GENERALIZED THETA FUNCTIONS, STRANGE DUALITY, AND
ODD ORTHOGONAL BUNDLES ON CURVES

SWARNAVA MUKHOPADHYAY AND RICHARD WENTWORTH

ABSTRACT. This paper studies spaces of generalized theta functions for odd orthogonal
bundles with nontrivial Stiefel-Whitney class and the associated space of twisted spin
bundles. In particular, we prove a Verlinde type formula and a dimension equality that
was conjectured by Oxbury-Wilson. Modifying Hitchin’s argument, we also show that the
bundle of generalized theta functions for twisted spin bundles over the moduli space of
curves admits a flat projective connection. We furthermore address the issue of strange
duality for odd orthogonal bundles, and we demonstrate that the naive conjecture fails in
general. A consequence of this is the reducibility of the projective representations of spin
mapping class groups arising from the Hitchin connection for these moduli spaces. Finally,
we answer a question of Nakanishi-Tsuchiya about rank-level duality for conformal blocks
on the pointed projective line with spin weights.

1. INTRODUCTION

Let C be a smooth projective curve of genus g > 2, and choose integers n > 2, £ > 1. Let
Ms) () denote the coarse moduli space of semistable vector bundles of rank n and trivial
determinant on C, and let £ be the ample generator of the Picard group Pic(Msy () =~ Z.
Similarly, let Mgy, denote the moduli space of semistable vector bundles of rank ¢ and
degree {(g — 1), and consider the locus ©, C Mgy of points [€] € Mgy such that
HO(C,€&) # 0. It turns out that Oy is a Cartier divisor in Mgy (¢), and we use the same
notation for the associated line bundle. Tensor product defines a map:

s+ Msy () X MgLiy — MaL(ne) »

and by the “see-saw” principle it is easy to see that s¥0,,; ~ L& K @Z@”. The pull-back of
the defining section of ©,, gives a map, well-defined up to a multiplicative constant,

Sne : HY(Ms (), £%)* — H*(MgL), ©5") ,

known as the strange duality map. It was conjectured to be an isomorphism (cf. Donagi-Tu
[22] and Beauville [9]), and this conjecture was confirmed independently by Belkale [15] and
by Marian-Oprea [47] (cf. Beauville-Narasimhan-Ramanan [14] for £ = 1). The analogous
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strange duality for symplectic bundles was conjectured by Beauville [11] and proven by Abe
[1] (see also result of Belkale [17]). Strange duality for maximal subgroups of Eg has been
considered independently by Boysal-Pauly [19] and by the first author [19, 51]. However,
a conjectural description of strange duality for other dual pairs, e.g. orthogonal bundles,
has as yet not been formulated in the literature.

An approach to strange duality questions, and in fact the original motivation, comes
from the study of the space Vi(X,g,¢) of conformal blocks (cf. Tsuchiya-Ueno-Yamada
[65] and Definition 2.2 below). These are dual spaces to quotients of tensor products of
level ¢ integrable highest weight modules of the affine Kac-Moody algebra g associated
to a simple Lie algebra g, and with weights X = (A1,...,An) attached to the curve X =
(C,p1,...,pn) with marked points p;. Isomorphisms between spaces of conformal blocks
can sometimes arise from conformal embeddings of affine Lie algebras (cf. Kac—Wakimoto
[38] and Definition 2.1 below), and this phenomenon is known in the conformal field theory
literature as rank-level duality (cf. Naculich-Schnitzer [53] and Nakanishi-Tsuchiya [54]).
By a factorization or sewing procedure (see Sections 2.3 and 9.7), one can often reduce
strange duality questions for curves of positive genus to rank-level duality on P! with
marked points. Indeed, all known strange dualities can be proved using this approach. In
[50], the first author proved a rank-level duality for g = s0(2r + 1) conformal blocks on
P! with marked points and weights associated to representations of the group SO(2r + 1).
One would naturally like to investigate whether the result can be generalized to curves of
positive genus to give a strange duality for orthogonal bundles. This question forms the
starting point of the present work.

As we shall see below, any generalization of rank-level or strange dualities for orthogonal
groups is complicated by the existence of spin representations (in the former case) and the
fundamental group (in the latter). Spin weights cause difficulty in the branching rules
for highest weight representations under embeddings. This issue was already raised in
the discussion in [54], and for this reason only vector representations were considered in
[50]. On the geometric side, since SO(m) is not simply connected the moduli spaces for
orthogonal groups will be disconnected, and any reasonable approach to strange duality
must take into account all components. It was this observation that led to the conjectural
Verlinde type formula of Oxbury-Wilson [56], which is proved below.

In this paper, we discuss these issues for the conformal embeddings of the odd orthogonal
algebras so(2r + 1). The next subsections summarize the results we have obtained.

1.1. Twisted moduli spaces and uniformization. For a complex reductive group G,
let Mg denote the moduli stack of principal G-bundles on C'. Consider the natural map
Spin(m) x Spin(n) — Spin(mn) induced by tensor product of vector spaces of dimensions
m and n, each endowed with a symmetric nondegenerate bilinear form. This map induces
one between the corresponding moduli stacks Mspin(m) X Mspin(n) = Mspin(mn)- If we pull

back any section of H° (Mspin(mn), P), we get a map

HO(MSpin(m)a ??n)* — HO(MSpin(n)a ?gm) 5
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where P, P and Py are the ample generators of the respective Picard groups of the moduli
stacks, which are given by Pfaffian line bundles. By the Verlinde formula (cf. [10, Cor.
9.8]), it is easy to find m and n for which

(1.1) dime H (Mspin(m), PY") # dime H(Mspin(n), P5™)

and hence there can be no obvious strange duality for spin bundles. Nevertheless, following
suggestions of Oxbury-Wilson [56], we can attempt to rectify this situation by considering
orthogonal bundles that do not lift to spin.

Fix p € C, and let Mgpin(m), m > 5, denote the moduli stack of special Clifford bundles
whose spinor norm is O¢(p) (cf. Section 3 and the discussion around eq. (3.2)). We refer to
these objects as twisted spin bundles: their associated orthogonal bundles have nontrivial
Stiefel-Whitney class. A uniformization theorem for these moduli stacks was proved in
Beauville-Laszlo-Sorger [13], and there is again a Pfaffian line bundle P — Mg pin(m) Which
generates the Picard group. Now if G is simply connected and £ — Mg is the ample gen-
erator of Pic(Mg), then H%(Mg, L&) is canonically identified with the space of conformal

blocks V7, (X,g,£). We prove the analog of this result in the twisted case.

Theorem 1.1. The space HO(MS_pin(m),TW) is naturally isomorphic to the space of con-
formal blocks V, (X,50(m),¥).

In particular, from the Verlinde formula and results in [50], we obtain an expression for
the dimension of H®(Mg (m)’ P2%) that was first conjectured to hold in [56] (see Theorem

Spin
4.9 below).
Next, we observe the following. Let
(1.2) Mar41 = Mspin(2r+1) U Mgp;n@,qﬂ) ;

and denote also by P the bundle which restricts to the Pfaffian on each component. Then
we prove the following equality.

Corollary 1.2. dimc H?(My, 1, P225tD)) = dime HO(Mysyq, PO TD),

1.2. Hecke transformations. Let J\/[Z(;Tn(m) be the moduli stack of pairs (S, P), where
S — C'is a Spin(m) bundle and P is a maximal parabolic subgroup of the fiber S), preserving
an isotropic line in the associated orthogonal bundle. A theorem of Laszlo-Sorger [45] states
that H O(Mg‘;?n(m), P(¢)) is naturally isomorphic to Vy,, (X,s0(m),£), for a suitable choice
of line bundle P(¢) — Mlsjg:n(m)' Theorem 1.1 raises the question of whether Mspin () and
Mgpin(m) are related by a Hecke type elementary transformation.

Recall that an oriented orthogonal bundle on C'is a pair (E,q), where E — C'is a vector
bundle with trivial determinant and a nondegenerate quadratic form ¢ : E ® F — O¢
with obvious compatibility of trivialization with det E and detq. In [2], T. Abe defines a
transformation yielding a new orthogonal bundle £* from an orthogonal bundle E equipped
with an isotropic line in the fiber F,. Below we observe that the bundles E* and E have
opposite Stiefel-Whitney classes, meaning that the :-transform switches components of
Mso(m)- We then extend the t-transform to a Hecke type elementary transformation on
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Clifford bundles (see (5.6)). This enables us to give an alternative proof of Theorem 1.1.
The advantage of this identification will be seen in Theorem 1.6 below. The details of this
construction are contained in Section 5.1.

1.3. Hitchin connection. The locally free sheaf of conformal blocks associated to a fam-
ily of smooth projective curves w : € — B and any simple Lie algebra g carries a flat
projective connection known as the TUY connection (or the KZ connection in genus zero).
The identification in Theorem 1.1 motivates a geometric description of this connection for
twisted spin bundles. Indeed, Hitchin [34] introduced a flat projective connection on spaces
of generalized theta functions as the underlying curve C varies over the Teichmiiller space
of Riemann surfaces (see also [7, 66, 3]). In [44], Laszlo showed that with this identifica-
tion, and over the pointed Teichmiiller space Ty 1, the Hitchin connection coincides with
the TUY connection on the space of conformal blocks. This statement also generalizes to
the case of twisted spin bundles. More precisely, we prove the following.

Theorem 1.3. As the pointed curve (C,p) varies in Ty 1, the vector bundle with fiber
HO( S_pin(m),f])@)é) is endowed with a flat projective connection which we also call the

Hitchin connection. Under the identification of HO( gpin(m),ﬂ’®£) with V;, (X,9,(), the

Hitchin connection coincides with the TUY connection.

Let Mg ’ize(in ) denote the moduli space of regularly stable twisted spin bundles (see Section

3.1). Then the Pfaffian line bundle descends to Ms_p’iTne(fn y» and

0 —,reg ®€\ ~, 170 —
(13) H (Msp;n(m)atp )—H (MSpin(m)

We refer the reader to Proposition 4.4 for more details. Now the essential strategy in the
proof of Theorem 1.3 is the same as in [34], but there are two key differences. These are
as follows:

, P

e The connectivity of the fibers of the Hitchin map from the moduli space Mg of
G-Higgs bundles to the Hitchin base is an essential ingredient in Hitchin’s proof. In
the untwisted case, the connectivity follows, for example, from a description of the
fibers in terms of spectral data. It seems not to be known if the fiber of the Hitchin
map for twisted Higgs bundles is connected in general. We circumvent this issue
by reducing to the SO(m) moduli space, and then using results of Donagi-Pantev
[21].

e The condition H! (Ms, ’i:f(il ) Pe¢) = {0}, is sufficient to show that the symbol map
of the projective heat operator is injective. In the untwisted case, one can again use
Higgs bundles to establish this vanishing [34, 44]. For the same reason as above,
this argument is unavailable in the twisted case. However, Kumar-Narasimhan
proved such vanishing results directly without using Higgs bundles. In the present
paper, we generalize the proof in [42] to the twisted setting.

The proof of the second statement in Theorem 1.3 is analogous to that in [44]. We refer
the reader to Section 6 for more details.
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1.4. Level one sections. Since the strange duality map arises by pulling back a level one
section, we study these sections in detail. Let

(1.4) Th(C) := {k € Picy_1(C) | k% = wc}

denote the set of theta characteristics of C. Furthermore, denote by Th*(C) C Th(C)
(resp. Th™(C) € Th(C)) the set of even (resp. odd) theta characteristics, i.e. those for
which h%(C, k) is even (resp. odd). We shall prove the following analog of a theorem of
Belkale [17] and Pauly-Ramanan [57].

Theorem 1.4. Let s, denote the canonical (up to scale) section of the Pfaffian line bundle
for a theta characteristic k (see Definition 3.6). Then the collection {s. | K € Th™(C)}

forms a basis of the space of the level one generalized theta functions HO(Mgpin(2T+1), P).

Remark 1.5. In [5], using TQFT methods, Andersen-Masbaum give a “brick decompo-
sition” of the SL(m)-conformal block bundles under the action of the Heisenberg group.
The invariant Pfaffian sections and the decomposition of H%(Mg pin(2r +1),‘P) (as well as
H O(Mspin(QTJrl), P)) into Pfaffian sections should be considered as an analog of brick de-
compositions for these spaces.

By passing to a local étale cover, we can assume the torsor of theta characteristics is
trivialized on € — B. We show the following.

Theorem 1.6. For each k € Th™ (C), the Pfaffian section s, € I—IO(J\/[S_pin(27qu1

tively flat with respect to the Hitchin/TUY connection of Theorem 1.5.

)) is projec-

In the untwisted case this result appears in [17]. The proof of Theorem 1.6 uses the fact
that the projective heat operator is invariant under the action of the group of two torsion
points of the the Jacobian. Once the existence of the Hitchin connection is established, the
rest of the proof is same as that in [17].

1.5. Rank-level duality for genus zero. For r,s > 2, let d = 2rs+r + s (this notation
will be used throughout the paper). The embedding
(1.5) s0(2r+1) ®so(2s+ 1) — so(2d + 1)

extends to an embedding of affine Lie algebras. For integrable weights X, i, and X of
50(2r + 1) at level 2s+ 1, 50(2s + 1) at level 2r + 1, and s0(2d + 1) at level 1, respectively,
suppose that the pair (X, i) appears in the affine branching of A. This in turn gives rise
to maps on dual conformal blocks

V5(X,50(2r +1),25 + 1)) = V5(X,50(25 + 1),2r + 1) ® V5(X,50(2d + 1),1) .
We note that in case A = (wz,, .. .,we, ,,wWd,wq), with g; € {0,1}, then
dimc V(X,50(2d +1),1) =1,
and we have a rank-level duality map,

(1.6) V5(X,50(2r +1),2s +1) — V5(X,50(2s + 1),2r + 1),
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which is well-defined up to a nonzero multiplicative constant. Recall that so(2r + 1) has
a diagram automorphism o which interchanges the nodes of the extended Dynkin diagram
associated to the weights wy and w; (cf. (8.1)). In Section 9.1, we prove the following.

Theorem 1.7. Let C = P!, Let X = (AMy oy An—2, Ap—1, A\ ), where A; is the highest weight
of a representation of the group SO(2r+1) fori <n—3, A\y_1, A\, are spin representations
that are not fized by the diagram automorphism o, and [, X are as above. Then the rank-
level duality map defined in (1.6) is injective.

This answers a question of Nakanishi and Tsuchiya (cf. [54, Sec. 6]). It is important to
note that the dimensions of the left and right hand sides of (1.6) are not equal in general:
some explicit examples are given in Section 9.2 below. This fact is in stark contrast with
the case of sl(m) conformal blocks and demonstrates the subtlety of rank-level duality.

Remark 1.8. If A € Pogy1(s0(2r+1)), o € Pyrpi(s0(2s+ 1)), are such that o(\) # A and
(A, 1) appears in the branching of wy, then o(u) = p.

Let X, = {(21,...,2n) | zi € P! | 2; # 2;} denote the configuration space of points on
P!, and let P, = 71(X,). The conformal blocks form a vector bundle over X,, with a flat
connection V7, and one can define the rank-level duality map as a map of vector bundles
over X,. Moreover, the rank-level duality map commutes with V.

As a corollary of Theorem 1.7, by factorizing two Spin weights at a time, we also obtain
a result asserted in [54].

Corollary 1.9. Let C = P! and m be a positive integer. The representations of the
pure braid group P, associated to the conformal block bundles V5(X,s0(2r + 1),2s + 1)

with spin weights are reducible in general. More precisely, this occurs if X s of the
form (A1, ..., An—2ms 1y - - - h2m), where A1, ..., Ap—o are SO-weights and uq,. .., pom are
weights of Spin(2r + 1) that are fized by the Dynkin automorphism o.

1.6. Strange duality maps in higher genus. Let My, 1 be as in (1.2). The equality of
dimensions in Corollary 1.2 suggests the possibility of a strange duality isomorphism. To
make this precise, note that we have the following map:

(1.7) SD : HO(Mappq, PP 5 HO(Myepr, PP D) @ HO(Magiq, P)* .

Since dime H°(Ma,41,P) = 229, and we know that the Pfaffian sections {s, | » € Th(C)}
form a basis (Theorem 1.4, [17], [57]), it is natural to consider sa = 3. sy, and investigate
whether the induced strange duality map is an isomorphism. Denote this map by

(1.8) S*A . HO(M27=+1,:P®(2S+1))* . HO(M25+1,?®(2T+1)) )

It is easy to arrange that the map (1.7) be equivariant with respect to the action of Jo(C)
permuting the theta characteristics. By taking invariants, for every x € Th(C') we get a
map induced by the Pfaffian section s:

(19) s* :HO(MSO(2r+1)7?%(28+1))* N HO(MSO(23+1)7?%(2T+1)) )

K
A simple argument shows that s} is an isomorphism for every & if and only if the map
sx is an isomorphism. We refer the reader to Section 10.2 for more details. However,
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the fact, mentioned above, that the rank-level duality map for spin weights fails to be an
isomorphism may be taken as an indication that the strange duality map (1.8) might not
be an isomorphism either. We shall prove that this is indeed the case.

Theorem 1.10. The strange duality map (1.8) (resp. (1.9)) is not an isomorphism (resp.
is mot an isomorphism for every k).

The analysis passes through the sewing construction and detailed calculations involving
the rank-level maps discussed above. Since the Pfaffian sections are projectively flat, there
is a consequence for the holonomy representations of spin mapping class groups.

Corollary 1.11. For some theta characteristic k and any r,s > 2, the Hitchin connection
wn Theorem 1.3 has reducible holonomy representation.

Remark 1.12. The holonomy representations of the Hitchin connection for Mgpyin(2,41)

and Mgpin(Qr 41y are easily seen to be reducible by noting the difference of dimensions of the

Verlinde spaces for Spin(2r + 1) and Spin(2s + 1) (cf. (1.1)). However, for the SO moduli
spaces and powers of the Pfaffian line bundle there is no known Verlinde type formula.
Hence, simple arguments based on dimension do not work. Questions about irreducibility
of mapping class group representations for SL(n) have been considered in [4].

1.7. Acknowledgments. The authors are grateful to P. Belkale, 1. Biswas, P. Brosnan
and T. Pantev for useful discussions and suggestions. Additional thanks to J. Andersen, S.
Bradlow, J. Martens, and L. Schaposnik for their valuable input on aspects of this work.
The referee made useful suggestions for improvements to the exposition and is gratefully
acknowledged.

2. CONFORMAL BLOCKS AND BASIC PROPERTIES

Here we recall some definitions from [65]. Let g be a simple complex Lie algebra with
Cartan subalgebra . Let A = A, LI A_ be a positive/negative decomposition of the set
of roots, and g = h © Y 4eca Ja, the decomposition into root spaces g,. Let (, ) denote
the Cartan-Killing form on g, normalized so that (6,60) = 2 for a longest root . We often
identify h with h* using (, ).

2.1. Affine Lie algebras. The affine Lie algebra g is defined as a central extension of the
loop algebra g ® C ((§)). As a vector space g := g® C((£)) ® C - ¢, where ¢ is central, and
the Lie bracket is determined by

(X ® f(§),Y ®@g()] = [X,Y]® f(§)g(§) + (X,Y) Resg—o(gdf) - ¢,

where X, Y € g and f(£),g9(§) € C((&)). Set X(n) = X ®£" and X = X(0) for any X € g
and n € Z.

The theory of highest weight integrable irreducible modules for g runs parallel to that of
finite dimensional irreducible modules for g. Let us briefly recall the details for complete-
ness. The finite dimensional irreducible g-modules are parametrized by the set of dominant
integral weights Py (g) C h*. For each A € P, (g), let V) denote the irreducible g-module
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with highest weight A\. Fix a positive integer ¢, called the level. The set of dominant
integral weights of level £ is defined by:

Pi(g) :={Ae Pi(g) | (A, 0) <} .
For each A € Py(g), there is a unique irreducible integrable highest weight g-module Hx (g, £)
which satisfies the following properties:

(1) Hx(g,¢) is generated by V) over g (cf. [38]);

(2) Ha(g,?) are infinite dimensional;

( ) V) C J{A(gvg)a

(4) The central element ¢ of g acts by the scalar .

When there are implicitly understood, we sometimes omit the notation g or ¢ from Hy(g, ¢).
We will also need the following quantity. For any A € Py(g), define the trace anomaly

(A A+ 2p)
2.1 Ax(g,l) i = ———-,
( ) )\(g ) 2(9\/ +£)
where p is the half sum of positive roots, and gV is the dual Coxeter number of g.
Let £(g) denote the untwisted affine Kac-Moody Lie algebra of g (see [36, Sec. 7.2]).

Explicitly, it can be defined as Zg = g @ Cd, where d is a derivation that commutes with
d . . -
¢ and acts on g ® C((£)) by the formula d = 5(75' Clearly, g is a Lie subalgebra of Lg.

Let Ag,Aq,..., Ay (vesp. wi,...,wy,) denote the affine fundamental weights of Zg (resp.
g), where m = rank g. We observe the following:

o \; =w;+a’Ag for 1 <i<m, where a; are the dual Coxeter labels ([36]).

e Any )\ € Py(g) corresponds to the weight A + ¢Aq of Lg.

e Any highest weight integrable irreducible representation of Zg is also irreducible as

g-module.

e Ag restricted to the Cartan subalgebra of g is zero.
Since we are working with g in this paper, we will denote by w; the fundamental weight for
both g and :C\g. For uniformity of notation, we will denote by wg-the zero-th fundamental
weight Ag of Zg.

2.2. Conformal embeddings. Let ¢ : s — g an embedding of simple Lie algebras, and
let (,)s and (, )g be the Cartan-Killing forms, normalized as above. Then the Dynkin
index of ¢ is the unique integer dy satisfying (¢(z),d(y))g = dg - (x,y)s, for all z,y € s.
More generally, when s = g1 & go, g; simple, we define the Dynkin multi-index of ¢ =
$1D d2: g1 D g2 — g to be dy = (dg,,dg,).

Definition 2.1. Let ¢ = (¢1,P2) : § = g1 @ g2 — ¢ be an embedding of Lie algebras with
Dynkin multi-index dy = (dg,,dg,). Then ¢ is said to be a conformal embedding if

d¢1 dim o1 d¢2 dim g2 dimg
g}/+d¢1 g§/+d¢2 gV +1’

where gy, g5, and gV are the dual Coxeter numbers of g1, g2, and g, respectively.
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Many familiar and important embeddings are conformal: (1.5) is one family of such
examples. For a complete list, see [8]. For the purposes of this paper, the key property of
conformal embeddings that we need is the following: an embedding ¢ : s = g1 ® go — g is
conformal if and only if any irreducible g-module Hx(g,1), A € Pi(g), decomposes into a
finite sum of irreducible s-modules of the form Hy, (g1, 1) ®H, (g2, 2), where A\; € Py, (g:),
i=1,2, and (¢1,f2) = dy, the Dynkin multi-index. See [38].

2.3. Conformal blocks. Let C be a smooth projective curve with marked points p' =
(p1,--.,pn) such that (C,p) satisfies the Deligne-Mumford stability conditions. We fur-
thermore assume a choice coordinates and formal neighborhoods around the p;, which
give isomorphisms (5(;, p, = C[&]]. We will use the notation X = (C;p) to denote this
data. The current algebra is defined to be g(X) := g ® H°(C,Oc(x(p1,---,pn))). By local
expansion of functions using the chosen coordinates &;, we get an embedding:

n

9(X) = g =PoecC(&)@C-c.
=1

Consider an n-tuple of weights X = (A1, ..., \n) € P/'(g), and set

The algebra @, (and hence also the current algebra g(X)) acts on H5(g,¢) componentwise
using the embedding above.

Definition 2.2. The space of conformal blocks is
V3(X, 9, 0) := Home (H5(g, £)/9(X)Hz(g, €), C) -
The space of dual conformal blocks is V5(X, g,¢) = H5(g,£)/e(X)Hs(g, ) -

Conformal blocks are finite dimensional vector spaces, and their dimensions are given by
the Verlinde formula [26, 63, 65]. We now discuss some important properties of the spaces
of conformal blocks.

e (FLAT PROJECTIVE CONNECTION) Consider a family
F=(r:C— B;o1,...,0n;&1,--,&n)

of nodal curves on a base B with sections o; and formal coordinates ;. In [65], a
locally free sheaf \7/"-‘\»(3r ,8,¢) known as the sheaf of conformal blocks is constructed
over the base B. Moreover, if F is a family of smooth projective curves, then the
sheaf V}(ff ,8,¢) carries a flat projective connection known as the TUY connection.
We refer the reader to [65] for more details. In genus zero, the TUY connection is
a flat connection and is also known as KZ connection.

e (PROPAGATION OF VACUA) Let C be any curve with n-marked points satisfying
the Deligne-Mumford stability conditions and C' be the same curve with n + 1
marked points. Assume that the weights attached to the n marked points are
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X = (A1,...,A\n) and we associate the vacuum representation (H,) at the (n + 1)-
st point. Then there is a canonical isomorphism Vy(X, g, £) ~ Vsiowo (X', g,¢), where

X (resp. X’) denote the data associated to the n (resp. n + 1) pointed curve C.
o (GAUCE SYMMETRY) Let f € HY(C,0¢(x(p1, ..., pn))) and (¥ |€ V5(X,g,¢), then
(VU] (X ® f)=0. More precisely, for any | ¢1 ® --- ® ¢n) € Hz(g, ),
n
D@ (X f(E)pi @ @dn) =0,
i=1
Let X — SpecC [[t] be a family of curves of genus g with n marked points with chosen
coordinates such that the special fiber Xy is a curve X over C with exactly one node, and
the generic fiber X; is a smooth curve. Let Xy be the normalization of Xy. For A € Py(g),
the following isomorphism is constructed in [65]:

EBL)\ : @ VE’A,AT(io,g,E) — V;’(x0797£) )
AEPy(g)

where X is the data associated to the (n+2) points of the smooth pointed curve X with
chosen coordinates and AT is the highest weight of the contragredient representation of Vj.
This is commonly referred to as factorization of conformal blocks.

In the same paper [65], a sheaf theoretic version of the above isomorphism was also
constructed which is commonly referred to as the sewing construction. This provides for

each A € Py(g), a map of C [¢]-modules: s)(¢) : V5 |, (X0,8,0)®C 1] — Vi(X,g,¢). Then

sA(t) extends the map ¢y in families such that ©ycp,(g)sa(t), is an isomorphism of locally
free sheaves over Spec C[[t]]. We refer the reader to [50, 65] for exact details.

3. TWISTED MODULI STACKS

3.1. Uniformization. In this section we recall the construction of the twisted moduli
stacks for spin bundles as in [13] (see also [55, 56]). First, let us fix some notation.

Definition 3.1. Let GG be a connected complex reductive Lie group. Then

(1) Mg := the moduli stack of G-bundles on C;

(2) Mg := the Ramanathan coarse moduli space of S-equivalence classes of semistable
G-bundles on C

(3) a G-bundle is regularly stable if it is stable and its automorphism group is equal to
the center Z(G). We denote by MY C Mg the moduli space of regularly stable
bundles.

Recall the exact sequence 1 — Z/2 — Spin(m) — SO(m) — 1. Identify Z/2 with the
subgroup {£1} C C*, and define the special Clifford group

(3.1) SC(m) := Spin(m) Xz, C*

The spinor norm is the group homomorphism Nm : SC(m) — C* | which induces a
morphism of stacks Msc(,n) — Mcx. We will denote this stack morphism also by Nm.
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Let p be a fixed point of the curve C. Throughout the paper we will denote the punctured
curve by C* = C' —{p}. Consider bundles O¢(dp), where d € Z. Then the preimage by Nm
of the class of [O¢(dp)] € Mcx depends only on the parity of d (cf. [55, Prop. 3.4]). We will
denote by J\/[gcc(m) the inverse images of the Jacobian J(X) and Picy(C), respectively. Let

Mgcpi n(m) be the inverse images of the points O¢(dp), for d = 0, 1, respectively. Therefore,
while by definition Mgrpin(m) = Mspin(m), the space Ms_pin(m) is a “twisted” component that

does not correspond to a stack of G-bundles for any complex reductive G.

The components J\/[éco(m) of Mso(m) are labeled by & € m1(SO(m)) ~ Z/2 (cf. [13, Prop.
1.3]). The map SC(m) — SO(m), coming from the projection of (3.1) on the first factor,
induces a morphism of stacks

" +
(3.2) P Mginimy = Msom) -

Definition 3.2. For GG as in Definition 3.1, let

(1) LG := G ((£)) be the algebraic loop group of G;
(2) LTG := G [€] be the group of positive loops;
(3) Q¢ := LG/L"G be the affine Grassmannian;
(4) LoG = G(0c-) = LG.

The following result, proved in [13], gives a uniformization for the twisted moduli stacks
and determines their Picard groups. We only state it in the case G = Spin(m).

Proposition 3.3. Let § € {1} = m1(SO(m)) and ¢ € (LSO(m))®(C). Then
Myin(my = (€7 Le(Spin(m) - O\ Qspin(m) »
where Qspin(m) 5 the affine Grassmannian of Spin(m). The torsion subgroup ofPic(Mécpin(m))

is trivial, and in fact, Pic(Mépin(m)) ~ 7.

As we have done with stacks, we may also define the coarse moduli spaces MS_C(m) and

Mgp in(m) of semistable twisted bundles on C.

3.2. Pfaffian divisors. The set Th(C) of theta characteristics forms a torsor for the 2-
torsion points Jo(C') of the Jacobian of C. Note the cardinalities [52, Sec. 4]: |J2(C)| =
ITh(C)| = 2%, |Th*(C)| = 2971(29 + 1). Recall from the introduction that by an oriented
orthogonal bundle on C' we mean a pair (F,q) consisting of a bundle £ — C with trivial
determinant, and a nondegenerate quadratic form ¢ : E ® F — O¢. Then ¢ induces a
nondegenerate quadratic form ¢ : (E® k) ® (E ® k) = we. We recall the following from
[45].

Proposition 3.4. Let B be a locally noetherian scheme, 1 : C x B — B, pr : C x
B — C, the projections, and (€,§) — C x B a vector bundle equipped with an wc-valued
nondegenerate quadratic form ¢. Then the choice of a theta characteristic k — C gives a
canonical square root Pg 4 . of the determinant of cohomology Dg = [DetRm, (€ @ pr* k)]".
Moreover, if f : B’ — B is a morphism of locally noetherian schemes, then the Pfaffian
functor commutes with base change, i.e. f*Pg ;= Ppeg 4.
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Next, we recall the definition of the Pfaffian divisor, following [13, 45]. Let (&€,q) —
C x Mso(m) be the universal quadratic bundle. For x € Th(C), consider the substack
defined by: O, := div(Rm.(€ ® pr*k)). It is shown in [45, eq. (7.10)] that ©, is a divisor
on MS+O(m) if and only if either m or k is even. We postpone the proof of the following
proposition to Section 5.3.

Proposition 3.5. The substack O is a divisor on Mso zf and only if both m and k
are odd.

Definition 3.6. It follows from the above that there is a nonzero section s, (canonical up
to scale) of P, — Mso(2r41), supported on M;_O(Zr—i-l) (resp. MS_O(27"+1)) if k is even (resp.
odd). We call s, the Pfaffian section.

Recall the projection (3.2). For k,x" € Th(C), the line bundles p*P,, p*P.s are isomor-
phic. We therefore set P = p*P,, which is well-defined up to this isomorphism. On each
component Mspm(m), P is the ample generator of Pic(Mécpin(m)) [13].

Let A be the group of principal Z/2-bundles on C, where Z/2 is identified with the kernel
of the map Spin(m) — SO(m). Then A ~ J5(X). Let A denote the set of characters of A.

Let Y = Mso?eg) (the notion of regularly stable extends directly to the twisted setting),
and Y = p~H(Y). Here p : Mspm(m) — MSO( ) is the projection map. By [13, Prop.
13.5], the Galois covering p is étale over Msc’)(eg) Since Ms_o(m) — Y has codimension > 2
(see [25, Thm. I1.6], [44, Appendix| and recall m > 5), and p is finite and dominant, we
conclude that M pin(m) — Y has codimension > 2 as well. The moduli spaces Ms_o(m) and
MSpin (m) Can be constructed as GIT quotients of a smooth scheme by a reductive group ([13,

Lemma 7.3]), hence they are normal. Therefore, by normality of the moduli spaces Mg (m)

and Mg, ), we get HO(Y,0y) = HO(Y, O3) = C. There is a decomposition of sheaves

p«O5 = @XEZLX’ where as a presheaf L, (U) = {s € O;(p‘l(U)) | gs = x(g)s,Vg € A}.
Proposition 3.7. We have the following properties:

(1) Y, 1) = {f =
X # 1
(2) for any x, p*Ly = Oy
(3) Ly ® Ly = Ly
(4) LX_L = x=x.
It is well-known [13] that Y is smooth, and since the map p : Y — Y is Galois and
yT'eg

étale, this implies that Y is also smooth and is contained in Mspm( ): We will also need
the following fact.

Lemma 3.8. m(Y) = {1}.

Proof. The proof is essentially the same as in Atiyah-Bott [6, Thm. 9.12]. Let K C SC(m)
be a maximal compact subgroup. Fix a topologically nontrivial smooth principal SC(m)-
bundle P — C, and let P be a reduction to K. Let A(Pg) be the space of connections
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Px. Then A(Pg) can be identified with the space of holomorphic structures on P, i.e.
holomorphic principal SC(m)-bundles. Let G(P) denote the group of SC(m) gauge trans-
formations, and G(P) the quotient of G(P) by the constant central gauge transformations
(recall that Z(SC(m)) = C* for m odd, and Z(SC(m)) = C* x Z/2 for m even). By
a standard argument, mo(G(P)) ~ HY(C,71(SC(m))). Since 71(SC(m)) = Z, we con-
clude that mo(G(P)) ~ H'(C,Z). From the fibration Z(SC(m)) — G(P) — G(P), we find
70(G(P)) ~ HY(C,Z), as well. From [6, Sec. 10], the complement of the stable points
A®(Pg) C A(Pk) has complex codimension at least 2. As noted by Faltings (see the com-
ment in the proof of part (ii) of Theorem II.6 in [25]), the same proof applies to show that
the set of regularly stable points A" (Pk) C A(Pk) has complex codimension at least 2.
Since A(Pk) is smooth and contractible, this implies in particular that A" (Pk) is simply
connected. Note also that G(P) acts freely on A"™(Py) with quotient Ms_é?zf). It follows
that

(3.3) m (Mg(eh)) = m(A™(Px) /S(P)) = mo(S(P)) = H'(C,Z) .
Now consider the fibration:

—.reg M9

Spin(m) SC(m)
(3.4) le
Pic1(C)
By the associated exact sequence of fundamental groups,
L — m(Mgin@) — m(Mg(¥)) — mi(Piey(C) — 1,

and (3.3), we see immediately that (Ms_p}?;e(gn)) = {1}. Now both Y and Ms_p7i1;16(?n) are

smooth with complement of codimension > 2. Therefore, Wl(?) ~ T (Ms_p ’i:z?n )) ={1}. O

Proposition 3.9. Given k € Th(C) and a € J2(C), then Prga ® P 4 isomorphic to
a unique L, where x € A.

Proof. By the proof of [13, Prop. 5.2], there is an injective homomorphism A : A >
Pic(Mgo(m)), and Prza PpED equals \(W(«a)), where W is the Weil pairing on Jo(C) ®
Jo(C) — pe = {1,—1}. Now if o # o/, we get A(W(«a)) # AM(W(a/)). This proves the
uniqueness. By Lemma 3.8 we get that m1(Y") is isomorphic to Jy and all torsion line
bundles on Y are of the form L, for some x € A. We know that Prga @ T?(_l) is torsion

and hence Prgq ® ﬂ’g(_l) is isomorphic to some L.

O
Using the above, we have the following decomposition of A-modules:
(3.5) HY,?) = P H(Y,P.® L) .
XE€A

In the next section we will prove the following.
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Proposition 3.10. Suppose m is odd. Then,
(1) dime HO(Y,P) = 29-1(29 — 1);
(2) each HY(Y,P,), K odd, is 1-dimensional and is spanned by the Pfaffian section s,;
(3) the set {s, | k € Th=(C)}, is a basis for H'(Y,P).

This result should be compared with [17, Props. 2.3 and 2.4] in the even case.

4. UNIFORMIZATION

4.1. Conformal blocks via uniformization. The main result in this section is the iden-
tification of generalized theta functions on Mgpin(,) at any level with the space of conformal
blocks. Let V' be a countable dimensional complex vector space. We define the tautological
line bundle Ly on P(V') as the Zariski closed subset: Ly := {(z,v) € P(V) x V | v € x}.
The space P(V') x V has a natural ind-scheme structure. We induce a ind-scheme structure
on Ly such that Ly — P(V) x V is a closed immersion. Hence by projecting onto the first
factor gives an algebraic line bundle Ly on P(V'). We denote its dual by Lj;.

For a simply connected complex Lie group G, we denote by Qg the affine Grassmannian
associated to G with Lie algebra g. The affine Grassmannian is a ind-projective scheme
[45, 40, 49]. Let wp be the affine fundamental weight of affine Kac-Moody algebra associated
to G and for any positive integer ¢ consider H,,(g,¢) be the corresponding irreducible,
integrable representation with highest weight wy at level £. Let vy(¢) be a highest weight
vector of Hy,(g,¢). The natural map i : Qg — P(Hu(9,0)); g[LTG] — guvo(f) is an
embedding of ind-schemes (see Appendix C in [41] or [40]). For any ¢ > 0, we define £({x)
to be the pull back L%WO (6,0) under the map ¢. We can extend the definition to non-negative

integers by taking the dual bundles. By [61, Sec. 2.7], it is easy to see that L, = Lfff . The
line bundle £, can also be realized in a line bundle associated to a character as follows (see
[45, Lemma 4.1]): Consider the representation H,,, (g, 1) of the affine Lie algebra g. This
representation can be ([26]) integrated to a projective representation of the loop group L G.
We pullback the exact sequence to L G

0 — Gy, — GL(Huy(g,1)) — PGL(Hyy(g,1)) — 1,
defines a central extension which splits ([45, Lemma 4.9]) over LT G-

0—Gm—LG LG —1.

Let L™ G be the inverse image of LT G via the map p, then Lt G ~ LG x G,,. The
projection onto the second factor defines a character xo of L™ G. Then £, can be described

([45, Lemma 4.11]) as the line bundle on the Qg = EE/LJr G associated to the character
Xo 1. We will henceforth refer to L as the line bundle associate to the character x of the
affine fundamental weight wy.

We have the following proposition.
Proposition 4.1. Let 7 : Qspinim) — JV[S_pin(m
and x be the character corresponding to the affine fundamental weight wg. Then we have:
TP = L,.

) be the projection from Proposition 3.3,
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Proof. Consider the map Spin(m) — SL(m) that comes from the standard embedding.
This induces a map between the affine Grassmannians Qspin(m) — Qsi(m)- Let L?( denote
the pull-back of the determinant of cohomology line bundle on Mg (,,,) to the affine Grass-
mannian Qg (,,,). By a result in [43], we know that the pull-back of L?c is Loy, where x
is the character and 2 is the Dynkin index of the embedding so(m) — sl(m). Now the
pull-back of the determinant of cohomology to Qs () is Lg. Since the Picard group of

M;pin(m) is torsion-free, we see that P pulls back to £y on Qgpin(m)- O

Let V' be a vector space of dimension 2m (resp. 2m + 1) endowed with a symmetric
nondegenerate bilinear form (,). Let e1,..., ey, (resp. eam+1) be a basis of V' such that
(€i, €2m+1—j) = 0i5 (resp. (i, €amt2—j) = 0;5. The elements H; = E;; — Eop—iom—i (resp.
H; = E; ij—Eom41-i2m+1—i) span a basis of the Cartan subalgebra of so(2m) (resp. so(2m+
1). The normalized Cartan-Killing form is given by (4, B) = 3 Tr(AB). Let L; be the
dual of H; where L;(H;) = 0;; and w; = S _ 1Ly for 1 <4 < m—1 be the first m — 1
fundamental weights of both so(2m) and so(2m + 1).

For ¢ € LSO(m), following [26], we define an automorphism Ad(¢) of sa(m) by the
following formula. Let A(z) be an element of s0(m).

(4.1) Ad(¢)(A(2), s) := (Ad(Q)A(z), s + Res.—q 3 Tr(¢ ™ (d¢/dt) A(2)) -
Let
’ 1
(4.2) ¢= ,
! —1

regarded as an element of LSO(m).

Lemma 4.2. Let 7 : 56(m) — End (3, (s0(m),?)) be an integrable representation of §0(m)
and Ad(¢) : s0(m) — sa(m) is the automorphism defined by formula 4.1, for ¢ as above.
Then the representation 7 : 50(m) — End(Hy, (s0(m), £)) defined by moAd(C) is isomorphic
to Hyw, (s0(m), £).

Proof. Since Hy,(s0(m), £) is irreducible under the representation m, this implies that the
representation 7 is also irreducible. Let A(z) = >° A; ® 2*, then by a direct computation
we can check that

(4.3) Res.—¢ 3 Tr(¢™H(d¢/dt) A(z)) = wi(Hp) ,

where Hj is the diagonal part of Ag. From a direct calculation, we can check that if
X, is a generator of the root space of a, then Ad({)X,(n) = X4(n + wi1(Hy)), where
H, is the coroot of a. In particular, this shows that positive nilpotent part ny of s6(m)
is preserved under the automorphism Ad(¢). This implies that if vy € H,,(s0(m),¥)
is the highest weight vector for the representation m, then vy is also the highest weight
vector for the representation 7. Thus, it remains to determine the weight of the vector vy
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under the representation 7. By (4.3), we get for H in the Cartan subalgebra of so(m),
7(H, s)vo = £(s + w1 (H))vg. This completes the proof. O

Theorem 4.3. There is a canonical isomorphism: H°(Mg , PO ~ V5 (X, 50(m), 0).

Spin(m)

Proof. The essential idea of the proof is the same as in [12, Thm. 9.1]. Let § be the
generator of m1(SO(m)). It is easy to check that the element ¢ defined in (4.2) lies in the
component LSO(m)?. By Proposition 3.3, we get

MS_pin(m) = (C_lLC(Spin(m>)C)\QSpin(m) .

By Proposition 4.1, the line bundle £, has a (7*L¢(Spin(m))( linearization. In particular,

the map A(a) — ¢(~1A(a)( extends to the Kac-Moody group LSpin(m). Now it is easy to
check that this map is, on the level of the Lie algebra, given by the following: Ad(¢™1) o,
where ¢ is the canonical embedding of so(m) into s0(m). By [12, Prop. 7.4] and [43], the
space of global sections H° (Mgpin(m), P®4) is canonically isomorphic to the space of linear
forms on 3, (s0(m),¢) that vanish on the image (~'Lc(Spin(m))¢. By Lemma 4.2, this
is same as the Lo (Spin(m))-invariant sections Hpy,, (so(m), ). This, by definition, is the
space of conformal blocks Vj, (X, s0(m), ). O

The following proposition compares global section of the line bundles on the moduli
stack to the stack of the corresponding regularly stable moduli space.

Proposition 4.4. Let g > 2, then there is a canonical isomorphism between

HO (Mgt P%) = Vi, (X, 50(m), ()
Proof. Applying Theorem 4.3, we are reduced to show that there are canonical identifi-

cations HO(M 70 « P2y ~ HOMS . PP The codimension of the complement of
Spin(m) Spin(m)

the stack Mo 77 in Mg ) Is at least 2 ([25, Theorem I1.6]). Hence by Hartog’s theo-

Spin(m) Spin(m
rem H O(Ms_pin(m), POy ~ HO (Mgr;:r?é]m)’ P2, Now we observe that M_’Tegm) (respectively

Spin(
Ms_lgﬁfm)) has a presentation ([13]) of the form as a quotient stack [R/T"]( respectively GIT
quotient R/T"), where R is a smooth scheme and I' is a reductive group. Applying Propo-

sition 4.1 in [43], we get that H O(Mglﬁfm),f}’w) can be identified with [-variant section

of P2* on the scheme R. The later is canonically identified with H O(Msjézs(gm)’ PeY). This
completes the proof. O

For a genus ¢ curve with marked points X, let us denote: Ng(g, X, () = dim¢ V5(X, g,¢).
We sometimes omit the notation of the Lie algebra when it is clear. In the following,
g = s0(2r + 1), and we want to compute Ny(wi,1) and Ny(dJy, 1), where &, is an n-tuple
of w,’s for n even. Let o denote the diagram automorphism wg <+ wy.

Lemma 4.5. Let o denote the Dynkin diagram automorphism that switches the 0-th node
with the first node of the affine Dynkin diagram. Then Ng(GX,£) = Ng(\,£), where G\ =
(011, .-y 0n\n), 0y = either o or 1, and oy -0y, = 1.
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Proof. The proof of the above follows from factorization (cf. Section 9.7), the genus 0 [28]
result, and the fact that o induces a permutation of Py(so(2r + 1)). O

Proposition 4.6. For n > 0, let d,gn) denote a 2n-tuple of w,’s. Then Ny(dp 5 1) =
22g+n—1'

Proof. If g = 0, then the above is a result of N. Fakhruddin [24]. We will prove this using
factorization (cf. Section 9.7) and induction on g. Therefore, suppose that the result holds
for genus g — 1 and all n. Then since the level one weights are precisely, wg, w1, and w;,
and using Lemma 4.5, factorization and induction,

Ng(d)'q(n"), 1) = Ny—1(wo, wo; &M 1) + Ny—1(wi,wr; ™. 1) + Ny_1(wp, wr @M, 1)
= 2N, (@™, 1) + N, 1 (&Y 1) (By Lemma 4.5)
= 2.92(g=D)+n—-1 | 92(g—1)+n _ 92g+n—1
U
Now by factorization and Lemma 4.5 we get, Ng(w1,1) = 2Ng_1(w1,1)+ Ny—1(wr, wy, 1).

By induction on g, the expression for Ny_1(w1, 1), and the above calculation it follows:
Corollary 4.7. Ny(wi,1) =2971(29 —1).

4.1.1. Proof of Proposition 3.10. Combining Theorem 4.3, Proposition 4.4 and Proposition
4.6, along with the decomposition (3.5), we obtain Proposition 3.10. Reformulated in terms
of the stack, we have the following.

Theorem 4.8. For any r > 1, dimg H* (Mg 9,11y P) = 2971(27 — 1) = [Th™(C)].

Moreover, the Pfaffian sections {s, | kK € Th™(C)} give a basis.

4.2. Oxbury-Wilson conjecture. Let P be the line bundle which restricts on each com-
ponent of Mg, 1 to the ample generator of the Picard group (cf. (1.2)). We now prove a
Verlinde formula for powers of P.

Theorem 4.9. Let
. . pt )\
NoGso(2r 4 1).0) = a0+ 20 - 17" ST [ (2smaSEE)
pEP;(SO(2r+1)) a>0

where Pp(SO(2r + 1)) denotes the set of level £ weights of so(2r + 1) that exponentiate to
a representation of the group SO(2r 4+ 1). Then

(4.4) dime HO(Mayq1, PPY) = 2N2(s0(2r + 1), 0) .

Proof. By Theorem 4.3, HO(Mapy1,P®Y) ~ Vi (X,50(2r +1),0) & Vj, (X,50(2r + 1),0).
Now the Verlinde formula tells us the following;:

dime (V] (X, 50(2r +1),0)) =
(aerer—1yp (Y [ (s R

ueP(SO(2r+1)) a>0 -1
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T S | e S
2r—1
nEP(SO(2r+1))c a>0

where Pp(SO(2r + 1))¢ := Py(s0(2r + 1)) \ P,(SO(2r + 1)) is the set of level ¢ weights that
do not exponentiate to representations of SO(2r + 1). Similarly

dime (Vj,, (X,50(2r +1),0)) = (4(0+2r — 1)) x {

Z Trvz“d (exp 271—1‘”7_{—%)) H (2 sin WM)2_29

WEP,(SO(2r+1)) t+2r—1 a>0 t+2r—1
. ptp . (ptpa)y2-29
+ Z Try,, (exp2mi———) H (2 Slnﬂ'i) } .
R tror—1’ 11 (+or—1

It follows from [50, Lemmas 10.6 and 10.7] that

L+ p 1 p€ Py(SO241)
T, (o (2nv=T 20 ) ) =
Wi, \ OXP /-1 (42 —1 —1 otherwise.

Using this, the proof follows by taking the sum of the expressions above. O

Remark 4.10. The formula (4.4) was conjectured in Oxbury-Wilson [56, Conj. 5.2]. The-
orem 4.9 resolves this conjecture.

For any r, s > 2, the following result is proved in [56].
Lemma 4.11. N(s0(2r 4+1),2s 4+ 1) = NJ(s0(2s +1),2r +1).
Proof of Corollary 1.2. Combine Lemma 4.11 and Theorem 4.9. O

Remark 4.12. The equality of dimensions in Corollary 1.2 also holds if either r,s = 1. In
this case, SC(3) = GL(2), and so the moduli stack M3 is the disjoint union of the moduli
stacks of rank 2 vector bundles with fixed trivial determinant and determinant = O¢(p).
The Verlinde formula for these spaces is due to Thaddeus [64]. Also in this case, the
equality of dimensions in Lemma 4.11 is mentioned in [56, Prop. 4.16].

5. HECKE TRANSFORMATIONS FOR ORTHOGONAL BUNDLES

5.1. The (-transform on orthogonal bundles. In this section we review a Hecke type
elementary transformation called the (-transform introduced by T. Abe [2]. This exchanges
one orthogonal bundle with a choice of isotropic line at a point for another. As we shall
see, this operation flips the Stiefel-Whitney class.

Let B be a scheme, X := C x B, and 7 : X — B the projection. Let ¢ : B — X be a
constant section of m. A parabolic structure on an orthogonal bundle (£,q) — X at o is
a choice of isotropic line subbundle of o*€. If we let OG(c*E) — B denote the bundle of
Grassmannians of isotropic lines of 0*€, and 7 — OG(c*€) the tautological line bundle,
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then the data of an orthogonal bundle with parabolic structure on X may be summarized
in the following diagram:

(€,q) —=X 7 ——> 0G(c*€)
c*6 —— B s*r C o*€ B)

Let 7+ — OG(0*€) be the bundle orthogonal to 7 in the quadratic form ¢, and let 71 =
0*&/s*1 be the quotient line bundle on B. Then we may define the locally free sheaf &°
by the elementary transformation (cf. [48]),

(5.1) 0—& =& —o.(rn) —0.

Next, let & = (€°)*. Since the normal bundle to o(B) is trivial and the orthogonal
structure gives an isomorphism £* ~ &, dualizing (5.1) gives

(5.2) 0—&—=8& =o.(rf) —0.
Now ¢ induces maps
(5.3) q: 808 — Ox(0(B)), ¢: & @& — Oy .

Consider the subsheaf &” < &% coming from (5.2). Then &/ &’ is a torsion sheaf supported
on o(B), and along o(B) it is locally free of rank 2 with trivial determinant and an
orthogonal structure. Since &/&° is isotropic, &4/&* ~ &/&° @ o, (r7). Finally, we define
& C &% to be the kernel of the map &F — &/ €. Equivalently, there is an exact sequence

(5.4) 0— & =& = o.(rf) — 0.

Then €' inherits an orthogonal structure ¢* from (5.3). Moreover, the exact sequence (5.4)
determines an isotropic line s* C ¢*(&"). Finally, from (5.1) and (5.4), the trivialization of
det € induces one for det .

Definition 5.1. The ¢-transform is the map: (€,q,s) — (€4, ¢", s*).

Remark 5.2. It is clear that the -transform is functorial with respect to base change.
Moreover T. Abe [2] has shown that the (-transform is an involution.

5.2. The (-transform on Clifford bundles. We now show that the -transform sends a
bundle in one component of Msg(,,) to the other one. Fix a point p € C, and recall that

C* =C —{p}. Let Mg(;?n(m) denote the moduli stack of pairs (8, P), where 8 is a Spin(m)-

bundle on C and P is a maximal parabolic subgroup of the fiber ¢*§ preserving an isotropic
line s in the fiber of the associated orthogonal bundle at p. Similarly, let Mg‘g(m) be the

moduli stack of tuples (€,q,s), where (€,q) is a rank m orthogonal bundle, and s is an
isotropic line in the fiber &,. We then have a map Mggn(m) — M’s"g(m), (8,P) — (€,q, ).
Forgetting the parabolic structure gives a morphism M2

+
spin(m) > Mspin(m) = Mgo (-
We wish to define a morphism M’S)Z?n(m) = Mginim) = Mso(m)- Associated to (€,q, s)

we obtain a new orthogonal bundle with isotropic line (€', ¢*, s*) defined in the previous



20 SWARNAVA MUKHOPADHYAY AND RICHARD WENTWORTH

section. By Remark 5.2, this gives an involution of stacks: ¢ : Mgg(m) — M;gcg(m)_ This can
be described explicitly in terms of transition functions as follows. First, since the result we
wish to prove is topological it suffices to work locally in the analytic topology, and in fact at
a closed point of B. We therefore let 8 be a spin bundle and (&, ¢) the associated orthogonal
bundle; § = Spin(&, ¢). Let A C C be a disk centered at p, and o : A — 8 a section. This
gives a trivialization of 8§ and a local frame eq,...,e,, for € on A with respect to which
the quadratic structure is, say, of the form ¢;; = 6;4j—1,,». Similarly, we may choose a
section of §|-.. Set A* = C*NA. Let ¢ : A* — Spin(&, g) denote the transition function
gluing the bundles 8|, and 8|.., and let ¢ : A* = SO((E, ¢)|5~) be the quotient transition
function for (&, q). The transformed bundle € (cf. Section 5.1) is defined by modifying ¢
via ¢ : A* = SO((E,q)|x+), where ( is as in (4.2). Write z = exp(2mi&). Then there is a
well-defined lift ¢ : A* — SC((&,q) Ax), given by

(5:5) ((2) = exp(mi€) exp ((mi&/2)(e16m — emer)) -

One checks that E is well-defined under £ — & 4+ 1, and the projection of Z under the map
SC(€,q) — SO(E, q) recovers (. Gluing the trivial SC-bundles over A and C* via gb(z)g(z),
we define a new Clifford bundle 8. The associated orthogonal bundle (with transition
function (2)((z)) coincides with ‘. With this understood, the main observation is the

following.

Proposition 5.3. The t-transform switches the Stiefel- Whitney class, i.e. if € € Mgro(m)
then &' € M§O(m)> and vice-versa.

Proof. 1t suffices to check the spinor norm of 8*. But from (5.5), Nm(8*) is a line bundle
with transition function on A* given by:

~

Nm(@¢) = exp(2mi§) Nm(p(2)) Nm (exp ((wig/2)(e1€m — emer))) = 2z ,
since ¢(z) and exp ((wi€/2)(e1em — emer)) € Spin(€, q). Therefore, Nm(8*) ~ O¢(p). O

It will be useful to keep in mind the following diagram:

par
MSpin(m)
+ —
(56) MSpin(m) MSpin(m)
Mo (m) Mso ()

Here, prt is the forgetful map that discards the parabolic structure, and pr~ is the ¢-
transform described above.
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Remark 5.4. As in the case of SO(m) bundles, the t-transform on SC(m) bundles is
reversible. In particular, the fiber of pr~ is a copy of OG, and so it is connected and
projective.

5.3. The (-transform and the Pfaffian bundle. We first use the (-transform to prove
the following.

Proof of Proposition 3.5. For an orthogonal bundle, we have (cf. [55, Prop. 4.6]) w2(€) =
RO(C, € @ k) + mh®(C, k) mod 2. Hence, for & € M§O(m)7 if either m or k are even, then

hY(C, & ® k) is odd. If both m and & are odd, then by [55, Prop. 4.6], h°(C, €& ® k) = 0 for
generic €. On the other hand, choose any theta characteristic ko with h°(C, k) # 0. Write
m=2r+1,and let: & = (kg @k HT DO ® (k® /{51)697”, with the obvious orthogonal
structure. Then

(5.7) h(C, &0 @ k) = (m — 1)h2(C, ko) + WO (C, k) >m —1> 2.

Pick an isotropic line of g at a point, and perform the elementary transformation in
(5.1). Then by (5.7), h%(C,&* ® k) # 0, which by (5.4) implies that the (-transform
& =&y € Mgg(y has hO(C, & ® k) # 0. This completes the proof. O

Recall the notation from Section 5.1. Choose k € Th(C') and denote the pull-back to X
by pr* k. Then we have the next result.

Proposition 5.5. For a family of orthogonal bundles (€,q) — X, and &' the t-transform,
Det R, (& @ pr* k) ~ Det R, (€ ® pr} k) @ (s*7)%%
Proof. First, notice that the quadratic form gives an isomorphism 7 ~ s*(7*). Let k, =
o*pri k. Then using (5.1) and (5.4),
Det R, (& ® pri k) ~ Det R, (& @ pri k) @ s*(7%) @ ko
Det R, (&' @ pr} k) ~ Det R, (& @ pri k) @ s*7 ® kg .
The result follows. O

Corollary 5.6. When pulled back to Mg(;irn(m), the Pfaffian bundles on J\/[écpin(m) for any

theta characteristic k are related by (pr~)*P, ~ (prt)*P, ® s*(7%).

Proof. From Propositions 3.4 and 5.5, we see that [(pr‘)*iP,.J®2 ~ [(prt)*P, ® 8*(7'*)]®2.

The result follows from the fact that Pic(M?ﬁfn(m)) is torsion-free (cf. [45, Thm. 1.1]). O

5.4. Geometric version of Theorem 4.3. By Corollary 5.6 and Remark 5.4, we have

HO(Mgpin(m)’ j)@é) — HO(M}S)Z?n(m)’ (pr_)*ﬂ)@)z) — HO(MZZ?n(m)’ (pr-&—)*?@Z ® S*(T*)®Z) ]

By the Borel-Weil theorem, the highest weight representation Vj,,, of Spin(m) is given by
the global sections of (7*)®¢ — OG. Tt then follows as in [45, Thm. 1.2] or [58, Props.
6.5 and 6.6] that the space of sections of P®¢ — Mgpin(m) is isomorphic to the space of
conformal blocks. This gives an alternative proof of Theorem 4.3.
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6. HITCHIN CONNECTION FOR TWISTED SPIN BUNDLES

6.1. Higgs bundles. Let Mgo(m) denote the coarse quasi-projective moduli space of

semistable SO(m)-Higgs bundles on C, and let Msegfi) C MSQO(m) denote the regularly
stable locus, i.e. pairs (&,0), § € H°(C,Ad(€) ® wc), such that Aut(E,f) = Z(SO(m)),
where Z(SO(m)) denotes the center of SO(m). We assume in this section that C' has genus
g > 2. Then Mseg(ign) is smooth ([20, Proposition 2.14]), with complement of codimension

> 2 ([25, Theorem IL.6]). Let

By HO(Cwg™) m=2r+1

(6.1) B(m) = {@;‘:—11 HO(C,wg™) ® HO(C,wp) m =2 .

The Hitchin map H : Mgo(m) — B(m) is a dominant, proper morphism. Away from
the discriminant locus A C Bsg(n), H is a smooth fibration by abelian varieties, and

O,ns 0,re .
Msg ) = Mgo(m)‘B(m)—A C MSO(ng@) (see [33, 35], and also [21, Lemma 4.2]). There is an

action of C* on MSHO(m)’ and H is equivariant with respect to multiplication on H%(C, w%k)
with weight k. We will need the following.

Proposition 6.1. Let V — Mseg(ei) be a flat bundle. If V restricted to a general fiber of

h s trivial, then V' is trivial.

The proposition is an immediate consequence of the following.

Lemma 6.2. If A is a general fiber of h, then the inclusion A — Mseg(egl) induces a

surjection w1 (A) — Wl(Msebr(egl))'

Proof. Since A is codimension 1, inclusion induces a surjection , : Wl(Mseg(sm)) — Wl(Mseg(egL)).
Hence, we have the diagram:

ax ns Py
T (A) - m (Mg, — > m(Bm) — A) — {1}

lz*

6,re
™1 (M5 )

|

{1}

Notice that every element of 71 (B(m) — A) is represented by the boundary of a transverse
disk. More precisely, for v € m1(B(m)—A) and D C C the unit disk, there is an embedding
D < B(m), DN A = {0}, and such that D represents .

Next, consider the fiber in Mgg(ei) of h over {0}. Since the image in B(m) of fibers
contained in the critical locus of A lies in a set of codimension 2, we may assume without
loss of generality that there is a regular point # € h~*(0). There are therefore local smooth
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coordinates about x with respect to which h is given by projection. By shrinking the disk
if necessary, it follows that there is a local section o : D — Mseg(ergn ) of h. The image o(9D)

ns

is therefore a loop in Mseb(m)v contractible in Mseg(e i ) that projects to dD. We conclude
that for any v € m1(B(m)—A) there is 8 € m (Msgg”(il)) such that h.(8) = v and 1.(8) = 1.

The lemma now follows easily. For if o € m (Mg&egl )), then by surjectivity of ¢, there

ns

isa € wl(Mseo(m)) such that u.(&) = a. By the discussion in the previous paragraph, we
can find 8 € Wl(Mseg(sm)) such that h.(3) = h«(&) and 1,(8) = 1. But then 8~ 'a is in the

kernel of h,, and so is in the image of a,, while at the same time it projects by 2, to a.
Therefore 1, o a, is surjective. O

The application of the previous result that we need is the following

Corollary 6.3. Let x : wl(Mggg(m)) — {£1} be a nontrivial character with associated line

bundle L. Then the pullback of L, to Msgg(ei) 18 nontrivial on generic fibers of the Hitchin
map.

Proof. Let MZ3,  be the locus of stable SO(m -Higgs bundles. By [25, Thm. IL.6], the set
SO(m)

Mgg(in) consisting of stable Higgs bundles (E, §) where F is not stable as a principal SO(m)

bundle has codimension at least 2 in Mg’os(m). Clearly, Mgg(e g@ )\T*Mggg(m) is contained

in Mseg(sm). Moreover by [25, Theorem I1.6], the complement of Mg&ergn) in Mseg(m) has

codimension at least 4. This implies that the complement of T*Mggg(m) C Mseg(e Tf’l ) has
positive codimension. Hence, there is a surjection (Mseg(egl ) = wl(Mggg(m)). The result
then follows from Proposition 6.1. O

6.2. A vanishing theorem. We use the notation ¥ = Ms_d?if) and Y = p 1Y) C

Mg ’;e(fﬂ ) from Section 3.2. The following is a key assumption in the construction of the

Hitchin connection.

Proposition 6.4. With the notation abowve,
(1) HY(Y,TY) = {0};
1y —
(2) H\(Y,05) = {0}.

Proof. (1) Since Y — Y is étale it suffices to prove the vanishing of

HY,TY)= @ H'(Y,TY®L,).
x€J2(C)

Fix a character x, and suppose 0 € H°(Y,TY @ L,) is nonzero. Then pulling back and
contracting with the fibers gives a section f of the flat line bundle (also denoted L,)
corresponding to x on 7*Y. By Corollary 6.3, it immediately follows that ¢ vanishes if
X # 1, for since L, is torsion it could have no sections on the generic fiber unless it is trivial
there. For x = 1, the argument is exactly as in [34, p. 373]. Namely, by Hartog’s theorem
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f extends to a function on MSQO(m)' Since the Hitchin map H : Mgo(m) — B(m) is proper
with connected fibers, it follows that f is the pull-back of a function g on B(m). On the
other hand, f is homogeneous of degree 1, whereas the minimal degree of homogeneity for
the action on B(m) is 2 (see the discussion following (6.1)). Since H is equivariant we
conclude that f, and hence also o, must vanish.

For (2), we first note that provided g > 2, the complement of Y ¢ M

Spin(m) is of

codimension at least 3. This follows from the fact that the complement of ¥ in M§O(m) of

codimension at least 3 if g > 2 and the map p: MS_p in(m) Ms_o(m) is finite and dominant

(see [25, Thm. I1.6], [44, Appendix] and recall m > 5). The proof of part (2) now follows
from Scheja’s theorem [60]. To prove the result, it then suffices by Scheja’s theorem to

prove that Hl(MS_pin(m)’ O) = {0}. For this we closely follow the proof in [42, Thm. 2.8].

First, observe that by [13, Lemma 7.3] (see also [59]) the moduli space Mg in(m)
quotient of a projective scheme R by a reductive group I'. From [18] it then follows that

MS_p in(m) is Cohen-Macaulay, normal and has rational singularities. Let wjys denote the

is a good

dualizing sheaf.

Let € — C x R be the universal bundle. By construction of the GIT quotient it fol-
lows that the adjoint vector bundle Ad(é) descends to a vector bundle on C x }7, which
we also denote by Ad(g). Since Y is an étale cover of MS_C’)?;‘Z), deformation theory tells
us that T [g}}N/ can be identified with H'(C,Ad(€)). Moreover, since & is regularly stable,
H°(C,Ad(€)) = {0}. In particular, it follows from the definition of determinant of coho-
mology that Det(Rm, Ad €)* v = wumly. But Det(Rm, Ad €) extends to an invertible sheaf
on the entire moduli space Ms_p in(m)’
dualizing sheaves on Cohen-Macaulay normal varieties are also reflexive. Since the comple-
ment of Y is codimension > 2, then by [42, Lemma 2.7] we get that wys is locally free, and
hence by definition Ms_p in(m) is Gorenstein. Now Det(Rm, Ad E) is ample and the Picard
group of Mg, is isomorphic to Z ([13]). It follows from Serre duality [31, Cor. II1.7.7]

and the Grauert-Riemenschneider vanishing theorem [30] that H ’(Ms_p in(m)» 9) = {0} for

1> 0. O

and hence in particular it is reflexive. Furthermore,

6.3. The Hitchin connection. Let € — B be a smooth family of genus g curves, B
smooth. Let 7 : Mg anG (gm) — B denote the universal moduli space of regularly stable twisted
Spin(m) bundles on the fibers of €, with universal Pfaffian bundle P. Then the direct image

sheaf 7,P¢ is a holomorphic vector bundle over B with fiber H O(Ms_p’ize(fn ) POY). We wish

to find a connection on the projective bundle IF’(Tr*QW) — B. Following the method of
Hitchin [34], the connection is constructed as a “heat operator” on the smooth sections of
P M S ,;r:([]m)' As noted in that reference (see also [3]), the procedure can be applied to
the open moduli space of (regularly) stable points.
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Given [€] €Y C Ms_p}Tne(gny recall that T?’[g] ~ H(C,Ad €). By Serre duality,
H°(C,AdE @ wo) ~ H' (C,Ad &)* .
Combine this with the cup product:
HY(C,TC)® H*(C,Ad €& @ wc) — HY(C,Ad€)
and the identification above to obtain a map: 7 : H(C,TC) — HY(Y, S2TY). Let Di(PY)

denote the sheaf of differential operators of order i on Y. Given a nonzero section s €
HO(Y,P®%), evaluation on s gives a length 2 complex: D*(P®) — P2¢  from which we ob-
tain a hypercohomology group HL(Y, DY(P®)). Let § : HO(Y,S?TY) — HL(Y, DI(P®F))
be given by the coboundary associated to

(6.2) 0 — DHPP) — DA(PH) — S2TY — 0.

The main result is the following.

Theorem 6.5. With the above notation )
(1) Given a deformation [p] € HY(C,TC), let I denote the variation of the almost

~ . )
complex structure on Y. The association of the class A(I,s) = A
2i(0 +gv)
HL (Y, DYHPZ) to each section s € HO(Y ,P2Y) defines a connection on P(m,P%) —

B.
(2) The connection commutes with the action of Jao(C).
(3) The connection is projectively flat.
(4) Under the identification (1.3), the connection agrees with the TUY connection.

Proof. The existence (1) of the connection follows if we show that the hypotheses (i) and
(ii) of [34, Thm. 1.20] are satisfied. Condition (i) follows trivially from the vanishing result
Proposition 6.4 above. For (ii), we must show that —iA(I,s) projects to the Kodaira-
Spencer class under the map o : H:(Y, DY(P®!)) — H(Y,TY). This follows exactly as in
[34, p. 365], where in [34, Lemma 2.13] one replaces Endy F with Ad E, and in [34, Prop.
2.16] one uses the cup product defined above.

Item (2) follows by the same argument as in [16, Cor. 4.2].

The flatness (3) proved in [34, Thm. 4.9] is a consequence of two other results of that
paper: the fact that certain trace functions Poisson commute ([34, Prop. 4.2]) follows in
our case from the integrable system structure for orthogonal bundles (cf. [33]); and by (2)
above the version of [34, Prop. 4.4] that we need states that the map

[ HYC,TC) — HOY, 82TV, f([u])(e,0) = /C (0, 0)

is an isomorphism. This also follows as in [34, bottom of p. 373]. Indeed, for (G¥) €
HO(Y, SQTY), then by the same argument as in the proof of Proposition 6.4 (1), the pull-
back of (G¥) via the Hitchin map extends as a function on Mgo(m), and thus descends to

a function on B(m), homogeneous of degree 2. The homogeneous degree 2 functions on
B(m) are identified in (6.1) with H°(C,w¢c)* ~ HY(C,TC).
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Finally, (4) follows from the proof in [44] where the only properties of the Hitchin connec-
tion used are the ones stated above and the uniformization theorem. For the case of (simply
connected) G-bundles, Laszlo first considers the uniformization 7 : Qg = LG/LTG — Mg
of the moduli stack of G-bundles over a curve C and restricts to the regularly stable lo-
cus Q% of Qg. The ample generator P of the Picard group of Mg pulls back to give a
line bundle £,, where x is the character of the affine fundamental weight wgp. The Sug-
awara construction then provides a second order differential operator T' (see [44, eq. (8.8)])
on £ (see Section 4.1 for notation). Following [23], Laszlo takes an étale quasi-section

r:N— MY and ¢ : N — Q% of the map 7 : Q% — MY

R

.
i
N—>>Mg,eg

and defines an action of the differential operator 7" on the line bundle *P®*(also isomorphic
to q*L%g). Once this is done, then the symbol of the “heat operator” in the Hitchin
connection is shown to be equal to the operator T' coming from the Sugawara construction
(see [44, Sec. 8.14]).

In the present situation for M

gpin(m
of étale quasi-section follows from [13, 23]. Further the pull back of the Pfaffian line bundle
P on Qgpin(m) 1s also given by the same character x of the affine fundamental weight wo

(Section 4.1). Thus the set-up is exactly as in [44].

» uniformization (Proposition 3.3) and the existence

0

We will call the projective connection constructed in Theorem 6.5 the Hitchin connection.
The main consequence of the existence of a Hitchin connection is the following.

Proposition 6.6. The Pfaffian sections s, are projectively flat with respect to the Hitchin
connection.

Proof. The action of J2(C') commutes with the projective heat operator. Hence, the Hitchin
connection preserves the spaces H O(Mggg(m), P.). Now these one dimensional spaces are
spanned by Pfaffian sections, making them projectively flat. O

Remark 6.7. If we consider the isomorphism of SC(3) ~ GL(3), then M pin(z) 18 just the
stack of rank two bundles on a curve with determinant O¢(p). The corresponding moduli
space in this case is smooth (GIT stability and GIT semistability coincide) and the Hitchin
connection is constructed in [34]. The case Mgpin( 4 can be defined and handled similarly
using the isomorphism of Spin(4) with SL(2) x SL(2).

7. FOCK SPACE REALIZATION OF LEVEL ONE MODULES

In this section, following work of I. Frenkel [27] and Kac-Petersen [37], we first recall the
explicit construction of level one modules of 50(2d + 1) using infinite dimensional Clifford
algebras. We also give explicit expressions for the space of invariants.
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7.1. Clifford algebra. Let W be a vector space (not necessarily finite dimensional) with
a nondegenerate bilinear form {, }. Let T'(IW) denote the tensor algebra of W, and define
the Clifford algebra CI(W') to be the quotient of T'(W) by the ideal generated by elements
of the form v @ w + w ® v — {v,w}. Let W = WF @ W~ @ C - €® be a quasi-isotropic
decomposition of W such that e is either orthonormal with respect to W+, or zero. Then
the Clifford algebra CI(W) acts on A W~ by setting wt -1 = 0 for all w™ € W and
letting W= act by wedge product on the left. If ¢ # 0 and v € AP W, then we set

V2 - —1)Pv.

7.2. Level one modules. Now suppose W = W, is (2d + 1)-dimensional. We choose an
ordered basis ¢',...¢", ¢0 = ¢°, 07", ..., ¢~ of Wy such that {¢% ¢’} = J44p0. Define
operators Ej-(gbk) =0, x¢", and set B;- = E; - E:ZJ It follows that elements of s0(2d + 1)
are of the form B; (cf. [32, 29]).

For h € {0, %}, let WdZJrh = W, ® thC[t,t7]. We extend the bilinear form on Wy to
WEh by setting {wi(a1), wa(az)} := {w1, ws}da, a0, Where w(a) = w @ t%. As above,
choose a quasi-isotropic decomposition:

weh_ (Wit tewi e c 0 ith=1/2,
d Wt gy it Jifh=0,
where €? = ¢(0). Similarly, I/VdZJ“h’jE is given by the following:
o If h = 0 then W2 .= W, ®ti1<C[ti1] o WE et
o If h =1, then WZ“‘i Wy ® t£2C[t£1].

We define the normal ordering : & for products in C’l(WdZHL) as follows: For any element
wi(ar) and ws(ag) in WiT", we define

—wg(ag)wl (Cl,l) if a1 > 0> a9
(7.1) twi(ar)wa(az) : = < 3(wi(ar)wa(az) — wo(az)wi(ar)) ifag =az =0
w1 (ar)wsa(az) otherwise.

For X € s0(2d+1), we denote X (m) := X ®t™. Now for any i and j, we can define an ac-
tion of B}(m) on A WdZJrh’* by the following formula:B;- (M)w =g ypem s B (a)pj(b) : w
where the action on w is given by Clifford multiplication. Then we have the following
important result.

Proposition 7.1 (Frenkel [27], Kac-Petersen [37]). The above action Bi(m) gives an iso-
morphism of the following 50(2d + 1)-modules at level one.

o ., (s0(2d + 1) )@%wl(50(2d+ 1),1) ~ AWSTE

o Hyy(s0(2d +1),1) ~ AWy~
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7.3. Clifford multiplication and the invariant form. In this section, we give explicit
expressions for conformal blocks in Vi, ., (P',s0(2d+1),1) and V}, (P s0(2d+1),1)
in terms of Clifford multiplication. In the following, let W, be as in Section 7.2.

7.3.1. The case A = (wo, wq,wq). From representation theory it follows that the conformal
block Vi (P!, s0(2d+1),1) is a subspace of Homgy(2441) (Vg @ Viu,» C). But since both

wo,Wd,Wq
spaces are 1-dimensional they are isomorphic. Since we know that V,,, is isomorphic as an
50(2d + 1)-module to A W, , then taking the opposite Borel we can express it as /\W;

Hence, the invariant bilinear form (unique up to constants) is given by

{szl{@a,wﬂ} if p=gq
0

otherwise.

B(@.l/\.../\(ﬁip7¢jl/\.../\¢jq) =

7.3.2. The case A = (w1,wd,wq). As in the previous case, we know that the conformal
block Vi (P!, 50(2d + 1),1) is a subspace of Homgy(2441)(Vie, ® Vioy ® Vi, C). The

W1,Wd,Wd
$0(2d + 1)-module V,,, appears with multiplicity one (see Kempf-Ness [39]) in the tensor
product of module V,,, ® V,,,, thus we have

Homgy(2441)(Wa ® /\ W, ® /\ W;,C)~C.

We will denote a nonzero element of the left hand side above as (@ |. Consider the Clifford
multiplication map from m : Wy ® AW, — AW . Then we define
(U a®v®w) = B(m(a®v),w") .

We will show that (¥ | is a nonzero element of Vir wywy(PL50(2d +1),1) and hence it is
unique up to constants. First we prove that (¥ | is so(2d + 1)-invariant.

There is an isomorphism A2Wy ~ s0(2d+1). Any X € s0(2d+ 1) may be regarded as an
element of the Clifford algebra as follows: for a,b € W, we get an element of the Clifford
algebra a-b— %{a, b}. First we show that the Clifford multiplication map m defined above
is s0(2d 4 1)-invariant; i.e X - m(a,w) = m(X - a,w) + m(a, X - w), where a € Wy and
w € AW, . Without loss of generality assume that X is of the form a-b — %{a, b}. By a
direct calculation we see that

m((X -a)®w) +ma® (X -w)) = (((ab— 3{a,b})v) -w+v- ((ab— 2{a,b}) w)

=@b-ww=X (v-w).

Thus the Clifford multiplication map m is s0(2d + 1)-invariant. By a direct calculation, we
get the following:

U-X|agveaw):=(U|Xa@vow)+(U|a®Xvow)+(¥]a®ve Xw)
= B(Xm(a®v) @ w*) + B(m(a®v) @ Xw")
=B -X(m(a®v) ®@w")
=0 (since B is s0(2d + 1) invariant).
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This shows that (¥ | is so(2d + 1)-invariant.

It will actually be more convenient to express (¥ | in terms of an so(2d + 1)-equivariant
map f: A\W; ® /\VVU;r — Wj, that will be unique up to constants; the relationship is
(U la®vew) = f(vew)(a). We want to write f explicitly with respect to the given
choice of basis. Let J, = (1 <41 < --- < i, < d) be a set of p tuples of distinct ordered
integers from the set {1,...,d} and similarly let J, = ((1 < j1 < --- < j; < d) be a set
of ¢ tuples of distinct ordered integers. We are now ready to define the function f. This
will be defined in several steps. First of all f(v,w) =0 if v € APW; and w € AYW; and
lp—ql>1.

7.3.3. Case I, p=q. This is divided into the following subcases. If J, # J,, then we declare
F(@iy A Ay, @I N- - A@IP) := 0. If T, = Jp, then we define f(ds A+ Ay, ¢"L A=+ -AP™P)
is up to a constant equal to {¢g, —}.

7.3.4. Case II, g=p-1. Then f(¢iy N--- Ny, "t A -+ A @Ir=1) is up to a constant equal to
{{%w =} ifdp1U{ix} =17,

0, otherwise.

7.3.5. Case III, q=p+1. Then f(¢i; A--- A ¢y, @A - A @Irt1) is up to a constant equal
to
{{¢jka —} if JpU Lk} = dp+1

0, otherwise.

This shows that f, and hence also (VU |, is nonzero and so(2d + 1)-invariant.

8. HIGHEST WEIGHT VECTORS FOR BRANCHING OF BASIC MODULES

We give an explicit description of highest weight vectors in the branching rule in “Kac-
Moody” form i.e. as product of operators from the affine Lie algebra acting on the level
one representations. Our guideline is the paper of Hasegawa [32].

8.1. Tensor products. Let W be a (2s + 1)-dimensional C-vector space with a non-
degenerate bilinear form {,}, and let {e,};__ be an orthonormal basis of Ws. Let
o 0%, 8%, 0%, ..., ¢! be an ordered quasi-isotropic basis of Ws. The tensor product of
Wy = W, ®@Wj carries a nondegenerate symmetric bilinear form {, } given by the product of
the forms on W, and W;. Clearly the elements {e;, := ej®ep|—r < j <rand —s <p < s}
form an orthonormal basis of Wy. By (j,p) > 0, we mean j > 0 or j = 0,p > 0. Set

; 1 i 1
o = leir = Vlesip) o7 = Alein TV lei)
for (j,p) > 0. The form {,} on Wy is given by the formula {¢/?,¢=F~9} = §;16,,, for
—r < j,k<r, —s <p,q<s. Let as before Wj[ =®p>0C- ¢*P and ¢%0 = ¢pg. The

quasi-isotropic decomposition of Wy is given by W, = W; oW, oC- ¢%0.
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Define the operators Ej’p by the formula E]’p ((J5Z’l) = 0; 101 qu“’ We get a matrix in

s0(2d + 1) by the formula B]’p Ei’z Efjk [? Clearly the Cartan subalgebra b of

50(2d + 1) is generated by the diagonal matrices Bg;g for (j,p) > 0. The dual basis is
denoted by Lj,. Hence b* = @ )~0C - Ly p.

The tensor product Wy = W, ® W; gives the embedding (1.5). If B} be an element of
50(2r + 1), then the action of B"-(m) on W?’h is given by

Z Z ¢’q (a)pjq(b):

q=—s a+b=m

Similarly for B;- is an element of s0(2s + 1), then the action of B;- (m) is given by

Z Yo 1P @)y, ()

pP=—Ta+b=m

8.2. Notation for weights. The Cartan algebra b of so(2r + 1) is generated by elements
of the form B! for 1 < i < r. Let L; denote the dual of B!. The fundamental weights of
50(2r + 1) are given by w; = 3% _ Ly for 1 <i <r—1and w, = %(Ll + -+ L,). Let
us denote by Y, the set of Young diagrams with at most r rows. Any integral dominant
weight A of s0(2r 4 1) is of the form A = >, a;w;, a; > 0 for all 4.

(1) If a, is even, then the representation A induces a representation of the group SO(2r+
1). By using the expression of w; in terms of L;’s, we get A = >, b;L;, and by >
- > by, give a Young diagram in Y,.
(2) If a, is odd, then we can rewrite A = X + w,. Then the coefficient of w, in \ is
even and by repeating the same process for X', we can write A =Y + w,, where Y’
is an element of Y,.

The group of affine Dynkin-diagram automorphisms 7Z/2 acts on the set of level 2s + 1
weights Pos11(50(2r + 1)) by interchanging the affine fundamental weight wy with w;. Let
A =>""_, aw; and o be the generator of Z/2, then

(8.1) o(A):=2s+1—(a1+2(az+ -+ ar—1)+ap))w + aswa + -+ - + apwy, .

Let Y, s denote the set of Young diagrams with at most » rows and s columns. Then the
orbits of the group action with the cardinality are given below [56]:

e Y €Y, and the orbit length is 2
o Y + w,, where Y € Y, s_; and the orbit length is 2
o Y +w,, where Y € Y, ;\Y, 1 and the orbit length is 1.

For a Young diagram Y, we denote by Y7 € Y, ., the diagram obtained by interchanging
the rows and columns of Y, by Y¢ € Y,. ; the complement of ¥ in a box of size r x s, and
by Y* € Y, the Young diagram (YT)¢ obtained by first taking the transpose and then
taking the complement in a box of size (s x r).
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8.3. Branching rules. For reference, we state here some of the components that appear in
the branching rule for the embedding (1.5) (recall Section 2.2). Let o be as in the previous
section. Let A\, u, and A be integrable highest weights for so(2r + 1) at level 2s + 1,
50(2s+1) at level 2r+1, and so(2d + 1) at level 1, respectively. We say that (A, u) € B(A)
if Hy(so(2r+1)) ® H,(s0(2s + 1)) appears in the branching of 3 (so(2d 4 1)). Note that
here (and for the rest of the paper) unless specified otherwise the levels 2s + 1,2r + 1, and
1, have been (wiil be) suppressed from the notation of highest weight modules. Then the
branching rules we need are the following;:

o (Y, Y1) € B(wy) if |Y] is even;

e (0(Y),YT) and (Y,0(YT)) € B(wp) if |Y] is odd;

o (V,YT) € B(wy) if |Y] is odd;

o (0(Y),YT) and (Y,o(YT)) € B(w) if |Y]| is even;

e forYeY,s 1, Y +w,Y*+ws) and (6(Y +w,), Y* +ws) are in B(wyg);

o for Y €Y, s\ Yrs—1, YV +wr,Y"+ws)and (Y +wp,0(Y* +wy)) are in B(wg).

We refer the reader to [32] for a proof.

8.4. Highest weight vectors of branching. An explicit description of the highest weight
vectors for the components of the branching can be found in [32]. In this section, in those
cases that will be convenient for our applications, we express them as products of operators
in 50(2d + 1) acting on the level one representations of 50(2d + 1). Recall the following
from [50].

Proposition 8.1. Let X € Y,  be obtained from X\ by removing two boxes with coordinates
(a,b) and (c,d) and € € {0,1}. Assume that (a,b) < (c,d) under the lexicographic ordering.
If vy € End(H,,, (so(2d + 1))) is the highest weight vector of the component Hy @ Hyr,
then the highest weight vector vy of the component Hy(s0(2r + 1)) @ Hyr(s0(2s + 1)) is

given by vy = Bi’gﬁd(—l)vk/.

From [32] we have:

. 1 _
Proposition 8.2. The element \j__, gbj’l(—%) €A WdZ+2’ gives the highest weight vector
for the component Hy, (s0(2r + 1)) ® H(gpy1)w, (50(25 + 1)).

Next, we describe the highest weight vectors for the branching of the Spin module at
level one. First, we need some notation. Given Y € Y, 5, we view it pictorially as an r X s
box with the white boxes carving out the Young diagram (see below). We associate to Y’
another diagram as follows:

vo_ | if Y has an empty box in the (j,p + s + 1)-th position,
N otherwise.

Here in the matrix 17, j=0,1,....,r,p=1,...,8,—s,...,—1. This is illustrated as:
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j\p 1 .. ..0s —s .. . -1

TR E -1|l0D..00 .. . O
v=poesl o T= 10
OOmm®m T T :
e 2 D omm

c 0 0om m

r|lO. .00 AR R

With this notation, we can state the branching rules. If Y € Y, ,, then Hy ., (so(2r +
1)) ® Hy+4w,(s0(2s + 1)) appears in the decomposition of H,,,(s0(2d + 1)). For a proof of
the following, we refer the reader to [32].

Proposition 8.3. The highest weight vector vy of the component Hy 4, (s0(2r + 1)) ®
Hy* 4w, (50(25 + 1)) is given by /\3~9 - Gjp-

From Section 8.3, if Y € Y, 51, the component H,(y 4,y (50(27+1)) @FHy 4, (s50(25+1))
appears in the decomposition of 3, (so(2d + 1)). We describe the highest weight vectors.
We define a new diagram J(EN/), obtained by first considering Y and then interchanging
the black boxes in the 1-st row by the corresponding white boxes in the (—1)-st row, and
keeping the columns invariant.

A\ 1 .. .. s —s .1

L
y—|[OOmnm “ o(Y)p = T o
I —— J,p 110 . .0 ED o g D:
OmmEE o : :D om .:

S 0 om |

rl0. .00 A Em

With the above notation, we have the following from [32].

Proposition 8.4. The highest weight vector of the component Hy(y 4,y (50(2r + 1)) ®

Hy 4w, (50(25 + 1)) is given by Ao, _m%ipl€), where e = =1 if j = —1, and e = 0
1P

otherwise.

We can rewrite the result above in the “Kac-Moody” form.

Corollary 8.5. Let Y/ be the Young diagram obtained from Y by changing the black
bozxes in the first row to white. Let vy: be the highest weight vector of the component
Hy 1 40, (50(2r +1)) @ Hy 1y« 4, (50(25+1)). Then a highest weight vector of the component

Ho (v 4w,) (50(2r + 1)) @ Hy« 4y, (s50(25 + 1)) is given by: 11 Bé:[)_p(—l)vy/.
oY) 1,=H

Proof. Use Proposition 8.4 and the definition of the action of Bol,b_ P(-1). O
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9. RANK-LEVEL DUALITY IN GENUS ZERO

9.1. General context of rank-level duality. Let ¢ : g1 ® go — g be a conformal
embedding with Dynkin multi-index dg = (¢1,¢2) (see Section 2.2). Then ¢ extends to
a homomorphism of affine Lie algebras ¢ : g1 © g2 — §. Let X = A,y An) (resp.
i = (p1,...,pn)) and A= (A1,...,A,) be n-tuples of level ¢1 (resp. ¢2) and level one
integrable highest weights such that for each 1 <i <mn, (\;, ;) € B(A;). Taking the n-fold
tensor product, we get a map: @i Hy, (g1) ® H, (92) = Qi1 Ha,(g). Let X be the data
associated to curve C' with n marked points and chosen coordinates. Taking coinvariants,
we get the following map of dual conformal blocks:a : Vi(X,g1,41) ® Vz(X, g2,02) —
Vi(X,9,1) . We call a triple (X, K) € Pp(g1) x P (g2) X Pl'(g) admissible, if they are
connected by a map as above by the branching of level one modules. If V;(X,g,1) is one
dimensional we get a map: a* : V(X,g1,41) = \7/*1(.’{, g2, {2), which is determined up to a
nonzero multiplicative constant. Then «* is known as the rank-level duality map. We say
that rank-level duality holds if o* is an isomorphism.

Let F = (7 : € = B;o1,...,0n;&1,...,&) be a family of nodal curves on a base B
with sections o¢; and local coordinates &. The map o* can be extended to a map of
sheaves a(JF) : V5(F,91,01) ® Va(F, g2,02) — Vz(F,9,1) . Furthermore, if the embedding
is g1 @ g2 — g is conformal [38], as in the case of the odd orthogonal groups considered
here, it follows that the rank-level duality map is flat with respect to the TUY connection.
We refer the reader to [16] for a proof.

9.2. Failure of rank-level duality over P' with spin weights. Rank-level duality
isomorphisms for odd orthogonal groups on P! with SO-weights was proved in [50]. In
this section, we give explicit examples where the rank-level duality map over P! with four
marked points is well-defined, but fails to be an isomorphism.

9.2.1. Ezample 1. Consider the embedding s0(5) & so(7) — s0(35). From the branch-
ing rules in Section 8.3, we know that Hay, 4w, (50(5)) ® Heyy+3ws(50(7)) appears in the
branching of the spin module H,,,(s0(35)). By functoriality we get the following map of
conformal blocks: V5(P!,50(5),7) @ V(P1,50(7),5) = Va7 wirwiw (P!, 50(35),1), where
X = (2w + wo, 2wi + wo, w1, w1) and f = (w1 + 3ws, w1 + 3ws, w1, w1). One checks (e.g. by
[62]) that dimc Vi,;.wirww (P1,50(35),1) = 1. Hence, we get a rank-level duality map
between V5 (P!, s0(5),7)* and V;(P!,s0(7),5). But this map cannot be an isomorphism
since dimc V; (P!, 50(7),5) = 5, whereas dim¢ V5 (P!, 50(5),7) = 4.

9.2.2. Ezample 2. Consider the embedding s0(7) & s0(9) — s0(63). Then
dimg Vi, w1 00 (P, 50(63),1) =1,

and following the branching rules in Section 8.3, there is a well-defined rank-level duality
map V5 (P!, 50(7),9)@V;(P,50(9),7) = Vs, w1 wn (P, 50(63), 1), where X = (wat3ws, wa+
3w, w1twa), i = (w1+2ws+wsg, w1 +2w3+ws, w1 +wz). But this map is not an isomorphism,
since the dimensions of V(IP!,s0(7),9) and V;(P', s0(9),7) are 3 and 4, respectively.
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9.2.3. Ezample 3. Consider the embedding s0(9) @ s0(7) — s0(63). Then
dime Vs, wsy o (P, 60(63),1) =1,

and following the branching rules in Section 8.3, there is a well-defined rank-level duality
map V5 (P',50(9), )@Vz(P",50(7),9) — Vg, gy n (P, 50(63), 1), where X = (wa+3wy, wa-+
Bwa, 2w + 2wy), f = 2wy + 2wa + w3, 2w + 2w + w3, 3wy + 2ws). But this map is not
an isomorphism, since the dimensions of V5 (P, 50(9),7) and V;(P',50(7),9) are 8 and 14,
respectively.

Remark 9.1. The above examples show that even if the rank-level duality map is well-
defined it may not be an isomorphism due to the inequality of dimensions of the source
and the target spaces. However, we can still ask if o* is injective? The next section gives
a positive answer to that question. This is distinct from the issue in higher genus, where
we will see that there is an equality of dimensions but still the rank-level duality map is
not an isomorphism (see Section 10).

9.3. Rank-level duality for 3-pointed P! with spin weights. Consider the embed-
ding (1.5). The only interesting cases for 3-points with spin weights are the tuples A=
(wo, wq, wq) and A= (w1, wq,wq). We also observe that the action of the automorphism of
the affine Dynkin diagram fixes wy and interchanges wg with w;. We first fix some nota-
tion. Let Y7 € Y, and Y5,Y3 € Y, 51 and we consider P (Y1,Y2 + w,, Y3 + wy). Let
i= (Y Y5 4 ws, Y5 +ws) and A= (we, wq, wq), where € is zero or one depending on the
even or odd parity of the number of boxes of the Young diagram of Y;. From the branching
rules of Section 8.3, we get the following map of conformal blocks

(9.1) V(X 50(2r +1),25 + 1)) = Vz(X,50(25 +1),2r + 1) ® Vz(X,s0(2d + 1), 1) ,

Here, X denotes the data associated to P! with three marked points and chosen coordinates.
The following is the main statement of this section.

Theorem 9.2. The rank-level duality map defined in (9.1) is injective.

The proof of this theorem is broken up into several steps and can be reduced to the
case when both Y5 and Y3 are empty and Y7 is just a Young diagram with one column, in
which case the corresponding conformal blocks are one dimensional for so(2r+1). We now
describe the steps in the reduction.

9.4. Reduction to the one dimensional case. The main tools used here are factor-
ization/sewing of conformal blocks (cf. Sections 2.3 and 9.7), and the fact that certain
Littlewood Richardson coefficients are one.

9.4.1. Step I. Clearly, we may assume that the rank of the conformal block in the source of
(9.1) is nonzero. Now consider a new tuple N = (o, wy, Y1, V3, wy), where Uy (resp. v3) is a
tuple of wy of cardinality |Ya| (resp. |Y3|). Similarly let i@’ = (7, (2r + D)ws, Y&, 71, (2r +
1)ws) and N = (@1, wg, We, 1, wq), where w, is wy or wy’s, depending on the number of

boxes of V1. It is easy to see that the triple (X, i/, A’) is admissible.
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9.4.2. Step II. Let X denote the data associated to P! with |Ya| + |Y3| + 3 marked points
with chosen coordinates. The rank of the conformal block Vi, (X,s0(2d + 1), 1) is one and
the rank of the conformal block Vs, (X, s0(2r + 1),2s + 1) is nonzero. The first assertion
can be easily checked via factorization (cf. Section 9.7) since the only nontrivial three
point cases with spin weights up to permutation are (wg,wq,wq) and (w1,wq, wq) both of
which are rank one. For the second assertion, we get by the factorization theorem that
the dimension of the conformal block V5, (X, s0(2r +1),2s + 1) is greater than equal to the
dimension of the following product of conformal blocks:

vﬁz,wr,YngwT (:{1,50(27“ + 1)’ 25+ 1) ® VY17Y2+OJT7Y3+0JT (x2,50(27‘ + 1)7 2s + 1)
®Vl737wmy3+wr (%3,50(27“ + 1), 25 + 1) .

Here, X1 (resp. X3) denote the data associated to a P! with |Ya|+2 (resp. |Y3|+2) marked
points and X5 denote the data associated to a P! with three marked points and chosen
coordinates. The nonvanishing of the dimensions on the first and third factors in the above
expression follows from Proposition 9.4.

9.4.3. Step III. Assume that the injectivity of the rank-level duality map for the admissible
pairs (5\" S N ) holds, then Theorem 9.2 holds, where N, i and N’ be as in Step II. The
basic idea is that we split up the rank-level duality map into a direct sum of several rank-
level duality maps. Now the injectivity of the rank-level duality map for the bigger space
implies the injectivity of the rank-level duality map for the components, and vice-versa.
The key geometric input is Lemma 9.7 in Section 9.7. The conditions in Lemma 9.7 are
guaranteed by the fact that the dimensions of the two conformal blocks on P! with weights
Vg, wy, 0 (Y2 +wy) and 3, wy, 0(Y3 4+ w;) are zero (cf. Proposition 9.4). This is where we use
that Y5, Y3 € 137»75_1.

9.4.4. Step IV. By the previous discussion, it enough to prove the injectivity of the follow-
ing rank-level duality map:

V5 (X,50(2r +1),2s +1) — V5 (X,50(2s + 1), 2r +1) ® V3, (X, s0(2d + 1),1) .

We now consider a degeneration of P! into nodal curve C' = C; U Cy, where C is a copy of
P! with two smooth marked points and the weights w,, w, are the weights attached to the
markings. The other component Cs is P! with rest of the marked points. The components
C1 and Cy meet at a point p. The normalization C' of C' is a disjoint union of C; and
(5 with one extra marked point on each component. Since the two marked points of C}
have spin weights, it follows that the weight associated to the new marked point on Ci,
considered as a component of the normalization of C, is marked by an SO(2r + 1) weight.
Hence, by repeating the process discussed in Section 9.7, we are reduced to the case where
X = (wp,w,Y),Y € Py 1(SO(2r +1)), and the case where X = (Y, Y1,@;). The rank-level
duality in the latter case is a Theorem in [50]. Hence, we are only left with the admissible
triples of the form (X, [, A), when X = (Y,w,,w,), £ = (YT, (2r + Dws, (2r + 1)ws) and
A= (We, W, wq). We now determine which Y are possible.
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9.4.5. Step V. As in Section 2.1, let V) denote the finite dimensional irreducible repre-
sentation of Spin(2r 4+ 1) with highest weight A\. By a theorem of Kempf-Ness [39], we
know that V) appears in the tensor product decomposition of V,, ® V,, if and only if
A € {wo,wiy .. wpr—1,2w,}. It follows from [10, Prop. 4.3] that the conformal blocks
Vy.iorwn (P1,50(2r + 1),2s + 1) are one dimensional, where Y € {wo,...w,_1,2w,}, and
trivial otherwise. We refer to these as the minimal cases.

9.5. Rank-level duality for the minimal cases. The minimal case can be further
subdivided into the case when |Y| is odd or even. After dividing into these cases, we will
approach the minimal cases by induction. The basic strategy is similar to the strategy of
the minimal cases in [50]. We will refer to the Appendix for some of the details of the
formulas.

To show that the rank-level duality map is injective, it is enough to find vectors

v ®@u2 ®vg € Hy @ Hyr @ Hy, @ Higri1yw, @ Ho, @ Higrg1)w,

such that (¥ | v; ® v2 ® v3) # 0, where (¥ | is the (up to scalars) unique nonzero element

of Vi 1ws(P!50(2d + 1),1), and € is either 0 or 1, depending on the parity of [Y].
9.5.1. The case |Y| = 0. In this case we choose v1 = 1, v2 = Ai<i<r_1<j<—s i, and

V3 = Ai<i<r—1<j<—s 7. It is then clear (cf. Section 7.3.1) that (¥ | v ® vy ® va) # 0.

9.5.2. The case Y = wy. Choose vy = ¢'9(—3) = R(BY)¢1!(—1) (cf. Lemma A.2 of the
Appendix), vg = L(BY) Ni<i<r—1<j<—s ®ij, and v3 = Ai<i<r _1<j<—s ®"/. Now by a direct
computation (cf. Proposition A.1), we get v2 = ¢1,0 A A1<i<r—1<j<—s Pi,j- We are now left
to evaluate (¥ | v1 ® v ® v3), and from the discussion in Section 7.3.2, it is nonzero.

9.5.3. The case Y = wy. We need to choose vy, v9 and v3 as before. In this case, take
= RQ(B?)qbl’l(—%)ngvl(—%) and vy = L(B;l)v, where as before v = A\1<i<, _1<j<_s @i j-
By Proposition A.1, we get v = ¢1,0 A p20 Av and vz = VPP = Ni<i<r—1<j<—s ¢ . Now
by Proposition A.4, we get

BB (~ 162 (~1) -1 = (2BLS,0<—1> LB () B*;%(—n) "

Let the three points be p; = 0, p2 = 1 and p3 = oo and let z be the local coordinate at
the point 0. Consider f defined by the equation 1/z. Around Pj, the functions f has a pole
of order one and hence a zero of order one around ps3. Let £ = z — 1 be a coordinate at the
point py = 1 and around pz, the function f has the following form f; (&) = 1—£+&2—€3 4.
This follows by formally expanding

1
f(Z):m

We now use gauge symmetry (cf. Section 2.3) to finish the argument
(U | R*(BY)¢"! (—5)9* (—3) © L(By v ® vP)
= (U] (2BLyo(=1) + B2 1 (—1) + B2 11(=1))-1© 1,0 A d20 A v @ v)

=1-(z-1)+(z-22% (23> +---
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=2V [ 1@ (=B + BY,(1) =) (610 A 20 A v) @ 077)
+ (W 1@ (=B + B2 (1) =+ )(b10 A d20 Av) @ 0°PP)
(U1 (~B2 L + B2 (1) — ) (G0 A dag A v) @)
=2V |1® B£’370¢170 A pao Av@voPP) .
In the above calculation, we use the fact B3’££1(¢170 NpagAv) = 33’1171@)1,0 NpaoAv) = 0.
This is justified by Lemma A.5. But now B5370(¢170 A ¢p20Av) = —v. Hence (¥ | 1®
Bi’gp(ﬁbl,o A p20 A v & voPP)) # 0 (cf. Section 7.3.1). Thus we are done in this case.
9.5.4. The case Y = ws3. The highest weight vector for the component H,, ® Hs,, is
given by ¢ (—3)¢! (—5)¢>! (—5). We choose v = R*(BY)¢"! (—3)d™! (—3)6>" (—3),
vy = L(BY)L(B3?)v, and v3 = v°PP. Now by Proposition A.1, we get L(BY)L(B;?)v =
®10 A P20 A P30 A v, and by Proposition A.6 we get
RY(BY)g" (=3)0™ (=5)0™! (—5) = 310" (=5)¢™ (= 3)¢**(=3)]
=3[0" 7 (=5)0™(=5)0™ (—5) + ¢ (= 3)¢" T (=)™ (-3)
T = HE DEO(-1) + 6= (-5 (-]
+o1 (=3)¢ T (=8 (—3) + o1 (=) (- 1)e> T (-3)] -
We can rewrite the above expression in the following “Kac-Moody” form.
RY B¢ (—5)6™! (—5)¢™! (—3) = 31BZ5(-1)6"*(—3)
1,-1 , 2,—1 , 1,-1 ,
—3[ = B (16— + B L ()6 + B L (-1)6%(-)
3,-1 2,—1 3,—1
—B2 L (-1)¢"(—3) - B Li(-1)0*°(=3) + B2 1 (-1)6*0(-3)] -
We now evaluate (¥ | v; ® vy ® v3) using gauge symmetry (cf. Section 2.3) as before.
Choose P;, P» and P3 to be (0,1, 00) with the obvious coordinates. Expanding f(z) =1/z
around 1 and oo and applying gauge symmetry, we get that (¥ | v; ® v ® v3) is (up to a

sign) equal to 31(¥ | ¢19(—1) ® Bz’g’0(¢1,o N d2.0 N P30 A v) @ v°PP), which is nonzero by
the discussion in Section 7.3.2. Explicitly,

Lemma 9.3. Let a and b be both nonzero integers and i # j are both positive integers,
2,0 iy
then BZ3 (41,0 A 92,0 A d30 Av) = —v, and B (¢10 A d2,0 A d30 Av) = 0.

9.5.5. The general case: Y = wy or 2w,. The strategy for the general case is the same
as for the previous special case. We choose the points (p1,p2,p3) = (0,1,00). We choose

— Rk(BO) 171(_1) A 2,1(_l) Ao A k’,l(_l) — A A A d v2 = voPP
U1 )¢ )N 5 ¢ 5); V2 = P10 Gk, N v and vz = voPP.
Using gauge symmetry (cf. Section 2.3), the expression (¥ | v; ® vy ® v3) is equal (up to a
sign) to,

(9.2) NT | o0 (=) A AR (L) @ v @ us) .

The above step uses Proposition A.7 and a calculation similar to Lemma 9.3. We can
rewrite the right hand side of (9.2) as follows:
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e If k is odd,
k—
(U] M0(=5) A AP (—5) @ v @ vg) = (BZg(—1) - BE G (—1)6"(=5) @ vy @ v3) ;
o If k£ is even,
(T [ 0(=5) A A=) @y @ vs) = (B ((=1) - B (1) @ w2 @ vg) .
By using gauge symmetry (cf. Section 2.3) we get that up to a sign (¥ | v; ® vy ® v3) is

the following:
o If k£ is odd,

KW | ¢10(=3) ® B255 -+ BY %0 @ vg = KW | 6M0(=3) @ g1 A v @ vP) = k! ;
e If k is even,
KT [ 1@ ®BLY - B v @vs = kKT | 1@ v @ v?P) = kL.
This completes the proof in the general case.

9.6. Key Littlewood-Richardson coefficients. In this section, we prove some basic
facts on dimensions of conformal blocks and apply this to reduce the general case of rank-
level duality to the minimal cases.

Proposition 9.4. Let A € Py(so(2r + 1)) and let A\ = Y +w, and Y € Y,5, then
dim¢ V; (X,50(2r +1),¢) # 0 , where &y is a |Y|-tuple of w1’s at level £.

A1 Wi

Proof. The proof is by induction on |Y|. If Y is zero or one, then it is easy to see that
Voo, wor o (X,80(2r + 1),0) and Vi, w, w, (X,80(2r + 1),¢) are both one dimensional. Now
the inductive step follows by factorization (cf. Section 9.7). By factorization and Lemma
9.6, we know that the dimension of Vy ,, &, (X,50(2r + 1),¢) is greater than equal to the
dimensions Vy o, 3 (X,50(2r + 1),£) ® Vo (X,80(2r +1),£). Here X' =Y’ + w, and

[Y'| = Y| —1 and & is an |Y|-tuple of w;.
O
We now determine which three point so(2r + 1), level 2s 4 1, conformal blocks with

weights X are nonzero. First, we compute the Littlewood-Richardson numbers following
Littlemann [46].

Lemma 9.5. Let A € Py(so(2r + 1)) and assume that X is of the form Y + w,, where
Y €Y, . Then the dimension of the space Hom50(2r+1)(Vw1 Q@ Vy®V,,C) is nonzero if y is
either X\, or is of the form Y’ + w,, where Y’ is obtained by adding or deleting a box of Y.

We use the above proposition to calculate the following dimensions.
Lemma 9.6. Let A =Y7_ ajw; + w, € Py(s0(2r +1)). Then,
1 ifp € Pyso(2r+1)), p asin Lemma 9.5;

0 otherwise.

dimg V3 ,, ., (X,50(2r +1),0) = {

Proof. The proof follows directly from the explicit description of three pointed description
of conformal blocks on P! as the space of invariants (cf. [10, Prop. 4.3]). O
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9.7. Sewing and injectivity. In this section, we discuss the key induction steps in the
proof of rank-level duality maps. This strategy has already been used in [19, 51]. We recall
the details here for completeness. We begin with an important lemma.

Let B = SpecC|[t]. Suppose V and W are two coherent sheaves such that rankV <
rank W and £ be a line bundle on B. Suppose f : V — W ® £ be a morphism of vector
bundles over B. Assume that over B there are isomorphisms: @s; : V =5 ®;crV;, and
Dt - @jele =5 W, so that if fm‘ V= Wj ® L, then

e For each i € I, f; j; = 0 unless 7 = j.
e The map f =Y ;t"™t; 0 f;; 0 s;, where m; are nonnegative integers.
With the above notation and hypotheses, we have the following easy lemma.

Lemma 9.7. The map f is injective on B* = B\{t = 0} if and only if the maps fi;’s are
injective for all i € 1.

Remark 9.8. We will sometimes need to use a slightly generalized version of Lemma 9.7.
Suppose in the above situation there is an isomorphism @©t; : ®je;W; == W, and an
injective map & : I — J such that f; ; = 0 unless j = 6(¢). Then f is injective if and only if
for each i € I, the maps f; 54;)’s are injective. For our applications, the role of I will often
be played by the set Y, s or Y, s—1 and the role of J by Y.

Consider a conformal embedding s — g. Assume that all level one highest weight inte-
grable modules of g decompose with multiplicity one as s-modules. Let A= (A1,...,Ap)
be an n-tuple of level one highest weights of g and X = (A, ..., An) be an n-tuple of level
¢ weights that appear in the branching of A. By functoriality of the embedding of s — g,
we get a C [[t]-linear map a(t) : V3(X,g,1) — V}(X,s,ﬁ). For A\ appearing the branching
of A, we denote by ay (t) the rank-level duality map for the smooth curve Xj. as follows:

ana®): Vs, Fog )@ = V5, Fos.) @ CL] -

We recall the following proposition from [19].

Proposition 9.9. On B, the map «(t) decomposes under factorization/sewing as follows

a(t)osa(t)= Y t™ -sx(t)oann(t),
AEB(A)

where my are positive integers given by the formula: my = Ax(s, ) — Ap(g, 1) (see (2.1)).

Remark 9.10. For the Lie algebra so(2r + 1), it is easy to see that V), is isomorphic to its
dual as an s0(2r + 1)-module. Hence AT = \.

9.8. Proof of Theorem 1.7. The proof now follows from factorization as in the previous
section, Lemma 9.7, the rank-level duality for SO-weights in [50], and Theorem 9.2.

10. STRANGE DUALITY MAPS IN HIGHER GENUS

10.1. Formulation of the problem. As mentioned in the introduction, the natural map
between the special Clifford groups obtained by the tensor product of vector spaces induces
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one between the moduli stacks p : Mo,y 41 X Magr1 — Magy1. By a direct calculation we can
check that p*(P) ~ PE2HIRPO2r+1 Hence, we obtain the map SD defined in (1.7). Recall
that dimc H°(Mag, 1, P) = 229, so by Corollary 1.2 the map SD cannot be an isomorphism.
However, it is natural to ask the following:

Question 10.1. Forr,s > 1, is the map SD injective?

We shall show that the answer to this question is actually negative for all r, s, and in all
genus.

10.2. Action of J>(C) and the strange duality map. If W, and W are vector spaces
each with a nondegenerate symmetric bilinear form, then the tensor product Wy = W, @ W
inherits one as well. This gives an embedding SO(W,.) xSO(W,) — SO(W,). If dim¢c W, =
2r + 1, dim¢ Wy = 2s + 1, the map above in turn induces one between the corresponding
moduli stacks,

(10.1) m : Mso2r+1) X Mso@s+1) — Mso2d+1) -
The embedding of orthogonal groups lifts to one on spin groups. Then we have a
commutative diagram:

7)2 x 7,/2 7./2
(10.2) Spin(2r + 1) x Spin(2s + 1) — Spin(2d + 1)

| |

SO(2r +1) x SO(2s + 1) SO(2d + 1)

where the map Z/2 x Z/2 — 7,/2 is multiplication. By results of [13], we know that Mo, 41
forms a J2(C) torsor over Mso(2r41)- Hence, from (10.2) we get the following commutative
diagram of moduli stacks:

Marp1 X Masy1

Mad+1
(10.3) lbw)xb(c*) lmc)
Mso(zr+1) X Mso(@s+1) —— Mso(2d+1)
which is equivariant with respect to the action of J3(C) x Jo(C') under the multiplication
map Jo(C) x Jo(C) — Jo(C).

The natural inclusion of SO(2r+1) C SL(2r+1) gives the following commutative diagram
of moduli stacks:

Mso@r+1) X Msos+1) —— Mso(2d+1)

lf1®f2 lf

Msp(2r+1) X Msp2s+1) L, Msi (2d+1)
Let D be the determinant of cohomology on Msy (2441) (cf. Proposition 3.4). Also, denote
by D the pull-back of D under f. Since we know that p*D = DO2s+1) g DOr+l) i
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follows that m*D = 5?(28+1) &55®(2r+1), where D; and (resp. D;) denote the determinants
of cohomology and their respective pull-backs. From Proposition 3.4, it follows that if we fix
a theta characteristic x, the pull-back of P,; under the map m in (10.1) is T?QSH)@??(ZTH).

As mentioned before, given x € Th(C) we get an action of J3(C') on the space of global
sections HO(Ma,41, P22+t1) and the above diagram of moduli stacks commutes and is
equivariant with respect to Jo(C) x Jo(C). We have the following.

Lemma 10.2. Let X and Y be two spaces with an action of a group G actions and
f: X =Y be a G-equivariant map. Suppose L is a line bundle on' Y and suppose both L
and f*L are G-linearized. Then the map of global sections is G-equivariant

f*HY(Y,L) — HY(X, f*(L)) .

Proof. Let s be a global section of X and we consider gf*(s). Let z be any element of
X. Then we get gf*(s)(x) = f*(s)(g'z) = s(f(g7'z) = s(¢7 1 (f(x)). On the other hand
f*(g(8)(x) = (9(s))(f(z) = s(¢g~ L f(x)). Thus we have the equality gf*(s) = f*(gs). O

The commutativity of the diagram 10.3 and Lemma 10.2 implies that the following map
of global sections is J2(C') x J2(C) equivariant.

(10.4) HO(Mayy1, PPCHIY @ HO(Mogyr, PPCHIY 5 HO(Maqyq, P)*

Lemma 10.3. Let Vi, Vo and W be three vector spaces endowed with an action of a finite
abelian group A. Let f: V1 @ Vo — W be a A X A equivariant map, where the action of
A x A on W is via multiplication map A x A — A. Then f: V{* @ Vi® — WX3 is zero
unless x1 = X2 = Xg,/\where VX denotes the x-character spaces of a vector space V' with
respect to A and x € A.

Proof. The proof follows directly by taking character subspaces of f with respect to A x A.
This implies that x1(a1)x2(a2) = x3(ai.a2) for any a; and ag in A. This is only possible
when x1 = x2 = x3. O

Let V' be a finite dimensional vector space and A a finite abelian group acting on V.
The invariant subspace V4 is a A-submodule of V, and since A is finite, V admits an
orthogonal splitting of the form V = & c 7VX, ie. there is a symmetric nondegenerate
bilinear A-invariant bilinear form {, } such that {VX1,VX2} = 0 unless x1 = x2. Hence
s : (VX)* ~ (V*)X canonically. The map is given as if f € (VX)*, then extend f to f by
the obvious rule f(v) = 0 unless v € VX. Clearly f € (V*)X.

Lemma 10.4. Let Vi, Vo and W be as in Lemma 10.3 and further assume that f*: V3 —
Vs @ W is injective. Then the induced map between the x-character spaces g : V{¥ —
(V59* @ WX is also injective.

Proof. Since the map f is A x A equivariant under the multiplication map, then it is also
equivariant with respect to the subgroup B = A x id. Taking invariants with respect to
B implies that the map [} : V¥ — V5 ® WX is also injective. Now recall that there is
a canonical isomorphism s : (VX)* = (V*)X. Consider the map V{* — V&' @ WX given
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by the following: V;¥ L5 (VX)* @ WX -5 (Vy)X @ WX < V5 @ WX, Tt follows from the
definition that the composition of the above map coincides with f¥, and since the latter is
injective so must be g. O

By taking invariants in (10.4) with respect to the Jo(C) x J2(C) action, Lemma 10.4
and “yes” to Question 10.1 would imply that the following map is injective:

(C)®(C-s:;.

[0, P2 2 [N, PO+
Now since r and s are arbitrary, and [HO(MQT+1, TP®(25+1))} RO H°(Mso(2r41), P2,
we get the following :

Question 10.5. Let k € Th(C') and consider the Pfaffian section s, in HO(MSO(MH), Pr).
The pull-back of the Pfaffian divisor induces a strange duality map:

st H (Mso(zr41), P2 ) — HOMso sty PEEHY)

*

Is s}, an isomorphism for all k¢

The discussion above tells us that an affirmative answer to Question 10.1 implies an
affirmative answer to Question 10.5. We now show the converse.

Proposition 10.6. Questions 10.1 and 10.5 are equivalent.

Proof. Since the HO(Magy1, P)”2(Y) is one dimensional and generated by s, it follows from
Lemma 10.3 that the map:s, : HO(MSO(QTH),?%(QSH))* — HO(MSO(%H),?%@TH)) is
zero unless Kk = k1 = Kko. Now if the answer to Question 10.5 is yes, this implies that for
Kk = K1 = Kg, then s}, is injective. Since the level is odd, we have Li’”“ = L,, where L, is
the two torsion line bundle corresponding to the character y, and so

HO(Mapy1, PP )~ @ HYMsoari1), PECY)
k€Th(C)

It follows that the map s from (1.8) is also injective. This implies an affirmative answer
to Question 10.1. In the above decomposition, it is crucial that we are working with odd
levels. O

10.3. Comparison of dualities and reduction to genus one. In this section, we re-
formulate Question 10.1 in terms of conformal blocks. We use the factorization/sewing
theorem of conformal blocks to reduce Question 10.1 to a rank-level duality of conformal
blocks on elliptic curves with one marked point (cf. Sections 2.3 and 9.7).

Let C' be a stable curve of genus g with one marked point, and let X be the data
associated to the additional choice of a formal neighborhood around the point. Introduce:

Vo (X,80(2r +1),25 + 1) := Vo (X,50(2r +1),25 + 1) ® Viggp1ye, (X, 50(2r +1),25 + 1) .



STRANGE DUALITY AND ODD ORTHOGONAL BUNDLES ON CURVES 43

We have the following diagram:
Voo (X,50(2r +1),25 +1) @ Vo (X, 50(25 + 1), 2r + 1) — Voo (X, 50(2d + 1), 1)

(10.5) l i

HO(Mayy1, PEEsHDY @ HO(Mygyq, PErH1))* HO(Mags1, P)*

Here, the vertical arrows are given by Theorem 4.3, and the horizontal arrow on the top
is given by the rank-level duality map induced by the branching rule in Section 8.3. The
other horizontal arrow is the strange duality map. With the above notation, we have the
following.

Proposition 10.7. The rank-level duality and strange duality maps are the same under
uniformization, i.e. the diagram (10.5) commutes.

Proof. The proof follows from the uniformization theorem of the moduli stacks and is
similar to the proof of [16, Prop. 5.2]. We omit the details. O

Recall the notation B(A) from Section 8.3.

Question 10.8. Let E be any elliptic curve and X associated to E with a formal neigh-
borhood at one marked point. Let X € Pys1(SO(2r +1)) (resp. u € P 41(SO(2s+ 1)) and
A € Pyg11(SO(2r 4 1)) such that A is either wy or wi, and (A, u) € B(A). Is the following
map of conformal blocks injective:

Va(X,50(2r +1),25 + 1) =V (X,50(2s + 1),2r + 1) ® Vo(X,50(2d + 1), 1)

@’V;(N) (%,50(28 + 1), 2r + 1) & VU(A) (%,50(2d + 1), 1) ?

Proposition 10.9. An affirmative answer to Question 10.8 implies one for Question 10.1.

Proof. By Proposition 10.7, it is enough to prove it for conformal blocks. Let Cy be a
nodal curve with ¢ elliptic tails attached to a P'. Consider a one parameter family of
C — Spec(C [[t]]) such that the generic fiber is smooth and the special fiber is Cy. The
normalization of Cy is a P! with g marked points, and g-elliptic curves each with one
marked point. By factorization (cf. Section 9.7), it follows that V,,, (Co,s0(2r +1),2s + 1)
splits up as a direct sum where each component looks like

g
(R VA (B, s0(2r +1),25 + 1)) @ V(P! s0(2d + 1), 1) ,
i=1

and the direct sum is indexed by g-tuples X = (Aq, ..., Ag)s Ai € Pog11(SO(2r + 1). These
weights have the special property that given p and A, there exists at most one A such that
(A, ) € B(A) (cf. Section 8.3). This guarantees that the conditions in Lemma 9.7 are
satisfied, and the map in Question 10.1 splits as a direct sum (up to a nonnegative power
of the parameter t) indexed by the set of g-tuple of points in Ps511(SO(2r 4+ 1)).

Now [50, Prop. 9.11] and the compatibility of factorization/sewing with rank-level duality
(cf. Sections 2.3 and 9.7, and also [65]), imply that Question 10.1 holds in the affirmative
if this is true for Question 10.8 and if there is a rank-level duality isomorphism on P!
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with g marked points and weights coming from Ps511(SO(2r 4 1)). The rank-level duality
isomorphism on P! with n-marked points and weights coming from Pys.1(SO(2r + 1)) has
been proved in [50]. Hence, “yes” in Question 10.8 implies “yes” in Question 10.1. ([l

Remark 10.10. By the same strategy, it is natural to continue by degenerating the elliptic
curves and applying factorization to reduce to the case of P!. However, serious issues
occur due to the appearance of spin weights, which were avoided before. The problems are
twofold. They are:
(1) The property that given A and pu, there exists an unique weights A such that
(A, ;) € B(A) fails. The failure of this property means the factorization of rank-
level duality maps falls into nondiagonal blocks, so we can not do induction.
(2) Rank-level duality isomorphisms on P! with spin weights fail to hold. This was
explained in Section 9.2.

11. THE CASE OF ELLIPTIC CURVES

In this section, we study the following maps and investigate whether they are injective.
An affirmative answer to both would give an affirmative answer to the strange duality ques-
tion for elliptic curves. However, we shall see that this is in fact not the case (Proposition
11.2). Let E be an elliptic curve with one marked point and a choice of formal coordinate.
The maps are:

Vi (E,50(2r +1),25 + 1) — (Vi (E,50(25 + 1), 2r + 1) ® Voo (B, 50(2d + 1), 1)

(11.1)
D Vs 1)y (B,50(25 + 1), 2r + 1) @ Vo, (B, 50(2d + 1), 1)) ;

(11.2)
V(2541w (£,50(2r +1),25 +1) — (\7;;0 (E,s0(2s +1),2r+1)®@V,, (E,s0(2d+1),1)

B Viort1)w (£,80(25 +1),2r + 1) @ Vo (B, 50(2d + 1), 1)) )

11.1. Factorization for elliptic curves. We will use factorization to further reduce to
the case of P! with three marked points. Let us first focus on (11.2). By definition of the
diagram automorphism o, we know that (2r + 1)w; = o(wp). Hence, by factorization (cf.
Section 9.7):

dim¢ V(2r+1)w1 (E,s0(2s+1),2r +1)

= > dime Vigr i1y A (P s0(2r +1),25 + 1)
AEP2s11(s50(2r+1))

— 3 dime Vo oy a (Pl 50(2r +1),25 + 1) (cf. [28])
>\EP25+1(50(27“+1))

= [{\ € Passr(s0(2r +1)) | o(X) = A}

= ‘yr,s\yr,s—l‘ .

By the above calculation, the next result proves injectivity of (11.2):
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Proposition 11.1. The rank-level duality map between the following one dimensional con-
formal blocks is an isomorphism.
v(2s+1)w1,/\,)\(]}»1750(2r + 1)7 2s+ 1) -
o (P180(25 +1),2r 4+ 1) ® Vi, wyq (P, 50(2d + 1), 1)

where A\ =Y 4w, and Y € Y, \Yrs—1 and \* =Y* +w, and Y* € Y, , obtained by taking
the transpose of Y and taking the complement in an r X s boz.

Proof. This is a consequence of Theorem 9.2. U

It remains to investigate the injectivity of (11.1). The following appear in the factoriza-
tions of the conformal block V,,,(E,s0(2r +1),2s + 1):
(1) Vax(Ptso(2r +1),25 + 1) for A € Y, 6.
(2) Vaa(Ph s0(2r 41),25 +1) and V,(y) o(n) (P, 50(2r +1),25 + 1) for A € Yrs—1 +w;.
(3) Vaa(PLs0(2r +1),2s + 1) for A € Y, \Yy 1.
Thus we need for check injectivity for each of the factors. For the factors of the form in

(1), X is a weight of SO(2r + 1), and we only need that the rank-level duality map is an
isomorphism for A € Y, ,:

Vaa(Pl s0(2r +1),25 4+ 1) = Vyr \r (P, 50(2r + 1), 25 + 1)* ® Vi o, (P!, 50(2d + 1), 1) ,

where € is zero or one depending on the parity of |A|. This is done in [50]. The argument
for A € Y, s\Y, s—1 follows from Theorem 1.7. Thus, we are only left with the case when
A€ Yrs—1+wp. Forevery A\ =Y 4+ w,, Y € Y, s_1, consider the map:

Viourr (Pl s0(2r +1),25 +1) @ VWOJ()\),U()\)(Pl,so(Qr +1),25+1)

(11.3) — Vioaeae (P 50(25 + 1),2r + 1) ® Vi w0, (P, 50(2d + 1), 1)
® v?2r+1)w1,)\*,)\* (P1750(28 + 1)7 2r + 1) ® vw1,wd7wd(P1750(2d + 1)7 1) :

The following is the main result of this section.
Proposition 11.2. The rank-level duality map in (11.3) is not injective.

Proof of Theorem 1.10. By Propositions 10.9 and 11.2, it follows that the answer to Ques-
tion 10.1 is negative. Then Proposition 10.6 completes the proof. ]

Remark 11.3. It is easy to see that the dimensions of both the source and target of (11.3)
is two. Since there are maps between all components that appear in map Question 10.8, it
follows from Theorem 9.2 that all entries of the (2 x 2)-matrix are nonzero. The proof of
Proposition 11.2 is broken up to into several steps. We will fix an explicit basis to compute
the matrix of the map (11.3) and show that the determinant vanishes.
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11.2. Tensor decompositions. We digress to give an explicit expression for highest
weight vectors that is compatible with branching and tensor products associated to the
marked points. As above, let X refer to the data of a curve C' with marked points and
a choice of local coordinates. To make the notation more transparent, let us denote the
inclusion of an abstract highest weight s0(2r 4+ 1) @ s0(2s + 1) module appearing in the
branching of a highest weight s0(2d + 1) module by

B H(s0(2r + 1)) @ Hu(s0(2s + 1)) = Ha(s0(2d + 1)) .

For an element v1 ® - - @ v, € Hy, (9) ® - - @ H), (g), let [v1 ® - - - ® v,,] denote the vector
in the quotient space of dual conformal blocks, e.g.

(V1 @ @ vy] € V5(X,50(2r +1),25 + 1) = H;(s0(2s + 1)) /9(X)IH5(s0(25 + 1)) ,

where X = (M,-..,Ap). Since X is fixed, we will drop the notation for the curve X from
the notation of conformal blocks. It is easy to check (and we have already used!) the fact
that the map

v>\17/\2,)\3 (50(27“ + 1)7 2s+ 1) & Vm,uz,us (50(25 + 1)» 2r + 1) — VAl,Az,Aa* (50(2d + 1)a 1) )
[v1 ® v ® v3] ® (W) @ Wy @ w3) — [ﬁi”” (v @wy) ® ﬂf“z(m ® wa) & BXsﬂS(Ugg ® wg)} ,

1 2 3

is well-defined.

Let vy € Hy,(s0(2d + 1)) be the highest weight vector of the component Hy(so(2r +
1)) @ Hyx«(s0(2s+1)), and vy € H,,,(s0(2d+1)) the highest weight vector of the component
Hon)(50(2r+1)) @FHp+(s0(25+1)) as expressed explicitly as an element of 3, (s0(2d+1))
as in Section 8.4. We denote v* and #* to be the corresponding opposite highest weights
again expressed explicitly.

Choose highest weight vectors v; and ve of Hy(s0(2r + 1)) and Hy«(s0(2s + 1)) such
that ,6’32‘* (v1 ® v2) = vy. Similarly choose v! and v? for the opposite highest weight such
that 533*(7)1 ®v?) = v*. Let 91 be such that ﬁgg)‘))‘* (71 ® v2) = Uy and similarly choose o'
for the corresponding o*.

Let © be a vector in H,, (50(2d + 1)) which is equal (up to a scalar) to R T1(BY) acting
on the highest weight vector of the component Hy,(s0(27 + 1)) ® H(gpy1)w, (50(25 + 1))
expressed explicitly in Clifford algebra terms. Since we get the vector ¥ by acting only
on the right component in the tensor decomposition, it follows that v is a pure tensor in
Hap (50(2r + 1)) @ Higp41), (50(25 + 1)). Hence, we can choose x € H(g,4 1), (50(25 + 1))
such that ﬁg;@rﬂ)wl(l R ) = 0.

We are interested in the following classes.
® Vo r(50(2r +1),25 + 1) @ Vg x= 2+ (50(25 +1),2r + 1) —= Vo wawq(50(2d + 1), 1)

leuev]elouwnev?] - [ lel)e 8 (v @)@ BN (v @v?)]
=[1®u® U/\] .
® Voo (N),o(N) (50(2r +1),25 + 1) @ Vo a2 (50(25 +1),2r + 1) = Vo w0y (50(2d + 1), 1)
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1o6 @@ [leuev?] - [B (lel)® BN (51 @) @ BV (3 @ v?)]
=100, .
® Vi aA(50(2r +1),25 + 1) @ Vigrp1yuy ax 2+ (5025 + 1), 20 + 1) = Vi, w0y w,(50(2d + 1), 1)

lRve@v]®rov v — | 2’1(2”“)“’1(1 ®x) ﬁ(;\;‘* (11 @ V) ® ﬁﬁ;\*(vl ® v?)]
=[0Ru)y® v’\] .
@ Vioo(0),o() (8027 +1), 25+ 1) @V (9 1)y A= 2= (50(25+1), 21 +1) = Vo, 0y w,(50(2d+1), 1)
15 ® @1] R 1)2] N [/Bgyl(ZT+1)wl(1 ®1)® ﬂoc:c(lA))\* (01 @ vg) ® ﬁf:g)\))\* (171 ® v2)]
= [ @0\ ®0Y] .
11.3. Case by case analysis.

11.3.1. The case (wo, A\, A) X (wo, A*, \*) = (wo,wq,wq). Let A =Y +w,, Y € Y, 5. Let
vy = Ay _g®ij as in Proposition 8.3. Similarly let v = Ay _m ¢"I. Let (¥| denote the
4,0 4,0

unique up to constants nonzero element of V¥ ., (P',50(2d 4 1),1). This was discussed

in Section 7.3.1. Let B( , ) be the nondegenerate bilinear form on Wjy. The choice of vy

(resp. v*) implies that (V|1 ® vy ® v*) is up to a sign equal to [l _mB(#i;,¢"7) which
1,0

is nonzero.

11.3.2. The case (wo, A, A) X ((2r+1)wi, A", \*) = (w1, wq,wq). Let A =Y +w, and further
assume that A € Y, s_1. We choose vy and v» as above in the previous case. We need
to choose a vector in Hy,(s0(2r + 1)) ® H(g,41)w, (50(25 + 1)) as an explicit element in

Han (s0(2d + 1)). We choose the vector: o := Byo(—1) -+ Blo(—=1)BYg(—1)¢t0(—1). Let
(¥ | be the unique nonzero vector of V (P!, s0(2d + 1), 1) normalized such that it is

Ww1,Wa,Wd
equal to the one induced from Clifford multiplication (cf. Section 7.3.2). We now evaluate
the following using gauge symmetry (cf. Section 2.3) and choosing the points to be (1,0, c0)

with the obvious local coordinates.
(U]ieuevY) = (¥]B3(-1)-- BBy (-1)¢"(-3) @ vy ®v?)
= 2,0
= (=1)(¥ | Bly(—=1)Blo(—1)$"0(=3) ® Biguy @ v*)

T BB (-1)6" (1) @ vy @ )

= B0 h e e

= (T 6105 @ BYn @)

= 27"171 (_1):;;/\“ (T | P(—L) @ droAvr @Y .
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We used the following in the calculation above.

Lemma 11.4. With the same notation,
(1) fori> 0, we get Bf:gfu)\ = 1oy ;

_1)rsf\>\\+l

0,0
(2) Bigox = (Tdh,o N V).
Proof. The proof is as usual by a direct calculation. The most important observation is

that v2¢%%v = (—1)Pv, where p is the degree of v in A W . O

11.3.3. The case (wo,a(N),0(A)) X (wo, A", A*) = (wo, wa, wa). Let A =Y +w, and further

assume that the number of boxes in the ﬁrsE row of Y is s —1. Assume that Y =Y +y; _1,

so that the number of boxes of Y is s. Let A =Y +w, and v5 = A? . ¢i,; (for notation,
i,j=

see Section 8.4).
We need to choose a highest weight vector of Hy(y)(50(2r 4+ 1)) ® Hy«(s0(2s + 1)) as an

explicit element in 3, (so(2d + 1)). Applying Corollary 8.5, we choose Uy := Bé:é(—l)v;\.
Let (¥ | be the unique element of the V¥ ., (P',s0(2d 4 1),1) We want to evaluate the
following:

(U100, ©0") = (U] 10 Byy(—1)vs @ BYY (~1)0Y)
= —(U | 1@ BYY(1) By (~1)vx @ v*)
= —(| 1@ ([BYY, Bypl + (BYY, Byp)e)vs @ )
= (| 1@ [BYY, Byplos @ v*) — (¥ | 1@ vg @ v*)
= (U [1® Byio; @0Y) — (¥ | 1@ 05 @ 0*)
= %@ 1®v;®0Y) — (¥ | 1805 @)
_ f%@ | 1®v; ©0Y) .

11.3.4. The case (wo,o(N),0(X)) x ((2r + 1)wi, A, \*) — (w1, wa,wq). Let A be such that
the Young diagram associated to the weight A has exactly s — 1 boxes in the first row. Let
(¥ | be the unique nonzero element of V; (P!, 50(2d + 1), 1) normalized such that it

w1,Wd,Wd
is equal to the Clifford multiplication. We want to evaluate

~ a B 1 B 3 1 ~ 0.0 by
(Ploeneth)= (V|10 o) = (U] Blg(-1)6"(~3) @ v 0 ")
1 ~ 0,0 )
= ?OI’ | ¢1’0(_%) ® Bypuy ® )
1 - _
=5 (¥ | ¢"0(—3) ®:0%010 105 @ 07)

1

= 5 (W] 6M(=5) ® (10 A v3) @)
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-1 (rsf|5\|+1) ~ ~
= ED T ) 6101y @ o A vy @ 0Y)

(\/5)2T+1
(—1)rs=IN)

- (\/5)72%1@/ | 62 (—3) @ d10 A s ® ) .

11.4. Proof of Proposition 11.2. Let A =Y 4+ w;,, Y € Y, ,_1, and we further assume
that the number of boxes in the first row of Y is exactly s — 1. The previous calculations
tell us that the matrix of the map (11.3) is the following: Ay :=

(U |1® vy @) ~ LU 1@ @0Y)

_1\rs+1—|A| ~ _1)(rs=Ixl) =~ 2\
CUZ (0 [ 00D @ dro Aoy @) EL W | 910(— 1) @ ¢ o A vy @ 02)

Then the determinant is (up to a constant): det A ~
(U | 100y@0" (¥ | M0(=1) @1 0Av5 @) — (U | 1@us @0 ) (U | 910(—1)@¢1 gAva@0?) .

But now by the construction of (¥ | and (¥ | in Sections 7.3.2 and 7.3.1, we get
o« (T 1691 @ dro Ay @) = (| 100y @0,
o (U |01y ignvy@od) = (T]10v; @)

It follows that det Ay = 0. This completes the proof.

APPENDIX A. COMPUTATIONS IN THE CLIFFORD ALGEBRA
In this section, we compute some vectors in the highest weight modules as explicit

elements in the infinite dimensional Clifford algebra.

A.1. Action of L(B;) Consider the rectangle r x s as a Young diagram Y where the rows
are indexed by integer in {1,...,r} and the columns by {—s,...,—1}. Let (i,7) be the
coordinates of Y and let v := Ay —mPij (cf. Section 8.4).

Proposition A.1. Let v as before be the highest weight vector of the component with
highest weight (wr, (2r + 1)ws). Let 0 < k <m <r, then

L(B(_kﬁl))L(Bk_f;H)) - 'L(Bq;g_S))L(B;z(mfl)) U =0ko A Pkt1,0 N A Pmo AU .

A.2. Action of RF(BY). Let v, = qbl’l(—é)gbm(—%) -+ ¢M1(=1) - 1. In this section, we
want to give explicit expressions for Rk(B;)Uk. First, consider the case when k£ = 1.

Lemma A.2. Consider the highest weight vector (j)l’l(—%) -1 of the component with highest

weight (w1, w1). Then R(BY)¢b1(—1) 1= ¢"0(-1).

Now we want to compute R?(BY)vy. We first have the following lemma
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Lemma A.3. For the component (w2, 2w1), ¢*1(—3)¢**(—3)-1, is a highest weight vector.
Moreover,

(A1) R(BY)us = 90(~3)6% (= 1) + 6" (= 1)¢*0(~})

Proof. The proof is by a direct computation. As before, we know that R(BY) acts as
Yo —r<q<r ¢%%¢, 1 : on the infinite dimensional Clifford algebra for 56(2d + 1). Hence,

R(B)G" (=5)6% (=3) = D [67°(=5)41(5) = 041 (=3)9™(5)] 0" (—3)6™! (=3)

—r<q<r

Proposition A.4. We have:
R(BY)va =2 [¢"(=5)¢*°(—3)) — (6" 1 (=2)> (-3) + " (- 3)* 1 (—3)] -
Proof. Compute using (A.1),
R(B)Y(—1)¢™ (=3) = Y [¢"%(=3)601(3) — bg1(—5)0"°(3)] "0 ()™ (-3)

= 01O 1) — doy (L) (-Y)
= ¢'0(— Dp_20(—3) + o>t (— Do_11(—3)
RBNEO (DO (L) = T 69— L)dpa() — dyr(— D169~ )gh (1)

—r<q<r
= —¢"0(=5)¢*(—3) — ¢-21(—3)8"
9" (—=3)d20(—3) — > (=3)d-1,1(—3) .

0

We use the following calculation in the proof of strange duality for the pair (w2, w,,w;)
and (2wq, (2r + Dws, (2r + 1)ws).

Lemma A.5. Let w = ¢10 A 920 A Ni<i<r,—s<j<—1 ¢ij- Then the following hold in
He, (50(2r + 1)) @ Hias41)a, (50(23 +1)):

2,1 1,0
B w=B*1w=0; B w= A Gij -
1<i<r,—s<j<-1

Next we compute R?(BY)vs. Our strategy is same as the previous steps.

Proposition A.6. We have:
RYB)vs = 6 [6"0(=3)0**(=5)6*(=3)] = 3[¢" (=5 (= )™ (=3)
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+ 910 ()6 (40 () + 08 (30 (— D)D)
+ M=) (—h)e" (=) + oM (-h)eP T (=DM (=)
+ 9 (=10 (h)e ()]

Proof. The proof follows by applying the expression for R(BY) successively:
R(BY)vs = ¢"°(=3)9*! (—3)9> (=3) + ¢V (=3)9** (=3)9> (=3)
FOM(= 5 (580 (-)

— (OM AR D) + 0 (D (DM (D)
0l (et (D)o ()
and acting once more by R(BY). O

We now gather these calculations into the following algorithm:
o If v = ¢pL1(=3) - ¢"1(—1), then the ho-weight of R¥(BY)vy, is zero, where by is
the Cartan subalgebra of so(2s + 1).
e The expression for R(BY), viewed as an operator on the Clifford module for 50(2d+
1), implies that

—ifv = qbl"“(—%) . --¢k’ak(—%), where 0 < a; +--- 4+ ar < k, and each a; €
{~1,0,1}, then the action of R(BY) on v is a sum of expressions of the form
Pt (=3) - ¢FOr(—1), where exactly one of the b;’s is different from a;;

— the operator R(BY) can change an a; = 1 to b; =0, or a; =0 to b; = —1. In
the latter case, this introduces a minus sign in front of the new expression. In
particular for each expression gbl’bl(—%) e qb’“bk(—%) appearing in R(BY)v,
we get by +---+bp+1 =a1+---+ag. For examples, see the previous lemmas.

e Thus, applying the operator R(BY) to vy, k-times, we get an expression which is a
sum of terms of the form (—1)m¢1’cl(—%) e qﬁkvck(—%), with multiplicities, where
1+ -+ ¢ =0, and each —1 < ¢; < 1, and m is the number of (—1)’s appearing
among the ¢;’s.

e The multiplicity of the expression gbl’o(—%) e ¢k’0(—%) is kl.

To summarize, we have the following.

Proposition A.7. As an element of H,, (so(2r + 1)) @ Hpy, (50(2s + 1)), the wvector
RE(BY)vy, is of the form klp*0(—3) - - ¢*0(—=3), plus a sum of terms of the form Blf;’b(—l)w,
where i # j are positive integers and a, b are nonzero.
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