairing for flat line bundles. At the archimedean places, the nature of our tools
forces us to work simultaneously with a Riemann surface and its conjugate, and pairs of
flat line bundles with opposite holonomies. We propose an analogue of this apparatus in
the arithmetic setting which we call a conjugate pair L♯ of line bundles with connections
(see Definition 6.6). Through Deligne’s pairing and the intersection logarithm, we attach to
conjugate pairs L♯ and M♯ an object 〈L♯,M♯〉, which consists of a line bundle over SpecOK

together with the data of intersection logarithms at the archimedean places. For such an
object there is a variant of the arithmetic degree in classical Arakelov geometry, denoted
deg♯, which takes values in C/πiZ instead of R. The construction also applies to mixed
situations; for instance, to a rigidified conjugate pair L♯ and a Hermitian line bundle M.
When the dualizing sheaf ωX/S is equipped with a smooth Hermitian metric, we can define
λ(L♯)Q, the determinant of cohomology of L♯ with the Quillen-Cappell-Miller logarithms
at the archimedean places. Using this formalism, we prove an arithmetic Riemann-Roch
type theorem for these enhanced line bundles (Theorem 6.12 below):

Theorem 1.2 (Arithmetic Riemann-Roch). Let X → S = SpecOK be an arithmetic surface
with a section σ : S → X. Suppose the relative dualizing sheaf ωX/S is endowed with a smooth
Hermitian metric. Let L♯ be a rigidified conjugate pair of line bundles with connections. Endow the
determinant of cohomology of L♯ with the Quillen-Cappell-Miller logarithm. Then the following
equality holds in C/πiZ.

12 deg♯ λ(L♯)Q − 2δ = 2(ωX/S, ωX/S) + 6(L♯,L♯) − 6(L♯, ωX/S)

− (4g − 4)[K : Q]
(
ζ′(−1)
ζ(−1)

+
1
2

)
,

(3)
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where δ =
∑
p

np log(Np) is the “Artin conductor” measuring the bad reduction of X→ SpecOK.
If K does not admit any real embeddings then the equality canonically lifts to C/2πiZ.

In the theorem it is possible to avoid the rigidification of L♯ along the section σ, at the
cost of taking values in C/πiZ[1/hK], where hK is the class number of K. However, the
existence of a section is needed for the construction. A variant of the formalism (including
an arithmetic Riemann-Roch formula) consists in introducing conjugate pairs of arithmetic
surfaces and line bundles. This makes sense and can be useful when K is a CM field. The
arithmetic intersection numbers are then valued in C/2πiZ.

In a future work [15] we extend these results to local systems of higher rank. With
respect to the Deligne isomorphism, the new ingredient is the line bundle incarnation of the
(direct image) of the second Chern class, expressed as IC2. Analogues of the intersection
connection and logarithm on IC2 will be developed.

Acknowledgements. Our sincere thanks to Jean-Michel Bismut for his interest and
for several discussions related to this work. We also wish to express our gratitude to
the anonymous referee whose criticism, insights, and endless patience through several
revisions greatly improved this paper.

2. Preliminaries

2.1. Intersection connections. Let π : X→ S be a smooth and proper morphism of quasi-
projective and smooth complex varieties, with connected fibers of dimension 1. Let L and
M be two holomorphic line bundles on X. The Deligne pairing of L and M is a holomorphic
line bundle 〈L,M〉 on S, that can be presented in terms of generators and relations. Locally
on S (i.e. possibly after replacing S by an open subset), the line bundle is trivialized by
symbols 〈ℓ,m〉, where ℓ and m are meromorphic sections of L and M, respectively, and
their divisors div ℓ and div m are disjoint, finite and étale1 over an open subset of S (for
simplicity, we say that ℓ and m are in relative general position). Relations, inducing the
glueing and cocycle conditions, are given by 〈 f ℓ,m〉 = Ndiv m/S( f )〈ℓ,m〉, whenever f is a
meromorphic function such that both symbols are defined, as well as a symmetric relation
in the other “variable”. Here, Ndiv m/S( f ) denotes the norm of f along the divisor of m. It
is multiplicative with respect to addition of divisors, and it is equal to the usual norm
on functions for finite, flat divisors over the base. The construction is consistent, thanks
to the Weil reciprocity law: for two meromorphic functions f and g whose divisors are
in relative general position, we have Ndiv f/S(g) = Ndiv g/S( f ). The Deligne pairing can be
constructed both in the analytic and the algebraic categories, and it is compatible with the
analytification functor. This is why we omit specifying the topology. The Deligne pairing
is compatible with base change and has natural functorial properties in L and M.

Let∇ : L→ L⊗Ω1
X/S be a relative holomorphic connection, and assume for the time being

that M has relative degree 0. We showed that there exists a C∞
X

connection ∇̃ : L→ L ⊗A1
X

,

1Under the most general assumptions (l.c.i. flat morphisms between schemes), it only makes sense to
require flatness of the divisors. In our setting (smooth morphisms of smooth varieties over C), a Bertini type
argument shows we can take them to be étale.
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compatible with the holomorphic structure on L (that is ∇̃0,1 = ∂L), such that the following
rule determines a well-defined compatible connection on 〈L,M〉:

∇tr〈ℓ,m〉 = 〈ℓ,m〉 ⊗ trdiv m/S



∇̃ℓ
ℓ


 .

Notice that it makes sense to take the trace of the differential form ∇̃ℓ/ℓ along div m, since
the latter is finite étale over the base, and the divisors of the sections are disjoint. The
existence of ∇̃ is not obvious, since the rule just defined encodes a nontrivial reciprocity
law, that we call (WR):

trdiv f/S



∇̃ℓ
ℓ


 = trdiv ℓ/S

(
d f
f

)
,

whenever f is a meromorphic function and the divisors of f and ℓ are in relative general
position. The construction of ∇̃ can be made to be compatible with base change, and then
it is unique up to the additive action of Γ(X, π−1A

1,0
S ). Furthermore, if σ : S→ X is a section

and L is trivialized along σ, one can isolate a particular extension ∇̃ that restricts to the
exterior differentiation on S along σ (through the trivialization of L). Then the connection
∇tr can be extended to pairings with M of any relative degree, without ambiguity. We call
∇̃ a (or the) canonical extension of ∇, and ∇tr a trace connection. We recall the construction
of the canonical extension in §3.3.1 below.

Trace connections are manifestly not symmetric, since they do not require any connection
on M. Let ∇̃′ : M → M ⊗ A1

X
be a smooth compatible connection on M and let ∇tr be a

trace connection on 〈L,M〉. If the relative degree of M is not zero, we tacitly assume that
L is rigidified along a given section. The trace connection ∇tr can then be completed to a
connection that “sees” ∇̃′:

∇int〈ℓ,m〉
〈ℓ,m〉 =

∇tr〈ℓ,m〉
〈ℓ,m〉 +

i
2π
π∗



∇̃′m
m
∧ F∇̃


 ,

where F∇̃ is the curvature of the canonical extension ∇̃ on L. Assume now that ∇̃′ is a
canonical extension of a relative holomorphic connection ∇′ : M → M ⊗Ω1

X/S. Then the
intersection connection ∇int is compatible with the obvious symmetry of the Deligne pairing.
These constructions carry over to the case when the relative connections only have a
smooth dependence on the horizontal directions, but are still holomorphic on fibers. The
intersection connection reduces to the trace connection if ∇̃′ is the Chern connection of a
smooth Hermitian metric on M that is flat on fibers. Finally, the trace connection coincides
with the Chern connection of the metrized Deligne pairing in case ∇̃ is a Chern connection,
flat on fibers, as well.

2.2. Deligne isomorphism. Let us denote λ(L) for the determinant of the cohomology
of L; that is: λ(L) = det Rπ∗(L). The determinant of Rπ∗(L) makes sense, since it is a
perfect complex and so the theory of Knudsen-Mumford [25] applies. It can be extended,
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multiplicatively, to virtual objects, namely formal sums of line bundles with integer
coefficients. Deligne [12] proves the existence of an isomorphism

D : λ(L − O)⊗2 ∼−−→ 〈L,L ⊗ ω−1
X/S〉,

where ωX/S is the relative cotangent bundle of π. The isomorphism is compatible with
base change and is functorial in L. It is unique with these properties, up to sign. It can
be combined with Mumford’s canonical (up to sign) and functorial isomorphism [27],
which in the language of Deligne pairings reads: λ(O)⊗12 ∼−−→ 〈ωX/S, ωX/S〉. Hence, we have
a canonical (up to sign) isomorphism

D′ : λ(L)⊗12 ∼−−→ 〈ωX/S, ωX/S〉 ⊗ 〈L,L ⊗ ω−1
X/S〉⊗6,

which is again compatible with base change and functorial in L. The latter is also usually
called Deligne’s isomorphism.

When the line bundles L and ωX/S are endowed with smooth Hermitian metrics, all
the line bundles on S involved in Deligne’s isomorphism inherit Hermitian metrics. On
the Deligne pairings, the construction is the metrized counterpart of the intersection
connection definition, and it will not be recalled here. It amounts to the ⋆-product
of Green’s currents introduced by Gillet-Soulé in arithmetic intersection theory. The
determinant of cohomology can be equipped with the Quillen metric. When the metric
on ωX/S is the restriction of a global Kähler metric on X, then the Chern connection of the
Quillen metric is given by Bismut-Freed’s construction [2, 3]. The Deligne isomorphism
is, up to an overall topological constant, an isometry for these metrics. The value of the
constant can be pinned down, for instance by using the arithmetic Riemann-Roch theorem
of Gillet-Soulé [20]. We refer the reader to the survey articles of Soulé [31] and Bost [8],
where all these constructions and facts are summarized. Because the Deligne isomorphism
is an isometry in the metrized case, it is in particular parallel for the corresponding Chern
connections.

3. Logarithms and Deligne Pairings

3.1. Logarithms and connections on holomorphic line bundles. Let S be a connected
complex analytic manifold and P → S a smooth complex line bundle. To simplify the
presentation, the same notation will be used when P is understood to have the structure
of a holomorphic line bundle. Also, no notational distinction will be made between a
holomorphic line bundle and the associated invertible sheaf of OS-modules. Finally, denote
by P× the Gm torsor (or principal bundle) given by the complement of the zero section in
the total space of P.

Here we introduce the notion of smooth logarithm for P, which is nothing but an additive
reformulation of the notion of trivialization. For a holomorphic bundle there is also a
notion of holomorphic logarithm, and whenever we talk about holomorphic logarithm it
will be implicit that P has a holomorphic structure.

Definition 3.1. A smooth (resp. holomorphic) logarithm for P is a map: LOG : P× −→ C/2πiZ
satisfying: LOG(λ · e) = logλ + LOG(e), for λ ∈ Gm and e ∈ P×, and such that the well-
defined C×-valued function exp ◦LOG is smooth (resp. holomorphic) with respect to the
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natural structure of a smooth (resp. complex analytic) manifold on P×. Then LOG−1(0)
gives a trivialization of P.

A logarithm LOG can be reduced modulo πiZ. We will write LOG for the reduction of
LOG. By construction, the reduction of a logarithm modulo πiZ factors through P×/{±1},
and is equivalent to a trivialization up to sign:

P×

��
��

LOG
// C/2πiZ

��
��

P×/{±1} LOG
// C/πiZ .

Though perhaps not apparent at this moment, the necessity for this reduction will appear
at several points below (notably because of the sign ambiguity in Deligne’s isomorphism).

There is naturally a flat connection ∇LOG on P associated to a smooth logarithm . If P is a
holomorphic bundle, this connection is compatible with the holomorphic structure exactly
when LOG is holomorphic.

3.2. Construction of naive logarithms. Let π : X→ S be a smooth proper morphism of
smooth complex quasi-projective varieties with connected fibers of relative dimension one.
The morphism π is in particular projective. Assume we are given a fixed holomorphic
section σ : S→ X and L, M holomorphic line bundles on X. We require that L comes with
a rigidification along σ, namely a fixed holomorphic trivialization σ∗(L) ∼−−→ OS. Consider
relative connections: ∇L

X/S : L → L ⊗ A1
X/S and ∇M

X/S : M → M ⊗ A1
X/S, compatible with

the holomorphic structures (here, A1
X/S = A1

X
/π∗A1

S denotes the sheaf of smooth relative
1-forms on X). We suppose that ∇L

X/S is flat, but make no assumption on ∇M

X/S for the time
being. Note that this means that L has a smooth trivialization on each fiber. We would
like to use this data to construct a smooth logarithm on the Deligne pairing 〈L,M〉, whose
associated connection is the intersection connection ∇int (see Section 2). This, however, is
not possible, since the intersection connection is in general not flat (see for instance the
curvature computation in the universal case [16, Sec. 5.3]). We will thus try to construct
a logarithm, which we call naive, whose connection looks as close as possible to the
intersection connection.

We proceed in several steps. Let νL : S→ H1
dR(X/S)/R1π∗(2πiZ) be the smooth classify-

ing map of (L,∇L

X/S) (see [16]). Locally on contractible open subsets S◦ of S, we can lift νL
to a smooth section of H1

dR(X/S).

Step 1. Fix S◦ a contractible open neighborhood of a fixed base point 0 ∈ S, and write
X◦ = π−1(S◦). Choose a lift of νL on S◦: ν̂ : S◦ → H1

dR(X/S)
∣∣∣
S◦

such that ν̂ ≡ νL mod
R1π∗(2πiZ)

∣∣∣
S◦

. Fix as well a relative differential form η ∈ Γ(X◦,A1
X◦/S◦), which is harmonic

on fibers and represents ν̂ fiberwise.
Step 2. Fix a smooth trivialization X◦ ≃ X× S◦, where X is the fiber π−1(0). Write X̃ ≃ X̃× S◦

for the universal cover based at σ(0). The trivialization induces identifications of X̃ with
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the universal covers X̃s based at σ(s), as well as identifications π1(X, σ(0)) ≃ π1(X, σ(0)) ≃
π1(Xs, σ(s)). We shall implicitly invoke these identifications below. Using the rigidification
of L along σ and parallel transport with respect to ∇L

X/S, the section ℓ gives rise to a function

ℓ̃ : X̃ → C ∪ {∞}, which is fiberwise meromorphic, and transforms via some character
under the action of the fundamental group (the character depends on the fiber). Precisely,
if γ ∈ π1(Xs, σ(s)), the transformation law for ℓ̃ on X̃s with respect to translation by γ is:

ℓ̃(γz) = exp
(∫
γ
ν̂
∣∣∣
Xs

)
ℓ̃(z), z ∈ X̃s.

Step 3. Choose d̃iv m a lift of div m to X̃. If div m =
∑

i niPi (finite sum), for sections Pi, then
d̃iv m =

∑
i niP̃i, where the P̃i are lifts of Pi in X̃. Similarly let σ̃ be a lift of the section σ to X̃.

Step 4. We set:

LOGna(〈ℓ,m〉) = log(ℓ̃(d̃iv m)) −
∫ d̃iv m

σ̃

η̃ − i
2π
π∗



∇M

X/Sm

m
∧ η


 mod 2πiZ (4)

where η̃ ∈ Γ(X̃,A1
X̃/S◦

) is the pull-back of η to the universal cover. The index na stands for
naive. To simplify the presentation, we omit the choices made from the notation.

Let us clarify the construction:
(i) The integrals are computed fiberwise, and hence they are well defined. The path

integral is taken along a path in a fiber, and it is independent of the path since η̃ is
fiberwise closed. Finally, π∗ is well defined on relative differential forms

(ii) If on a given fiber X̃s we have d̃iv m =
∑

i niP̃i, then the first two terms in the

definition of LOGna expand (by definition) to:
∑

i ni log(ℓ̃(P̃i)) −
∑

i ni

∫ P̃i

σ̃(s)
η̃. The

integration path from σ̃ to P̃i is taken in X̃s. This expression does not depend on the
choice of liftings σ̃ and P̃i, modulo 2πiZ. For if P and γP are points in X̃s differing
by the action of γ ∈ π1(Xs, σ(s)), then

log(ℓ̃(γP)) −
∫ γP

σ̃(s)
η̃ =

∫

γ

ν̂ + log(ℓ̃(P)) −
∫ P

σ̃(s)
η̃ −

∫ γP

P
η̃ mod 2πiZ

= log(ℓ̃(P)) −
∫ P

σ̃(s)
η̃ mod 2πiZ ,

where we used
∫ γP

P
η̃ =

∫
γ
ν̂. If we change the lifting σ̃ to σ∗ = γσ̃, then the new lifting

of ℓ is ℓ∗ with ℓ∗(z) = exp
(
−

∫
γ
ν̂
)
ℓ̃(z), while −

∫ P

γσ̃
η̃ = −

∫ σ̃
γσ̃
η̃ −

∫ P

σ̃
η̃ =

∫
γ
ν̂ −

∫ P

σ̃
η̃.

From these relations we derive the independence of the lift σ̃modulo 2πiZ.
(iii) There are several facts that can be checked similarly to our previous work [16,

Sec. 3 and 4]. For instance, the compatibility to the relations defining the Deligne
pairing, most notably under the change f 7→ f m ( f a rational function), follows
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from various reciprocity laws for differential forms, plus the observation that
π∗

(
(d f/ f ) ∧ η) = ∂π∗(log | f |2 · η) = 0, since η is fiberwise closed.

(iv) The last fibre integral in (4) defines a smooth function on S◦. Indeed, let ∇M

ch be a
Chern connection on M, and write ∇M

X/S = ∇M

ch + ϑ, where ϑ is a smooth relative

differential form. Then, as in the previous remark, one proves π∗



∇M

X/Sm

m
∧ η


 =

π∗
(
ϑ ∧ η). The last expression is clearly a smooth function.

With this understood, we conclude that LOGna is a well-defined smooth logarithm for
〈L,M〉

∣∣∣
S◦

, that depends only on the choice of lifting ν̂ on S◦.

Let us now focus on the case when M is endowed with a Chern connection.

Lemma 3.2. Assume ∇M

X/S is the relative Chern connection of a smooth Hermitian metric on M.
Endow the line bundle M ⊗ O(−(degM)σ), of relative degree 0, with the relative flat unitary
connection. Equip the Deligne pairings 〈L,M〉

∣∣∣
S◦

and 〈L,M ⊗ O(−(degM)σ)〉
∣∣∣
S◦

with the naive
logarithms depending on the lift ν̂ of νL. Finally, equip σ∗(L) with the logarithm induced by the
rigidification σ∗(L) ∼−−→ OS. Then, the canonical isomorphism of Deligne pairings

〈L,M〉 ∼−−→ 〈L,M ⊗ O(−(degM)σ)〉 ⊗ σ∗(L)⊗degM

is compatible with the respective logarithms defined on S◦. In particular, the naive logarithm on
〈L,M〉

∣∣∣
S◦

does not depend on the particular choice of Chern connection ∇M

X/S.

Proof. For the Deligne pairing on the left hand side, we have LOGna(〈ℓ,m〉) = log(ℓ̃(d̃iv m))−∫ d̃iv m

σ̃
η̃, because ∇M

X/S is a Chern connection. Assume now that ℓ does not have a pole or a
zero along σ. Then, by the very construction of ℓ̃, we have on the one hand

log(ℓ̃(d̃iv m)) = log(ℓ̃(d̃iv m − (degM)σ̃)) + (degM) log(σ∗ℓ),

while on the other hand it is obvious that
∫ d̃iv m

σ̃
η̃ =

∫ d̃iv m−(degM)σ̃

σ̃
η̃. The lemma follows

from these observations. �

3.3. The connection attached to a naive logarithm. The previous setting and notations
are still in force. We wish to compute the connection associated to LOGna, this is d LOGna.

This requires differentiation of functions of the form:
∫ d̃iv m

σ̃
η̃. For this, we first need to

recall the construction of the canonical extension of the relative flat connexion ∇L

X/S.

3.3.1. Preliminaries on the canonical extension. For the lift ℓ̃ of ℓ to X̃, the expression dℓ̃/ℓ̃
does not descend to a differential form on X◦. We need to correct it by taking into
account the horizontal variation of the classifying map of (L,∇L

X/S), which we denoted by
νL : S→ H1

dR(X/S)/R1π∗(2πiZ). If ∇GM is the Gauss-Manin connection for the local system
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R1π∗Z on S, then ∇GMνL is a smooth section of H1
dR(X/S) ⊗ A1

S. On the contractible open
subset S◦ we can write

∇GMνL =

2g∑

j=1

[η j] ⊗ θ j, (5)

where {[η j]}2g
j=1 defines a local flat frame of H1

dR(X/S)
∣∣∣
S◦

, and the θ j are smooth 1-forms on
S◦. As before, we assume that the η j are fiberwise harmonic representatives of the classes
[η j]. Then we declare, for s ∈ S◦ and z ∈ X̃s,

∫ z

σ̃(s)
∇GMνL :=

2g∑

i=1

(∫ z

σ̃(s)
η̃i

)
θi.

Finally, we define the canonical extension ∇̃L of ∇L

X/S (on S◦), rigidified along σ, by

∇̃Lℓ

ℓ
=

dℓ̃

ℓ̃
−

∫ z

σ̃(s)
∇GMνL. (6)

In our previous work we showed that this rule determines a well-defined smooth global
connection on L |X◦ , compatible with the holomorphic structure and compatible with the
rigidification σ∗(L) ∼−−→ OS (in the sense that the restriction along σ corresponds to the
trivial connection). We also proved that the construction patches together on intersecting
contractible subsets, and hence it globalizes to the whole base S [16, Sec. 4.1].

Observe now that if the lift ν̂ of νL on S◦ is written as

ν̂ =

2g∑

i=1

fi[ηi], (7)

where the fi are smooth functions on S◦, then:
(i) for the fiberwise harmonic representative of ν̂we may take η =

∑
i fiηi;

(ii) the Gauss-Manin connection applied to νL is expressed as ∇GMνL =
∑2g

i=1[ηi] ⊗ d fi.
In particular we have the decomposition (5) with θi = d fi.

3.3.2. Differentiation of naive logarithms. We next find a relation between the naive logarithm
LOGna and the intersection connection (cf. Section 2). First, let us note that in the case where
∇M is a connection on M that is flat on the fibers the quantity π∗(F∇M ∧ η) is well defined.
Here F∇M is the curvature of the connection ∇M. Indeed, consider a form

∑
hkπ∗ωk, where hk

are functions on X and ωk are forms on S. Then π∗(F∇M ∧
∑

hkπ∗ωk) =
∑
π∗(hkF∇M)ωk, which

vanishes since ∇M is flat on fibers. With this understood, the aforementioned relationship
is then given in the following.

Proposition 3.3. Suppose that ∇M

X/S is flat on fibers, and let ∇M : M→M ⊗A1
X

be a given global
extension of ∇M

X/S, compatible with the holomorphic structure. Then, on the open subset S◦, we have

d LOGna〈ℓ,m〉 =
∇int
〈L,M〉〈ℓ,m〉
〈ℓ,m〉 − i

2π
π∗(F∇M ∧ η).
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Proof. Recall the definition of the naive logarithm (4). To compute the differential of
LOGna〈ℓ,m〉 and to compare to the intersection connection, we only need to describe the
differentials of the functions

∫ d̃iv m

σ̃

η̃,
i

2π
π∗

(
∇Mm

m
∧ η

)
.

For the argument, we need the auxiliary choice of an extension of the forms η j to global
differential forms on X◦. We use the same notation for the extended forms. These extensions
determine an extension of η by imposing the relation η =

∑
i fiηi.

The trivialization X◦ ≃ X × S◦ induces a retraction p : X→ X (projection map), and we
denote ι : X ֒→ X◦ as the inclusion of X. Without loss of generality, we may assume that
the components of div m are given by sections S◦ → X◦ (this is true after base change by a
finite étale cover, and this does not affect equalities of differential forms).

By the flatness condition on the [η j], there exist smooth functions g j on X◦ such that

η j = p∗ι∗(η j) + dg j on fibers. (8)

The functions g j are uniquely determined by imposing the condition σ∗(g j) = 0. It follows
that we have an identity of differential forms on X◦

η j = p∗ι∗(η j) + dg j − ϑ j, (9)

where ϑ j is a differential form vanishing on fibers. We also observe that ι∗(η j) is closed, and
hence so is p∗ι∗(η j). Then (9) implies

dη j = −dϑ j. (10)

Now from (8) the following relations hold:
∫ d̃iv m

σ̃

η̃ j =

∫ d̃iv m

σ̃

˜p∗ι∗(η j) + trdiv m/S◦(g j)

d
∫ d̃iv m

σ̃

η̃ j = trdiv m/S◦(p∗ι∗(η j)) + trdiv m/S◦(dg j). (11)

Combining (9) and (11), we obtain: d
∫ d̃iv m

σ̃
η̃ j = trdiv m/S◦(η j) + trdiv m/S◦(ϑ j). Hence, we

conclude with the first desired computation:

d
∫ d̃iv m

σ̃

η̃ = trdiv m/S◦(η) +
∫ d̃iv m

σ̃

∇GMν +

2g∑

j=1

f j trdiv m/S◦(ϑ j). (12)

Let us now compute the differentials of the expressions

i
2π
π∗

(
∇Mm

m
∧ η j

)
.

For this, we recall the Poincaré-Lelong equation

i
2π

d

[
∇Mm

m

]
+ δdiv m =

i
2π

F∇M ,
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where [∇Mm/m] stands for the current of integration against the locally integrable singular
form ∇Mm/m. Taking into account the relation dη j = −dϑ j (cf. (10)), the Poincaré-Lelong
equation implies

d

{
i

2π
π∗

(
∇Mm

m
∧ η j

)}
= − trdiv m/S◦(η j) +

i
2π
π∗(F∇M ∧ η j) (13)

+
i

2π
π∗

(
∇Mm

m
∧ dϑ j

)
. (14)

For the last term (14), we claim

i
2π
π∗

(
∇Mm

m
∧ dϑ j

)
= − trdiv m/S◦(ϑ j). (15)

Indeed, because ϑ j vanishes on fibers, we have

i
2π
π∗

(
∇Mm

m
∧ ϑ j

)
= 0.

Differentiating this equality and applying the Poincaré-Lelong equation, we derive

i
2π
π∗

(
∇Mm

m
∧ dϑ j

)
= − trdiv m/S◦(ϑ j) +

i
2π
π∗(F∇M ∧ ϑ j).

But now we argue as above: locally with respect to the base S◦, we can write ϑ j as a
finite sum

∑
k hkωk, for smooth functions hk on X◦ and smooth differential forms ωk on S◦.

Therefore
i

2π
π∗

(
F∇M ∧ ϑ j

)
=

∑

k

i
2π
π∗(hkF∇M)ωk.

This expression vanishes, because F∇M is 0 on fibers by hypothesis. This proves the claim
(15). From (13)–(15), we compute the second desired differentiation:

d
i

2π
π∗

(
∇Mm

m
∧ η

)
= − trdiv m/S◦(η) +

i
2π
π∗(F∇M ∧ η) −

2g∑

j=1

f j trdiv m/S◦(ϑ j). (16)

Putting (12) and (16) together we find

d
∫ d̃iv m

σ̃

η̃ + d
i

2π
π∗

(
∇Mm

m
∧ η

)
=

∫ d̃iv m

σ̃

∇GMν +
i

2π

(
∇Mm

m
∧ ∇GMνL

)
+

i
2π
π∗(F∇M ∧ η).

=

∫ d̃iv m

σ̃

∇GMν −
i

2π

(
∇Mm

m
∧ F∇̃L

)
+

i
2π
π∗(F∇M ∧ η).

(17)

For the second equality we invoked the construction of the canonical extension ∇̃L in terms
of ∇GMν (see (6)). The statement of the proposition now follows from the definition of
LOGna〈ℓ,m〉, equation (17) and the very definition of the intersection connection. �
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Remark 3.4. (i) A formal computation could suggest that equations (12) and (16) hold
without the right most terms. This is the case if the fibration is trivial, but not in
general. Still, the deviation from the formal computation compensates when we
add both equations.

(ii) The formula of Proposition 3.3 recovers the curvature formula of the intersection
connection in [16, Prop. 3.16].

3.4. Dependence of naive logarithms on liftings. Continuing with the notation of Section
3.2, we now study the dependence of the construction of LOGna for Deligne pairings 〈L,M〉
on the lifting ν̂ of νL. Because the Deligne pairing commutes with base change and the
naive logarithm is defined pointwise, we reduce to the case when the base S is a point, and
hence X is a single Riemann surface X.

Let [θ] ∈ H1(X, 2πiZ), with harmonic representative θ. We wish to study the change of
LOGna under the transformation ν̂ 7→ ν̂ + [θ]. A first remark is that this transformation
doesn’t change given the lifting ℓ̃ of a meromorphic section ℓ of L. Therefore, we are led to
study the change of the expression

∫ d̃iv m

σ̃

η̃ +
i

2π

∫

X

∇Mm
m
∧ η;

that is, the factor ∫ d̃iv m

σ̃

θ̃ +
i

2π

∫

X

∇Mm
m
∧ θ. (18)

Observe that a change of representatives in σ̃ or d̃iv m does not affect this factor modulo
2πiZ, because θ has periods in 2πiZ.

There is no general answer for the question posed above unless we make some additional
assumptions on ∇M. The first case to consider is when ∇M is the Chern connection of a
smooth Hermitian metric on M, not necessarily flat. Then

∫

X

∇Mm
m
∧ η =

∫

X
d(log ‖m‖2η) = 0.

We are then left with the term:
∫ d̃iv m

σ̃
θ̃. This quantity does not vanish in general. In this

case, the lack of invariance under the transformation ν̂ 7→ ν̂ + [θ] will be addressed later in
Section 4.1 by introducing the conjugate datum.

The second relevant case is when ∇M is flat. Let ϑ be a harmonic differential form whose
class in MdR(X) := H1(X,C)/H1(X, 2πiZ) corresponds to the connection ∇M. Then, the
associated flat Chern connection corresponds to ϑ′′ − ϑ

′′
, where ϑ′′ denotes the (0, 1) part

of ϑ (we will use similar notations for (1, 0) parts). We have the comparison

∇M = ∇M

ch + ϑ
′ + ϑ′′ . (19)

Also, because θ has purely imaginary periods, θ = −θ, and dividing into types we have a
decomposition

θ = θ′′ − θ′′. (20)
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These relations will be used in the proof of the following statement.

Proposition 3.5 (Refined Poincaré-Lelong Formula). Assume ∇M is holomorphic and choose
a harmonic one form ϑ representing the class of ∇M in MdR(X). Let θ be a harmonic one form with
periods in 2πiZ. Then

∫ d̃iv m

σ̃

θ̃ +
i

2π

∫

X

∇Mm
m
∧ θ = i

2π

∫

X
ϑ ∧ θ mod 2πiZ. (21)

Proof. The statement is the conjunction of various reciprocity laws [22, Reciprocity Law
I, p.230]. They involve the boundary of a fundamental domain delimited by (liftings of)
simple closed curves αi and βi whose homology classes provide with a basis of H1(X,Z),
symplectic with respect to the intersection pairing. We can take d̃iv m in the chosen
fundamental domain based at σ̃, because we already justified that (18) does not depend on
representatives, modulo 2πiZ. Applying the reciprocity formula toθ′ and the meromorphic
differential form (∇M

chm)/m = ∂ log ‖m‖2 (where ‖ · ‖ stands for a flat metric on M), we have
∫ d̃iv m

σ̃

θ̃′ =
1

2πi

∑

j

∫

α j

θ′
∫

β j

∂ log ‖m‖2 −
∫

β j

θ′
∫

α j

∂ log ‖m‖2. (22)

Now we take into account that θ′ = −θ′′, and conjugate the previous expression to obtain

−
∫ d̃iv m

σ̃

θ̃′′ =
1

2πi

∑

j

∫

α j

θ′′
∫

β j

∂ log ‖m‖2 −
∫

β j

θ′′
∫

α j

∂ log ‖m‖2.

But observe that for a closed curve γ disjoint from the divisor of m, we have by Stokes’
theorem,

∫
γ

d log ‖m‖2 = 0, and therefore
∫
γ
∂ log ‖m‖2 = −

∫
γ
∂ log ‖m‖2. We thus derive

∫ d̃iv m

σ̃

θ̃′′ =
1

2πi

∑

j

∫

α j

θ′′
∫

β j

∂ log ‖m‖2 −
∫

β j

θ′′
∫

α j

∂ log ‖m‖2. (23)

Equations (22)–(23) together lead to
∫ d̃iv m

σ̃

θ̃ =
1

2πi

∑

j

∫

α j

θ

∫

β j

∂ log ‖m‖2 −
∫

β j

θ

∫

α j

∂ log ‖m‖2. (24)

But now, modulo 2πiZ, we have
∫

γ

∂ log ‖m‖2 =
∫

γ

(ϑ′′ − ϑ′′). (25)

Because the periods of θ are in 2πiZ, eqs. (24)–(25) yield
∫ d̃iv m

σ̃

θ̃ =
1

2πi

∑

j

∫

α j

θ

∫

β j

(ϑ′′ − ϑ′′) −
∫

β j

θ

∫

α j

(ϑ′′ − ϑ′′)
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modulo 2πiZ. Using the Riemann bilinear relations,
∫ d̃iv m

σ̃

θ̃ =
1

2πi

∫

X
θ ∧ (ϑ′′ − ϑ′′). (26)

Let’s now treat the second integral:
∫

X

∇Mm
m
∧ θ =

∫

X

∇M

chm

m
∧ θ +

∫

X
(ϑ′ + ϑ′′) ∧ θ.

The first integral on the right hand side is equal to
∫

X
d(log ‖m‖2θ′′) = 0, where we use the

fact that θ′′ is closed. Hence, we arrive at

i
2π

∫

X

∇Mm
m
∧ θ = i

2π

∫

X
(ϑ′ + ϑ′′) ∧ θ = 1

2πi

∫

X
θ ∧ (ϑ′ + ϑ′′). (27)

Sum (26) and (27) to obtain
∫ d̃iv m

σ

θ̃ +
i

2π

∫

X

∇Mm
m
∧ θ = 1

2πi

∫

X
θ ∧ ϑ mod 2πiZ

as was to be shown. �

Remark 3.6. The integral: (i/2π)
∫

X
ϑ∧θ, depends mod 2πiZ only on the class of ϑmodulo

the lattice H1(X, 2πiZ), or equivalently on the point [∇M] in MdR(X).

4. The Intersection Logarithm

4.1. Intersection logarithms in conjugate pairs. We retain the notation from the previous
section, and we work on a single Riemann surface X. We denote by X the conjugate
Riemann surface: the underlying C∞ surface stays the same, but we reverse the complex
structure. For notational coherence with later considerations, we denote σ for the base
point σ seen as a point of X. Let (Lc,∇L,c) be a rigidified (at σ) holomorphic line bundle
with connection attached to −ν̂, regarded as a cohomology class on X. Hence the holonomy
characters of ∇L and ∇L,c are mutually inverse. We say that (L,∇L) and (Lc,∇L,c) form a
conjugate pair. As rank 1 local systems, these bundles are dual, and complex conjugate
exactly when the flat connections are unitary.

For the connection ∇M, from now on we focus on two cases:
• ∇M is a Chern connection (not necessarily flat). In this case, Mc denotes the

complex conjugate line bundle to M on X. We let ∇M,c be the conjugate of the
connection ∇M.
• ∇M is flat. We assume that M is rigidified at σ. Then (Mc,∇M,c) is a flat holomorphic

line bundle on X, rigidified at σ, with inverse holonomy to (M,∇M).
There is an intersection between these two situations: the flat unitary case. The conventions
defining (Mc,∇M,c) are consistent. By this we mean both are mutually isomorphic: there is
a unique isomorphism respecting the connections and rigidifications. In either case, we
write LOGc

na for the corresponding naive logarithm for 〈Lc,Mc〉.
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Proposition 4.1. The sum of logarithms LOGna and LOGc
na, for 〈L,M〉 and 〈Lc,Mc〉, defines a

logarithm for 〈L,M〉⊗C 〈Lc,Mc〉, that only depends on the point [∇L] in MdR(X), the rigidifications,
and on ∇M. If ∇M is flat, then the dependence on ∇M factors through MdR(X) as well.

Proof. Let θ be a harmonic 1-form with periods in 2πiZ. We consider the change of LOGna

and LOGc
na under the transformation ν̂ 7→ ν̂ + [θ], and observe that they compensate each

other.
We start with the Chern connection case on M. Let m be a meromorphic section of M. It

defines a complex conjugate meromorphic section mc of Mc, and the divisors div m and
div mc are equal. We saw that the change in LOGna(〈ℓ,m〉) under ν̂ 7→ ν̂ + [θ] is reduced

to
∫ d̃iv m

σ̃
θ̃. The change in LOGc

na(〈ℓ′,mc〉) will be
∫ d̃iv mc

σ̃
(−θ̃). But now, independently of

the liftings d̃iv m and d̃iv mc in to the universal cover, we have
∫ d̃iv m

σ̃
θ̃ +

∫ d̃iv mc

σ̃
(−θ̃) = 0

mod 2πiZ. More generally, we can change mc by a meromorphic function. For if f is

meromorphic on X, we have
∫ d̃iv f

σ̃
θ̃ ∈ 2πiZ, precisely by Proposition 3.5 applied to the

trivial line bundle in place of M. Hence, mc may be taken to be any meromorphic section
of Mc. In summary, we see that LOGna +LOGc

na is invariant under ν̂ 7→ ν̂ + [θ].
Now for the flat connection case on M. We introduce a harmonic representative ϑ of the

class of ∇M in MdR(X). Then ∇M,c admits −ϑ as a harmonic representative in MdR(X). After
Proposition 3.5, for any meromorphic section m of M on X, we have

∫ d̃iv m

σ̃

θ̃ +
i

2π

∫

X

∇Mm
m
∧ θ = i

2π

∫

X
ϑ ∧ θ mod 2πiZ. (28)

Similarly, if mc is a meromorphic section of Mc on X, we have

∫ d̃iv mc

σ

(−θ̃) +
i

2π

∫

X

∇Mmc

mc
∧ θ = i

2π

∫

X
(−ϑ) ∧ (−θ) mod 2πiZ. (29)

Since X is oppositely oriented, (i/2π)
∫

X
(−ϑ)∧ (−θ) = −(i/2π)

∫
X
ϑ∧θ. Hence, the change in

the sum of logarithms is (28)+(29)=0. Notice that from the formulas defining the logarithms
the dependence on ∇M trivially factors through MdR(X). The statement follows. �

Remark 4.2. An observation on the change of complex structure is now in order. A complex
manifold can be seen as a pair Y = (Y,OY) formed by a differentiable manifold Y together
with a sheaf of holomorphic functions OY, locally isomorphic to the sheaf of holomorphic
functions on some Cn. The conjugate complex manifold Y is then the pair (Y,OY), where
the sheaf OY is constructed from OY by complex conjugating its local sections. From this
perspective, a holomorphic morphism of complex manifolds f : Y → Z clearly induces
a holomorphic morphism f : Y→ Z. Abusing notations, we may sometimes say that in
the C∞ category, we have Y = Y and f = f . This construction is applied below to a family
of compact Riemann surfaces π : X → S and to a section σ : S → X, thus producing a
corresponding conjugate family of Riemann surfaces with section π : X→ S, σ : S→ X.
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4.2. Smooth variation in non-trivial families. Let us examine the variation in families
of LOGna +LOGc

na. Because the construction we did of logarithms is a pointwise one,
Proposition 4.1 extends to the family situation. We consider (π : X → S, σ : S → X), and
the conjugate family (π : X → S, σ : S → X), cf. Remark 4.2 for details. Let (L,∇L

X/S) and
(M,∇M

X/S) be line bundles with relative compatible connections on X. We suppose ∇L

X/S is
flat, and ∇M

X/S is either flat or the Chern connection associated to a smooth Hermitian metric
on M.

When both connections are flat, we have the smooth classifying sections νL and νM of
H1

dR(X/S)/R1π∗(2πiZ). We then assume that on X we have rigidified line bundles with
relative flat connections (Lc,∇L,c

X/S
) and (Mc,∇M,c

X/S
), corresponding to the smooth sections −νL

and −νM of H1
dR(X/S)/R1π∗(2πiZ) = H1

dR(X/S)/R1π∗(2πiZ) (as differentiable manifolds).
The existence is not always guaranteed, but below we deal with relevant situations when it is.
The local construction of Section 3.2 produces local naive logarithms LOGna and LOGc

na, by
taking local liftings ν̂ and −ν̂ for νL and −νL, and using the canonical extensions of ∇M

X/S and
∇M,c

X/S. Proposition 4.1 ensures that the a priori locally defined combination LOGan +LOGc
an

on the C∞ line bundle 〈L,M〉 ⊗C∞S
〈Lc,Mc〉, actually globalizes to a well-defined logarithm,

that we call intersection logarithm: LOGint := LOGna +LOGc
na.

When ∇M

X/S is the relative Chern connection attached to a smooth Hermitian metric on M,

we take Mc to be the conjugate line bundle M on X, with its conjugate Chern connection
∇M,c

X/S. For L, as above we assume the existence of a rigidified (Lc,∇L,c), with classifying
map −νL. Again, by Proposition 4.1 the locally defined LOGan +LOGc

an extends to a global
logarithm that we also denote LOGint.

We summarize the main features of LOGint.

Proposition 4.3. (i) When all connections are flat, the construction of LOGint does not
depend on the section σ or rigidifications.

(ii) In general, the connection defined by LOGint is the tensor product of intersection connec-
tions.

Proof. We begin with the case when both connections are flat. The first item can be
checked pointwise. Let us examine the terms in the definition of LOGna, LOGc

na and LOGint.
Suppose we fix another base point σ′ (and lifting σ̃′) and another rigidification. Let ℓ̃ and
ℓ̃′ be equivariant meromorphic functions with character γ 7→ exp(

∫
γ
ν̂), lifting the same

meromorphic section of L. Then, for some λ ∈ C×, we have ℓ̃′ = λℓ̃. Therefore, evaluating
multiplicatively over a degree 0 divisor D in X̃, we see that ℓ̃′(D) = ℓ̃(D). The same happens

for Lc. Also, in LOGna we have the change:
∫ z

σ̃
η̃ =

∫ σ̃′
σ̃
η̃ +

∫ z

σ′
η̃. The evaluation at a divisor

is defined to be additive. Therefore, for a divisor D we find:
∫ D

σ̃
η̃ = (deg D)

∫ σ̃′
σ̃
η̃ +

∫ D

σ̃′
η̃.

We are concerned with the case D = d̃iv m, when deg D = 0. This shows the independence
of this term of the base point. The same argument applies to Lc. Finally, there is nothing
to say about the remaining terms in the definition of LOGna and LOGc

na, since they only
depend on the vertical connections ∇M and ∇M,c (as we see pointwise) and ν̂, and hence do
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not depend on base points nor rigidifications. The dependence on the choice of ν̂modulo
R1π∗(2πiZ) was already addressed (Proposition 4.1). We conclude that LOGint does not
depend on σ and the rigidifications.

For the second item, it is enough to observe that: π∗(F∇M,c ∧ (−η)) = −π∗((−F∇M)∧ (−η)) =
−π∗(F∇M ∧ η) (opposite orientation on fibers) and apply Proposition 3.3. We obtain:

d LOGint(〈ℓ,m〉 ⊗ 〈ℓ′,m′〉) =
∇int
〈L,M〉〈ℓ,m〉
〈ℓ,m〉 +

∇int
〈Lc,Mc〉〈ℓ′,m′〉
〈ℓ′,m′〉 .

For the second item when ∇M

X/S is a Chern connection, we reduce to the flat case by Lemma
3.2 and [16, Thm. 3.14] (when the connection on M is a Chern connection, the intersection
and trace connections coincide). �

Corollary 4.4. Given (L,∇L

X/S), (M,∇M

X/S),(Lc,∇L,c

X/S
), (Mc,∇M,c

X/S
) with flat connections and no

assumption on rigidifications, the smooth line bundle 〈L,M〉 ⊗C∞S
〈Lc,Mc〉 has a canonically

defined smooth logarithm, LOGint, that coincides with the previous construction in presence of a
rigidification. Its attached connection is the tensor product of intersection connections.

Proof. Locally over S, we can find sections and rigidify our line bundles. We conclude by
Proposition 4.3. �

Remark 4.5. Examples of the family setting above naturally arise from character varieties
of quasi-fuchsian groups. See Remark 5.13 below for further details.

4.3. Intersection logarithm over character varieties. An important geometric setting
when an intersection logarithm can be defined is the “universal” product situation: we fix
the Riemann surface and we let the flat line bundle holomorphically change, parametrized
by the affine space of holonomy characters. A study of this case will lead below to the
proof of the symmetry of intersection logarithms.

Let (X, σ) be a pointed Riemann surface and MB(X) the Betti moduli space of complex
characters of π1(X, σ). Observe that MB(X) =MB(X). We have relative curves X ×MB(X)→
MB(X) and similarly for X. There are universal rigidified holomorphic line bundles with
relative flat connections (Lχ,∇χ) and (Lc

χ,∇c
χ), whose holonomy characters over a given

χ ∈ MB(X) are χ−1 and χ respectively. We take the tensor product of holomorphic line
bundles on MB(X): 〈Lχ,Lχ〉⊗OMB(X) 〈Lc

χ,L
c
χ〉. This is in contrast with the previous subsection,

where the tensor product was only in the C∞ category. A formal modification of the
construction of LOGint produces a well-defined logarithm, still denoted LOGint. The only
difference is that now we do not need to change the holomorphic structure on MB(X). More
generally, we may work over S = MB(X) ×MB(X). On X × S and X × S we consider the
pairs of universal bundles (Lχ1 ,Mχ2) and (Lc

χ1
,Mc

χ2
). We also have a universal intersection

logarithm LOGint on 〈Lχ1 ,Mχ2〉 ⊗OS 〈Lc
χ1
,Mc

χ2
〉, whose connection we now know is the sum

of intersection connections.
It proves useful to establish the symmetry of general intersection logarithms:

Proposition 4.6. The intersection logarithms for line bundles with relative flat connections are
symmetric, i.e. compatible with the symmetry of Deligne pairings.
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Proof. This is a pointwise assertion. Deforming to MB(X), it is enough to deal with
the universal situation parametrized by S = MB(X) ×MB(X). Because the intersection
connection is symmetric, and S is connected, we see that the intersection logarithm is
symmetric up to a constant. Now it is enough to specialize to the pair of trivial characters,
when the intersection logarithm is indeed symmetric. This concludes the proof. �

Corollary 4.7. The intersection logarithm on the universal pairing 〈Lχ1 ,Mχ2〉 ⊗OS 〈Lc
χ1
,Mc

χ2
〉,

parametrized by MB(X) ×MB(X), is holomorphic.

Proof. The holomorphy along the diagonalχ1 = χ2 holds, since the intersection connection is
holomorphic there by [16, Sec. 5.3]. For the general case, we reduce to the diagonal. First, the
multiplication map (χ1, χ2) 7→ χ1χ2 is holomorphic, and induces the canonical identification
Lχ1χ2 = Lχ1 ⊗Lχ2 , and similarly for Mχ1χ2 , etc. Second, we have the “polarization formula”,

〈L ⊗M,L ⊗M〉 = 〈L,L〉 ⊗ 〈L,M〉 ⊗ 〈M,L〉 ⊗ 〈M,M〉.

and the symmetry of intersection logarithms already proven. These observations and the
proposition are enough to conclude the result. �

A variant concerns the pairing of the universal bundles with a fixed Hermitian line
bundle M on X, trivially extended to X ×MB(X).

Corollary 4.8. Let M be a line bundle on X, M its conjugate line bundle on X, and suppose
that they are both endowed with a Chern connection. Extend trivially these data to X ×MB(X)
and X ×MB(X) by pull-back through the first projection. Then the intersection logarithm on
〈Lχ,M〉 ⊗ 〈Lc

χ,M〉, parametrized by MB(X), is holomorphic and does not depend on the choices of
Chern connections.

Proof. By Lemma 3.2, we can suppose that (i) M is of relative degree 0 and rigidified
along σ and (ii) its Chern connection is flat. Similarly, we can assume its conjugate line
bundle comes with the conjugate connection. Therefore, there exists χ0 a unitary character
and an isomorphism of rigidified line bundles with connections: (Lχ0 ,∇χ0)

∼−−→ (M,∇M),
(Lc
χ0
,∇c
χ0

) ∼−−→ (M,∇M). We conclude by Corollary 4.7 restricted to χ2 = χ0. �

4.4. Explicit constructions. For latter applications, it is important to exhibit natural
geometric situations when the setting of Section 4.2 indeed obtains. With the notations
therein, the difficulty is the existence of the invertible sheaf with connection (Lc,∇L,c

X/S
).

Even when the existence is granted, it would be useful to have at our disposal a general
algebraic procedure to build (Lc,∇L,c

X/S
) from (L,∇L

X/S). By algebraic procedure we mean a
construction that can be adapted to the schematic (for instance the arithmetic) setting.

We distinguish three kinds of relative flat connections on the line bundles L and M:
real holonomies, imaginary holonomies, and the “mixed” case. When S is reduced to a
point, the mixed case is actually the general one. Furthermore, it is then possible to give an
explicit description of the intersection logarithm.
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4.4.1. Real holonomies. We suppose here that the holonomies of the flat bundles (L,∇L

X/S)

and (M,∇M

X/S) on fibers are real. On the conjugate variety X, the conjugate line bundles

L and M admit the complex conjugate connections to ∇L

X/S and ∇M

X/S. We see that:

(Lc,∇L,c
X/S) = (L

∨
,∇

L,∨
X/S), (Mc,∇M,c

X/S) = (M
∨
,∇

M,∨
X/S ). The bar on the connections stands for

complex conjugation.
When the base is a point, we write X, p, L, M, ∇L, ∇M instead of X, σ, L, M, ∇L

X/S, ∇M

X/S.
The first important remark is that since the connections ∇L and ∇M have real holonomy
characters χL and χM, they determine unique real harmonic differential forms η and ϑ (i.e.
there is no ambiguity modulo a lattice as in the unitary case). The relation is then

χL(γ) = exp
(
−

∫

γ

η

)
, χM(γ) = exp

(
−

∫

γ

ϑ

)
, γ ∈ π1(X, p).

Because η and ϑ are real, we can write the decomposition into type as: η = η′+η′, ϑ = ϑ′+ϑ′,
where η′ and ϑ′ are holomorphic. The naive logarithm for the complex structure on X is
determined by

LOGna(〈ℓ,m〉) = log(ℓ̃(d̃iv m)) −
∫ d̃iv m

p̃
η̃ − i

2π

∫

X

∇Mm
m
∧ η.

Recall that the first two terms together do not change under a transformation η 7→ η+θ, for
θ holomorphic. Using the relation with the Chern connections∇L = ∇L

ch−2η′,∇M = ∇M
ch−2ϑ′,

we simplify the naive logarithm to

LOGna(〈ℓ,m〉) = log(ℓ̃ch(d̃iv m)) −
∫ d̃iv m

p̃

˜(η′ − η′) + i
π

∫

X
ϑ′ ∧ η′.

We denoted ℓ̃ch the lift of ℓ using the Chern connection ∇L
ch. Changing the holomorphic

structure (and hence reversing the orientation in the last integral), the naive logarithm
LOGc

na computed with the conjugate sections ℓ and m is

LOGc
na(〈ℓ

∨
,m∨〉) = log(ℓ̃ch(d̃iv m)) −

∫ d̃iv m

p̃

˜(η′ − η′) − i
π

∫

X
ϑ′ ∧ η′.

All in all, we find: LOGint(〈ℓ,m〉 ⊗ 〈ℓ
∨
,m∨〉) = log |ℓ̃ch(d̃iv m)|2 − (2/π) Im

(∫
X
ϑ′ ∧ η′

)
. Notice

that this expression is real valued.

4.4.2. Unitary connections. We suppose the holomorphic line bundles L, M come with
relative flat unitary connections ∇L

X/S, ∇M

X/S. For the complex conjugate family, it is therefore

enough to take (Lc,∇L,c
X/S) = (L,∇

L

X/S), and (Mc,∇M,c
X/S) = (M,∇

M

X/S). Contrary to the real case,
we do not need to dualize the complex conjugate line bundles.

In this case, the intersection logarithm LOGint amounts to the logarithm of a smooth
Hermitian metric: one easily sees that LOGint(〈ℓ,m〉 ⊗ 〈ℓ,m〉) = log ‖〈ℓ,m〉‖2. That is, the
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log of the square of the natural norm on the Deligne pairing. A similar formula holds more
generally if M is endowed with a Chern connection.

4.4.3. Mixed case. Suppose that L is equipped with a flat relative connection with real
holonomies, and M with a relative flat unitary connection. Then the tensor product of
connections on P = L ⊗M is no longer real nor unitary. Nevertheless, we can still define

Pc and ∇P,c
X/S on the conjugate family: (Pc,∇P,c

X/S) = (L
∨
⊗M,∇

L,∨
X/S ⊗ ∇

M

X/S).
Suppose now that we are dealing with a single compact Riemann surface X. We fix a base

point p ∈ X. Let P be a line bundle over X with a connection: ∇P : P −→ P ⊗Ω1
X/C. Let χ be

the holonomy representation of ∇P. The absolute value |χ| is the holonomy representation
χL of a line bundle L on X endowed with a holomorphic connection ∇L. We set M := P⊗ L∨,
∇M = ∇P ⊗ ∇L,∨. Then M is a line bundle with a flat unitary connection ∇M, holonomy
χM = χ/|χ|, and P = L ⊗M, ∇P = ∇L ⊗ ∇M. Hence, for a single Riemann surface, any flat
line bundle fits the picture of the mixed case. General formulas for intersection logarithm
then reduce to pairings between such (L,∇L) and (M,∇M).

The naive logarithm for the natural complex structure on X is determined by

LOGna(〈ℓ,m〉) = log(ℓ̃(d̃iv m))−
∫ d̃iv m

p̃
η̃− i

2π

∫

X

∇Mm
m
∧ η = log(ℓ̃(d̃iv m))−

∫ d̃iv m

p̃
η̃ (30)

The second equality uses that ∇M is a Chern connection. Similarly

LOGc
na(〈ℓ

∨
,m〉) = − log(ℓ̃(d̃iv m)) −

∫ d̃iv m

p̃
(−η̃). (31)

Adding (30) and (31) and simplifying, we find for the intersection logarithm

LOGint(〈ℓ,m〉 ⊗ 〈ℓ
∨
,m〉) = 2i arg(ℓ̃(d̃iv m)). (32)

This quantity is purely imaginary. The discussion is also valid if M has arbitrary degree
and is endowed with a Hermitian metric. However, in this case the intersection logarithm
depends on the rigidification of L.

5. The Quillen-Cappell-Miller Logarithm and Deligne’s Isomorphism

5.1. The Quillen-Cappell-Miller logarithm. We review the definition of the Cappell-
Miller torsion [11]. We aim at proving that the Cappell-Miller torsion behaves holomorphi-
cally in holomorphic families of flat line bundles on a fixed Riemann surface. Therefore,
from the very beginning, we place ourselves in the universal family setting over MB(X).

Let X be a fixed compact Riemann surface with a fixed smooth Hermitian metric on TX, p
a base point, and (X, p) the conjugate datum. Let MB(X) be the space of characters ofπ1(X, p),
and L, Lc the holomorphic universal bundles on X := X ×MB(X) and Xc := X ×MB(X).
There are corresponding universal relative holomorphic connections. Write π and πc for
the projection maps onto MB(X).

Inspired by Quillen [28], Bismut-Freed [2, 3] and Bismut-Gillet-Soulé [4, 5, 6], we
describe the determinant of cohomology λ(L) = det Rπ∗(L) as the determinant of a
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truncated Dolbeault complex of finite dimensional holomorphic vector bundles. One can
proceed similarly for Lc and λ(Lc) = det Rπc

∗(L
c). The difference with the cited works lies in

the holomorphicity of these vector bundles. In few words, Bismut-Gillet-Soulé proceed in
three steps: 1) construction of a C∞ determinant line bundle; 2) definition of a holomorphic
structure on it; 3) comparison with the Knudsen-Mumford holomorphic structure, induced
by the holomorphic structure of relative coherent cohomology. In our setting, 1) and 2)
are merged in a single step where we directly produce a holomorphic determinant line
bundle. That this is possible is a characteristic feature of the geometric setting of character
varieties as parameter spaces, and the holomorphic dependence on parameters of our
Laplace type operators. Still, the analog of step 3) is needed. For this we actually invoke
the very description of the Knudsen-Mumford structure due to Bismut-Gillet-Soulé. Before
embarking on these tasks, a final word on the strategy adopted. In [6] the authors propose
two methods to compare C∞ determinant lines with Knudsen-Mumford determinants: an
analytic one (Chapter 2 in loc. cit.) and an sheaf theoretic one (Chapter 3 in loc. cit.). We
closely follow the sheaf theoretic approach.

Introduce the relative Dolbeault complex of L, considered as a smooth complex line
bundle with a ∂̄-operator. More precisely, this is the complex of sheaves of C∞MB(X)-modules

DX/MB(X) = DX/MB(X)(L) : 0 −→ A
0,0
X/MB(X)(L)

∂X−→ A
0,1
X/MB(X)(L) −→ 0.

We have decorated the relative Dolbeault operator ∂X with the index X to emphasize the fact
that we are in a product situation, and we are only differentiating in the X direction. The
cohomology sheaves of the complex π∗DX/MB(X) will be written H

0,p

∂X
(L). After [6, Thm.3.5],

there are canonical isomorphisms of sheaves of C∞MB(X)-modules: ρp : Rpπ∗(L) ⊗ C∞MB(X)
∼−−→

H
0,p

∂X
(L). By Proposition 3.10 of loc. cit., there is a natural holomorphic structure on H

0,p

∂X
(L),

defined in terms of both the relative and the global Dolbeault complexes of L. For the
sake of brevity, we refer to it as the holomorphic structure of Bismut-Gillet-Soulé. They prove
that their structure coincides with the holomorphic structure on the coherent sheaves
Rpπ∗(L), through the isomorphism ρp. Finally, in [6, Lemma 3.8] it is shown that π∗DX/MB(X)

(E • in the notation of the cited paper) is a perfect complex in the category of sheaves
of C∞MB(X)-modules. As a result, to compute higher direct images and the determinant of
cohomology, we can equivalently work with the complex π∗DX/MB(X) and the holomorphic
structure of Bismut-Gillet-Soulé.

Associated to the relative connection on L and the Hermitian metric on TX, there are

non-self-adjoint Laplace operators ∆0,p = (∂X + ∂
♯

X)2 on π∗DX/MB(X). Fiberwise, they restrict
to the Laplace type operators of Cappell-Miller. We use the notation ∆0,p

χ for the restriction
to the fiber above χ, and similarly for other operators. Let us explicitly describe them.
Let X̃ be the universal cover of X, with fundamental group Γ = π1(X, p) and the complex
structure induced from X. The Dolbeault complex of Lχ is isomorphic to the Dolbeault

complex A0,0(X̃, χ−1)
∂−→ A0,1(X̃, χ−1), where A0,p(X̃, χ−1) indicates the smooth differential

χ−1-equivariant forms of type (0, p), and ∂ is the standard Dolbeault operator on functions
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on X̃. In the identification, we are implicitly appealing to the canonical trivialization of Lχ
at the base point p. The metric on TX induces a metric on TX̃ and a formal adjoint ∂

∗
, defined

as usual in terms of the Hodge ∗ operator. Let D0,p = (∂+ ∂
∗
)2. Then, the Dolbeault complex

of Lχ and ∆0,•
χ are identified to (A0,•(X̃, χ−1), ∂,D0,•). To make the holomorphic dependence

on χ explicit, we parametrize MB(X) by H1
dR(X,C), and further identify cohomology classes

with harmonic representatives. In particular, let ν be a harmonic representative for χ, so

that χ(γ) = exp(−
∫
γ
ν). Define the invertible function: Gν(z) = exp

(∫ z

p̃
ν
)
. We build the

isomorphism of complexes

A0,0(X̃, χ−1) ∂
//

G−1
ν ·

��

A0,1(X̃, χ−1)

G−1
ν ·

��

A0,0(X̃)Γ ∂+ν′′
// A0,1(X̃)Γ.

Accordingly, the operators ∂̄∗ and D0,p can be transported to the new complex, through
conjugation by Gν. We indicate with an index ν the new conjugated operators, so that for
instance ∂̄ν = ∂̄ + ν′′, and similarly for ∂̄∗ν and D0,p

ν . After all these identifications, we see

that ∂
♯

χ will correspond to ∂̄∗ν and ∆0,p
χ will correspond to D0,p

ν .

Lemma 5.1.

(i) The operators D0,p
ν form a holomorphic family of type (A) in the sense of Kato [23, Chap.

VII, Sec. 2]: a) they all share the same domain A0,p(X) and are closed with respect to
the L2 structure induced by the choice of Hermitian metric on TX and b) they depend
holomorphically in ν.

(ii) The operators D0,p
ν have compact resolvent, and spectrum bounded below and contained in

a “horizontal” parabola.

Proof. For the first item, note that the D0,p
ν are second order differential operators with

the same principal symbol as D0,p. Hence, they are elliptic, since the latter is. This also
implies that the D0,p

ν are closed as unbounded operators acting on A0,p(X) and with respect
to the L2 structure. We have thus checked the first condition in Kato’s definition. For
the holomorphicity, introduce a basis of holomorphic differentials {ωi} of X and write:
ν =

∑
i(siωi + tiωi). The holomorphic dependence on ν amounts to the holomorphic

dependence on the parameter si, t j, which is obvious from the construction of D(0,p)
ν by

conjugation by Gν: given θ ∈ A0,p(X), the differential form D(0,p)
ν θ is holomorphic in the

parameters si, ti. This establishes the second condition, and so the first claim.
For the compact resolvent property, we appeal to [23, Thm. 2.4]: for holomorphic families

of type (A) in a parameter χ on a domain, compactness of the resolvent for all χ follows
from the compactness of the resolvent at a given χ0. Therefore, the compactness asserted
by the lemma is automatic from the compactness in the unitary and self-adjoint case (for
instance when ν = 0), which is well-known.

The spectrum assertion is an observation of Cappell-Miller [11, Lemma 4.1]. �
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Let χ0 ∈MB(X), and choose b > 0 be such that no generalized eigenvalue of ∆0,p
χ0

has real
part b. By Lemma 5.1 and [23, Chap. VII, Thm. 1.7], there exists a neighborhood Uχ0 of
χ0 such that the same property still holds for ∆0,p

χ , if χ ∈ Uχ0 . Hence, the set Ub of those
χ ∈MB(X) such that b is not the real part of any generalized eigenvalue of ∆0,p

χ , forms an
open set. Because b > 0, it is easy to see that this open set does not depend on whether we
work with ∆0,0

χ or ∆0,1
χ : it is the same for both. Such open subsets Ub form an open cover of

MB(X). We define V
0,p

b,χ ⊂ A0,p(Lχ) the subspace spanned by generalized eigenfunctions of

∆
0,p
χ , of generalized eigenvalue λ with Re(λ) < b. If c > b > 0 are not the real parts of the

eigenvalues at some χ0, we can similarly introduce V
0,p

(b,c),χ on Ub ∩Uc, by consideration of
generalized eigenfunctions with eigenvalues whose real part is in the open interval (b, c).

Proposition 5.2. For χ ∈ Ub (resp. Ub ∩ Uc), the vector spaces V
0,p

b,χ (resp. V
0,p

(b,c),χ) define a
holomorphic vector bundle on Ub (resp. Ub ∩Uc) with locally finite rank.

Proof. In view of Lemma 5.1, this is a reformulation of [23, Chap. VII, Thm. 1.7]. �

Denote by V
0,p

b = V
0,p

b (L) ⊂ π∗A0,p
X/MB(X)(L)

∣∣∣
Ub

, the holomorphic bundle on Ub thus defined.

The differential on the Dolbeault complex π∗DX/MB(X) induces a differential on V
0,p

b , and
∂̄X(V 0,0

b ) ⊂ V
0,1

b . Indeed, the relative ∂̄ operator of L commutes with the operators ∆0,p
χ . We

introduce similar notation for eigenspaces with real parts in (b, c).

Proposition 5.3. (i) The inclusion of complexes

(V 0,•
b ⊗ C∞Ub

, ∂̄X) ֒→ π∗DX/MB(X)

∣∣∣
Ub

(33)

is a quasi-isomorphism. Therefore, the complex V
0,•

b ⊗ C∞Ub
computes H0,p

∂̄X
(L) restricted to

Ub.
(ii) The cohomology sheaves of V

0,•
b have natural structures of coherent sheaves on Ub,

compatible with the holomorphic structures of Bismut-Gillet-Soulé on H
0,p

∂̄X
(L). Therefore,

the complex V
0,•

b computes Rπ∗(L) restricted to Ub.
(iii) The complex V

0,•
(b,c) is acyclic.

Proof. First, by [6, Lemma 3.8] we know that the relative Dolbeault complex is perfect as a
complex of C∞MB(X)-modules, and its cohomology is bounded and finitely generated. Second,
Cappell-Miller show that (33) is fiberwise a quasi-isomorphism [11, top of p. 151]. Finally,
the V

0,•
b ⊗ C∞Ub

are vector bundles, hence projective objects in the category of sheaves of
C∞Ub

-modules. The three assertions together are enough to conclude the first assertion.
That the cohomology of V

0,•
b is formed by coherent sheaves is immediate, being the

cohomology sheaves of a complex of finite rank holomorphic vector bundles. For the
compatibility of holomorphic structures, taking into account the construction of Bismut-
Gillet-Soulé, it is enough to observe the following. Assume θ is a local holomorphic section
of V

0,p
b . Hence, it depends holomorphically on χ and ∂̄Xθ = 0. Because X = X ×MB(X)

is a product, we can assume that θ is a global (0, p) form, with ∂̄Xθ = 0 and depending
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holomorphically onχ. By the very construction of the universal bundleL, this is tantamount
to saying ∂̄Lθ = 0. Here ∂̄L is the Dolbeault operator of L on X. But now ∂̄Lθ = 0 is exactly
the condition defining the holomorphic structure of Bismut-Gillet-Soulé [6, p. 346] in our
case. The last assertion is left as an easy exercise. �

Let us illustrate the proposition with a diagram:

Hp(V 0,•
b , ∂̄X) ⊗ C∞Ub

αp,b ∼

��

βp,b

vv♠
♠

♠

♠

♠

♠

♠

Rpπ∗(L) ⊗ C∞Ub ρp

∼
// H

0,p

∂̄X
(L)

∣∣∣
Ub
.

(34)

The complex structures on H
0,p

∂̄X
(L)

∣∣∣
Ub

induced by ρp and αp,b are compatible by Proposition
5.3, and hence βp,b is induced by an isomorphism of coherent sheaves. There are corre-
sponding arrows between determinants of cohomologies, which we indicate ρ, αb and βb.
In particular, the isomorphism βb defines an isomorphism of holomorphic line bundles
still denoted βb : det(V 0,•

b ) ∼−−→ det Rπ∗(L)
∣∣∣
Ub

. Here, we used the canonical isomorphism

between the determinant of cohomology of V
0,•

b and the determinant of its cohomology.
A parallel digression applies to Lc, and we use the index c for the corresponding objects.
There is also a variant that applies to L ⊗ωX and Lc ⊗ωX, where we incorporate the Chern
connections on ωX and ωX, with respect to the fixed Hermitian metric. We leave the details
to the reader. We introduce the notation V

0,p
b (L ⊗ ωX), etc. when confusion can arise. We

now have a fundamental duality phenomenon.

Proposition 5.4. The operator ∂̄♯X induces a homological complex of holomorphic vector bundles

on Ub: V
0,1

b (L)
∂̄♯X
−−−−→ V

0,0
b (L). This complex is OUb-isomorphic (i.e. holomorphically) to the

cohomological complex: V
0,0

b ((Lc)∨ ⊗ ωX)
∂̄♯

X

−−−−→ V
0,1

b ((Lc)∨ ⊗ ωX). Therefore, there is a canonical

isomorphism of holomorphic line bundles det(V 0,•
b )

βc
b

−−−−→ det Rπc
∗((L

c)∨ ⊗ ωX)∨.

Proof. The first assertion follows because ∂̄♯X commutes with ∆0,p. The equality: V
0,1

b =

V
0,0

b ((Lc)∨⊗ωX), as holomorphic vector bundles is easily seen. Notice the natural appearance
of (Lc)∨, which has same holonomy characters as L, but the opposite holomorphic structure
fiberwise. Observe that the base point and the trivialization of the universal bundles at p is
implicit in the identification. Moreover, there is an isomorphism of holomorphic vector
bundles given by the Hodge star operator followed by conjugation, that following [11]
we write: ⋆̂ : V

0,0
b (L) ∼−−→ V

1,0
b ((Lc)∨ ⊗ ωX). Observe that ⋆̂ is complex linear, and this is

necessary if we want to preserve holomorphy. The compatibilities with the differentials
are readily checked from the definitions. This concludes the first assertion. For the second,
we just need to stress that the determinant of (V 0,•

b , ∂̄) (cohomological complex) is dual to
the determinant of (V 0,•

b , ∂̄
♯
X) (homological complex). �
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Corollary 5.5. (i) There is a commutative diagram of isomorphisms of holomorphic line
bundles on Ub

det(V 0,•
b ) id

//

βb

��

det(V 0,•
b )

βc
b

��

det Rπ∗(L) ∼ // det Rπc
∗((L

c)∨ ⊗ ωX)∨.

By Serre duality it induces a holomorphic trivialization τ(b) of det Rπ∗(L) ⊗ det Rπc
∗(L

c)
on Ub.

(ii) Let c > b > 0. On Ub ∩Uc, the relation between τ(b) and τ(c) is given by

τ(b) = τ(c)
m∏

j=1

det∆0,1
(b,c) ,

where ∆0,1
(b,c) is the endomorphism of the holomorphic vector bundle V

0,1
(b,c) defined by the

Laplacians ∆0,1
χ , χ ∈ Ub ∩Uc.

Proof. The first item is a reformulation of the proposition, together with the canonical Serre
duality det Rπc

∗((L
c)∨ ⊗ ωX) ≃ det Rπc

∗(L
c). For the second item, it is enough to check this

equality pointwise and use that the determinant of a holomorphic bundle endomorphism
is a holomorphic function. The pointwise relation follows from [11, Eq. (3.6)]. �

Remark 5.6. The holomorphic function det∆0,1
(b,c) may be viewed as a trivialization of the

holomorphic line bundle detH•(V 0,•
(b,c)).

For a given χ ∈ Ub and b > 0, let us denote Pb the spectral projector on generalized
eigenfunctions of ∆0,1

χ of eigenvalues with real part < b. We put Qb = 1 − Pb, and define the
spectral zeta function of Qb∆

0,1
χ , as usual to be the Mellin transform of the heat operator

e−tQb∆
0,1
χ . This depends on the auxiliary choice of an Agmon angle. Let this function be

ζb,χ(s). It is a meromorphic function on C, regular at s = 0. The bases for these definitions
and claims are due to Cappell-Miller, and rely on Seeley’s methods [30]. Furthermore, the
special value exp(ζ′b,χ(0)) does not depend on the choice of Agmon angle.

The following is a consequence of standard arguments and the asymptotic expansions
of Seeley [30] and Greiner [21, Sec. 1].

Lemma 5.7. The expression exp(ζ′b,χ(0)) defines a holomorphic function in χ ∈ Ub.

Next, we have

Proposition 5.8. Let c > b > 0. We have an equality of holomorphic sections on Ub ∩Uc

τ(b) exp(−ζ′b(0)) = τ(c) exp(−ζ′c(0)).

Proof. The proof is direct after Corollary 5.5 and the very definition of the spectral zeta
functions. �
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Hence, such expressions can be glued into a single holomorphic trivialization τ of
det Rπ∗(L)⊗ det Rπc

∗(L
c) on MB(X). By construction, at a given χ, the section τ(χ) coincides

with the construction of Cappell-Miller. Hence, for χ unitary, τ(χ) is the trivialization
provided by the Quillen metric. This motivates the following terminology.

Definition 5.9. (i) The trivialization τ of λ(L) ⊗ λ(Lc) defined by Proposition 5.8 is called
the holomorphic Cappell-Miller torsion.

(ii) The logarithm of λ(L) ⊗ λ(Lc) attached to the holomorphic Cappell-Miller torsion is
called the Quillen-Cappell-Miller logarithm and is denoted LOGQ.

5.2. Deligne’s isomorphism and compatibility with logarithms. We now come to the
proof of Theorem 1.1. The Deligne isomorphism (see Section 2) induces an isomorphism of
holomorphic line bundles on MB(X):

D :
{
λ(L − OX) ⊗ λ(Lc − OX)

}⊗2 ∼−−→ 〈L,L ⊗ ω−1
X 〉 ⊗ 〈Lc,Lc ⊗ ω−1

X
〉.

The left hand side is endowed with a combination of Quillen-Cappell-Miller logarithms,
while the right hand side is endowed with a combination of intersection logarithms, which
we continue to denote by LOGQ and LOGint, respectively.

Theorem 5.10 (cf. Theorem 1.1). On MB(X), LOGQ = LOGint ◦D mod πiZ.

Proof. Both logarithms LOGQ and LOGint ◦D are holomorphic on MB(X). Moreover, they
coincide over the totally real subvariety of unitary characters, mod πiZ. Indeed, along
unitary characters LOGQ is the logarithm of the Quillen metric by construction and LOGint

is the logarithm of the metric on the Deligne pairing (see §4.4.2). The Deligne isomorphism
is an isometry for these metrics and is unique up to sign (hence, πiZ instead of 2πiZ). The
result follows. �

Remark 5.11. (i) The logarithms in the theorem depend on the rigidifications of L and
Lc. For instance, for LOGint the dependence is due to the pairings against ωX and ωX,
which are in general non-zero degree line bundles.

(ii) Deligne’s isomorphism is compatible with base change, and logarithms can be
specialized at a given point. A pointwise version of the theorem follows. This is the
actual form of the statement presented in the introduction.

(iii) The intersection logarithm in the theorem does not depend on the particular choice of
metric on TX (see Corollary 4.8 and §4.4.2). Therefore, the dependences on the Kähler
metric of the Quillen-Cappell-Miller logarithms on λ(L) ⊗ λ(Lc) and λ(OX) ⊗ λ(OX)
cancel out. From this, an anomaly formula for the change of Cappell-Miller torsion
under a conformal change of metric can be derived. Such a formula already appears
in the work of Cappell-Miller and [26, Thm 2.5].

(iv) The Cappell-Miller construction gives a holomorphic trivialization of

λ(L ⊗ ωX) ⊗ λ(Lc ⊗ ωX)

which corresponds to τ via Serre duality. Indeed, this follows from compatibility of
the Quillen metric with Serre duality and an argument similar to the one in the proof
of Theorem 5.10 above.
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Theorem 5.10 has consequences for general families, as we explain next. We place
ourselves in the setting of §4.2. Let (π : X → S, σ) be a smooth family of curves with
section, and (π : X→ S, σ) the conjugate family. Assume we are given a conjugate pair of
relatively flat line bundles (L,∇X/S) and (Lc,∇c

X/S). Fix a smooth metric on ωX/S. Recall,
from Proposition 4.3, that LOGint defines a smooth logarithm on the combination of
Deligne pairings: 〈L,L ⊗ ω−1

X/S〉 ⊗C∞S
〈Lc,Lc ⊗ ω−1

X/S
〉. The Cappell-Miller construction now

provides an a priori pointwise trivialization of the product of determinants of cohomology
λ(L − OX) ⊗C∞S

λ(Lc − O
X

).

Corollary 5.12. For a conjugate pair of line bundles as above, the pointwise defined Cappell-Miller
torsion is actually a C∞ trivialization of λ(L − OX) ⊗C∞S

λ(Lc − O
X

). The associated C∞ logarithm
corresponds to LOGint through the tensor product of Deligne’s isomorphisms in the C∞ category,
modulo πiZ.

Proof. The Deligne isomorphism commutes with base change. Specializing to a point of S
and applying Theorem 5.10 (see Remark 5.11 (iii)), we derive a pointwise correspondence
between the Cappell-Miller trivialization on λ(L − OX) ⊗C∞S

λ(Lc − O
X

) and the intersection
logarithm LOGint on 〈L,L ⊗ ω−1

X/S〉 ⊗C∞S
〈Lc,Lc ⊗ ω−1

X/S
〉, mod πiZ. Since LOGint is already

known to be C∞, and Deligne’s isomorphism induces an isomorphism in the C∞ category,
we deduce that the Cappell-Miller trivialization has to be C∞. The proof is complete. �

Remark 5.13. As we anticipated in Remark 4.5, we expect that the previous statement
will find applications in the context of quasi-fuchsian groups and their character varieties.
After Bers, quasi-fuchsian groups allow for simultaneous uniformization of arbitrary
pairs of compact Riemann surfaces (X,Y) of same genus. Fuchsian groups are particular
cases, and uniformize conjugate pairs of Riemann surfaces (X,X). There is a totally real
embedding from the deformation space of a fuchsian group to its deformation space seen
as a quasi-fuchsian group. It corresponds to the totally real embedding of moduli spaces
of 1-pointed curves Mg,1 →Mg,1 ×Mg,1, that sends a point defined by a pointed compact
Riemann surface (X, p) to the point defined by ((X, p), (X, p)). There is an analogous picture
for universal curves and relative Betti moduli spaces, fibered over Mg,1 ×Mg,1. The setting
in the corollary should arise by restriction of Deligne type isomorphisms defined over
Mg,1 ×Mg,1 (or rather the Betti space fibered over it) along the totally real embedding
alluded to above. We plan to further explore this picture in future research, in connection
with holomorphic extensions of determinants of Laplacians [24].

6. Arithmetic Intersection Theory for Flat Line Bundles

6.1. Conjugate pairs of line bundles with logarithms on SpecOK. Let K be a number
field with ring of integers OK. We write S = SpecOK. An invertible sheaf (or line bundle) L
over S can be equivalently seen as a projective OK module of rank 1. For simplicity we
do make a distinction in the notation. This particularly concerns base change and tensor
product.

Definition 6.1. A conjugate pair of line bundles with logarithms, or simply a conjugate pair,
on S consists in the following data:
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(i) a pair of line bundles L and Lc over S;
(ii) for every embedding τ : K ֒→ C, a logarithm LOGτ on the one dimensional complex

vector space Lτ ⊗C Lc
τ
.

We introduce the notation L♯ for the data (L,Lc, {LOGτ}τ : K֒→C).

Given conjugate pairs L♯ and M♯, an isomorphism ϕ♯ : L♯ → M♯ is a pair (ϕ,ϕc) of
isomorphisms, ϕ : L → M and ϕc : Lc → Mc, such that for every τ : K ֒→ C, ϕτ ⊗ ϕc

τ
preserves logarithms. There are standard constructions on conjugate pairs with logarithms,
notably tensor product and duality.

Definition 6.2. The groupoid of conjugate pairs of line bundles with logarithms, denoted
PIC♯(S), is defined by:
• objects: conjugate pairs of line bundles with logarithms;
• morphisms: isomorphisms of pairs of line bundles with logarithms.

It has the structure of a Picard category. The group of isomorphisms classes of objects is
denoted by Pic♯(S) and is called the arithmetic Picard group of conjugate pairs of line bundles
with logarithms.

Arithmetic degree. We proceed to construct an arithmetic degree map on Pic♯(S): deg♯ :
Pic♯(S) −→ C/πiZ. We emphasize that the target group is not C/2πiZ, but C/πiZ. Let L♯

be a conjugate pair. Given nonvanishing elements ℓ ∈ LK, ℓc ∈ Lc
K, the quantity

∑

p

ordp(ℓ ⊗ ℓc) log(Np) −
∑

τ:K֒→C
LOGτ(ℓτ ⊗ ℓcτ)

taken in C/πiZ does not depend on the choices ℓ, ℓc. Indeed, for λ, µ ∈ K×, the following
relations hold in C/πiZ:

∑

p

ordp(λµ) log(Np) −
∑

τ:K֒→C
log(τ(λ)τ(µ)) =

− log



∏

p

|λ|p
∏

τ:K֒→C
τ(λ)


 − log



∏

p

|µ|p
∏

τ:K֒→C
τ(µ)


 = − log(±1) − log(±1) = 0 .

We then conclude by the very definition of logarithm: modulo 2πiZ, and hence modulo
πiZ, LOGτ satisfies

LOGτ((λℓ)τ ⊗ (µℓc)τ) = LOGτ(τ(λ)τ(µ)ℓτ ⊗ ℓcτ) = log(τ(λ)τ(µ)) + LOGτ(ℓτ ⊗ ℓcτ).

Remark 6.3. (i) When the field K cannot be embedded into R, the arithmetic degree is
well-defined in C/2πiZ, and the argument in R/2πZ.

(ii) In general, to obtain an arithmetic degree with values in C/2πiZ, one needs to add to
conjugate pairs a positivity condition at real places (or equivalently, an orientation).
However, our main goal is to prove an arithmetic Riemann-Roch formula, which
relies on the Deligne isomorphism through Theorem 1.1. This introduces a log(±1)
ambiguity and is why we do not impose any positivity conditions in this paper.
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Example 6.4. Because a Zmodule of rank 1 admits a basis that is unique up to sign, one
easily proves that the arithmetic degree on Pic♯(SpecZ) is an isomorphism:

deg♯ : Pic♯(SpecZ) ∼−−→ C/πiZ.

We will need the following functorialities for the Picard groups and the arithmetic
degree, whose proof is elementary.

Proposition 6.5. Let F be a finite extension of K and set T = SpecOF. With respect to the morphism
π : T → S, the arithmetic Picard groups satisfy covariant and contravariant functorialities:

(i) (Inverse images or pull-backs) Tensor product with OF induces a morphism: π∗ : Pic♯(S) −→
Pic♯(T).

(ii) (Direct images or push-forwards) The norm down to OK of a projective OF-module induces a
morphism: π∗ : Pic♯(S) −→ Pic♯(T). The arithmetic degree on Pic♯(OK) factors through the
push-forward to Pic♯(Z).

(iii) The composition π∗π∗ acts as multiplication by [F : K].

6.2. Conjugate pairs of line bundles with connections. For the rest of this section, we fix
a square root of −1, i =

√
−1 ∈ C. Let X→ S be an arithmetic surface. By this we mean a

regular, irreducible and flat projective scheme over S, with geometrically connected generic
fiber XK of dimension 1. We fix some conventions on complex structures.

Conventions on complex structures.
(i) Given an embedding τ : K ֒→ C, we write Xτ for the base change of X to C through
τ. After the choice we made of

√
−1, the set of complex points Xτ(C) has a complex

structure and is thus a Riemann surface. We call this complex structure the natural
one. The other complex structure (corresponding to −i) is called the reverse, opposite or
conjugate one, and as usual we indicate this with a bar: Xτ(C). With these notations, if
τ is a complex, nonreal, embedding, then Xτ(C) is canonically biholomorphic to Xτ(C).

(ii) If τ is a real embedding, we put Xτ(C) = Xτ(C) (although τ = τ!). For the natural
complex structure on Xτ(C) we then mean the reverse structure on Xτ(C).

(iii) The same conventions will apply to holomorphic line bundles, and sections of such,
overX. For instance, ifL is a line bundle overX and τ is a complex, nonreal, embedding,
the holomorphic line bundles Lτ on Xτ(C) and Lτ on Xτ(C) can be identified, after the
identification of Xτ(C) with Xτ(C). If τ is real, then the convention is that Lτ = Lτ on
Xτ(C) = Xτ(C).

Definition 6.6. A conjugate pair of line bundles with connections on X consists in the following
data:

(i) two line bundles L,Lc on X;
(ii) holomorphic connections ∇τ on the holomorphic line bundles Lτ, with respect to the

natural complex structure on Xτ(C);
(iii) holomorphic connections ∇c

τ
on the holomorphic line bundles Lτ, with respect to the

natural complex structure on Xτ(C). Observe that by the previous conventions, if τ
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is a real embedding, then ∇c
τ

is a holomorphic connection on the holomorphic line

bundle L
c

τ on Xτ(C).
(iv) we impose the following relation: if χτ is the holonomy character of π1(Xτ(C), ∗)

associated to (Lτ,∇τ), and χc
τ

is the character associated to (Lc
τ
,∇c
τ
), then χc

τ
= χ−1

τ .
We introduce the notation L♯ = ((L,∇), (Lc,∇c)), with ∇ = {∇τ}τ, ∇c = {∇c

τ}τ.
Remark 6.7. In the definition we do not impose any relationship between χτ and χτ, in
contrast to classical Arakelov geometry. Moreover, we require χc

τ
= χ−1

τ , and not χc
τ
= χτ.

The conditions coincide only in the unitary case, which is the context of classical Arakelov
geometry.

There is an obvious notion of isomorphism of conjugate pairs of line bundles with
connections. There are also standard operations that can be performed, such as tensor
products and duals. Base change is possible as well, for instance by unramified extensions
of K (in order to preserve the regularity assumption for arithmetic surfaces).

Definition 6.8. We denote by PIC♯(X) the groupoid of conjugate pairs of line bundles with
connections. It is a Picard category. The group of isomorphism classes is denoted Pic♯(X)
and is called the Picard group of conjugate pairs of line bundles with connections.

Let us now suppose there is a section σ : S→ X. A rigidification along σ of a conjugate
pair of line bundles with connections L♯, is a choice of isomorphisms σ∗L ∼−−→ OS and
σ∗Lc ∼−−→ OS. The previous definitions have obvious counterparts in this setting.

Definition 6.9. Given a section σ : S → X, we denote by PICRIG♯(X, σ) the groupoid of
conjugate pairs of line bundles with connections, rigidified along σ.

Remark 6.10. (i) Observe that a rigidification of L♯ induces rigidifications of Lτ at στ and
Lc
τ

at στ, for τ : K ֒→ C.
(ii) A rigidification is unique up to O×K. Because the norm down to Q of a unit is ±1, the

arithmetic degree is not sensitive to the particular choice of rigidification.
(iii) The Hilbert class field H of K is the maximal unramified abelian extension of K. It has

the property that any invertible OK-module becomes trivial after base change to OH.
Therefore, after possibly extending the base field to H, a rigidification always exists.

Arithmetic intersection product. The Deligne pairing and the intersection logarithm
constructions define a symmetric bilinear pairing: PIC♯(X) × PIC♯(X) −→ PIC♯(S). The
construction works as follows. Let L♯ and M♯ be conjugate pairs of line bundles with
connections. We consider the Deligne pairings 〈L,M〉, 〈Lc,Mc〉. For every complex em-
bedding τ : K ֒→ C, 〈L,M〉τ ⊗C 〈Lc,Mc〉τ = 〈Lτ,Mτ〉 ⊗C 〈Lc

τ
,Mc

τ
〉, carries an intersection

logarithm LOGint,τ, build up from the connections defining L♯, M♯ and intermediate choices
of rigidifications (we proved the construction is independent of these choices). In this way
we obtain a conjugate pair of line bundle with logarithms on S, which we denote 〈L♯,M♯〉.
The bilinearity of this pairing is clear, and the symmetry is a consequence of Proposition
4.6. In terms of this pairing, the arithmetic intersection product of L♯ and M♯ is obtained by
taking the arithmetic degree: (L♯,M♯) = deg♯〈L♯,M♯〉 ∈ C/πiZ. One of the aims of this
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section is to prove an arithmetic Riemann-Roch formula that accounts for these arithmetic
intersection numbers.

Argument of the Deligne pairing. Let L♯ and M♯ be conjugate pairs of line bundles with
connections. By the argument of the Deligne pairing of L♯ and M♯ we mean the imaginary
part of the intersection product: arg♯〈L♯,M♯〉 = Im(L♯,M♯) ∈ R/πZ.

6.3. Mixed arithmetic intersection products. The classical arithmetic Picard group in
Arakelov geometry classifies smooth Hermitian line bundles, and is denoted P̂ic(X). There
is an obvious groupoid version that we denote P̂IC(X). We constructed intersection
logarithms between conjugate pairs of rigidified line bundles with connections and
Hermitian line bundles. With this, we can define a pairing

PICRIG♯(X) × P̂IC(X) −→ PIC♯(S)

simply as follows. Given a conjugate pair of line bundles with connections L♯, rigidified
along σ, and a Hermitian line bundle M on X, we define the Deligne pairing

〈L♯,M〉 = (〈L,M〉, 〈Lc,M〉, {LOGint,τ}τ).
Here, LOGint,τ is the intersection logarithm on the base change

〈L,M〉τ ⊗C 〈Lc,M〉τ = 〈Lτ,Mτ〉 ⊗ 〈Lc
τ,Mτ〉,

constructed using the connections defining L♯ at τ, the rigidifications, and the Hermitian
metric on M. In terms of this Deligne pairing, we define the mixed arithmetic intersection
product: (L♯,M) = deg♯〈L♯,M〉 ∈ C/πiZ. Because a rigidification is unique up to O×K,
this quantity does not depend on the particular choice of rigidification, but in general it
depends on the section.

Variant in the absence of rigidification. When a section σ is given, but we do not have
a rigidification, we may follow the observation made in Remark 6.10 and base change
to the Hilbert class field H. Observe the base change XOH is still an arithmetic surface:
because the Hilbert class field H is unramified, the regularity of the scheme is preserved.
Let us indicate base changed objects with a prime symbol. Given L♯, the base change
L♯′ admits a rigidification, which is unique up to unit. Then, the arithmetic intersection
number: (L♯′,M

′
) ∈ C/πiZ, is defined. Taking into account the functoriality properties of

the arithmetic degree (Proposition 6.5), it is more natural to normalize this quantity by
[H : K], that is the class number hK. We then write

(L♯,M) :=
1
hK

(L♯′,M
′
) ∈ C/πiZ[1/hK].

In particular, when K = Q, or more generally when hK = 1, the mixed arithmetic intersection
number with values in C/πiZ is always defined, without any reference to the rigidification
(but always depending on the section).



34 FREIXAS I MONTPLET AND WENTWORTH

6.4. Variants over R and C, argument and periods. While classical Arakelov geometry
over R or C cannot produce any interesting numerical invariants (only zero), the present
theory has a nontrivial content over these fields. Let us discuss the case of the base field C.
We saw we can still define Pic♯(SpecC), and an arithmetic degree deg♯, now with values in
iR/2πiZ. In the construction, one has to take into account the identity and conjugation
embeddingsC→ C. We denote the imaginary part of deg♯ by arg♯ : Pic♯(SpecC)→ R/2πZ.
Let X be a smooth, proper and geometrically irreducible curve over C. We can also
define PIC♯(X) and a Deligne pairing. The argument of the Deligne pairing is still defined:
arg♯〈L♯,M♯〉 ∈ R/2πZ. Similarly there is a well-defined argument of the mixed arithmetic
intersection product, between PICRIG♯(X) and P̂IC(X).

Interpretation of the argument. Let X be a smooth, projective and irreducible curve over
C. To apply the formalism above, we stress that C has to be considered with its identity
and conjugation embeddings. Let L be a line bundle on X and L the conjugate line bundle
on X. Assume holomorphic connections ∇L : L → L ⊗Ω1

X/C and ∇L : L → L ⊗Ω1
X/C

with
real holonomy characters. We do not impose any further condition. We choose Lc = L∨,
and we endow Lc and L

c
with the dual connections to ∇L, ∇L. This provides an example of

conjugate pair of line bundles with connections on X, that we write L♯. Let M be a degree
0 line bundle on X, that we endow with its flat unitary connection. On M we put the
conjugate connection. In this case we take Mc =M, with same connections. We proceed
to describe arg♯〈L♯,M♯〉 ∈ R/2πZ. We fix a base point p ∈ X and a trivialization of L. Let
ℓ and m be rational sections of L and M. Using the connection ∇L, we lift as usual ℓ to ℓ̃,
on the universal covering. We also lift div m to d̃iv m. For the conjugate datum, we lift

ℓ to ℓ̃ and div m to d̃iv m. We will appeal to the explicit description of the intersection
logarithm in Section 4.4.3, in particular formula (32). Because we didn’t impose any relation

between ∇L and ∇L, we cannot conclude that: ℓ̃(d̃iv m) = ℓ̃(d̃iv m). In words, in general
“conjugation does not commute with lifting”. There exists a holomorphic differential form
on X, that we write as θ′ for some holomorphic form θ′ on X, such that ∇L = ∇L − θ′.
Because both connections are supposed to have real holonomy characters, we see that

exp
(∫
γ
θ′

)
= exp

(∫
γ
θ′

)
. Hence, the harmonic differential form θ = θ′ − θ′ has periods in

2πiZ. Such differential forms are of course parametrized by H1(X, 2πiZ), which is a rank

2g Z-module. In terms of θ′ we have ℓ̃(d̃iv m) = ℓ̃(d̃iv m) exp
(∫ d̃iv m

p̃
θ̃′

)
. From this and

equation (32), we conclude that arg♯〈L♯,M♯〉 = −2 Im
(∫ d̃iv m

p̃
θ̃′

)
= Im

(∫ d̃iv m

p̃
θ̃
)
. Because θ

has periods in 2πiZ, this quantity does not depend on the choice of lifting d̃iv m, modulo
2πZ. Moreover, modulo 2πZ it only depends on the rational equivalence class of div m,
namely M itself. And this is again because θ has periods in 2πiZ. It is also independent of
the base point, because M has degree 0. Finally, the connection on M played no role. This
is of course in agreement with the properties of the intersection pairings. Therefore, given
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a degree 0 Weil divisor D on X, we have a well-defined argument

arg♯〈L♯,O(D)〉 = Im
(∫ D

p̃
θ

)
∈ R/2πZ.

Let us write θL♯ for the harmonic differential form above. We thus have a pairing

arg♯ : PIC♯(X)re × Pic0(X)(C) −→ R/2πZ : (L♯,O(D)) 7−→ Im
(∫ D

p̃
θL♯

)
,

where the subscript re indicates we restrict to conjugate pairs with real holonomy con-
nections. The values of this pairing are imaginary parts of integer combinations of
periods!

There is a variant of this pairing when M = O(D) has arbitrary degree. In this case one
needs to equip L♯ with a rigidification. Because Lc = L∨, it is enough to fix a rigidification
for L. For the argument, one needs to fix a Hermitian metric on M and use the mixed
intersection pairing. The final formula looks exactly the same. While the result will not
depend on the metric on M, it depends on the base point (since deg D , 0). If we had
chosen unrelated rigidifications for L and Lc, the result would have depended on these
choices, as well.

Remark 6.11. There is no simple formula for the general case of an arbitrary conjugate pair
L♯.

6.5. Arithmetic Riemann-Roch theorem. Let π : X → SpecOK be an arithmetic surface
with a section σ : S → X. We fix a Hermitian metric on ωX/S. Let L♯ be a rigidified pair
of conjugate line bundles with connections. Recall the notation λ(L) for det Rπ∗(L). It is
compatible with base change. Following the construction of Section 5, for every τ there is a
Quillen-Cappell-Miller logarithm LOGQ,τ on

λ(Lτ) ⊗C λ(Lc
τ) = det H•(Xτ(C),Lτ) ⊗ det H•(Xτ(C),Lc

τ).

Introduce the conjugate pair of line bundles with logarithms:

λ(L♯)Q = (λ(L), λ(Lc), {LOGQ,τ}τ) .

Notice that the construction of the Quillen-Cappell-Miller logarithm requires the rigidifica-
tion, in order to identify Lτ to Lχτ and Lc

τ
to Lc

χτ .

Theorem 6.12. There is an equality in C/πiZ

12 deg♯ λ(L♯)Q − 2δ = 2(ωX/S, ωX/S) + 6(L♯,L♯) − 6(L♯, ωX/S)

− (4g − 4)[K : Q]
(
ζ′(−1)
ζ(−1)

+
1
2

)
,

(35)

where δ =
∑
p

np log(Np) is the “Artin conductor” measuring the bad reduction of X→ SpecOK.
If K does not admit any real embeddings, then the equality already holds in C/2πiZ.
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Remark 6.13. The mixed arithmetic intersection product (L♯, ωX/S) involves the rigidifica-
tion, and depends on it. This is in agreement with the dependence of the Quillen logarithm
on the rigidification. Nevertheless, it does not depend on the choice of metric on ωX/S,
by Corollary 4.8. Therefore, on the right hand side of the formula, the dependence in the
metric on ωX/S comes only from (ωX/S, ωX/S). See also Remark 5.11.

Proof of Theorem 6.12. The theorem is derived as a combination of the following statements:
(i) the Deligne isomorphism applied to X → S, L, Lc and OX, and its compatibility to

base change under τ : K ֒→ C;
(ii) the arithmetic Riemann-Roch theorem of Gillet-Soulé [20] applied twice to OX in

Deligne’s functorial formulation [12, 31], which guarantees a quasi-isometry

λ(OX)⊗12
Q ⊗ O(−∆) ∼−−→ 〈ωX/S, ωX/S〉,

with norm exp((2g− 2)(ζ′(−1)/ζ(−1)+ 1/2)). The index Q stands for the Quillen metric
(for the trivial Hermitian line bundle in this case), ∆ is the Deligne discriminant
supported on finite primes, and O(∆) is endowed with the trivial metric (then δ is the
arithmetic degree of O(∆)). It is related to Artin’s conductor through work of T. Saito
[29];

(iii) the fact that for the trivial Hermitian line bundle, LOGQ amounts to the Quillen metric
for the trivial hermitian line bundle;

(iv) Theorem 5.10 specialized to (Xτ(C), στ), Lχτ , Lc
χτ (fibers of universal objects over

MB(Xτ(C)));
(v) the use of the connections and rigidifications in order to identify Lτ to Lχτ and Lc

τ
to

Lc
χτ , plus the compatibility of Deligne’s isomorphism to isomorphisms of line bundles.

This provides a statement in a finer form, at the level of PIC♯(S). We conclude by applying
the arithmetic degree deg♯. For the last claim, it is enough to observe first that the arithmetic
intersection numbers are well-defined in C/2πiZ, and that the sign ambiguity in Deligne’s
isomorphism disappears, since there is an even number of different embeddings from K
into C. �

Variant in the absence of rigidification. In practical situations, while a section σ of
π : X → S may be given, a natural choice of rigidification may not. As we explained in
Remark 6.10 and in Section 6.3, this can be remedied by base changing to the Hilbert class
field of K. For instance, we justified that mixed intersection products (L♯,M) are naturally
defined in C/πiZ[1/hK]. For the determinant of cohomology λ(L♯) it is even simpler, since
the rigidification is only needed in the construction of the logarithms, which happen on
the archimedean places. Clearly, λ(L♯) can be defined over OK if it is defined after base
change to OH.

Corollary 6.14. Let X → S be an arithmetic surface with σ : S → X a given section. Fix a
Hermitian metric on ωX/S. Let L♯ be a conjugate pair of line bundles with connections. Then, the
formula (35) holds with values in C/πiZ[1/hK], where hK is the class number of K.
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Proof. After Theorem 6.12, it is enough to base change to the Hilbert class field, and use
the functoriality of the arithmetic degree and the compatibility of the determinant of
cohomology with base change. �

Variant over SpecC. There is an interesting version of Theorem 6.12 when the base scheme
SpecC, when the argument is still well-defined and with values in R/2πZ. The formula
dramatically simplifies:

Theorem 6.15 (Argument of Arithmetic Riemann-Roch). When the base scheme is SpecC,
there is the following equality of arguments in R/2πZ:

12 arg♯ λ(L♯)Q = 6 arg♯〈L♯,L♯〉 − 6 arg♯〈L♯, ωX/S〉.

Example 6.16. Let X be a compact Riemann surface with a fixed base point p. Let L♯ be
a conjugate pair of rigidified line bundles with connections. Assume the connections
have real holonomies, that Lc = L∨ and the rigidification is induced by a trivialization
of L alone. Because we are in the real holonomy case, the explicit description of the
intersection logarithm in Section 4.4.1 shows that arg♯〈L♯,L♯〉 = 0. For the other intersection
product, recall we saw in Section 6.4 that L♯ determines a harmonic differential form
θL♯ with periods in 2πiZ. Then, if ωX/C = O(K) for some canonical divisor K, we have

arg♯〈L♯, ωX/C〉 = Im
(∫ K

p̃
θL♯

)
. Now the argument of the arithmetic Riemann-Roch theorem

in this particular case specializes to 12 arg♯ λ(L♯)Q = −6 Im
(∫ K

p̃
θL♯

)
, in R/2πZ. This can be

seen as an anomaly formula for the imaginary part of the Quillen-Cappell-Miller logarithm,
under a change of connection (within the real holonomy assumption).
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