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ABSTRACT

OpenCL for FPGA enables developers to design FPGAs using a pro-
gramming model similar for processors. Recent works have shown
that code optimization at the OpenCL level is important to achieve
high computational efficiency. However, existing works either focus
primarily on optimizing single kernels or solely depend on channels
to design multi-kernel pipelines. In this paper, we propose a source-
to-source compiler framework, MKPipe, for optimizing multi-kernel
workloads in OpenCL for FPGA. Besides channels, we propose new
schemes to enable multi-kernel pipelines. Our optimizing compiler
employs a systematic approach to explore the tradeoffs of these op-
timizations methods. To enable more efficient overlapping between
kernel execution, we also propose a novel workitem/workgroup-id
remapping technique. Furthermore, we propose new algorithms for
throughput balancing and resource balancing to tune the optimiza-
tions upon individual kernels in the multi-kernel workloads. Our
results show that our compiler-optimized multi-kernels achieve up
to 3.6x (1.4x on average) speedup over the baseline, in which the
kernels have already been optimized individually.

CCS CONCEPTS

« Hardware — Reconfigurable logic and FPGAs; High-level
and register-transfer level synthesis.

KEYWORDS
High-level synthesis, FPGA, OpenCL

ACM Reference Format:

Ji Liu, Abdullah-Al Kafi, Xipeng Shen, and Huiyang Zhou. 2020. MKPipe: A
Compiler Framework for Optimizing Multi-Kernel Workloads in OpenCL
for FPGA. In 2020 International Conference on Supercomputing (ICS ’20),
FJune 29-Fuly 2, 2020, Barcelona, Spain. ACM, New York, NY, USA, 12 pages.
https://doi.org/10.1145/3392717.3392757

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ICS 20, June 29-July 2, 2020, Barcelona, Spain

© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-7983-0/20/06....$15.00
https://doi.org/10.1145/3392717.3392757

Abdullah-Al Kafi
akafi2@ncsu.edu
North Carolina State University
Raleigh, North Carolina

Huiyang Zhou
hzhou@ncsu.edu
North Carolina State University
Raleigh, North Carolina

1 INTRODUCTION

FPGAs are reprogrammable devices that can be configured to per-
form arbitrary logic operations. Given their high energy efficiency,
FPGAs have become an attractive accelerator platform for high per-
formance computing [27, 29]. Traditional FPGA design is through
register-transfer level (RTL) Hardware Description Languages (HDL)
such as Verilog and VHDL, which is time-consuming and unfriendly
to software programmers. High-level synthesis (HLS), especially
OpenCL for FPGAs [6, 13], offers a high-level abstraction to enable
software developers to program FPGAs similar to processors and
makes it possible to port the existing OpenCL code developed for
CPUs or GPUs to FPGAs.

Similar to processor-based computing platforms, in order to
achieve high performance, it is important to optimize the OpenCL
code for FPGAs [14]. Prior works [8, 16, 28, 31] have shown that op-
timized OpenCL code utilizes the FPGA device more effectively and
results in competitive designs compared to HDL-based designs [11].
However, existing works on optimizing OpenCL code for FPGAs
mainly focus on single kernels. Zohouri et al. [31] evaluated and
optimized the OpenCL kernels in the Rodinia benchmark suite,
but they only proposed single-kernel optimizations and did not
consider concurrent execution among multiple kernels. Gautier et
al. [8] presented an OpenCL FPGA benchmark suite and similar
single-kernel optimization approaches had been employed.

The Intel OpenCL for FPGA programming and optimization
guide [15] introduces channels/pipes as the key mechanism for
passing data between kernels and enabling pipelining/concurrent
execution across the kernels. There are a few works leveraging
channels to stream data across multiple kernels for specific appli-
cations [24, 32]. However, channels have a strict limitation on the
producer and consumer. As stated in the programming guide, "A
kernel can read from the same channel multiple times. However,
multiple kernels cannot read from the same channel" As a result,
it is difficult to use channels for kernels with complex producer-
consumer relationships. In this paper, we propose a novel compiler
framework for optimizing multi-kernel workloads in OpenCL for
FPGA.

In our development of this optimizing compiler, we first study the
multi-kernel workloads from the existing OpenCL for FPGA bench-
mark suites, including Rodinia[31], Spector[8] and OpenDwarf[22].
We find that coding in multi-kernels has several advantages over
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a single monolithic one, including design modularity, code reuse,
and optimization flexibility. Our experiments, however, highlights
that these multi-kernel applications suffer from low FPGA resource
utilization. The fundamental reason is that although individual ker-
nels have been tuned with optimizations such as loop unrolling,
SIMD, compute unit replication, etc., and multiple kernels are syn-
thesized to co-reside on the same FPGA simultaneously, the kernels
are executed one after another in a sequential manner due to data
dependencies across the kernels. Therefore, there is no concurrent
kernel execution (CKE) and only part of the FPGA is active at any
time, resulting in low effective resource utilization.

In our paper, we propose a compiler scheme to optimize different
types of multi-kernel workloads. The compiler takes the host code,
the naive kernel code, and the profiling data of the naive kernels
as input and outputs the optimized kernel code and associated
host code. The naive kernel code means that it does not have any
device-specific or platform-specific optimizations. The compiler
first derives the kernel data flow graph from the host code. Then
the compiler analyzes the producer-consumer relationship among
kernels. Based on the type of the producer-consumer relationship
and the profiling information of the naive kernels, the compiler
classifies a workload into different categories and performs opti-
mizations to enable multi-kernel pipelines accordingly. In the next
step, the compiler fine-tunes optimizations for individual kernels
to balance the throughput and/or the resource consumption among
the kernels. Then, the compiler explores the option of splitting the
multi-kernels into separate FPGA bitstreams, which trades off the
re-programming overhead for improved performance of individual
kernels.

We conduct our experiments using a Terasic’s DE5-Net board
with Altera OpenCL SDK18.1. The experimental results show that
our optimizing compiler can effectively improve performance. The
optimized multi-kernels achieve up to 3.6x (1.4x on average) speedup
over those in the benchmark suites, in which each kernel has been
optimized individually.

In summary, our contributions in this work include:

e We propose a compiler framework for optimizing multi-
kernel workloads in OpenCL for FPGA. To our knowledge,
this is the first optimizing compiler for multi-kernels in
OpenCL for FPGA.

e We analyze the tradeoffs among different CKE approaches
and propose a novel systematic compiler optimization scheme
to enable multi-kernel pipelines.

e We propose novel algorithms to balance the throughput
and/or resource consumption among the kernels in a multi-
kernel workload. Such a kernel balancing process has not
been discussed in previous works in OpenCL for FPGA.

e We devise a scheme to explore bitstream splitting, which
separates multiple kernels into more than one bitstream so
as to enable more aggressive optimizations for individual
kernels.

2 BACKGROUND

Open Computing Language (OpenCL) is an open standard for par-
allel computing across heterogeneous platforms [9]. The key to
the OpenCL programming model is data-level parallelism (DLP).
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In a user-defined kernel function, each workitem performs oper-
ations on different data items based on its identifier (id). Multiple
workitems in the same workgroup can communicate through local
memory.

Intel FPGA SDK for OpenCL is designed for executing OpenCL
kernels on FPGAs. It supports two different kernel modes: single
workitem and NDRange. In the single workitem mode, the OpenCL
compiler leverages parallel loops in the kernel code and converts
loop-level parallelism into pipeline-level parallelism (PLP) by syn-
thesizing the hardware from the loop body and pipelining inde-
pendent loop iterations. In the NDRange mode, DLP is converted
to PLP by synthesizing the kernel code into a pipeline (aka com-
pute unit) and pipelining independent workitems. To improve the
throughput of the pipeline resulting from the kernel code, typical
single-kernel optimization techniques include loop unrolling and
vectorization/SIMD to deepen and widen the pipeline, as well as
compute unit replication to duplicate the pipelines [15]. For single
workitem kernels, shift registers are a commonly used pattern to
improve hardware efficiency. It has been shown that some kernels
achieve better performance with the single workitem mode while
others prefer the NDRange mode [16].

According to the programming and optimization guide of OpenCL
for FPGA [15], channels/pipes are the main mechanism for passing
data between kernels and enabling pipelining or concurrent execu-
tion across the kernels. Channels are on-chip FIFO buffers and there
are two types of channels: blocking and non-blocking. For blocking
channels, a read/write operation stalls when the channel is emp-
ty/full. For a non-blocking channel, a read/write always proceeds
but has a return flag indicating whether the operation succeeds.
As channels are the only approach discussed in the programming
and optimization guide for concurrent kernel execution (CKE), it
is no surprise that the prior works [23, 24, 32], solely depend on
channels to optimize their target multi-kernel applications.

3 RELATED WORK

The optimization techniques discussed in recent works on OpenCL
for FPGA are mainly single-kernel optimizations. Besides the work
by Zohouri et al. [31] and Gautier et al. [8], a more recent work by
Zohouri et al. [32] proposed additional single-kernel optimizations,
including loop collapsing to reduce resource consumption and exit
condition optimization to reduce the logic critical path.

Several previous works have discussed multi-kernel designs us-
ing channels for data streaming. Wang et al. [24] studied the effect
of using channels on a data partitioning workload. Yang et al.[26]
employed channels to implement a molecular dynamics applica-
tion. Wang et al.[23] designed an FPGA accelerator for convolution
neural networks, which consists of a group of OpenCL kernels
connected with channels. Although these prior works leverage
multi-kernel pipelines, none of them goes beyond channels.

Sanaullah et al.[18] proposed an empirically guided optimiza-
tion framework in OpenCL for FPGA and the goal is to best utilize
the OpenCL compiler. In one step of the optimization, task-level
parallelism from the single-kernel code is converted to multiple
kernels connected with channels. In the next step, multiple kernels
are converted back into a single kernel. Such exploration gives
the compiler more room to generate different optimized code. And



MKPipe: A Compiler Framework for Optimizing Multi-Kernel Workloads in OpenCL for FPGA

their observation was that channels often result in poor perfor-
mance, which is kind of expected as their target workloads are
single kernels.

In a recent work, Shata et al. [19] studied the use of local atomic
operations and other optimization methods. They also discussed the
effectiveness of compiling multiple kernels into multiple bitstreams.
However, they dismissed this option given the high reprogramming
overhead and recommended to integrate the kernels in the same
bitstream file.

Multi-kernel pipelines have also been investigated for GPUs[20,
30]. Although both FPGA and GPUs use OpenCL, they are fun-
damentally different in implementing multi-kernel pipelines. We
detail the differences in two multi-kernel pipeline models in Sec-
tion 4.2.

4 MOTIVATION

4.1 Concurrent Kernel Execution (CKE) on
FPGA

We first study the multi-kernel workloads from the existing OpenCL
for FPGA benchmark suites, including Rodinia[31], Spector[8] and
OpenDwarf[22]. These multi-kernel workloads in our study share
a common implementation that all the different kernels in the
same workload are synthesized into a single bitstream, thereby
co-residing on the same FPGA chip. The main reason is to eliminate
the FPGA re-programming overhead. If there is data dependence
among the kernels, the kernel invocations are sent to the same
command queue, which imposes global synchronization among
the invocations. The advantage of this approach is that it ensures
correctness easily. The disadvantage is that the sequential execution
of multiple kernels may lead to poor resource utilization since only
the hardware corresponding to one kernel is active at a time.

To quantify the FPGA resource utilization, we propose a metric,
effective resource utilization (ERU), for each kernel. As shown in
Eq. 1, it is defined as the maximum usage among different types
of resources of the FPGA chip, including both the static resources:
adaptive loop-up tables (ALUTs), dedicated logic registers (FFs), DSP
blocks, RAMs blocks, and the dynamic resource: DRAM bandwidth.
The static resource usage is computed as the percentage of the
resource consumed by the kernel. The DRAM bandwidth usage
is the ratio of the utilized bandwidth over the peak one when
the kernel is active. The reason for the maximum is to capture
the effect of the critical resource. This way, low effective resource
utilization indicates that there is room available in the hardware
for performance improvement.

ERU = Max(UaruT, UrF, Uram, Upsp, Upw) (1)

Here we use a case study on the benchmark CFD to illustrate the
low ERU problem. CFD contains three kernels with the kernel data
flow graph shown in Figure 1. Each kernel needs data from the
previous one.

Figure 2a shows the ERU over time of the CFD benchmark. As
the kernels are executed sequentially, we can visualize ERU as a
stepwise function based on the order of kernel invocation and the
execution time of each kernel. Although these kernels have been
optimized individually, the overall ERU is low. In comparison, when
we enable concurrent execution between K2 and K3, the execution
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Figure 1: Kernel data flow graph of the CFD benchmark

time is reduced as shown in Figure 2b. Furthermore, CKE using
kernel fusion or channels may free up some hardware resource. For
example, as shown in Figure 2b, the RAM usage of K2&3 is less than
the aggregated usage of K2 and K3. The reasons will be discussed
in Section 5.4. Such freed up resource enables more opportunities
for single-kernel optimizations.
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Figure 2: Effective resource utilization (ERU) of CFD

4.2 Comparison with pipeline execution
models for GPU

The GPU multi-kernel pipeline programming frameworks [20, 30]
have been developed recently. These frameworks leverage multi-
ple Streaming Multiprocessors (SMs) on a GPU and may schedule
different pipeline stages on different SMs. This is possible as each
SM is a programmable processing unit and can execute different
kernels. In contrast, an FPGA has fixed functionality once it is syn-
thesized. Therefore, the multi-kernel programming frameworks for
GPU are not directly applicable to FPGAs. Here we dissect the five
GPU pipeline execution models used in VersaPipe [30] and analyze
their similarities and differences compared to pipeline execution
models for FPGA.

The first GPU pipeline execution model is "Run to completion
(RTC)". This execution model combines all stages of a pipeline
into a single kernel, which is similar to the kernel fusion method
discussed in Section 5.4.1. The limitation of this model is that it
does not support global synchronization between stages.

The second GPU execution model is "Kernel by kernel (KBK)". In
this model, multiple kernels are used and the kernels are executed
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one after the other. This model is the same as the baseline in the
benchmark suites we studied. The limitation is that there is no
concurrent kernel execution as discussed in Section 4.1.

The third GPU execution model is "Megakernel". Megakernel
organizes pipeline computations into a huge kernel and each stage
is scheduled with a software scheduler. The persistent thread tech-
nique [2, 10] is used to implement Megakernel. These persistent
threads fetch data from a shared queue and run the corresponding
pipeline stage upon the data. After each stage, the produced data are
sent back to the same queue for subsequent processing. We tried to
implement the Megakernel design on FPGA. However, the OpenCL
for FPGA compiler is unable to handle this type of kernel and cannot
construct hardware based on the OpenCL code. The main problem
is the switch statement which chooses among different pipeline
stages. The compiler regards these kernels as "FPGA-unfriendly".
Furthermore, there are additional drawbacks for this model. First,
the scheduler requires extra hardware resources. Second, the data
communication between each stage is based on a shared queue.
Although we can implement this shared queue using local memory
on FPGA, this queue becomes a bottleneck due to its high number
of read and write requests.

The fourth and fifth GPU pipeline execution models in VersaPipe
are "Coarse pipeline" and "Hybrid pipeline". In "Coarse pipeline”,
each pipeline stage is bounded to one SM. In "Hybrid pipeline", each
pipeline stage is assigned to multiple thread blocks on a few SMs. As
discussed before, a synthesized FPGA is not able to perform different
functions based on the SM id. Therefore these two execution models
are not feasible to FPGA.

5 MKPIPE: A COMPILER FRAMEWORK FOR
MULTI-KERNEL WORKLOADS

5.1 Overview

Our compiler framework is shown in Figure 3. The input to our com-
piler includes naive kernel code, host code, and profiling data. The
naive kernel code means that there is no device-specific or platform-
specific optimization. In our implementation, the naive kernel is
the same as the one from the benchmark suite with all the optimiza-
tion #pragma and attributes stripped. The profiling data include
the execution time and throughput of each naive kernel, where the
throughput of one kernel is computed as the ratio of the output data
size over the execution time. The compiler generates the kernel
data flow graph from the host code and determines how the kernels
can be executed concurrently while satisfying data dependency.
Then the compiler analyzes the producer-consumer relationship
between workitems/loop iterations in different kernels (workitems
for NDRange kernels or loop iterations for single-workitem ker-
nels) and uses different ways to enable CKE. Next, kernel balancing
is performed to either balance the throughput in a multi-kernel
pipeline or adjust the resource allocation among the kernels which
require global synchronization. After kernel balancing, the com-
piler explores the option of bitstream splitting. Finally, the compiler
produces the optimized kernel code and the host code.

5.2 Host Code Processing

The compiler derives the kernel data flow graph from the host
code. The kernels are invoked in the host code using clEnqueueTask
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Input: kernel code, host code and profiling data

Host Code Processing (Section 5.2)

Cross-Kernel Dependence Analysis (Section 5.3)

Enabling Multi-Kernel Pipelines through CKE (Section 5.4)

Kernel Balancing (Section 5.5)

Exploration of Bitstream Splitting (Section 5.6)

Host Code Modification (Section 5.7)

Output: optimized kernel code and host code

Figure 3: MKPipe: our proposed compiler framework

or clEnqueueNDRangeKernel functions. Their inputs and outputs
arguments are explicitly set in clSetKernelArg functions. Among the
kernels, the compiler excludes the kernels that can not be executed
concurrently using the condition that they have dependency carried
over through CPUs or CPU memory.

5.3 Cross-Kernel Dependency Analysis

For kernels with data dependency, the compiler analyzes the kernel
code to identify the producer-consumer relationship among their
workitems/loop iterations for NDRange/single-workitem kernels,
respectively. As the data dependency is carried over through the
variables with the same name, for each global-memory variable,
the compiler searches all the kernels to see which one(s) uses it
as live-in/live-out. As the array indices in OpenCL workloads are
typically affine functions of workitem ids or loop iteration indices,
the compiler performs polyhedra analysis [1] to determine the
exact dependency between the workitems/iterations of the producer
kernel and those of the consumer kernel. For the benchmarks that
do not describe an affine function, it would be difficult to determine
the exact dependency between workitems. In our current design,
we include a ‘pragma’-based interface, through which developers
can provide the remapping function, and the compiler can then
use it to implement the reordering. It avoids the limitations of
polyhedral analysis. Based on the producer-consumer relationship,
the dependency between two kernels at the workitem/iteration level
is classified into the following categories: few-to-few, few-to-many,
many-to-many, and many-to-few.

For example, in the code of the two single-workitem naive ker-
nels of the CFD benchmark as shown in Figure 4, the compiler
finds that the global variable ‘fluxes_energy’ is produced in the ker-
nel ‘compute_flux’ and consumed in the kernel ‘time_step’. When
the iteration index variable i == j, these two iterations in the two
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kernels access the same global memory address. Therefore, the
compiler identifies this producer-consumer relationship as one-to-
one (or few-to-few), since one loop iteration in the producer kernel
produces the data for one iteration in the consumer kernel.

__kernel compute_flux (.., __global float fluxes_energy X
for (int i = 0; i < nelr; ++i) {
fluxes_energy [i] = flux_i_density_energy ;}}
__kernel time_step (..., __global float+ fluxes_energy X
for (int j = 0; j < nelr; ++j) {
v_energy[j] = old_v_energy[j] + factor xfluxes_energy[j ];}}

AN R W N =

Figure 4: Code segment of the CFD benchmark

Another example is shown in Figure 7, where the two NDRange
kernels in the LUD benchmark access a common array ‘m’. In each
workitem of the kernel ‘lud_perimeter’, a number (BSIZE) of ele-
ments in array ‘m’ are updated as shown in line 6 of Figure 7 and
their array indices are a linear function of its workitem id and its
workgroup id. In the kernel ‘lud_internal’, each workitem reads two
elements from the same array for computation and their indices
are also linear functions of their workitem ids and workgroup ids.
Through polyhedral analysis, the compiler determines the depen-
dency relationship between the producer workitem/workgroup ids
in the kernel ‘lud_perimeter’ and the consumer workitem/work-
group ids in the kernel ‘lud_internal’ and classifies the producer-
consumer relationship as one-to-many (or few-to-many).

Besides the dependency relationship, the compiler also produces
a constant queue structure, id_queue, which is used to determine the
desired execution order for the workitems in the consumer kernel.
This id_queue is used in the workitem/workgroup id remapping
step (Section 5.4.4). As the workitems in the producer kernel are
dispatched in the sequential order based on their workitem ids,
the compiler mimics this order to process the workitems of the
producer kernel. For each producer workitem, the compiler checks
its dependent workitems in the consumer kernel. If a dependent
workitem has its dependency completely resolved, its workitem id
will be pushed into the id_queue. If there are multiple dependent
workitems in the consumer kernel and they are ready at the same
time, all their workitem ids will be pushed in the id_queue. The
compiler also builds a similar queue at the workgroup granularity,
i.e., the queue contains the consumer workgroup ids.

5.4 Enabling Multi-Kernel Pipelining

Based on the producer-consumer relationship between the kernels,
we propose a systematic decision tree approach to enable multi-
kernel pipelines through CKE. Our approach is shown in Figure 5.
First, the compiler checks if there is a dominant kernel in the work-
load. We define a kernel as dominant if its execution time is over 95%
of total execution time. The reason for such a check is that as long
as this dominant kernel has high resource utilization, the overall uti-
lization is high and CKE would have very limited impact. Then, the
compiler checks if there is a need for global synchronization among
the kernels as a result of the producer-consumer relationship. For
many-to-many or many-to-few producer-consumer relationship,
the consumer workitems/loop iterations have to wait for almost all
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the producer workitems/iterations to finish. Therefore, the gains
from CKE typically is not high enough to offset the potential over-
head of CKE. As a result, global synchronizations are justified in
such cases.

For multi-kernels not requiring global synchronization, the com-
piler explores different ways to enable multi-kernel pipelines through
CKE. If the kernels exhibit few-to-many producer-consumer rela-
tionship, we propose to use global memory for data communication
and this approach is referred to as CKE through global memory. If
they exhibit few-to-few producer-consumer relationship, the com-
piler chooses between kernel fusion and CKE through channels. It
estimates the overall execution time. When the execution time is
high, the compiler chooses kernel fusion and CKE with channel
otherwise for the reason discussed in Section 5.4.2.

Multi-kernel
workload

'\lo T

Require global
nchronization2

Yes

Exit No-

Long kernel
Yes time? No
Kernel fusion CKE through
channel

Figure 5: A systematic approach for enabling multi-kernel
pipelines.

CKE through
global memory

5.4.1 Kernel Fusion. Kernel fusion fuses multiple kernels into a
single one. It can lead to a longer pipeline and exploit better pipeline-
level parallelism across kernels. For kernels in the single-workitem
mode, fusion can be done by simply merging the kernel code with-
out change. For kernels in the NDRange mode, fusion is also straight-
forward for the compiler as long as they share the same workgroup
size and the same number of workgroups. If not, fusion becomes
challenging for the compiler. Therefore, our compiler would not
fuse such NDRange kernels (i.e., kernels with different workgroup
sizes) and resorts to CKE with channel instead.

5.4.2 CKE with Channel. Similar to kernel fusion, using chan-
nels could also remove global memory reads/writes. Based on the
producer-consumer relationship, the compiler introduces the code
for defining channels and replaces global memory reads/writes
with channel reads/writes.

CKE with channel is more flexible than kernel fusion as it is not
limited by the strict requirement on the same number of workitem-
s/iteration in the producer and consumer kernel. Another distin-
guishing benefit of the CKE through channel over kernel fusion is
the opportunity to reduce kernel launching overhead. Figure 6 illus-
trates this with an example. With multiple kernels and each kernel
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in a different command queue, the kernel invocations overlap with
each other. In comparison, the fused kernel has higher launching
overhead due to its aggregated resource usage and a greater number
of kernel arguments. This kernel invocation overhead tradeoff has
not been studied in previous works. This reduction is more evident
when the overall execution time is short and less evident otherwise.
Therefore, the compiler favors CKE through channels for kernels
with low execution time, as shown in Figure 5.

Two kernels fuse into one monolithic kernel:

Command Queue

Two kernels execute concurrently with channel:

Command Queuel | ] Execution
Command Queue2 _ Execution
Time

Figure 6: Difference in kernel invocation overhead of kernel
fusion and CKE with channel

5.4.3 CKE with Global Memory. For kernels with their workitem-
s/iterations having few-to-many producer-consumer relationship,
we propose to enable CKE with global memory. For NDRange ker-
nels in this category, the compiler introduces an array as global
flags for the workitems in the producer kernel. This flag array is
initialized to 0. When a producer workitem finishes its assigned
work, it sets the corresponding global flag (i.e., array element in-
dexed with the workitem id) to 1. The compiler inserts code in the
consumer kernel such that the workitems in consumer kernel will
wait until the corresponding flag is set to 1, indicating the data
has been updated by the workitems in the producer kernel. For
single workitem kernels, the same procedure applies except that
the iterations replace the workitems.

We use the LUD benchmark to illustrate CKE with global mem-
ory. Figure 7 and 8 shows the code before and after the compiler
performs the optimization. First, the compiler inserts a global array
‘flag’. In the producer kernel, each workitem sets the flag using its
workitem id as the index (line 10 in Figure 8) after the updates to
the array ‘m’. A fence is added by the compiler in line 9 in Figure 8
to ensure the correct memory update order. In the consumer kernel,
the compiler introduces the flag check for each read site of the array
‘m’ and generates the code for accessing the flag of the producer
workitem based on the workitem dependency relationship deter-
mined during the dependency analysis step. Such code is shown in
lines 15, 16, 19 and 22 in Figure 8.

5.4.4  Workitem/Workgroup ID Remapping. The execution order
of the work-items (or iterations) in NDRange (or single-workitem)
kernels depends on the hardware and may not match our desired
order. Our empirical results show that for each kernel, work-items
with increasing ids (or iterations with increasing iterator value)
are dispatched in the sequential order. If there’s only one compute
unit, the work-groups with increasing workgroup ids will also be
executed in the sequential order. However, such a rigid order may
not match the dependence resolution order between the producers
and consumers.

Figure 9 shows the data dependency between the workgroups of
the producer kernel and the workgroups in the consumer kernel in
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__kernel lud_perimeter(__global floats m, int mat_dim, int offset){
int tx = get_local_id(0), bx = get_group_id(0);
peri_row_array_offset = offset + (bx + 1)x BSIZE;
for (int i = 0; i < BSIZE; ++i){

m([peri_row_array_offset + tx] = peri_row[tx X BSIZE + i];
peri_row_aray_offset += mat_dim; }}
__kernel lud_internal(__global float« m, int mat_dim, int offset){
int bx = get_group_id(0), by = get_group_id(1);
int tx = get_local_id(0), ty = get_local_id(1);
int global_row_id = (by + 1) x BSIZE;
int global_col_id = (bx + 1) x BSIZE;
peri_row[ty x BSIZE + tx] = m[offset + ty X mat_dim +
global_col_id + tx];
peri_col[ty x BSIZE + tx] =
X mat_dim + tx]; ...}

O 0 1 U R W N =

e e e
U W N = O

m[offset + (ty + global_row_id)

_
(=}

Figure 7: Code segment of the Naive LUD benchmark

__kernel lud_perimeter(__global floats m,int mat_dim,int offset){
int tx = get_local_id(0);
int bx = get_group_id(0);
peri_row_array_offset = offset + (bx + 1)x BSIZE;
for (int i = 0; i < BSIZE; ++i){

m([peri_row_array_offset + tx] = peri_row[tx X BSIZE + i];
peri_row_aray_offset += mat_dim;}
mem_fence(CLK_GLOBAL_MEM_FENCE);
10| flag[bx x group_size_1 + tx] = 1; }
11| __kernel lud_internal(__global floats m, int mat_dim, int offset,
12| __global int+ flag){
13| int bx = get_group_id(0), by = get_group_id(1);
14| int tx = get_local_id(0), ty = get_local_id(1);
15| int wait_id_1 = bx X group_size_1 + tx;
16| int wait_id_2 = by X group_size_1 + tx;
17| int global_row_id = (by + 1) X BSIZE;
18| int global_col_id = (bx + 1) X BSIZE;
19|  while(!flag[wait_id_1]){}
20| peri_row[ty X BSIZE + tx] =
21| global_col_id + tx];
22| while('flag[wait_id_2]){}
23| peri_col[ty x BSIZE + tx] =
24| X mat_dim + tx]; ...}

O 0 N NG R W N =

m(offset + ty X mat_dim +

m[offset + (ty + global_row_id)

Figure 8: Code segment of LUD after CKE with global mem-
ory

the LUD benchmark. One block in the figure represents one work-
group. The blocks with the same pattern have data dependence.
From the figure, we can see that the workgroup 0 in the kernel
‘lud_perimeter’ produces the data for the workgroup (0,0) in the
kernel ‘lud_diagonal’; the workgroup 1 in the kernel ‘lud_perimeter’
produces the data for the workgroups (0,1), (1,0), (1,1) in the kernel
‘lud_diagonal’, etc. As the default execution order of the workgroups
in the consumer kernel ‘lud_diagonal’ is workgroup (0,0), (0,1), (0,2),
(0,3), etc., the workgroups (0,2) and (0,3) will have to wait for their
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data to be produced although the workgroups (1,0) and (1,1) already
have their data ready.

lud_perimeter (K2)

lud_diagonal (K3)

Figure 9: Data dependency between the workgroups in K2
and K3 of the LUD benchmark.

In order to resolve this execution order mismatch problem, we
propose a work-item/workgroup id remapping approach. The ob-
servation is that we can reassign each work-item/work-group a
new id to change the execution order. Here, our compiler makes
use of the id_queue structures produced during the dependency
analysis step. This queue structure is stored in the constant mem-
ory to take advantage of the FPGA on-chip constant cache. Each
consumer workgroup/workitem reads the queue using their work-
group/workitem id as the index. To explore different options, our
compiler produces three versions of code, no id remapping, work-
group id remapping only, workgroup id remapping and workitem
id remapping. These three versions are synthesized and tested to
select the best performing one.

1| __kernel lud_internal(__global float+ m, int mat_dim, int offset,
2| __global int« flag, int+ id_queue_bx, int« id_queue_by){

3| int bx = get_group_id(0), by = get_group_id(1);

4| int tx = get_local_id(0), ty = get_local_id(1);

5| int wait_id_1 = bx X group_size_1 + tx;

6| int wait_id_2 = by X group_size_1 + tx;

7| bx =id_queue_bx[bx], by = id_queue_by[by];

8| int global row_id = (by + 1) x BSIZE;

9| int global_col_id = (bx + 1) X BSIZE;

10| while('flag[wait_id_1]){}

11| peri_row[ty X BSIZE + tx] = m[offset + ty X mat_dim +

12| global_col_id + tx];

13| while(!flag[wait_id_2]){}

14| peri_col[ty x BSIZE + tx] = m[offset + (ty + global_row_id)
15| X mat_dim + tx]; ...}

Figure 10: Code segment of the LUD benchmark after work-
group id remapping

Figure 10 shows the code of the consumer kernel ‘lud_internal’
of LUD after the compiler applies the workgroup id remapping. The
constant workgroup_id queues are in the kernel parameters and
the id remapping code is shown in line 7 in Figure 10.

5.5 Kernel Balancing

With multiple kernels sharing the FPGA device, we need to coor-
dinate the optimizations upon them. Our compiler considers two
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different scenarios for kernel balancing. The first is for kernels with
CKE, i.e., the kernels form a pipeline. The second is that there are
global synchronizations separating kernels and making them run
sequentially.

For kernels with CKE, each kernel becomes a stage in a multi-
kernel pipeline. Therefore, the goal is to balance the throughput
among the stages. However, if kernels are separated by global syn-
chronizations, throughput imbalance is not an issue. The goal then
is to balance resource allocation such that more resources can be
allocated for the kernels, which can lower the most execution time
from such additional resources. A workload may also contain both
cases at the same time. For example, the CFD benchmark has three
kernels. Our compiler determines that it is beneficial to enable CKE
between K2 and K3 while K1 should be ended with a global synchro-
nization. In such a case, the compiler considers the K2&3 pipeline as
a single kernel and allocates resources to K1 and K2&3 accordingly
using the algorithm discussed in Section 5.5.2. Then, the allocated
resources for K2&3 are further distributed between K2 and K3 using
the algorithm discussed in Section 5.5.1 for throughput balancing.

In our compiler framework, we consider three parameters for
single-kernel optimizations: compute unit replication (CU) factor,
SIMD factor, and loop unroll (Unroll) factor. As these factors have
similar performance impacts, i.e., increasing any factor by N times
can potentially increase the throughput by N times, our compiler
first determines a unified performance factor, denoted as Nyp;, for
each kernel, and then realize this factor by adjusting the unroll,
SIMD, and CU factors as discussed in Section 5.5.3.

5.5.1 Throughput Balancing. When kernels are running concur-
rently in a pipeline, the throughput of the pipeline is limited by
the stage with the lowest throughput. Therefore, we propose an ap-
proach to assign resources gradually to different kernels. The algo-
rithm is shown in Algorithm 1. The algorithm takes the throughputs
of the naive kernels, Tp; ., as input, which are obtained during the
profiling step. The algorithm iteratively searches for the kernel with
the lowest throughput and increases its unified performance factor
by 1 each time. Then, the optimization parameters, i.e., Unroll fac-
tors, SIMD factors, and CU factors, are derived and the kernel code
is generated. Next, we resort to the OpenCL compiler to estimate
the static resource consumption based on the updated kernel code.
For the dynamic bandwidth resource, we assume the utilization is
the bandwidth of the naive kernel times the unified performance
factor. The process repeats until one of the resources becomes fully
utilized. Note that in this algorithm, the OpenCL compiler is not
used to fully synthesize the hardware. Instead, it is only used to
generate the resource estimate, which can be quickly finished. As
we do not synthesize the actual hardware, the throughput of a ker-
nel with a unified performance factor, Ny;, is estimated as Nyp;
times the throughput of the naive kernel, i.e., Nyn;xTp, as shown
in line 3 of Algorithm 1.

Since the throughputs and the resource utilization for different
performance factors are estimated, we add an auto-tuning step
to compensate for potential estimation errors after the algorithm
determines the performance factors of each kernel. During auto-
tuning, based on Nyp; computed for each kernel, we compile &
synthesize multiple designs for an limited range of performance
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factors [Nyni * p] to search the best Nyp; op¢. The search space is
determined through a user-defined parameter p.

Input: T;,; jmaive throughput for each kernel;
Output: N,,,,;; _i:unified factor for each kernel;
Data: TP; j:calculated throughput for each kernel;
1 Nynin. k< 1
2 while total resource estimation < 100% do
3 | TPy k < Nynit.k X Tp1.. ks
4 Find kernel j with lowest throughput TP;
5 Nunij < Nynij + 1; //x2 if SIMD is used
6 Calculate corresponding Ny,ro11, Nsimp and Ney with
algorithms in Figure 11;
7 Generate the code for kernel j;
8 Extract resource estimation of kernel j from the log file

generated by the OpenCL compiler;
9 end

Algorithm 1: Algorithm of computing Nyp; for throughput
balancing among kernels in a pipeline.

5.5.2  Resource Balancing. For the kernels that are separated with
global synchronizations, we distribute the resources to kernels
according to their performance impact. We propose an iterative ap-
proach, as shown in Algorithm 2. The algorithm takes the execution
time of the naive kernels T as input and determines the uni-
fied performance factor for each kernel. In each step, The compiler
computes the performance impact of resource allocation for each
kernel as the ratio of performance improvement over the change
in the critical resource utilization when the unified performance
factor is increased by 1. The changes in static resource allocation for
each kernel AU;_j is obtained from the log file generated from the
OpenCL compiler. The updated dynamic bandwidth utilization is
assumed as (the bandwidth of the naive kernel x Ny,5;). The perfor-
mance improvement for each kernel, when its unified performance

factor, Nypi, is increased by 1, is estimated as: ke Tk

T Nunit..x Nynit..k+1°
which is equal to ——A=k——— as used in line 4 of Algorithm
q Nunit..k (Nyni1..x+1)° &

2. Then, the kernel with the highest performance impact from
additional resources will have its unified performance factor incre-
mented, i.e., the resources granted. This process repeats until the
critical resource is fully utilized.

After the performance factors are determined from the algorithm,
an auto-tuning process, similar to it discussed in Section 5.5.1, is
used to fine-tune these factors in a user-defined range.

5.5.3 Determining Optimization Parameters. After a kernel is as-
signed a unified performance factor, Nyp;, the single-kernel opti-
mization parameters, the Unroll factor, the SIMD factor, and the CU
factor are adjusted to realize it. Among these factors, loop unrolling
has the lowest resource consumption, and compute unit replication
has the highest. Therefore, our compiler determines these three
factors following this order. The pseudo-code of the algorithm is
shown in Figure 11. In the figure, the constant MAX_UNROLL_
FACTOR is the maximum iterations in a loop. The boolean constant
VEC represents whether the kernel code is beneficial from vector-
ization/SIMD and such information is obtained during the profiling
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phase of each kernel. As shown in Figure 11, the Unroll factor is
tried first to realize the unified performance factor Nyp;. If it cannot,
the SIMD factor is considered and the last is the CU factor. Since
the OpenCL for FPGA compiler requires that SIMD factors should
be a power of 2, if SIMD factor is chosen, the unified performance
factor, Nyp;, should be doubled rather than being increased by one,
as shown in the comment of line 6 in Algorithm 1 and line 7 in
Algorithm 2.

Input: T; ;:naive execution for each kernel;
Output: N,,,,;; :unified factor for each kernel;
Data: U; _j:resource utilization for each kernel;
1 Nypit..k < 1
2 while total resource estimation < 100% do
3 Check critical resource type and derive AUy _ . for that

type ofresource from resource estimation
Tk .
Nunit..k (Nynit..k+1)°

5 Find kernel j with highest %
J
6 Nunij = Nynij + 1;//x2 if SIMD is used
7 Calculate corresponding Ny, 011, Nsimp and Ney with

4 ATy j «

algorithms in Figure 11;

8 Derive total resource estimation from log file;
9 end

Algorithm 2: Algorithm of computing N,; for resource
balancing among multiple kernels separated with global syn-
chronizations.

if (Nyni < MAX_UNROLL_FACTOR) {
Nunrotr = Nunis}

else if (Ny,,; > MAX_UNROLL_FACTOR && VEC) {
Nsimp = Nyni / MAX_UNROLL_FACTOR;
Nunron1 = MAX_UNROLL_FACTOR;}

else {
Ncu = Nyni / MAX_UNROLL_FACTOR;
Nunrot1 = MAX_UNROLL_FACTOR;}

P 1 N U W N =

Figure 11: Pseudo-code for determining optimization param-
eters from a unified performance factor, Ny;.

5.6 Bitstream Splitting

The bitstream splitting optimization explores the option of placing
kernels in multiple bitstream files. This way, more resources are
available for each kernel such that more aggressive single-kernel op-
timizations can be performed. However, using multiple bitstreams
has to pay the penalty of device reprogramming and data transfer
between the device and the host. Therefore, we limit the maximal
number of bitstreams as 2. As a result, if there are more than two
kernels in a workload, our compiler decouples them into two virtual
kernels. Such decoupling is essentially the same as bi-partitioning
the kernel data flow graph.

Our compiler employs the following criteria for bi-partitioning
the graph: (a) loops cannot be partitioned unless each iteration
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of the loop has very high execution latency compared to repro-
gramming overhead; (b) a multi-kernel pipeline can not be broken
by partitioning; and (c) the difference between the accumulated
critical resource utilization over time in either partition needs to
be minimized. A loop in the kernel data flow graph means that the
kernels will be invoked multiple times. If we break kernels in a
loop into different bitstreams, we have to pay the reprogramming
overhead for each iteration. Therefore, unless the execution time
of each iteration is high, the loop should not be partitioned. The
last criterion aims to isolate the long-running kernels, which are
resource constrained due to co-residence with other kernels. Such
kernels are more likely to benefit from more resources. Using the
notation of Equation 2, the condition can be expressed as find a
partition to minimize |T; X ERU; — Tz X ERUz|. As the number of
the kernels in multi-kernel pipelines are small, our compiler ex-
haustively goes through all the possible partitions to find one that
meets the criteria.

With the two virtual kernels, our compiler uses Equation 2 to
determine whether to put them into separate bitstreams or to let
them co-reside in the same one. In the equation, K7 and K3 are
the two virtual kernels. The ERU of them are ERU; and ERU;, and
their execution times are T; and T,. The reprogramming and data
transfer overhead are T, and Ty, respectively. We consider kernel
co-residence in a single bitstream beneficial if:

Ti+ T < Ti XERU; + Ty X ERU, + T + Ty (2)

The LHS of Equation 2 is the execution time if both kernels reside
on the same device. The RHS is an estimate of the execution time if
they are separated into two different bitstreams. When one kernel
monopolizes the device, its execution time can be reduced with
more aggressive optimizations. Such reduced execution time is
estimated with a factor of the kernel’s ERU, i.e, the utilization of
its critical resource. For example, if one kernel uses 80% of the DSP
blocks, when the entire chip, i.e., 100% DSP blocks are available
to it, the potential performance improvement would be 100%/80%.
The corresponding execution time is 80%XT, i.e., ERUXT. If LHS is
less than RHS, co-residence is preferred. Otherwise, the compiler
produces two source code files, one for each virtual kernel, which
will be used by the OpenCL compiler to synthesize into separate
bitstreams.

We tested the reprogramming overhead T, using kernels with
different complexities. We found that the reprogramming overhead
is around 1400ms for different kernels and it is independent upon
the complexity or resource requirement of the kernel.

5.7 Host Code Modification

After kernel optimizations, the host code is adjusted accordingly.
For kernel fusion, unnecessary kernel invocations and allocations
for the global memory data that are used for cross kernel com-
munication would be removed. For CKE with channel and CKE
with global memory, kernel arguments are adjusted. The compiler
also allocates global memory for the global ‘flags’ array and the
‘id_order’ array. All the clFinish functions between concurrent exe-
cuting kernels are removed since they are synchronization points.
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5.8 Compilation Overhead

The main cost of MKPipe is the OpenCL to FPGA compilation over-
head. We will compile the kernels during two steps: the profiling
step and auto-tuning step. Since the naive kernel has no optimiza-
tion pragma and attributes, the compilation time in the profiling
step is usually much smaller than compiling the baseline kernels as
they enable these pragma/attributes. During the auto-tuning step,
each kernel needs to be compiled for 2p + 1 times, where p is the
user-defined parameter discussed in Section 5.5.1. Nonetheless, all
these compilations in the tuning step can be performed in parallel.

6 METHODOLOGY

We implement our proposed compiler framework as a source-to-
source compiler. Our compiler takes advantage of Clang, the front
end of LLVM [17]. Specifically, it leverages the ASTMatcher and
ASTTransformer in Clang for source code analysis and transforma-
tions. We used the Candl tool [3] for the polyhedral analysis. The
user-defined parameter, p discussed in Section 5.5, is set to 2. We
studied the multi-kernel workloads (a total of 6) that are already op-
timized for FPGA in Spector [8], Rodinia [31] and OpenDwarf[22]
benchmark suites and two multi-kernel workloads from an irregu-
lar graph benchmark for GPU, Pannotia[4]. Table 1 summarizes the
key characteristics of the benchmarks. In particular, the key char-
acteristics of each benchmark are determined in the cross-kernel
dependence analysis step (Section 5.3). The corresponding opti-
mizations shown in Table 1 are based on the decision tree shown in
Figure 5 (Section 5.4), and the optimizations in Section 5.5 and 5.6.

Our experiments are performed with Altera OpenCL SDK18.1
which is the latest version supported by Terasic’s DE5-Net board.
The board has 4GB DDR3 memory and a Stratix V GX FPGA.

[ Benchmark [ Key Characteristics [ Key Optimization ]
BFS[8] Dominant kernel Kernel balancing
Hist[8] One-to-one Kernel fusion
CFD[31] One-to-one CKE with channels

LUD[31] One-to-many CKE with global memory

BP[31] Splitting beneficial Bitstream splitting

Tdm[22] Dependency through CPU Kernel balancing
Coloring[4] Global synchronization Kernel balancing
Dijkstra[4] One-to-one CKE with channels

Table 1: Benchmarks used in our experiments.

7 EVALUATION
7.1 Overall Results

Since MKPipe consists of different execution models and steps,
we want to demonstrate the effect of each model and each step.
Figure 12 reports the normalized performance of the multi-kernel
workloads. We use the following notations: ‘KBK’ represents the
kernels from the benchmark suites which use the KBK model. The
KBK model is used in the existing multi-kernel benchmark suites for
FPGA [8, 22, 31]. Therefore, we set the KBK model as the baseline
for comparison. For the benchmarks derived from the GPU bench-
mark suite, we applied the SIMD and CU attributes to optimize the
kernel as our baseline. ‘Fusion’ represents kernels executed with
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a hybrid model of ‘KBK’ and ‘RTC’. The reason is that the kernel
fusion model or RTC does not support global synchronization be-
tween stages. As a result, the kernels with global synchronization
in between are executed with the KBK model. ‘Channel’ represents
kernels executed with the hybrid model of ‘KBK’ and ‘CKE with
channel’. ’Global Memory’ represents kernels executed with the hy-
brid model of ‘KBK’ and ‘CKE with global memory’. ‘KBK’, ‘Fusion’,
‘Channel’, and ‘Global memory’ are different execution models
that can be used in the “Enable Multi-Kernel Pipelines through
CKE (section 5.4)” step. We force the compiler to make different
choices in this step to compare the effect of different models. So
the speedups of these models are measured separately and they are
not accumulative.

After choosing the best model, the compiler proceeds with the
kernel balancing step and bit-stream splitting step. ‘Kernel Balanc-
ing’ shows the speedup of the kernels with the best pipeline model
and kernel balancing optimization. ‘Bitstream splitting’ is for the
kernels optimized with kernel balancing and bitstream splitting.
The speedups of these two steps are accumulative and represent
the overall effect of multiple optimization steps.

Among all the benchmarks, BP uses single workitem kernels.
CFD has kernel implementations in both single-workitem (labeled
‘CFD _SI') and NDRange mode (labeled ‘CFD_NDR’), and Hist has
the original implementation using an NDRange producer kernel and
a single workitem consumer kernel (labeled ‘Hist_MIX’). We found
that this NDRange kernel results in low frequency and rewrote it
as a single workitem kernel. This Hist version is labeled ‘Hist_SI'.
All the remaining benchmarks use NDRange kernels.

3.6
CFD_SI CFD_ND D BP n Color Dikstra  Average

Figure 12: Impact of kernel execution model and optimiza-
tion steps
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From Figure 12, we can see that the CKE optimization and the
kernel balancing optimization contribute the most performance
improvement. Overall, the multi-kernel workloads optimized by
MKPipe achieve up to 3.6x (1.4x on average) speedup over the base-
line. Among the multi-kernel workloads, BFS has a dominant kernel,
which takes 95.8% of the overall execution time. MKPipe identifies
this dominant kernel and performs kernel balancing optimization.
Our optimized kernel achieves a speedup of 1.1x as our compiler
balances the optimizations on the kernels more judiciously. The
Histogram benchmark has one producer kernel and one consumer
kernel, their dependency relationship is identified as one-to-one.
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For the single workitem implementation (Hist_SI), MKPipe gener-
ates both fused design and CKE with channel design. As the fused
design forms a longer loop body, the OpenCL compiler optimizes
the code more effectively and the synthesized design achieves a
speedup of 1.7x over the baseline. For HIST_MIX, due to differ-
ent numbers of workitems in the producer and consumer kernels,
MKPipe chooses to enable CKE using channels. The benchmark
Tdm benefits the most from the kernel balancing optimization as it
efficiently searches a large design space of the optimization parame-
ters. The main benefit of LUD comes from CKE with global memory
and workgroup mapping as discussed in Section 5. Color benefits
from kernel balancing. Dijkstra benefits from CKE with channel
due to the low execution time of its kernels. For the remaining
benchmarks, CFD, and BP, we analyze them in Section 7.3.
Besides the performance impact, we present the resource con-
sumption and the frequency of different designs for each benchmark
in Table 2. From the table, we can see that for most benchmarks our
optimized design utilizes resources more aggressively and one side
effect is the slightly lower frequency due to longer critical paths.

7.2 Comparison with GPU

In this experiment, we compare the FPGA performance with NVIDIA
RTX 2080 GPUs. For benchmarks BFS and Hist, the CUDA kernels
from Parboil [21] benchmark suite are used as they are optimized
for GPUs. Similarly, for benchmarks CFD, LUD, and BP, the CUDA
kernels from Rodinia benchmark suite are used. For benchmark
Tdm, the OpenCL kernels are used as the OpenDwarf benchmark
suite does not have the CUDA version. The benchmarks from Pan-
notia benchmark suite are not included since they require AMD
drivers and SDK support. The results are shown in Figure 13. The
baseline is the performance achieved by MKPipe. Given the band-
width difference between our FPGA board (25.6 GB/s for Stratix
V) and GPU (448 GB/s on RTX2080), the performance of OpenCL
kernels for FPGA is not competitive.

To make a more fair comparison, we include a performance
projection for the state-of-art Stratix 10 MX FPGA. Compared to
Stratix V GX, Stratix 10 MX [7] has 6x DSP capability, 2.6x memory
blocks 20x memory bandwidth(512GB/s). Taking the advantage of
14nm manufacturing node and HyperFlex technology [12], Stratix
10 family FPGA boards are expected to reach an operating frequency
fmax of up to 1 GHz. However, when fiq4x is limited by the critical
path, HyperFlex will have a limited impact. Therefore, we only
assume a 150MHz increase in fiqx compared to Stratix V, which
is in accordance with prior study [32] [5]. Based on the existing
performance estimation model [25], the speedup of benchmarks on
Stratix 10 MX can be predicted as:

#Mem_trans_widthproj
#Mem_trans_width

freqproj  #Banksproj

freq #Banks )

Speedup =

freqproj and freq are the frequencies of Stratix 10 MX and Stratix V.
#Banksproj and #Banks are the number of memory banks which are
32 and 2 for Stratix 10 MX and Stratix V, respectively. #Mem _trans
_widthis the maximum transaction width and it is 64Byptes for both
devices. Based on these data, the average speedup (geometric mean)
of all six benchmarks is 26.8x. As can be found in Figure 13, the
average speedup of kernels on Stratix 10 MX FPGA is comparable
with the average speedup of the kernels on the state-of-the-art GPU.
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[ [ BFS [ Hist MIX [ Hist ST [ CFDSI [ CFD.NDR [  LUD BP Tdm [ Color [ Dijkstra |
| Resource | Base [ Opt | Base | Opt | Base | Opt | Base | Opt | Base | Opt | Base | Opt | Base | Optl | Opt2 | Base | Opt | Base | Opt | Base | Opt |
ALUTs (%) 27 33 15 15 18 15 49 46 4 71 60 61 25 32 30 23 4 53 62 44 52

FFs (%) 21 26 11 12 15 11 25 23 24 35 25 45 22 24 30 16 36 25 33 28 31
RAMs (%) 54 68 85 87 57 25 54 48 50 62 72 83 40 35 44 36 85 68 76 59 64
DSPs (%) 0 0 1 1 1 0 63 63 63 o1 74 80 31 77 56 2 6 0 0 0 0

[ Frequency (MHz) | 217 | 211 | 202 | 194 [ 220 [ 230 [ 225 | 228 | 226 | 225 | 229 | 227 | 228 | 213 [ 226 | 221 | 208 | 265 | 225 | 260 | 232 |

Table 2: Resource consumption of all benchmarks. Opt1,2 are the two bitstreams resulted from bitstream splitting.

Such results are also consistent with existing works [31, 32] that
FPGAs deliver inferior performance but superior energy efficiency
to the same generation GPUs.

Hist
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Figure 13: Speedup of RTX2080 compared to Stratix V

7.3 Case Studies

7.3.1 CFD. The kernel data flow graph of CFD is shown in Fig-
ure 1. Since K2 and K3 form an inner loop, MKPipe chooses to
enable concurrent execution between K2 and K3. After cross-kernel
dependency analysis, MKPipe identifies the producer-consumer
relationship between K2 and K3 as one-to-one as discussed in Sec-
tion 5.3.

Since CFD has two versions, one using single-workitem kernels
and the other using NDRange ones. We show their performance
after each optimization step in Figure 14. Between fusion and CKE
with channel, MKPipe picks CKE with channel due to the short
execution time. After optimizations, especially kernel balancing,
the optimized NDRange implementation achieves the highest per-

formance.
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Figure 14: Speedups of optimized kernels over baseline. SI:
single work-item kernels; NDR: NDRange kernels

7.3.2  BP. The backpropagation (BP) benchmark trains the weights
in a layered neural network. It has four kernels and the kernel
data flow graph is shown in Figure 15. The profiling data show

Layerforward
(K1)

Output_error
(K2)

Hidden_error
(K3)

Adjust_weights
(k4)

H

Figure 15: Kernel data flow graph of BP.

the first kernel invocations and the last kernel invocations take
20% and 76% of the overall execution time, respectively. Given the
loops in the kernel data flow graph, MKPipe mainly applies the
resource balancing and kernel splitting optimizations. During the
bitstream splitting step, MKPipe partitions K4 from the rest kernels
due to its long execution time and its relatively high ERU. After the
kernels are put in separate bitstreams, the kernel balancing step is
repeated such that both kernel K1 and K4 are more aggressively
optimized. The reduced execution time from K1 and K4 over-weighs
the reprogramming overhead and a significant net gain (1.43x) in
performance is achieved.

8 CONCLUSIONS

In this paper, we present a source-to-source compiler framework,
MKPipe, for optimizing multi-kernel workloads in OpenCL for
FPGA. There are two key optimizations. One is to enable multi-
kernel pipelining through different ways of concurrent kernel exe-
cution (CKE). The other is to adaptively balance the throughput or
the resource among the multiple kernels. The key novelty of this
work is: (a) a systematic compiler optimization scheme to enable
multi-kernel pipelines; (b) CKE through global memory along with
workitem/workgroup id remapping; (c) algorithms to balance the
throughput and/or resource consumption among the kernels in a
multi-kernel pipeline; and (d) a new approach to explore the option
of bitstream splitting.
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