Persist Level Parallelism: Streamlining Integrity
Tree Updates for Secure Persistent Memory

Alexander Freij*, Shougang Yuan', Huiyang Zhou!
Dept. of Electrical & Computer Engineering

North Carolina State University

*atfreij @ncsu.edu, t syuan3 @ncsu.edu, thzhou@ncsu.edu

Abstract—Emerging non-volatile main memory (NVMM) is
rapidly being integrated into computer systems. However,
NVMM is vulnerable to potential data remanence and replay
attacks. Memory encryption and integrity verification have been
introduced to protect against such data integrity attacks. How-
ever, they are not compatible with a growing use of NVMM for
providing crash recoverable persistent memory. Recent works on
secure NVMM pointed out the need for data and its metadata,
including the counter, the message authentication code (MAC),
and the Bonsai Merkle Tree (BMT) to be persisted atomically.
However, memory persistency models have been overlooked for
secure NVMM, which is essential for crash recoverability.

In this work, we analyze the invariants that need to be
ensured in order to support crash recovery for secure NVMM.
We highlight that by not adhering to these invariants, prior
research has substantially under-estimated the cost of BMT
persistence. We propose several optimization techniques to reduce
the overhead of atomically persisting updates to BMTs. The
optimizations proposed explore the use of pipelining, out-of-order
updates, and update coalescing while conforming to strict or
epoch persistency models, respectively. We evaluate our work
and show that our proposed optimizations significantly reduce
the performance overhead of secure crash-recoverable NVMM
from 720% to just 20%.

Index Terms—persistency, security, integrity tree update,
persist-level parallelism

I. INTRODUCTION

Non-volatile main memory (NVMM) is coming online, of-
fering non-volatility, good scaling potential, high density, low
idle power, and byte addressability. A recent NVMM example
is Intel Optane DC Persistent Memory, providing a capacity of
3TB per socket [22]. Due to non-volatility, data may remain
in main memory for a very long time even without power,
exposing data to potential attackers [8]. Consequently, NVMM
requires memory encryption and integrity protection to match
the security of DRAM (which we refer to as secure NVMM),
or to provide secure enclave environment. Furthermore, it is
expected that NVMM may store persistent data that must
provide crash recoverability, a property where a system can
always recover to a consistent memory state after a crash.
Crash recoverability property offers multiple benefits, such as
allowing persistent data to be kept in memory data structures
instead of in files, and as a fault tolerance technique to reduce

This work was supported in part by grant 1717550 from NSF, and by UCF.
The work was initially started under the direction of Solihin while at NCSU
and further co-directed by Zhou and Solihin at NCSU and UCEF, respectively.

Yan Solihin
Dept. of Computer Science
University of Central Florida
Yan.Solihin@ucf.edu

checkpointing frequency [1], [14], [23], [24], [48]. Finally,
some applications have emerged that need to run on secure
enclave and yet require persistency and crash recovery, such
as a shadow file system [19].

Crash recovery of data with NVMM is achieved through
defining and using memory persistency models. However,
there has not been a systematic study examining how secure
NVMM can support crash recovery on persistency models.
Supporting persistency models on secure NVMM incurs two
new requirements: () the correct plaintext value of data must
be recovered, and Q) data recovery must not trigger integrity
verification failure for a given persistency model. To meet
these requirements, the central question is what items must
persist together, and what persist ordering constraints are
there to guarantee the above requirements? No prior studies
have provided a complete answer. Liu et al. pointed out
that counters, data, and message authentication codes (MACs)
must persist atomically [33], but ignored the Merkle Tree for
integrity verification. Awad et al. pointed out that Merkle Tree
must also be persisted leaf-to-root [4], but did not specify
ordering needed for persistency models.

The focus of this work is to comprehensively analyze the
persist and persist ordering requirements required for correct
crash recovery on secure NVMM. Getting this analysis right
is important. Not only does it affect correctness (i.e., whether
the above crash recovery requirements are met), but it also
affects the accurate performance overheads estimation and
the derivation of possible performance optimizations. For
example, one property missed by prior work is that leaf-
to-root updates of Bonsai Merkle trees (BMT) must follow
persist order, otherwise crash recovery may trigger integrity
verification failure at system recovery. Obeying this ordering
constraint, we found that the overheads of crash recoverable
strict persistency (SP) is about 30x slowdown, which is more
than one order of magnitude higher than previously reported
slowdown.

In this paper, we analyze and derive invariants that are
needed to ensure correct crash recovery (i.e., correct plaintext
value is recovered and no integrity verification failure is
triggered). Then, to reduce the performance overheads, we pro-
pose performance optimizations, which we refer to as persist-
level parallelism, or PLP, that comply with the invariants for
strict and epoch persistency (EP) models. For SP, we found

that pipelining BMT updates is an effective PLP optimization,
which brings down the performance overheads from 7.2x to
2.1x when protecting non-stack regions, compared to a secure
processor model with write back caches but not supporting any
persistency model. We then analyze EP where persist ordering
within an epoch is relaxed, but enforced across epochs. Under
EP, two more PLP optimizations were enabled besides pipelin-
ing: out-of-order BMT update and BMT update coalescing.
These two optimizations reduce overheads to 20.2%.

To summarize, the contributions of this paper are:

o To our knowledge, this is the first work that fully analyzes
crash recovery correctness for secure NVMM, and formu-
lates crash recovery invariants required under different
persistency models.

« For strict persistency, we propose a new optimization for
pipelining BMT updates.

o For epoch persistency, we propose two new optimiza-
tions: out-of-order BMT updates and BMT update coa-
lescing.

e We point out that, many techniques in prior studies
did not completely guarantee crash recovery and hence
substantially underestimated its performance overheads.

¢ An evaluation showing that our proposed PLP optimiza-
tions above significantly reduce the performance over-
head of secure NVMM.

The remainder of the paper is organized as follows. Sec-
tion II presents the background and related work. Section III
formulates the invariants to be ensured in order to support
crash recovery for secure NVMM. Section IV details four
BMT update models, including the baseline used for evalu-
ation and the three proposed ones. Section V discusses our
hardware architecture. Section VI presents our experimen-
tal methodology. Section VII evaluates our proposed update
mechanisms, and Section VIII concludes this work.

II. BACKGROUND AND RELATED WORK

Threat Model We assume an adversary who has physical
access to the memory system (NVMM and system bus), e.g.
through ownership, theft, acquisition after system disposal,
etc. Similar to the incidence of recovering sensitive data
from improperly disposed used hard drives [41], [58], data
remanence in NVMM extends such vulnerabilities to data in
memory [8]. In addition, NVMMSs are potentially vulnerable
to replay attacks [2] and cold boot attacks [20], [37], which
allow malicious entities access to the systems. Similar to prior
work [3], [4], [30], [31], [47], we assume that the adversary
cannot read the content of on-chip resources such as registers
and caches, hence the processor chip forms the trust boundary
where trusted computing base (TCB) may be located. All off-
chip devices, including main memory and memory bus, are
considered vulnerable to both passive (snooping) and active
(tampering) attacks. These assumptions are essential to secure
processor architecture [9], [15], [51], [54], [57], [60], [61].

Memory Encryption The goal of memory encryption is to
conceal the plaintext of data written to the off-chip main

memory [29], [32], [44], [53], [67] or sent to other processor
chips [42], [44], [64]. Counter mode encryption [52], [60], [61]
is commonly used for this purpose. It works by encrypting a
counter to generate a pseudo one time pad (OTP) which is
XORed with the plaintext (or ciphertext) to get ciphertext (or
plaintext). To be secure, pads cannot be reused, and hence
the counter must be incremented after each write back (for
temporal uniqueness) and concatenated with address to form
a seed (for spatial uniqueness). Counters may be monolithic
(as in Intel SGX [12], [18]) or split (as in Yan et al. [60]).
Split counter co-locates a per-page major counter and many
per-block minor counters on a single cache block, and each
cache block is represented by the concatenation of a major
and a minor counter. Due to its much lower memory overhead
(1.56% vs. 12.5% with monolithic counter [60]), counter cache
performance increases and the overall decryption overhead
decreases. Hence, we assume the use of a split counter
organization for the rest of the paper.

Memory Integrity Verification Memory encrypted using
counter mode encryption is vulnerable to a counter replay
attack which allows the attacker to break the encryption [60],
hence memory integrity verification is needed not only to
protect data integrity, but also to protect encryption from trivial
cryptanalysis [39], [65]. Data fetched from off-chip memory
must be decrypted and its integrity verified when it arrives on
chip. In multiprocessors, data supplied from other processor
chips also need to be verified [42], [44]. Early memory
integrity protection relied on Merkle Tree covering the entire
memory [16] with on chip tree root. When using counter
mode encryption, Rogers et al. proposed Bonsai Merkle Tree
(BMT) [43] that employs stateful MACs to protect data,
leaving a much smaller and shallower tree covering only
counters. A stateful MAC uses data, address, and counter
as input to the MAC calculation; any modification to any
MAC input or the MAC itself becomes detectable. Since
it is sufficient to have one input component with freshness
protection, BMT only needs to cover counters. Intel SGX
adopted this observation to design a similar stateful MAC
approach to construct a counter tree that combines counters
and MACs [18].

Memory Persistency Memory persistency is defined to allow
the reasoning of crash recovery for persistent data [1], [6], [7],
[11], [13], [25], [27], [38], [40], [59]. It defines the ordering
of stores as seen by a crash recovery observer [35], [38],
pertaining when a store persists (i.e. becomes durable) with
respect to other stores of the same thread. Since visibility to
crash recovery observer and other threads may be intertwined,
it is sometimes coupled with memory consistency models.

The most conservative model, strict persistency (SP) re-
quires that persists follow the sequential program order of
stores [38]. While providing simple reasoning, SP does not
allow any overlapping or reordering of persists, limiting
optimization opportunities in the system and incurring high
performance overheads. More relaxed persistency models in-
clude epoch persistency (EP) and buffered epoch persistency

(BEP) [38], as well as lazy persistency [1]. With EP/BEP,
programmers define regions of code that form epochs [17],
[26]. Persists within an epoch can be reordered and overlapped,
but persists across epochs are strictly ordered using persist
barriers, which enforce that persists in an older epoch must
complete prior to the execution (or completion) of any persist
from a younger epoch. On top of a persistency model, crash
recovery often requires the programmer to define atomic
durable code regions [10], [13], [36], [45], [49], [63].

WPQ and Metadata Caches Modern processors utilize a
write pending queue (WPQ) in the memory controller (MC)
[45]. System features such as Asynchronous DRAM Refresh
(ADR) adds WPQ to the persistence domain by requiring that
the contents of the WPQ are flushed to NVMM when a crash
occurs [45], making WPQ the point of persistence for stores.

Counters, MACs, and Merkle Tree nodes may be placed in
the last level cache [43] or in their own metadata caches [16],
[43], [50], [51], [60], [61]. Metadata caches may be unified
for all metadata types [46], [55] or separate [30], [62]. Our
models assume separate metadata caches.

Secure NVMM for Crash Recovery Data remanence vulnera-
bility for DRAM as data may persist for weeks under very low
temperature [20], [37]. The vulnerability is much worse with
NVM since data is retained for years, hence self-encrypting
memory has been proposed [8]. However, NVM will likely
host persistent data supporting crash recovery, requiring in-
tegrating memory encryption and integrity verification with
memory persistency. This has been explored only recently.
Swami et. al [55] proposed co-locating data, counters, and
MAC, to make it easier to atomically persist them together.
Liu et al. [33] proposed a similar approach, plus an alternative
approach of using the MC as a gathering point for atomic
persistence. Awad et al. [4] looked at persisting data, counters,
and BMT, but did not address persistency models and persist
ordering. Zuo et. al [68] proposed coalescing counters for
persisting counter cache data, but did not discuss counter in-
tegrity verification. Liu et. al [34] optimized backend memory
operations (BMO) including encryption, integrity protection,
compression, and deduplication and proposed parallelized ex-
ecution and pre-execution with compiler support to reduce
the BMO overhead. Persistency models and persist ordering
of BMT updates were not discussed. Finally, in non-NVM
context, Saileshwar et. al [47] and Taassori et. al [56] proposed
mechanisms to reduce the integrity tree size. However, while
shallower, the fundamental bottleneck of having to update
BMT from leaf-to-root in persist order remains, which is what
is addressed in this paper.

III. CORRECTNESS OF CRASH RECOVERY

Supporting crash recovery requires three levels of mech-
anisms. At the highest level is the programmer specifying
durable atomic region, which allows a group of stores to
persist together or not at all. With Intel PMEM, building such
a region needs to rely on creating and keeping undo/redo
logging in software. Building such a region requires the next

Lvl

BMT Root
Xl 2'],' SEC%I’OEUEIBOaCrEySSOI' |64b|64b| '| . | : | l | : | 64b

Xz - T 1
[64b[64b].].].].[.[64b
* i) e
Xs [[xat fxa-51; . .
7 o 64b Major ctr{[64 7b minor ctr]
0, 0, 5 1
2

Fig. 1. An example illustrating two BMT updates with their update paths.
Persist d1’s path is shown as striped pattern (X4-1, X3-1, X2-1, X1-1) while
d2’s update path is shown in the grey color (X4-512, X3-64, X2-8, X1-1).
Each MAC takes a 64-byte input and outputs a 64b hash value.

level of mechanism (persistency model), which specifies the
ordering of the persistence of stores with respect to program
order, such as strict persistency, epoch persistency, etc. Each
persistency model relies on the next level mechanism which
must ensure that each store, if it persists, must be recoverable
to its original plaintext value and must not trigger integrity
verification failure. It is the last level mechanism that our work
seeks to provide.

In this section, we formulate the invariants to be ensured in
order to support crash recovery for secure NVMM. The system
we assume is one with volatile on-chip caches and a persistent
domain that includes NVMM and the WPQ inside the MC.
Our analysis focuses on a system with counter-mode memory
encryption along with MAC and BMT integrity verification.
Counters, MACs, and BMT nodes are cacheable and can be
lost with the loss of power, except the BMT root which is
always stored persistently on chip. Recovering from a crash
requires recomputing the BMT root and validating it against
the stored root. We discuss Intel SGX MEE later in the paper.

Suppose that plaintext P at address A is encrypted using
counter v and private key K to yield ciphertext C, i.e.,
C = Ex(P,A,7) and necessarily the decryption follows
P = Dg(C, A,~). Suppose also that M represents a message
authentication code for C, i.e., M = M ACk(C, A,~). Finally
suppose that BMT covers all counters and has a root R. We
define BMT update path as follows:

Definition 1: BMT update path is the path of nodes from
a leaf node (i.e., one encryption page) to the root of BMT.

Fig. 1 shows an example with two persists that generate
updates to an 8-ary BMT. Update §; affects all % parts of
nodes shown in stripes, while update Jo affects all é parts of
nodes shown in grey. The update paths intersect at the BMT
root and different parts of it are modified. Note that while
all update paths necessarily intersect at the root, they may
intersect earlier.

Definition 2: Common Ancestors of two persists are nodes
in the BMT tree that appear in the BMT update paths of both
persists. The Least Common Ancestor (LCA) is a common
ancestor that is at the lowest-to-leaf level compared to all other
common ancestor nodes.

In the example in Fig. 1, the common ancestor consists of
only the BMT root, hence the BMT root is also the LCA.
However, if another persist causes an update at node X4-2,

TABLE I
RECOVERY FAILURE CASES DUE TO PERSIST FAILURE

[M | R [Outcome]
BMT (verification) failure

MAC (verification) failure

Wrong plaintext, BMT&MAC failure
Wrong plaintext, MAC failure

X |<J<|@
<J X<

<< X<
<J<J X

then this update and d2 share X3-1 and X1-1 as common
ancestors, with X 3-1 being the LCA.

We also define a memory tuple as a collection of items that
are needed to crash recover a datum:

Definition 3: Secure memory transforms an on-chip plain-
text data P at block address A to a memory tuple of
(C,~, M, R) when data is persisted to main memory, and vice
versa when persisted data is read from main memory.

The memory tuple represents the totality of transformation
of a block when it is written back (out of the last level cache
or LLC) to off-chip memory, and we claim that each tuple
item must be available in order to recover data correctly, and
failure to persist any item(s) in the tuple results in a crash
recovery problem:

Invariant 1: Crash Recovery Tuple Invariant. In a secure
memory with counter-mode encryption and MAC/BMT veri-
fication, in order to recover a datum P that was persisted in
memory, its entire memory tuple (C,~, M, R) must have been
persisted as well.

To illustrate this, suppose that a plaintext value P, is
changed to a new value P,,. The memory tuple for the block
then must change from (Cy, o, Mo, Ro) to (C, Yn, My, Ry).
If some tuple item was not persisted, for example M,,, post-
crash, (Cy,Yn, M,, R,,) is recovered. In this case, the correct
plaintext is recovered but MAC verification fails because
the old MAC (M,) fetched from memory mismatches with
MACK(Cy, A,~y). If instead 7, was not persisted, since
P, # Dk (Cp, A,7,), the correct plaintext is not recovered.
Not only that, since -, is input to MAC and BMT verification,
both verification mechanisms fail as well. Table I lists the
outcomes of not persisting one or more of the memory tuple.

Note that the crash tuple invariant (Invariant 1) specifies
the necessary and sufficient condition for recovering data post
crash. It does not specify exactly "when” tuple items must be
persisted with respect to the data persist; this depends on the
crash recovery expectation of the program and the persistency
model being assumed.

So far we have discussed the crash recovery correctness for
a single data persist. To support crash recovery, programmers
must reason about not just a single persist, but multiple persists
and the relative ordering between them. In this case, we
assume that if there is possibility that the crash recovery
observer reads the persistent memory state between two per-
sists, then the two persists must be ordered. Now suppose
that there are two ordered persistent stores (persists) «; and
ao to the different blocks. For the memory tuples of these
different blocks, it is possible that these blocks may modify

TABLE II
RECOVERY FAILURES DUE TO MEMORY TUPLE ORDERING VIOLATION.
SUPPOSE THAT o1 — vz IS ENFORCED BY PERSISTING C| BEFORE Cl.
ALL MEMORY TUPLE COMPONENTS OF o1 HAVE BEEN PERSISTED EXCEPT
FOR THE ONE THAT SUFFERS FROM ORDERING VIOLATION, WHERE a3’S
TUPLE COMPONENT WAS PERSISTED INSTEAD.

Violating y1 — 72 Plaintext P; not recoverable

Violating M; — M, | MAC (verification) failure for C; and C3

Violating R1 — R» BMT (verification) failure for C

the same counter block, the same MAC block, and definitely
the same BMT root. If the persist order of memory tuples is not
followed, recoverability is problematic. For example, suppose
that vy — a9 but Ry — R, which means that the BMT root
is updated by the second persist before by the first persist. If
a crash occurs prior to either of them or after both of them,
recoverability is not jeopardized. But at other points, recovery
can fail. For example, suppose that a crash occurs after oy
and Ry persist but before as and Rq persist. Post crash, BMT
verification failure occurs due to the root not reflecting the
persist of «;. In other words:

Invariant 2: Persist Order Invariant. Suppose that oy
happens before as in program order. If the crash recovery
observer may read out the persistent state between «; and awo,
then oy must follow «; in persist order, i.e. a; — ag. If
a1 — ae in persist order, then for correct crash recovery, the
following must hold: (Cy,~1, M1, R1) — (C2,72, M2, R2) in
persist order, i.e. the persist order of each respective memory
tuple items must follow the order of data persists.

Note that the persist order depends on the persistency mod-
els. For SP, every persist is ordered with respect to others and
Invariant 2 applies to each pair of persists. For EP, Invariant 2
applies only to stores from different epochs. Persists from the
same epoch are unordered, which gives a rise to optimization
opportunities discussed in Section IV.

Implications There are several consequences of Invariant 2.
Ordering violation triggers recovery failures as listed in Ta-
ble II. Current persistency model specifications are incomplete
for secure NVMM as they only enforce ordering of data
persists (e.g. C7 — C5). Persist barrier (such as sfence)
needs to expand its semantics to also include other tuple
components.

In addition, mechanisms or optimizations that may reorder
tuple updates violate Invariant 2. For example, suppose that
(5 is available early (due to prediction): pre-computing -y, or
My carries the risk of them being evicted from the metadata
caches earlier than v, or Mj, hence violating the invariant.
Furthermore, two persists «; and «s could incur different
latencies to update their respective BMT paths because some
BMT nodes may be found on chip while others need to be
fetched from main memory. Without an explicit mechanism
to enforce the ordering of BMT path updates, Invariant 2 is
likely violated often. To our knowledge, our work is the first
to identify the need to order BMT (and tuple) updates. Finally,
naive mechanisms to enforce persist ordering impose a very
high cost that scales with the size of BMT, exposing BMT

updates as the primary performance bottleneck for a secure
NVMM. Upon eviction of a block from LLC, the data, its
counter, and MAC are updated and sent to the MC, but they
must wait until BMT root is updated before the persist can be
considered successful. For example, assuming a hash latency
of 80 processor cycles [30], updating a 9-level BMT incurs
720 processor cycles for one persist.

IV. STREAMLINING BMT UPDATES

In this section, we explore how BMT update performance
due to persists can be improved. Performance optimization
techniques that are possible depend on (D no violation against
invariants discussed in the previous section, and) the persis-
tency model that is assumed. We collectively refer to the key
methods as persist-level parallelism (PLP): pipelining, out-of-
order updates, and coalescing.

A. Strict Persistency

1) Baseline Atomic Persist Mechanism: Following Invari-
ant 1, for each memory update, we need to ensure that all
memory tuple components also persist. Due to the write-back
cache, the eviction order of dirty blocks may be different
from the program order. Therefore, with SP, one way to
satisfy the invariant is to atomically persist the tuple gen-
erated by each store, which results in write-through cache
behavior. To achieve this, we devise a 2-step persist (2SP)
mechanism. Similar to [33], 2SP relies on the WPQ of the
MC as persist gathering point. 2SP consists of two steps:
the first step involves gathering and locking persist memory
tuple components in the WPQ (while flagged as incomplete),
while the second step flags the completion of the persist and
releases tuple components to memory. A persist is marked
completed when the WPQ receives its updated ciphertext,
updated counter, MAC, and acknowledgement that the BMT
root has been updated. Once completed, the blocks are allowed
to drain from the WPQ to the NVMM. On power failure, any
incomplete flagged blocks are considered not persisted and
invalidated. Since the persistence of the counter and MAC is
straightforward and not expensive, we will focus the rest of
the discussion on the expensive BMT update.

To illustrate the mechanism, suppose that two persists are
initiated, as shown in Fig. 1. Fig. 2 shows the sequence of
persists of memory tuples due to the two persists, in the
baseline persist mechanism. For persist §;, ciphertext Cf,
counter y;, MAC M are persisted. A new value of counter 7,
is needed for the BMT update path starting from leaf of BMT
X4-1, which in turn is needed to update BMT node X3-1,
and so on, until BMT root X 1-1 is updated. When ciphertext
C1, counter 1, and MAC M; are completed and BMT root
is updated, 0; is considered completed, after which persist
02 can commence. It is clear that even though intermediate
nodes in the BMT update path do not need to persist (only
the leaves and root need to persist), the critical path is due to
their sequential updates.

Fig. 2. The timeline of two data persists and their memory tuple persists.

Fig. 3. The timeline of (a) out-of-order BMT updates with in-order BMT root
updates, and (b) pipelined updates with in-order common ancestor (including
BMT root) updates.

2) PLP Mechanism 1: Pipelining BMT Updates: While
the baseline persist mechanism described in Section IV-Al
is correct, it suffers from high overheads. Each node in the
BMT update path must wait until the previous node has been
calculated. In order to improve this situation, recall that the
Persist Order Invariant (Invariant 2) only requires that the
BMT root update follows the persist order. This means that
it is possible to update BMT nodes out of order, as long as
the root is still updated in persist order. This is illustrated in
Fig. 3(a), where update paths of persist §; and persist 65 are
updated out of order but updates to BMT root are kept in
persist order.

While out of order non-root updates are best for perfor-
mance, it is difficult to avoid write-after-write (WAW) hazards
if two persists’ BMT update paths intersect at more than just
the BMT root. To avoid WAW without much complexity, we
design a more restrictive version of the optimization, namely
pipelined BMT update. With a pipelined update, a younger
persist is allowed to update a certain level of BMT only when
an older persist has completed its update of the same level
BMT node. This is illustrated in Fig. 3(b). The pipelined
update optimization ensures that if two persists have common
ancestor nodes, they will still be updated in persist order.

Note that as the memory grows bigger, the BMT will
have more levels and hence more pipeline stages. Thus, one
attractive feature of pipelined BMT updates is that with larger
memories, the degree of PLP increases and pipelined BMT
updates becomes even more effective versus non-pipelined
updates.

B. Epoch Persistency

With EP, two persists in the same epochs do not have
persist ordering constraints; persists only need to be ordered
across separate epochs. This fact allows the write-back cache
to reduce the write traffic and also gives us opportunities to
optimize BMT updates. We make a stronger assumption on
EP compared to that in literature: Nalli et. al [36] assert that
75% of epochs update one 64B cache line, where we assume
a minimum of one store per epoch. Specifically, we assume
that crash recovery does not depend on the transient persistent
state within an epoch while an epoch is executing. Instead,

miss miss

Fig. 4. The timeline of two data persists with (a) in-order pipelining and (b)
out of order updates.

crash recovery depends only on the persistent state at an epoch
boundary. This assumption requires that any actions performed
by an epoch that were not completely persisted prior to crash
must be re-executable. This assumption is reasonable, because
epochs are usually components of a durable transaction, and
durable transactions can be re-executed if they fail.

1) PLP Mechanism 2: Out-of-Order BMT Updates: Invari-
ant 2 applies to two persists that are ordered, i.e. in EP, they
belong to two different epochs. It does not specify how to treat
two persists that are not ordered, such as those belonging to the
same epoch. The question then arises whether two unordered
persists can be performed out of order (OOO), and if so, to
what extent and whether there are any constraints that need to
be observed.

Before discussing them further, let us first discuss the
potential benefit of OOO. OOO BMT updates have a much
better performance potential than (in-order) pipelining for two
reasons. First, it can hide the BMT cache miss latency as
illustrated in Fig. 4. Fig. 4(a) shows a case where persist d;
is attempting to update the BMT, but suffers a cache miss
on BMT node X4-1. This introduces bubbles in the in-order
BMT update pipeline, and persist Jo is consequently delayed,
therefore it cannot update X4-64 until X4-1 is updated.
Fig. 4(b) illustrates that with OOO, both updates can occur
in parallel, with d, not being delayed by the cache miss that
01 must wait for. Therefore, OOO can achieve a higher degree
of PLP compared to in-order pipelining. Second, OOO BMT
updates enable us to use pipelined MAC units to improve the
throughput. The in-order BMT update pipeline has the same
number of stages as the levels in the BMT and there is at
most one update at each level. Therefore, the throughput of
pipelined BMT is limited to one BMT update per n cycles,
where n is the MAC latency. In contrast, with OOO, a
BMT update can start at every cycle, thereby increasing the
throughput to one BMT update per cycle.

Regarding correctness of OOO execution of persists from
the same epoch, a concern arises that there may be a write after
write (WAW) hazard in the case where two persists have their
BMT update paths intersecting at not just the BMT root. The
hierarchical nature of BMT dictates that if two BMT update
paths intersect, the intersection representing common ancestors
manifests as common suffix in the paths, starting from the
lowest common ancestor (LCA) node, and then continuing to
the LCA’s parent, grandparent, etc. until the BMT root. Does
updating common ancestor nodes out of order trigger a WAW
hazard? We assert that they do not.

In order to prove it, we note that different blocks will cause
different counters to be updated. Let us denote the old counter
values as v, and 72, and the new values as vy, and vo,.

The counters correspond to either one BMT leaf node (if the
counters are co-located in a block) or two BMT leaf nodes (if
the counters are not co-located in a block). In the former, the
leaf node is the LCA, while in the latter the LCA is further up
the tree. Suppose that persist J; updates the LCA before ds.
Then, at the end of the LCA update for both persists, the LCA
value is M ACk (Y1nsY2n, - - -). If instead 5 updates the LCA
before 01, the LCA value is also M ACk (v1n, Yon, - - -)» Which
is unchanged. Therefore, the final LCA value is the same, and
hence the BMT root is also the same. The intermediate LCA
value is different when §; or d5 update the LCA first. However,
in EP, the crash recovery observer does not expect a particular
persist order for two persists in the same epoch. Furthermore,
Invariant 2 assumes that the crash recovery observer will not
read the transient persistent state between the two persists.
For the latter case, d; and do will update different parts of the
LCA, hence the same proof holds.

The epoch boundary, however, places constraints on the
degree of PLP, as it acts as point of ordering; all persists in the
previous epoch must complete prior to any persist in a new
epoch can complete. Thus, the higher the number of persists
in an epoch, the higher is its potential PLP.

To handle OOO, the 2SP only needs minor modifications.
When blocks belonging to persists from the same epoch are
written back from the LLC, they are no longer locked in the
WPQ. They are allowed to drain to persistent memory as they
come. However, the WPQ retains enough state to monitor if the
memory tuples of persists of the same epoch have all arrived at
the WPQ or not. When they have all arrived, they are marked
completed and the epoch is considered complete. On the other
hand, blocks from the next future epoch are locked in the
WPQ and marked incomplete, until the previous epoch has
completed.

2) PLP Mechanism 3: BMT Update Coalescing: Further
analysis of BMT updates within an EP model exposes a
notable scenario that enables our final optimization. BMT
updates within an epoch are likely to involve substantial
number of common ancestor nodes, due to spatial locality.
While OOO allows updates to BMT to be overlapped and
performed out of order, there are still many updates to BMT
nodes that occur. These updates can be considered superfluous
considering that the same node may be updated multiple times
by persists from the same epoch. In our final optimization, we
seek to remove superfluous BMT updates by coalescing them.

Fig. 5 illustrates the update order of OOOQO persists with
coalescing. Without coalescing, each persist incurs updating
of four BMT nodes, causing a total of 12 updates. With coa-
lescing, persists §; and d2 updates are coalesced at their LCA
(node X 31), while d5 is coalesced at the LCA at node X21. As
a result, there are only seven updates to the BMT, which in this
example corresponds to 42% reduction in BMT updates. Fewer
updates to the BMT reduce the occupancy of the memory
integrity verification engine, and hence reduces the latency
and improves the throughput of the engine. Furthermore, an
equally important benefit to coalescing is the number of writes.
Without coalescing, the BMT root is updated three times: with

BMT Root

X1) Secure processor
boundary

X2
X3
X4
toR toP3 O3
Epoch
Boundary

01 X41— X31—» X21+» X1

/

02 xa2
O3 xd4w X32

Time

Fig. 5. Example of coalescing BMT updates starting from the lowest common
ancestors (LCAs) to the BMT root.

coalescing, it is updated only once.

Coalescing’s effectiveness increases with spatial locality.
Spatial locality results in nearby blocks being updated. In the
best (and also frequent) case, blocks belonging to the same
encryption page (a 4KB region) are updated within the epoch.
They result in a single counter block being updated multiple
times. Without coalescing, each such update generates BMT
updates from leaf to root, while with coalescing, there is only
one root update, thereby resulting in a substantial saving.

V. ARCHITECTURE DESIGN

In this section, we propose architecture designs to enable
the PLP optimizations. As a baseline architecture, we assume
a discrete counter cache [60], BMT cache (mitcache) [4],
[62], MAC cache [66], and persist-gathering WPQ [33]. These
structures suffice if an unoptimized SP model is adhered to. To
support our optimizations, additional structures are introduced,
specifically schedulers, to retain the persist ordering. These
schedulers will contain information that enforces BMT update
order by allowing or preventing writes to occur. Each optimiza-
tion has its own set of conditions for allowing or preventing
writes, and will be analyzed next.

A. Strict Persistency: Pipelined BMT Updates

To support our first PLP technique, in-order pipelined BMT
updates for SP, we introduce a new structure called persist
tracking table (PTT) that enforces persist ordering in a SP
model.

The PTT interacts with a scheduler that also interacts with
the BMT cache and the MC / WPQ. Each entry in the PTT
has multiple fields (Fig. 6). The field Lv/ indicates the level of
the BMT that the persist is currently updating, and is used to
enforce in-order pipelining by staggering persists on different
BMT levels. Fig. 6 shows an example of the PTT with four
persist entries. d; is updating level 1 (node X1), while 45 is
updating level 2 (node X 21), etc. The valid bit V' is set when
the entry is created and cleared when the persist has updated

PendingNodes of various persists

PTT VR P LVl WPQptr Pending;\m// Neﬁ);gde ®
61 (0f1]1] 1 | wpal 1
65 [1]1|0] 2 | wpq2 21
03 [1]0lo] 3 | wpg3 33 ®
@ ©041][1]0] 4 | wpgs 47
® I@ wea WPQ
BMT Cache | "3
wpq3|
wpg4|

Fig. 6. Example of in-order pipelined update mechanism with Persist Tracking
Table (PTT) for SP.

the BMT root. The ready bit R is set when updating the current
BMT node has been completed, and cleared when the update
moves on to the next node in the BMT update path. The PTT
is managed as a circular buffer using a head and a tail pointer.
The persist flag P is set when the BMT root has been updated
and the entry can be removed: if the head pointer points to
this entry (indicating this entry being the oldest) and the P bit
is set, then BMT update is considered completed, and both the
PTT entry and WPQ entry can be deallocated. The WPQOptr
field points to the corresponding persist entry in the WPQ. The
PendingNode field indicates the ID/label of the node currently
being updated.

In the figure, §; has finished updating the BMT root hence
V =0and P = 1. §; and §4 have updated their current nodes
shown in the PendingNode fields, i.e., X21 for § and X47
for 64, hence R = 1. §3’s R bit is not set yet, either because
the BMT node is not yet available for update (e.g. not found
in the BMT cache/being fetched from memory), or the update
has not completed (e.g., MAC is still being calculated).

The role of the scheduler is to decide when a persist can
proceed to updating the next BMT level. To illustrate the
working of the scheduler, suppose a new persist request is
encountered. An entry is created in the WPQ to hold the data,
counter, and MAC to persist. Concurrently, a new PTT entry is
also created (Step (D), initialized to point to the corresponding
WPQ entry, with the PendingNode labeled with the appropriate
leaf BMT node (i.e. MAC of counter block). The valid bit is
set, while the ready and persist bits are reset. In Step @), the
BMT cache is looked up for the PendingNode. If found (BMT
cache hit), a new MAC is calculated and the node updated.
If not found (BMT cache miss), the node is fetched from
memory, and the update commences after the node arrives
from memory and is verified for integrity. Once the BMT
node at the current level is updated, the R bit is set. For the
scheduler to allow persist entries to move on to the next BMT
levels, it waits until the R bits of these entries are set (Step Q)),

indicating completion of updates to the current BMT levels.
Once the bits are set, the scheduler wakes up the entries to
move on to the next BMT levels. The PendingNode is input
into the Next Node Logic to yield the ID for the next node to
update (Step @).

When the oldest entry (d;) finishes updating the BMT
root, the entry’s P bit is set and the WPQ is notified of
BMT root update completion (Step). Afterward, the entry
occupied by d; can be released, the head pointer updated,
and execution continues. At the WPQ, if BMT root update
completion notification is received, and other tuple items are
completed (data, counter, and MAC), tuple items are marked
as persisted and become releasable to memory.

B. Epoch Persistency: OOO BMT Updates

The previous PTT architecture is not capable of managing
BMT updates with EP model with OOO updates of BMT
nodes, as it enforces in-order pipelined updates. What is
unique with EP is that there are two persist ordering policies:
enforced ordering across epochs but not within an epoch.
Thus, we split the PTT design into two tables: an epoch
tracking table (ETT) to track epochs while relegating the PTT
to only track persists. Furthermore, coalescing makes the PTT
more sophisticated, as it must be able to calculate and track
coalescing points of multiple persists. For these reasons, Fig. 7
shows the ETT/PTT split design and also the format of the
PTT entries that enable OOO updates and coalescing.

An ETT is a circular buffer maintaining the order of active
epochs. An ETT entry has the following fields: EID (epoch
ID), a valid bit V, a ready bit R (which is set when updates
of all persists in the epoch are completed), Lvl indicating the
lowest BMT level being updated by the epoch, index to the
start entry at the PTT (Start) and to the end entry at the
PTT (End). End is incremented (wrapped around on overflow)
when a new persist from an epoch is encountered. Two special
purpose registers are also added: GEC (global epoch counter)
keeps track of the next epoch ID to allocate to a new epoch,
while PEC (pending epoch counter) keeps track of the oldest
active epoch being processed. In the PTT, each entry is added
epoch ID (EID) field to identify the epoch a persist belongs
to.

Fig. 7 illustrates the tables with an example. There are a total
of five persists, with the first three persists from Epochl, while
the fourth and fifth persists are from Epoch2 and Epoch3,
respectively. For example, the entry for Epochl at the ETT
has Start = 0 and End = 2 to indicate that PTT indices
0..2 contain information of the persists of Epochl. §;, o, and
03 are within the same epoch, and hence they perform OOO
updates on the BMT root. In the example, d3 has updated
BMT root X1 (hence in the PTT, P = 1 and V = 0), while
01 is working on updating BMT root X1 (hence in the PTT,
P =0and V = 1). Since 3 has persisted, its respective entry
can be released from the WPQ assuming all components of
the security tuple have been received. d5, on the other hand,
has not reached BMT level 1 but has finished updating BMT
node X21 (hence in the PTT, R = 1. Since Epochl is still

PendingNodes of various persists

Epochl!

v
Epoch2 !

TT
EIDV R Lvl Start End

EIDV R P Lvi WPQptr PendingNode
gpocht [O]1]0] 2] 0 | 2 61[of1]ofo] 1 | wpql 1
epoch2 [1]1]0] 3 [3| 3 O6z/0[1]1]o] 2 | wpq2 21
Epoch3 [2[1]1] 4 | 4 | 4 os/ofof1]1] 1 | wpg3 1
O4/1[1]0[0] 3 | wpga 33

Os[2[1]1][o] 4 [wpgs5 47 |

Fig. 7. Proposed architecture to enable OOO BMT updates and update
coalescing within an epoch as well as in-order pipelined BMT updates across
different epochs.

working on BMT level 2 node and it is the lowest level that
any persist of Epochl is working on, in the ETT, Epochl’s
Lvl = 2. Epoch2 and Epoch3, consisting of one persist each,
are updating different nodes (X33 and X47, respectively) at
different BMT levels (level 3 and 4, respectively).

The figure illustrates that we exploit two types of paral-
lelisms: epoch-level as well as persist-level parallelism. Within
an epoch, we allow updates to occur OOO. Across epochs,
we pipeline updates to the BMT in the epoch order using
ETT to track and enforce correctness. The ETT mechanism
for pipelining works similarly to the PTT mechanism for
pipelining for SP, but with several modifications. First, the
ready bit R of an epoch is set only when all its persists’ ready
bits are also set. The Lvl of an epoch is determined as the
maximum of Lyl field of all the persists of the epoch. With
this, ETT can ensure that each BMT level can only be updated
by persists of a single epoch, which avoids cross-epoch WAW
hazards. When all persists of an epoch’s are completed within
the level(s) that are recorded, an epoch’s R bit is set. When all
epochs’ R bits are set, the epoch-level scheduler is invoked to
advance the epochs to the next levels. If an epoch is at level
1 and its completed, the entry can then be deallocated.

Scheduling at the PTT is also modified. In SP, persists
update the BMT in a pipelined lockstep fashion. With EP,
the persist’s EID is used to check which level the persist is
authorized to update. In the example in the figure, J5 cannot
advance to level 3 because Epoch3 is only authorized to
update level 4 of the BMT. Apart from epoch-level restriction,
each persist can advance to the next level independently of
other persists. Hence, assuming the level is authorized, persist-
level scheduler allows a persist to advance to the next level
whenever R = 1 for the persist.

C. Epoch Persistency: Coalescing BMT

To coalesce updates within an epoch, we first need to find
the common ancestors. We adopt a BMT node labeling scheme
based on the previous work [16]. A unique label is assigned
to each BMT node starting from O for the BMT root. To find

the parent of each BMT node, we subtract one from the label
of current node and divided by the arity of the BMT to get the
label of its parent. Then we can round this process down until
the label O to get a list of all its ancestors. The least common
ancestor (LCA) between two leaf nodes can be found from
the longest prefix match between the two ancestor lists.

Next, we need to decide where to coalesce and how to
determine which persists are coalesced together. Consider that
it is likely that two persists from the same epoch will share
many BMT nodes that are common. Coalescing can occur
at any such node. However, the closer to leaf the common
ancestor node is, the more effective coalescing become as more
updates are eliminated. Therefore, an important principle for
update coalescing is to coalesce at LCA whenever possible.
The optimal coalescing occurs when the minimum number of
updates is achieved. It requires each persist to be compared
to every other persist in an epoch, and each pair that has the
lowest LCA combined. Then, each combined pair is compared
against every other BMT node or pair, and recombined, etc.
However, this iterative approach is too costly for hardware
implementation. Instead, we opt for paired coalescing, in
which we always coalesced the new persist with previous one
if it has not been coalesced with other persists.

D. Counter Tree Updates in Intel SGX

Intel SGX utilizes a “counter tree” to verify memory
integrity. Similar to BMT, the counter tree does not cover
data because it assumes a stateful MAC that protects against
spoofing and splicing. The counter tree protects both the
integrity and freshness of counters. However, unlike BMT, a
counter tree requires the parent counter value to compute the
MAC of child counters. As a result, to enable crash recovery,
the parent counter value needs to be available and correct in
order to compute the correct MAC value. On a store that
persists, the tree’s entire path from leaf to root nodes must
also be persisted, instead of just the tree root.

Therefore, two changes are needed for crash recovery
correctness. First, Invariant 1 redefines a memory tuple as
consisting of data ciphertext, counter, MAC, and all nodes
of the counter tree from leaf to root along the update path.
Consequently, Invariant 2 expands to include all nodes in
the counter tree update path from leaf to root, in contrast
to BMT which only requires the tree root to provide crash
recovery. This leads to higher costs than BMT. For example,
the number of updates that must persist for one store would
scale by the height of the counter tree. To enable parallel
updates while enforcing these two invariants, we may need to
create a shadow copy of the counter tree to ensure atomicity
of a single integrity tree update. Such restrictions due to the
high inter-level dependence within an SGX Integrity Tree are
yet to be explored. In this work, we focus only on BMT due
to the extra cost incurred by the counter tree.

VI. EVALUATION METHODOLOGY

Simulation Model To evaluate our scheme, we built a
cycle-accurate simulation model based on Gem5 [5]. Major

TABLE III
SIMULATION CONFIGURATION
Processor Configuration
CPU 1 core, OO0, x86_64, 4.00GHz
L1 Cache 8-way, 64KB, 64B block
L2 Cache 512KB, 16-way, 64B block
L3 Cache {1, 2, 4}MB (default 4MB), 32-way, 64B
block
WPQ {4, 8, 16, 32, 64} (default 32 entries)
Metadata Caches
Counter {32,64,128,256 }KB (default 128KB), 8-way,
Cache 64B blk
MAC Cache | {32,64,128,256}KB (default 128KB), 8-way,
64B blk
BMT Cache {32,64,128,256}KB (default 128KB), 8-way,
64B blk
BMT 9 levels
MAC {0, 20, 40, 80} processor cycles (default 40)
Latency [30], [50]
NVM Parameters
Memory 8 GB DDR_based PCM, 1200MHz
write/read queue: 128/64 entries
tRCD/tXAW/tBUSRT/tWR/tRFC/tCL.:
55/50/5/150/5/12.5ns [33]
Persistency Model Parameters
Epoch size {4, 8, 16, 32, 64, 128, 256} (default 32)
PTT/ETT 64 entries (616 bytes) / 2 entries (48 bits)
Size

parameters that we assume are listed in Table III.

For all schemes, to verify the integrity of a newly fetched
data block, we let decryption and use of data be overlapped
with integrity verification [30], [60], [62], [66]. If integrity
verification fails, an exception is raised. Separate metadata
caches for BMT, MAC, and counters are assumed (parameters
in Table III). For strict persistency, we implemented write
through caches to persist each store in order to the MC. For
the pipelined BMT scheme, we rely on a PTT with 64 entries.
To support OOO BMT updates and coalescing, we rely on a 2-
entry ETT (i.e., only two concurrent epochs are allowed, while
enforcing the order between them) and the 64-entry PTT is
shared by the two epochs. An sfence operation is also emulated
to demarcate epoch boundaries. For our coalescing out-of-
order BMT update scheme, we assume an LCA coalescing
where two adjacent updates to the BMT can be coalesced
each time, with the leading store stopping at the LCA and
delegating the root update to the trailing store.

In our sensitivity study, we vary the latency of the MAC
computation (0-80 cycles), epoch size (4-256 stores), meta-
data cache size (32-256KB), and LLC sizes (1-4MB) to
analyze their impacts. Cache latencies are 2 cycles (L1), 20
cycles (L2) and 30 cycles (L3) for their default configurations.
The storage required by the PTT (Fig. 7) is as follows: each
PTT entry has EID (6 bits) , V, R and P (3 bits), Lvl (4 bits),
WPQptr (32-bit), and PendingNode (32 bits), totalling 77 bits.
For 64 entries, the total is 616B. For ETT, each entry has EID
(6 bits), V and R (2 bits), Lvl (4 bits), and Start and End
(two 6 bits), totalling 24 bits. A 2-entry ETT yields storage

TABLE IV
EVALUATED SCHEMES

Scheme

Secure processor scheme with write-
back caches and NVMM, which does
not support any persistency model
Write-through metadata and data
caches without invariant 2 (BMT root
update ordering) enforced, similar
to [4]

sp Strict persistency with sequential up-
dates of BMT

Strict persistency with pipelined up-
dates of BMT

03 Epoch persistency with out-of-order
updates of BMT within an epoch, but
in order across epochs

03 plus coalescing updates of BMT

Name
secure_WB (baseline)

unordered

pipeline

coalescing

overheads of 48 bits.

Benchmarks We use 15 representative benchmarks from
SPEC2006 [21] to evaluate the proposed BMT write update
models: astar, bwaves, cactusADM, gamess, gcc, gobmk,
gromacs, h264ref, leslie3d, milc, namd, povray, sphinx3, tonto,
and zeusmp. All benchmarks are fast forwarded to represen-
tative regions and run with 100M instructions.

Evaluated Schemes The schemes we used for evaluation
are shown in Table IV. For each scheme, we try two con-
figurations. The first one is full memory protection, indicated
with suffix ’_full’, where the entire memory is assumed to be
persistent and is protected. This is likely to be too pessimistic,
because even in persistent memory applications, not all data
needs to be persistent and supports crash recovery. The stack,
for example, is only used for function parameters, local vari-
ables, and spills and refills of registers (especially acute in x86
ISA that has a limited number of general purpose registers),
hence it is likely that it only needs memory encryption and
integrity verification but without persistency support. Consid-
ering these factors, our default evaluation assumes the stack
is not persistent, and covers only the heap and static/global
region.

VII. EVALUATION RESULTS

Summary As expected, our best performing results come
from OOO BMT updates with coalescing (coalescing), fol-
lowed by OOO BMT updates without coalescing (03),
pipelined BMT updates (pipeline), and finally strict in order
BMT updates (sp). The overheads compared to the baseline
without any persistency (secure_WRB) for all the schemes are:
720% (sp), 210% (pipeline), 20.7% (03), and 20.2% (coalesc-
ing). Our best scheme reduces the overhead by 36 x compared
to the worst scheme, when protecting the entire memory minus
the stack segment. Now, we analyze the performance in more
details, starting from strict persistency to epoch persistency,
followed by analyzing the performance overheads varying key
design parameters.

Strict Persistency Here we compare results from sequential
and pipelined BMT updates for strict persistency model, both
for full memory protection as well as excluding the stack
segment persistency (default).

Fig. 8 shows the execution time of strict persistency (sp),
pipelined BMT updates (pipeline), and strict persistency with
unenforced Invariant 2 (BMT updates ordering), similar to [4]
(unordered) normalized to the secure_WB scheme where no
persistency is utilized, i.e. no cache line flushes or persist
barriers. We can make two observations. First, over the base
of no persistency, SP incurs very high performance over-
heads, incurring a geometric average of 7.2x (30.7x for
full memory). The majority of the overheads comes from the
ordered BMT root updates. SP with unordered root updates
significantly reduces such performance overhead but does
not guarantee BMT verification success on crash recovery.
Second, by pipelining BMT updates at different tree levels
between persists, our pipeline scheme reduces the performance
overhead of SP to 2.1x (6.9x for full-memory), representing
speedup ratios of 3.4 (4.4 for full memory).

The key reason for high SP overheads is the high cost
of each persist: each store must completely persist all crash
recovery tuple, including updating the BMT root. With a MAC
computation of 40 cycles and 9 BMT levels, it takes 360 cycles
to update the BMT root. Applications that have high rate of
stores perform worse than others.

Table V shows the number of persists in different schemes.
In sp_full and sp, the number of persists is the number of all
stores and non-stack stores, respectively. For secure_WB, the
number of persists is the number of writebacks from the LLC.
We can see that by persisting all stores non-stack, the persists
per kilo instructions (PPKI) increase by more than two orders
of magnitude (1.61 to 119.51, or to 32.6 for non-stack stores).
Combined with the sequential leaf-to-root BMT updates, BMT
updates become the dominant performance bottleneck. For
example, with gamess having non-stack PPKI is 51.38 and
360 cycles to update BMT form leaf to root, we can estimate
its IPC (instruction per cycle) as 3290 = (.053, which is

very close to the actual IPC of 0.054. Since its IPC with
2.45

secure_WB is 2.45, the slowdown is Toms = 45.3 X, matching
that shown in Fig. 8. For most benchmarks, the slowdown
from sp correlates very well with the PPKI. Some benchmarks,
such as leslie3d and bwaves, have high PPKIs but relatively
much lower overheads than gamess. The reason is that their
secure_WB model IPCs are low, due to the high number of
dirty-block evictions from LLC.

To better understand the impact of MAC latency, in the next
experiment, we vary the MAC latency from 0, 20, 40 to 80
cycles. We also simulate ideal meta-data caches (MDC) that
can cache unlimited counters, MACs, and BMT nodes, never
miss, and have a zero-cycle MAC computation latency. The
results are shown in Fig. 9. From the figure, we can confirm
that MAC computation is the key bottleneck of SP. MDC
shows negligible performance overheads relatively, pointing
out that persisting data and meta-data do not incur much
overheads, as long as the MAC latencies involved in BMT

128 m sp_full m pipeline_full ® unordered_full isp m pipeline
64
32
16
8
4
2 ‘
M IR T
fa"@q@e‘,é@yé‘ 3 %,o &{-@ G"‘é\\qp \00 ““@\ \‘“@ & h“\Q &
< @ & & & &
&

Fig. 8. Execution time of SP schemes normalized to secure_WB model. Scale
is loga.

TABLE V
THE NUMBER OF persists per kilo instructions (PPKI). THE NUMBERS IN
’SP_FULL’ AND SECURE_WB_FULL’ INCLUDE ALL STORES WHILE FOR
OTHERS ONLY NON-STACK STORES.

Benchmark || sp_full secure_WB|| sp (num | 03
(num _full stores) (epoch
stores) (write stores)

backs)

astar 83.48 0.35 13.21 1.97

bwaves 100.27 8.70 61.60 26.47

cactusADM || 114.59 1.55 12.35 5.68

gamess 100.72 0 51.38 30.433

gce 126.73 1.46 67.38 36.64

gobmk 125.16 0.17 34.41 14.63

gromacs 105.73 0.04 9.66 2.69

h264ref 101.17 0 48.80 10.45

leslie3d 108.79 7.78 58.47 17.58

milc 40.18 2 13.65 4.10

namd 133.10 0.18 19.66 2.07

povray 150.72 0 39.23 11.22

sphinx3 184.29 0.10 4.87 1.04

tonto 141.84 0 34.45 16.60

zeusmp 175.87 1.92 19.87 4.66

[Average [119.51 [Lol [32.60 [1241]

leaf-to-root updates incur no cost.

Epoch Persistency We will now discuss results for epoch
persistency model, shown in Fig. 10 (y-axes shown in linear
scale). Two optimizations are enabled in this model: out
of order BMT updates (03) and coalescing BMT updates
(coalescing). The figure shows 03 and coalescing achieve very
low performance overheads: 20.7% and 20.2%, respectively
(2.42x and 2.35x for full memory, respectively), compared to
the 720% with sp. The performance improvements come from
two major sources: the overlapping of BMT updates, which
reduces the critical path of BMT updates within an epoch, and
the large reduction of persists when stores within an epoch fall
into the same cache block. The latter can be seen in Table V
in the last column. Compared to SP,03’s PPKI is roughly one
third of SP’s PPKI (12.41 vs. 32.6).

m0_mac
45.4§ 90.7 46.1

120_mac m40_mac
46.4

80_mac
42.8

= = [} N
o (%2} o w

Normalized Execution Time

w

.I I.‘. dd d

A D O L L

& & &SP
S &

Qo 6(\ xS ‘&\) (@

0 .| I i |
] < N vl
’g’ ’S'\Z \?9@‘ @e‘o Q§’ & &
& @ G O
o~ %
&

Fig. 9. Execution time of SP normalized to secure_WB with different MAC
latencies and ideal metadata caches.

mo3_full = coalescing_full M o3 = coalescing

=)}

w

I

[y

Normalized Execution Time
N w
C]

0|III |j

Fig. 10. Execution time of epoch persistency schemes normalized to se-
cure_WB model.

Fig. 10 also shows that coalescing has limited impact on
performance over o3. The reason is that in order to coalesce
updates, the older update would wait for the younger one
to reach the LCA. Therefore, the saving that comes from
coalescing is mainly due to the reduction of the number of
updates to BMT nodes. Indeed, our experiments show that
coalescing reduces BMT updates by 26.1% on average.

Another interesting observation from Fig. 10 is that in some
cases (e.g. milc), our optimized epoch persistency model can
match or even outperform secure_WB. Digging deeper, the
reason is that with secure_WB, evicted dirty blocks perform
BMT updates sequentially rather than pipelined or overlapped
in our schemes.

Impact of Epoch Size Fig. 11 shows the impact of epoch size
(in number of stores) in affecting persists per kilo instructions
(PPKI). As expected, the larger the epoch, the more likely
stores within a single epoch to fall into a single cache block
that result in fewer persists, as the block is buffered in the
cache until the end of the epoch before it is written back to
main memory. Thus, naturally we would expect that the per-
formance overheads of our scheme to monotonically decrease
with the epoch size. This is true in general, but only up to
some point, after which the opposite is observed. Fig. 12 shows

the execution time of coalescing with varying the epoch size,
normalized to secure_WB. Upon deeper analysis, we found
that while large epochs enable larger reduction in PPKI, small
epochs smooth the write traffic to memory [28] hence reducing
the queueing delay of persists in the MC and memory. This
effect causes an epoch size of 256 to perform worse than 128
for some benchmarks (such as gamess, milc, and zeusmp).

45 WePochd mepoch s Mepach 16 [opoch 32 Wepoch 84 opoch 128 M epoch 256
20 66.3 50.7
=35
< 30
3 25
£20
=
+ 15 |
710
‘e I b Ao i 0 o O
0 IIII II Ihll I II" Il- Ill._ I I"
S 5 & Xd & & LD @ A P O & £
3 @ &Q,SJ@O@": CSR A S
PO ?_ & (0 & \\e (° > & & e
o & § & ¥ TEL TS
@

Fig. 11. The number of persists per kilo instruction (PPKI) for different epoch
sizes.

W epoch_4 epoch_8 W epoch_16 epoch_32 W epoch_64 epoch 128 ® epoch_256
L 125]6.3 6.3|
£35
=
c 3
8
525
o
X 2
215
©
g 1
o
20.5
0
L o] S G N < S A D
fzi’@,,xfif“e \?Q\& 6‘?"’ 60& & @‘& & &) o"’ o“@ \\‘Q+ &o“ o@Q&Q”b
FFTE TESE €8 TF s
v

Fig. 12. Execution time of our coalescing scheme with different epoch sizes,
normalized to secure_WB.

Impact of Write Pending Queue Size In our design, each
entry in the WPQ holds a memory update (i.e., a store) until its
entire memory tuple is ready to be persisted and the ordering
requirement is met. As each store needs to update the BMT,
the WPQ size determines how many BMT updates can be
overlapped. With the strict persistency model, pipelined BMT
overlaps up to nine BMT updates since the BMT has nine
levels. Therefore, a WPQ with 9 entries is sufficient. For epoch
persistency model, our coalescing BMT schemes allows all
stores in an epoch to update the BMT. Therefore, the WPQ
size should correspond to the epoch size. We varied the WPQ
size from 4 to 64 entries for our coalescing BMT model. WPQ
sizes below 32 entries displayed increasing overhead, with a
WPQ size of 4 showing 12% performance overhead compared
to 32 entries. Fewer than 32 WPQ entries reduces performance
by limiting the concurrency of BMT updates, but larger than
32 WPQ entries do not add performance improvement over
32 entries. Therefore, we use 32 as our default WPQ size.

Impact of Metadata Cache and LLC Capacity In this
experiment, we vary all three metadata caches capacity from

32KB to 256KB. Our results indicate up to 2% performance
difference across various sizes for any of our scheme.

We also vary the LLC capacity, from 4MB to 1MB.Our
results indicate the performance overheads of coalescing BMT
only vary modestly, from 20.2% to 22.8%, when the LLC
capacity varies.

VIII. CONCLUSIONS

Memory integrity verification and encryption are essential
for implementing secure computing systems. Atomically per-
sisting integrity tree roots is responsible for the majority of the
overhead incurred by updating security metadata. In this work,
we presented three optimizations for atomically persisting
NVM Bonsai Merkle Tree roots. With a strict persistency
model, our proposed pipelined update mechanism showed
an 3.4x performance improvement compared to sequential
updates. With the epoch persistency model, our out-of-order
root update and update coalescing mechanisms showed perfor-
mance improvements of 5.99x over sequential updates. These
optimizations significantly reduce the time required to update
integrity tree roots and pave the way to make secure NVMM
practical.

REFERENCES

[1] M. Alshboul, J. Tuck, and Y. Solihin, “Lazy persistency: A high-
performing and write-efficient software persistency technique,” in 2018
ACM/IEEE 45th Annual International Symposium on Computer Archi-
tecture (ISCA), 2018.

[2] T. Aura, “Strategies against replay attacks,”

puter Security Foundations Workshop, 1997.

A. Awad, S. Suboh, M. Ye, K. Abu Zubair, and M. Al-Wadi,

“Persistently-secure processors: Challenges and opportunities for secur-

ing non-volatile memories,” in 2019 IEEE Computer Society Annual

Symposium on VLSI (ISVLSI), 2019.

[4] A. Awad, L. Njilla, and M. Ye, “Triad-nvm: Persistent-security for
integrity-protected and encrypted non-volatile memories (nvms),” in Pro-
ceedings of the 46th International Symposium on Computer Architecture,
2019.

[5] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu,
J. Hestness, D. R. Hower, T. Krishna, S. Sardashti, R. Sen, K. Sewell,
M. Shoaib, N. Vaish, M. D. Hill, and D. A. Wood, “The gem5 simulator,”
SIGARCH Comput. Archit. News, 2011.

[6] G. E. Blelloch, P. B. Gibbons, Y. Gu, C. McGuffey, and J. Shun,
“The parallel persistent memory model,” in Proceedings of the 30th
on Symposium on Parallelism in Algorithms and Architectures, 2018.

[71 D. R. Chakrabarti, H.-J. Boehm, and K. Bhandari, “Atlas: Leveraging
locks for non-volatile memory consistency,” in Proceedings of the
2014 ACM International Conference on Object Oriented Programming
Systems Languages & Applications, 2014.

[8] S. Chhabra and Y. Solihin, “i-nvmm: A secure non-volatile main memory
system with incremental encryption,” in 2011 38th Annual International
Symposium on Computer Architecture (ISCA), 2011.

[91 S. Chhabra, B. Rogers, and Y. Solihin, “Shieldstrap: Making secure
processors truly secure,” in Proceedings of the 2009 IEEE International
Conference on Computer Design, 2009.

[10] J. Coburn, A. M. Caulfield, A. Akel, L. M. Grupp, R. K. Gupta, R. Jhala,
and S. Swanson, “Nv-heaps: Making persistent objects fast and safe with
next-generation, non-volatile memories,” in Proceedings of the Sixteenth
International Conference on Architectural Support for Programming
Languages and Operating Systems, 2011.

[11] J. Condit, E. B. Nightingale, C. Frost, E. Ipek, B. Lee, D. Burger, and

D. Coetzee, “Better i/o through byte-addressable, persistent memory,”

in Proceedings of the ACM SIGOPS 22Nd Symposium on Operating

Systems Principles, 2009.

V. Costan and S. Devadas, “Intel sgx explained,” Cryptology ePrint

Archive, Report 2016/086, 2016.

[S>3

in Proceedings 10th Com-

—
(95}
=

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

S. R. Dulloor, S. Kumar, A. Keshavamurthy, P. Lantz, D. Reddy,
R. Sankaran, and J. Jackson, “System software for persistent memory,”
in Proceedings of the Ninth European Conference on Computer Systems,
2014.

H. Elnawawy, M. Alshboul, J. Tuck, and Y. Solihin, “Efficient check-
pointing of loop-based codes for non-volatile main memory,” in 26th
International Conference on Parallel Architectures and Compilation
Techniques, 2017.

C. Fletcher, M. van Dijk, and S. Devadas, “A secure processor architec-
ture for encrypted computation on untrusted programs,” in Proceedings
of the Seventh ACM Workshop on Scalable Trusted Computing, 2012.
B. Gassend, G. E. Suh, D. Clarke, M. van Dijk, and S. Devadas, “Caches
and hash trees for efficient memory integrity verification,” in The Ninth
International Symposium on High-Performance Computer Architecture,
2003. HPCA-9 2003. Proceedings., 2003.

V. Gogte, S. Diestelhorst, W. Wang, S. Narayanasamy, P. M. Chen,
and T. F. Wenisch, “Persistency for synchronization-free regions,” in
Proceedings of the 39th ACM SIGPLAN Conference on Programming
Language Design and Implementation, 2018.

S. Gueron, “A memory encryption engine suitable for general purpose
processors,” 2016.

L. Guo, Y. Zhang, and F. X. Lin, “Let the cloud watch over your iot
file systems,” CoRR, vol. abs/1902.06327, 2019. [Online]. Available:
http://arxiv.org/abs/1902.06327

J. Halderman, S. Schoen, N. Heninger, W. Clarkson, W. Paul, J. Calan-
drino, A. Feldman, J. Appelbaum, and E. Felten, “Lest we remember:
Cold boot attacks on encryption keys,” in USENIX Security Symposium,
2008.

J. L. Henning, “Spec cpu2006 benchmark descriptions,” SIGARCH
Comput. Archit. News, 2006.

Intel, “Intel and Micron produce breakthrough memory technology,”
2015.

J. Izraelevitz, T. Kelly, and A. Kolli, “Failure-atomic persistent memory
updates via justdo logging,” in Proceedings of the Twenty-First Interna-
tional Conference on Architectural Support for Programming Languages
and Operating Systems, 2016.

A. Joshi, V. Nagarajan, S. Viglas, and M. Cintra, “Atom: Atomic dura-
bility in non-volatile memory through hardware logging,” in 2017 IEEE
International Symposium on High Performance Computer Architecture,
2017.

A. Kolli, J. Rosen, S. Diestelhorst, A. Saidi, S. Pelley, S. Liu, P. M. Chen,
and T. F. Wenisch, “Delegated persist ordering,” in 2016 49th Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO),
2016.

A. Kolli, V. Gogte, A. Saidi, S. Diestelhorst, P. M. Chen,
S. Narayanasamy, and T. F. Wenisch, “Language-level persistency,” in
Proceedings of the 44th Annual International Symposium on Computer
Architecture, 2017.

A. Kolli, S. Pelley, A. Saidi, P. M. Chen, and T. F. Wenisch, “High-
performance transactions for persistent memories,” in Proceedings of
the Twenty-First International Conference on Architectural Support for
Programming Languages and Operating Systems, 2016.

H. S. Lee, G. S. Tyson, and M. K. Farrens, “Eager
writeback - a technique for improving bandwidth utilization,” in
Proceedings of the 33rd Annual IEEE/ACM International Symposium
on Microarchitecture, MICRO 33, Monterey, California, USA,
December 10-13, 2000, 2000, pp. 11-21. [Online]. Available:
https://doi.org/10.1109/MICRO.2000.898054

R. B. Lee, P. C. S. Kwan, J. P. McGregor, J. Dwoskin, and Zhenghong
Wang, “Architecture for protecting critical secrets in microprocessors,”
in 32nd International Symposium on Computer Architecture (ISCA’05),
2005.

T. S. Lehman, A. D. Hilton, and B. C. Lee, “Poisonivy: Safe speculation
for secure memory,” in The 49th Annual IEEE/ACM International
Symposium on Microarchitecture, 2016.

T. S. Lehman, A. D. Hilton, and B. C. Lee, “Maps: Understanding
metadata access patterns in secure memory,” 2018 IEEE International
Symposium on Performance Analysis of Systems and Software (ISPASS),
pp. 33-43, 2018.

C. Liu and C. Yang, “Secure and durable (sedura): An integrated
encryption and wear-leveling framework for pcm-based main memory,”
in Proceedings of the 16th ACM SIGPLAN/SIGBED Conference on
Languages, Compilers and Tools for Embedded Systems 2015 CD-ROM,
2015.

(33]

[34]

[35]

[36]

[37]

(38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]
[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

S. Liu, A. Kolli, J. Ren, and S. M. Khan, “Crash consistency in
encrypted non-volatile main memory systems,” 2018 IEEE International
Symposium on High Performance Computer Architecture (HPCA), 2018.
S. Liu, K. Seemakhupt, G. Pekhimenko, A. Kolli, and S. Khan, “Janus:
Optimizing memory and storage support for non-volatile memory sys-
tems,” in Proceedings of the 46th International Symposium on Computer
Architecture, ser. ISCA ’19, 2019.

Y. Lu, J. Shu, L. Sun, and O. Mutlu, “Loose-ordering consistency for
persistent memory,” in 2014 IEEE 32nd International Conference on
Computer Design (ICCD), 2014.

S. Nalli, S. Haria, M. D. Hill, M. M. Swift, H. Volos, and K. Keeton,
“An analysis of persistent memory use with whisper,” in Proceedings of
the Twenty-Second International Conference on Architectural Support
for Programming Languages and Operating Systems, 2017.

X. Pan, A. Bacha, S. Rudolph, L. Zhou, Y. Zhang, and R. Teodorescu,
“Nvcool: When non-volatile caches meet cold boot attacks,” 2018 IEEE
36th International Conference on Computer Design (ICCD), 2018.

S. Pelley, P. Chen, and T. Wenisch, “Memory persistency,” in Proceeding
of the 41st Annual International Symposium on Computer Architecuture
(ISCA), 2014.

J. Rakshit and K. Mohanram, “Assure: Authentication scheme for secure
energy efficient non-volatile memories,” in Proceedings of the 54th
Annual Design Automation Conference 2017, 2017.

J. Ren, J. Zhao, S. Khan, J. Choi, Y. Wu, and O. Mutlu, “Thynvm:
Enabling software-transparent crash consistency in persistent memory
systems,” in Proceedings of the 48th International Symposium on
Microarchitecture, 2015.

P. Roberts, “Mit: Discarded hard drives yield private info,” Computer-
World, 2003.

B. Rogers, , M. Prvulovic, and Y. Solihin, “Effective data protection
for distributed shared memory multiprocessors,” in in Proceedings of
the International Conference of Parallel Architecture and Compilation
Techniques (PACT, 2006.

B. Rogers, S. Chhabra, M. Prvulovic, and Y. Solihin, “Using address
independent seed encryption and bonsai merkle trees to make secure
processors os- and performance-friendly,” 40th Annual IEEE/ACM In-
ternational Symposium on Microarchitecture (MICRO), 2007.

B. Rogers, C. Yan, S. Chhabra, M. Prvulovic, and Y. Solihin, “Single-
level integrity and confidentiality protection for distributed shared
memory multiprocessors,” in in Proceedings of the 14th International
Symposium on High Performance Computer Architecture (HPCA-14,
2008.

A. Rudoff, “Deprecating the pcommit instruction,” 2016.

G. Saileshwar, P. J. Nair, P. Ramrakhyani, W. Elsasser, and M. K.
Qureshi, “Synergy: Rethinking secure-memory design for error-
correcting memories,” in 2018 IEEE International Symposium on High
Performance Computer Architecture (HPCA), 2018.

G. Saileshwar, P. J. Nair, P. Ramrakhyani, W. Elsasser, J. Joao, and
M. Qureshi, “Morphable counters: Enabling compact integrity trees
for low-overhead secure memories,” 2018 51st Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO), 2018.

S. Shin, S. K. Tirukkovalluri, J. Tuck, and Y. Solihin, “Proteus: A flexible
and fast software supported hardware logging approach for nvm,” in
Proceedings of the 50th Annual IEEE/ACM International Symposium
on Microarchitecture, 2017.

S. Shin, J. Tuck, and Y. Solihin, “Hiding the long latency of persist
barriers using speculative execution,” in Proceedings of the 44th Annual
International Symposium on Computer Architecture, 2017.

G. Suh, D. Clarke, B. Gassend, M. van Dijk, and S. Devadas, “Efficient
memory integrity verification and encryption for secure processors,”
in Proceedings. 36th Annual IEEE/ACM International Symposium on
Microarchitecture, 2003. MICRO-36., 2003.

G. E. Suh, C. W. O’Donnell, and S. Devadas, “Aegis: A single-chip
secure processor,” IEEE Design Test of Computers, 2007.

G. Suh, D. E. Clarke, B. Gassend, M. van Dijk, and S. Devadas,
“Efficient memory integrity verification and encryption for secure pro-
cessors,” in in Proceedings of the International Symposium on Microar-
chitecture (MICRO, 2003.

S. Swami and K. Mohanram, “Acme: Advanced counter mode encryp-
tion for secure non-volatile memories,” in 2018 55th ACM/ESDA/IEEE
Design Automation Conference (DAC), 2018.

S. Swami, J. Rakshit, and K. Mohanram, “Stash: Security architecture
for smart hybrid memories,” in 2018 55th ACM/ESDA/IEEE Design
Automation Conference (DAC), 2018.

[55]

[56]

[571

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

S. Swami and K. Mohanram, “Arsenal: Architecture for secure non-
volatile memories,” Computer Architecture Letters, 2018.

M. Taassori, A. Shafiee, and R. Balasubramonian, “Vault: Reducing
paging overheads in sgx with efficient integrity verification structures,”
in Proceedings of the Twenty-Third International Conference on Archi-
tectural Support for Programming Languages and Operating Systems,
2018.

D. L. C. Thekkath, M. Mitchell, P. Lincoln, D. Boneh, J. Mitchell,
and M. Horowitz, “Architectural support for copy and tamper resistant
software,” in Proceedings of the Ninth International Conference on Ar-
chitectural Support for Programming Languages and Operating Systems,
2000.

J. Vijayan, “Data breaches probed at new jersey blue cross, georgetown,”
ComputerWorld, 2011.

H. Volos, A. J. Tack, and M. M. Swift, “Mnemosyne: Lightweight persis-
tent memory,” in Proceedings of the Sixteenth International Conference
on Architectural Support for Programming Languages and Operating
Systems, 2011.

C. Yan, D. Englender, M. Prvulovic, B. Rogers, and Y. Solihin,
“Improving cost, performance, and security of memory encryption
and authentication,” in Proceedings of the 33rd Annual International
Symposium on Computer Architecture (ISCA), 2006.

J. Yang, Y. Zhang, and L. Gao, “Fast secure processor for inhibiting
software piracy and tampering,” in Proceedings of the 36th Annual
IEEE/ACM International Symposium on Microarchitecture, 2003.

M. Ye, C. Huges, and A. Awad, “Osiris: A low-cost mechanism to enable
restoration of secure non-volatile memories,” 2018.

L. Zhang and S. Swanson, “Pangolin: A fault-tolerant persistent memory
programming library,” in Proceedings of the 2019 USENIX Conference
on Usenix Annual Technical Conference, 2019.

Y. Zhang, L. Gao, J. Yang, and R. Gupta, “Senss: Security enhancement
to symmetric shared memory multiprocessors,” in in Proceedings of the
International Symposium on High-Performance Computer Architecture
(HPCA), 2005.

Y. Zou and M. Lin, “Fast: A frequency-aware skewed merkle tree
for fpga-secured embedded systems,” in 2019 IEEE Computer Society
Annual Symposium on VLSI (ISVLSI), 2019.

K. A. Zubair and A. Awad, “Anubis: Ultra-low overhead and recovery
time for secure non-volatile memories,” in Proceedings of the 46th
International Symposium on Computer Architecture, 2019.

P. Zuo and Y. Hua, “Secpm: a secure and persistent memory system
for non-volatile memory,” in 10th USENIX Workshop on Hot Topics in
Storage and File Systems (HotStorage 18), 2018.

P. Zuo, Y. Hua, and Y. Xie, “Supermem: Enabling application-
transparent secure persistent memory with low overheads,” in Pro-
ceedings of the 52Nd Annual IEEE/ACM International Symposium on
Microarchitecture, 2019.

