Analyzing Secure Memory Architecture for GPUs

Shougang Yuan
North Carolina State University
Raleigh, USA
syuan3 @ncsu.edu

Ardhi Wiratama Baskara Yudha, Yan Solihin
University of Central Florida
Orlando, Florida
yudha@knights.ucf.edu, Yan.Solihin@.ucf.edu

Huiyang Zhou

North Carolina State University
Raleigh, USA
hzhou@ncsu.edu

Abstract—Wide adoption of cloud computing makes privacy
and security a primary concern. Although recent CPUs have
integrated secure memory architecture, such support is still
missing for GPUs, a key accelerator in data centers.

In this paper, we explore two secure memory architectures,
counter-mode encryption and direct encryption, for GPUs and
show that we need to architect secure memory differently from
it for CPUs. Our in-depth study reveals the following insights.
First, as GPUs are designed for high-throughput computation,
its secure memory needs to deliver high bandwidth. Second,
with counter-mode encryption, the memory traffic resulting from
the metadata, i.e., the counters, MACs (message-authentication
codes), and integrity tree, may cause significant performance
degradation, even in the presence of metadata caches. Third,
the sectored cache structure adopted by GPUs leads to multiple
sequential accesses to the same metadata cache line, which
necessitates the use of MSHRs (miss-status handling registers)
for meta-data caches. Fourth, unlike CPUs, separate/partitioned
metadata caches perform better than unified metadata caches
on GPUs. The reason is that GPU workloads feature streaming
accesses, which cause severe contention in the unified metadata
cache and the cached counters and integrity tree nodes may be
evicted before being reused. Fifth, the massive-threaded nature of
GPUs make them latency-tolerant and the performance impact
due to the extra encryption/decryption latency is limited. As a
result, direct encryption can be a promising alternative for GPU
secure memory. The challenge, however, lies in memory integrity
verification as the integrity tree may incur high storage overhead
and metadata traffic.

Index Terms—GPUs, security, secure memory, memory en-
cryption, memory integrity, metadata cache

I. INTRODUCTION

Cloud computing has become the predominant computing
paradigm. With the cloud being a shared resource, it is critical
to provide users with sufficient privacy and security guaran-
tees. Toward this end, recent CPUs have integrated hardware-
based trusted execution environment (aka TEE), such as Intel
SGX [2], AMD SEV [11] and ARM TrustZone [18]. A
critical building block for TEE is secure memory engine,
which keeps data in memory encrypted [5], [11] and protects
its integrity [5]. However, such secure memory architecture
support is missing on GPUs, a key accelerator in clouds
for a wide range of workloads including machine learning,
scientific computing, 3D rendering, etc. As the system security
is determined by its weakest link, we argue that accelerators
such as GPUs also need to provide TEE.

Recognizing the needs, recent work, including HIX [8]
and Graviton [29] provide isolated execution environment for
the programs offloaded to the GPUs. However, their threat

model is weaker than CPU TEE, as they do not provide
secure memory support and require system software (e.g.,
GPU driver) to be trusted. In this paper, we explore the design
space and implication of supporting secure memory for GPUs.
We evaluate both counter-mode and direct encryption, and
show that we need to architect secure memory differently
from the CPU counterpart. Similar to the CPU TEE (e.g.,
Intel SGX), the secure memory hardware is placed in the
memory controller in our design, as shown in Fig. 1. As
GPUs incorporate multiple memory controllers to provide high
memory bandwidth, the same secure memory hardware is
replicated in each memory controller.
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Fig. 1: GPU architecture with secure memory support

We start our investigation with counter-mode encryption
and Bonsai Merkle Tree (BMT) [20], which are the state-
of-art secure memory architecture on CPUs. Counter-mode
encryption is introduced to hide the decryption latency and
BMT is used to verify the integrity of data through its counters,
which are used to encrypt/decrypt the data along with the
secret key. In counter-mode encryption, the security metadata
include counters, BMT, and MACs of the ciphertext. To reduce
the extra memory accesses for fetching the metadata, on-
chip metadata caches are commonly employed. We model
the counter-mode encryption and BMT support upon a GPU
model based on Nvidia Volta [9] architecture, and identify
that hardware-based secure memory architecture can incur
significant performance overhead for GPUs. The main reason
is that the metadata data accesses generate a lot of memory
traffic even in the presence of metadata caches. Given the
high bandwidth requirements of GPUs, the additional memory
traffic contends for the memory bandwidth and significantly
slows down the GPUs performance. Also, we observe that
due to the sectored L2 cache structure in GPUs, the streaming



data accesses leads to a high ratio of secondary misses (i.e.,
misses to the same cache block after it being requested) in
the metadata caches, which highlight the importance of the
MSHRSs to filter out redundant memory requests. Furthermore,
due to the nature of high-throughput computation of GPUs,
high-throughput cryptographic engines are also needed to
produce a balanced system.

Besides counter-mode encryption, we also analyze the alter-
native design of direct encryption. Without counters, BMT is
infeasible. Therefore, we resort to a Merkle Tree (MT) to per-
form integrity checks. In other words, with direct encryption,
the security metadata include MACs and the MT, both of them
are used for memory integrity verification. Our analysis reveals
the following interesting observations. First, direct encryption
itself does not lead to high performance overheads because
GPUs are designed to be latency tolerant. Actually, our results
show that direct encryption can perform better than counter-
mode encryption even with a high encryption latency of 160
cycles. Second, memory integrity protection may become the
performance bottleneck due to the memory traffic generated
by MAC and MT accesses.

The remainder of the paper is organized as follows. Sec-
tion II presents the background and specifies the threat model.
Section III discusses the related work. Section IV introduces
our experimental methodology. Section V analyzes counter-
mode encryption and explores different design choices for
the metadata caches and AES engines. Section VI focuses
on direct encryption and evaluates the performance impact
of encryption with and without memory integrity protection.
Section VII concludes our paper and summarizes our findings
on designing secure memory architecture for GPUs.

II. BACKGROUND
A. GPU Architecture

Contemporary GPU architecture, as shown in Fig. 1, con-
sists of multiple Streaming Multiprocessors (SMs) to support
the SIMT programming model [24]. Each SM has a private
L1 cache and all SMs share a multi-banked L2 cache. The
L1 caches and L2 cache banks are connected through an
interconnection network.

Given the large number of SMs and the high degrees of
thread-level parallelism (TLP), GPUs require high memory
bandwidth. There are multiple memory controllers on chip and
each connects to a few L2 cache banks. To reduce the memory
bandwidth consumption, sectored caches are commonly em-
ployed in GPUs. Typically, one 128B cache line contains four
32B sectors and each memory access fetches a sector rather
than an entire cache line.

B. Threat Model and Scope of Work

The threat model for CPU TEE, such as Intel SGX, assumes
two types of threats: compromised system/privileged software
(such as the OS and hypervisor) and attackers that have phys-
ical access to the remote server and the abilities to snoop/scan
and modify data stored in off-chip memory. CPU TEE assumes
that the processor chip provides a security boundary, where

all on-chip components are assumed to be out of the reach
of attackers. In general, TEE requires three major architecture
supports: hardware key management, attestation, and secure
memory engine (which encrypts and protects the integrity of
data stored off the processor chip) [27], [28], [30], [31]. Of
these, secure memory incurs the largest performance overheads
as it must be active at all time and affects the critical path
of load instructions. Due to the enormity of the overheads,
recent attempts to extend CPU TEE to GPUs [8], [29] ignore
the physical attack threats and enlarge the trust base (e.g.,
adding GPU memory module to the trust base). In contrast,
this research assumes the same threat model in CPU TEE also
affects GPUs, and assumes that GPU chip provides the security
boundary, where all the data stored in the on-chip resources
such as registers and caches are safe. The attackers may have
physical access to the GPUs hardware, and have the capability
to snoop the GPU memory buses or to scan/tamper the GPU
memory content.

The scope of this paper covers the design space of secure
memory for GPUs. Hardware key management and attestation
have been well studied in previous work (i.e., Graviton [29]
and HIX [8]) and are beyond the scope of this paper. Securing
the communication channel between CPU and GPU is also
outside the scope of this work. Existing solutions for that may
include PCI modification [8], or for tighter integration, secure
cache coherence protocol [22]. Furthermore, side channel
attacks such as timing-based side channel attack [10] are also
out of the scope of our work.

C. Security Mechanisms

Memory encryption. The goal of memory encryption is to
protect data confidentiality [14], [19], [21], [32]. The crypto-
graphic hardware engines residing in the memory controller
are responsible for performing encryption/decryption before
the data is sent to/returned from the off-chip memory. Gener-
ally, there are two approaches for memory encryption as shown
in Fig. 2: counter-mode encryption and direct encryption.
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Fig. 2: Counter-mode encryption and direct encryption

Counter-mode encryption can hide the decryption latency
by overlapping it with memory reads, and thus offload the
decryption latency from the critical path of load instructions.
In counter-mode encryption, there is a counter associated with
each cache line. When the memory controller is fetching the
data from off-chip memory, the corresponding counter and the



block address are used to generate a one-time pad (OTP) using
the encryption engine such as AES. The memory controller
can recover the plaintext by XORing the data and OTP in one
cycle and then supply the data to processors. To guarantee
the security, the counters cannot be reused. Hence, at each
dirty eviction from the last level cache (LLC), the counter
corresponding to the cache line will be incremented. Since
the encryption strength of counter-mode memory encryption
is conditional upon not reusing the counters, if the attacker can
trigger reuse of counters, the encryption will be broken [20],
[30]. Therefore, counter-mode encryption fundamentally relies
on counter integrity protection to provide data confidentiality.

Direct encryption can also be used for the security purpose.
In contrast to counter-mode encryption, with direct encryption,
confidentiality does not necessarily require integrity protec-
tion. The main disadvantage of direct encryption is that it
exposes the latency of decryption to the critical path of
memory reads, because decryption can only start after the data
is fetched from memory [26].

Memory Integrity Verification. As discussed earlier,
counter-mode encryption requires integrity protection of coun-
ters [20]. Furthermore, MACs are needed to protect against
memory tampering attack [30], [33]. As pointed out by Rogers
et. al [20], stateful MACs calculated from the ciphertext,
block address and the corresponding counter can provide data
integrity protection, and the Merkle tree (MT) only needs to
cover the counters to protect against counter-replay attacks.
This scheme is named BMT and can help to reduce the
storage overheads of the MT. Moreover, the BMT is much
shallower than the original MT. Any modification to the data
or MACs stored in the off-chip memory can be detected by
comparing the MACs when the data is fetched from memory.
Similarly, any modification or replay of the counters can
be detected by traversing the BMT and comparing the hash
values in the BMT nodes. In contrast, with direct encryption,
encryption protection is not dependent on integrity verification;
and integrity verification provides additional protection against
memory tampering and replay attacks. Integrity protection
relies on (1) MAC of the ciphertext and (2) a Merkle/Hash
Tree based on the entire memory with a special on-chip
register storing the root of the tree [4].

III. RELATED WORK

Recent studies highlight the needs for security support
within accelerators. Deep learning (DL) is such an application
that attracts special attention [16]. Several recent works [6],
[7], [34] aim to extend the existing memory encryption and
integrity verification schemes to DL accelerators.

The work [34] by Zuo et al. pointed out that the gap
between the throughput of AES engine and the GPU memory
bandwidth is the key bottleneck for secure GPU memory.
To reduce the overhead of encryption, they proposed: (1)
selective memory encryption, (2) co-location of data and
the corresponding counter. In comparison, our work differs
from this prior work in the following ways. First, our work
consider data integrity protection, which is missing in this prior

work. Second, we perform a detailed study on metadata cache
designs, including the impact from the sectored L2 caches as
well as unified metadata caches and separate metadata caches.
Third, we exploit pipelined AES engines to overcome the AES
throughput limitation and explore the design trade-offs for
different AES throughput. Fourth, the proposed solution by
Zuo et al. [34] is specific to DL while our work covers a wide
range of workloads.

Similar to Zuo’s work [34], Hua et al. [6], [7] aimed to
provide memory protection for the deep learning workloads
running on the accelerators. As mentioned in [7], the over-
heads of memory encryption and integrity verification come
from the extra memory accesses generated by the security
metadata. In their system design, they proposed to provide
memory encryption and integrity verification based on a
coarse granularity of memory objects. Their key observation
is that accelerators often explicitly move data between on-
chip memory and off-chip DRAM at the object granularity. In
comparison, our work provides detailed performance analysis
of both counter-mode encryption and direct encryption and
explore different metadata cache design choices.

Other works, including HIX [8] and Graviton [29] that
aimed to provide the TEE for GPUs, mainly focused on
protecting the user program and data from untrusted OS
or privileged malicious software (hypervisor), and did not
consider the physical attacks, i.e., memory scanning and tam-
pering attacks. In other words, these two works did not provide
hardware-based memory encryption and integrity verification
protections. The data stored on GPU off-chip memory is
plaintext and there is no support for integrity checks. In
comparison, our work defines a stronger threat model, and
provides detailed performance study on memory encryption
and integrity verification for GPUs.

IV. METHODOLOGY

We model different secure memory architecture supports us-
ing GPGPU-Sim v4.0 [12]. The configuration of our baseline
GPU model is shown in Table I, which is based on the Nvidia
Volta architecture [9]. In our experiments, we assume that a
range of 4GB device memory is protected, and the metadata
cache line size is aligned to the data cache line size, which
is 128B. The metadata organization and storage overhead are
listed in Table II.

For counter-mode encryption, each counter cache line main-
tains one 128-bit major counter (shared by data blocks within a
16KB memory chunk) and 128 7-bit per block minor counters,
thereby covering 128 lines of data. In other words, the ratio
between data and counter capacity is 128 and the overall
counter blocks take 32MB (=4GB/128) off-chip storage. Using
a 64-bit MAC for each 128B data, the overall MAC consumes
256MB storage. As a result of the sectored L2 cache, we use
truncated MAC, i.e., 16-bit MAC for each 32B sector. For
the BMT, we build a 6-level 16-ary hash tree and its overall
capacity is 2.14 MB, excluding the counter blocks that serve as
the leaf nodes of the BMT. Therefore, the overall capacity of



TABLE I:

Baseline GPU configuration

TABLE III: Metadata cache organization

SM config 80 SMs, 1132 MHz Counter cache {2,4,8,16,32,64 }KB/Memory Partition,

Register File 256KB/SM, 20MB in total 2KB default, 128B blk, 64 MSHRs,
L1 D-Cache 32KB/SM allocate-on-fill policy

Shared Memory || 96KB/SM Mac cache {2,4,8,16,32,64 }KB/Memory Partition,

L2 cache 2 banks/partition, 96KB/bank, 6MB in 2KB default, 128B blk, 64 MSHRs,
total allocate-on-fill policy

DRAM 850MHz, 868GB/s, 32 partitions (Bonsai)Merkle {2,4,8,16,32,64 }KB/Memory Partition,

Tree cache 2KB default, 128B blk, 64 MSHRs,

TABLE II: Metadata organization and storage

Metadata Counter-mode Direct Encryption
Type Encryption
Counter 128B/16KB, -
7b/blk, 32MB
MAC 8B/blk, 2B/sector, 8B/blk, 2B/sector,
256MB 256MB
BMT/MT 16 ary, 6 levels, 16 ary, 7 levels,
2.14MB 17.1MB

metadata is 290.14MB (=32+256+2.14 MB) for counter-mode
encryption.

With direct encryption, using the same 64-bit MAC for each
128B data, the overall MAC consumes 256MB memory. As
the MT is built upon the 4GB data, we use a 7-level 16-
ary tree and the overall capacity is 17.1MB, excluding the
MAC:s that serve as the leaf nodes of the MT. Therefore, the
overall memory overhead is 273.1MB (=256+17.1 MB) for
direct encryption.

The separate metadata caches, which include the counter
cache, MAC cache, and BMT/MT cache, are modeled in
each memory partition (i.e., each memory controller). The
metadata cache specification is listed in Table III. State-of-
the-art secure memory architecture in CPUs uses speculative
verification and lazy update for BMT/MT [4]. We also adopt
these schemes on GPUs. Speculative verification means that
the memory controller can supply the data to the core before
the corresponding integrity check is finished. Later on, if there
is a failure in integrity verification, an exception would be
raised. Lazy update means that only when a counter block or
a tree node is evicted from the counter cache or BMT/MT
cache, its parent will be updated in the BMT/MT cache.

In our study, we assume pipelined AES engines and
pipelined MAC units. This way, the encryption latency or the
MAC computation latency would not affect the throughput.
With AES-128, 16B of data can come out of a pipelined
AES engine each cycle. With the memory clock frequency of
850MHz, the throughput of the pipelined AES engine is 13.6
GB/s (=16B*850MHz). With 2 AES engines in each memory
partition, the throughput would match the memory bandwidth,
resulting in a balanced design. Therefore, we use 2 pipelined
AES engines in each partition by default. We model different
AES latencies and a 40-cycle latency for the MAC unit. With
counter-mode encryption, the AES latency does not matter as
it is hidden by design.

Our benchmarks are selected from the Rodinia-3.1 [1],
Parboil [25] and polybench [3] benchmark suites to cover a

allocate-on-fill policy

6KB/Memory Partition, 128B blk, 192
MSHRs, allocate-on-fill policy

40 cycles default

{1,2}/Memory Partition, 2 default.

Unified metadata
cache

Hash/Mac latency
AES engines

TABLE IV: Benchmarks

Categorization || Benchmark Bandwidth IPC
name utilization

non heartwall <1% 1,195.37

memory lavaMD <1% 4,615.23

intensive nw <2% 23.90

b+tree 12%-14% 2,768.61

medium backprop 25% 3,067.61

memory cfd 15%-50% 1,076.98

intensive dwt2d 20%-50% 784.70

kmeans 40%-45% 97.04

bfs 5%-60% 699.51

srad_v2 79%- 80% 3,306.82

memory streamcluster 78%-80% 1,178.18

intensive 2Dconvolution 53% 2,487.22

fdtd2d 82%-83% 1,773.95

Ibm 58% 552.12

wide range of workloads. Table IV lists the details of these
benchmarks. For each benchmark, we simulate until it has
run for 4 million cycles. Table IV also reports the band-
width utilization and the IPC (instruction-per-cycle) for each
benchmark when running on the baseline GPU without secure
memory support. In this paper, we categorize the benchmarks
which consume more than 50% peak DRAM bandwidth as
memory intensive, the benchmarks which consume less than
20% peak DRAM bandwidth as non memory intensive, and
the remaining as medium memory intensive.

V. COUNTER-MODE ENCRYPTION

In this section, we perform an in-depth study on extending
counter-mode encryption and BMT to GPUs. Different design
options, as listed in Table V, are explored to reveal the
performance bottlenecks.

A. Performance Overhead

Fig. 3 shows the performance of various GPU secure
memory models normalized to the baseline GPU without
security support. From the figure, we can see that adding
secure memory support may incur significant performance
overhead. The normalized IPC is reduced by 65.9% on average
using the geometric mean (Gmean), and can be up to 91.06%
for memory-intensive workloads such as lbm.



TABLE V: Evaluated designs for counter-mode encryption

[ Scheme [[ What It Represents ]
baseline Baseline GPU without secure memory
support.
secureMem Baseline GPU with secure
memory support using counter-
mode encryption and BMT. In

Section V-A, no MSHR is modeled, in
Section V-B, V-C, V-D, V-E, there are
64 MSHRs for each metadata cache.
secure GPU memory with different L2
capacities upon our baseline GPU with
counter-mode encryption and BMT.

secureMem_xMB

0_crypto secureMem with 0 MAC latency and
encryption latency.

perf_mdc secureMem with perfect metadata
caches, i.e., there are no cache misses
and write backs.

large_mdc secureMem with unlimited capacity for
metadata caches, meaning that there
are only cold misses.

mshr_x secureMem with different mshr capac-
ity for metadata caches.

separate secureMem with separate metadata
caches in each memory partition/unit.

unified secureMem with a unified metadata

cache, which caches all types of meta-
data, in each memory partition/unit.

To identify the performance bottleneck, we model different
idealistic designs. From Fig. 3, we can see that zero cycle
cryptographic operation latency (zero-cycle MAC and AES)
does not alleviate the performance overhead. This is expected
as GPUs are massively parallel machines and leverage high-
degrees of TLP to hide the latency. However, when we model
ideal metadata caches or unlimited capacity metadata caches,
the GPU performance with secure memory support becomes
very close to the baseline. This indicates that the accesses to
the security metadata is the performance bottleneck.

msecureMem ®mO0_crypto ®large_mdc mperf_mdc
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Fig. 3: Normalized IPC of counter mode encryption with
Bonsai Merkle tree.
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To further analyze the impact of the metadata accesses,
in Fig. 4 we compare the amounts of different types of
memory requests when secure memory is integrated, i.e., the
secureMem model in Table V. The memory-request types

include regular data read and write requests (labeled °data’),
counter reads (labeled "ctr’), MAC reads (labeled 'mac’), BMT
reads (labeled *bmt’), and all the writebacks from the metadata
caches (labeled wb’).

From Fig. 4, we can make the following observations. First,
for all benchmarks, the memory requests to fetch MACs from
off-chip memory account for a major portion of the memory
traffic (25.58% on average). Second, the counter requests
also account for a large portion of memory traffic (21.77%
on average). Third, some benchmarks, including bfs, b+tree,
kmeans, nw and lbm, have a relatively high ratio of memory
requests for fetching the BMT blocks from memory. The
reason is that these benchmarks have relatively high counter-
cache miss rates and the fetched counters need to be validated.
Fourth, extra memory traffic due to metadata accesses may
not necessarily lead to performance degradation. For example,
for the non-memory intensive benchmarks (heartwall, lavaMD
and nw), the metadata accesses account for a large portion
of the memory traffic (66.07%, 62.71%, 75.41%), but the
performance impact is near zero. The reason is that for
these benchmarks, the memory bandwidth is under-utilized
as shown in Table IV. Therefore, additional traffic does not
result in contention for the memory bandwidth. Fifth, some
benchmarks, including bfs, dwt2d and Ibm, have relatively
high amounts of metadata-cache writebacks, which also impact
the performance.
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Fig. 4: Distribution of different types of memory requests.

B. MSHRs for Metadata Caches

As shown in Fig. 4, metadata accesses are the main
contributor for additional memory traffic. A deeper analysis
reveals that many metadata cache misses are secondary misses,
meaning that the missed metadata blocks have already been
requested but have not returned from the memory. We report
the ratio of secondary misses in different benchmarks in Fig. 5.
We can see that the secondary misses account for 64.96%,
59.67% and 85.63% for counter/MAC/BMT cache misses
on average. And it can be even more than 90% for some
memory-intensive benchmarks like streamcluster. The reason
is that contemporary GPUs usually employ the sectored cache
structures to reduce memory bandwidth requirement. However,
the sectored L2 cache combined with streaming data access



pattern will lead to multiple sequential access to the same
cache line in metadata cache. Suppose we have a streaming
memory access pattern with 4 memory requests {0x0, 0x20,
0x40, x60}. In a non-sectored L2 cache with 128B cache line,
one cache miss will be generated, which in turn leads to one
counter/MAC cache miss. With a sectored L2 cache (4 sectors
and each sector size of 32B), in contrast, four L2 misses are
generated, which leads to four counter/MAC cache misses (1
primary and 3 secondary) to the same counter/MAC cache
line.

mctr secMiss mmac_secMiss ® bmt_secMiss
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Fig. 5: Amount of secondary misses in metadata caches.

The solution to avoiding the memory traffic generated by
the secondary metadata cache misses is to add MSHRs to
metadata caches. Here, we show the performance impact with
different MSHR sizes for metadata caches and the results
are shown in Fig. 6. Due to the metadata cache organization
(i.e., one metadata cache line may cover multiple data cache
lines/sectors), we assume each MSHR entry can merge at most
512/64/64 requests in the counter/MAC/BMT cache. As we
can see from Fig. 6, 64 MSHRs in a metadata cache can
be a good choice considering the performance and hardware
cost. Hence, we assume 64 MSHRs as the default size in our
experiments.
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Fig. 6: Normalized IPC of secure memory with different
numbers of MSHRs in metadata caches.

C. Metadata Cache Size

In the next experiment, we vary the metadata cache size
from 2KB to 64KB. The performance results are shown in

Fig. 7. Since our baseline GPU has 32 memory partitions,
the overall metadata cache capacity would vary from 192KB
(=32x3x2KB) to 6MB (=32x3x64KB).

As expected, enlarging the metadata cache reduces the
memory traffic and improves the performance. However, there
is still a performance degradation of 46.17% on average even
when the overall metadata cache capacity is enlarged to 6MB
in total, which is equal to the capacity of our baseline GPU.
For memory-intensive benchmarks, the performance overhead
can be even more significant. For example, with the 6MB
metadata cache, secure memory support still slows down
the GPUs by 78.87% for kmeans, 67.82% for srad_v2 and
72.64% for Ibm. On one hand, these benchmarks have very
high memory bandwidth utilization, therefore any additional
memory traffic will incur more contention to the memory
system. On the other hand, these benchmarks have many cold
misses even in the presence of large metadata caches.

In the baseline GPU, each memory partition has 192KB
(=92KB*2) L2 cache capacity, and each counter cache line has
128 minor counters. To maintain the counters for all the L2
cache blocks in this memory partition, the capacity of counter
cache should be at least 192KB/128 = 1.5KB. Therefore we
use 2KB as the default size for metadata caches in each
memory partition.
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Fig. 7: Normalized IPC for different metadata cache sizes.

D. Unified vs. Separate Metadata Caches

On CPU secure memory, Lehman et al. [15] have studied the
metadata cache access patterns and concluded that caching all
metadata together in an unified metadata cache is better than
caching them in separate metadata caches. In our experiment,
we model an unified metadata cache in each memory partition
that has the same capacity as the combined capacity of the
three separate metadata caches. The performance comparison
between the unified and separate metadata caches is shown in
Fig. 8.

From Fig. 8 we can see that in contrast to CPUs, separate
metadata caches outperform the unified metadata cache on
GPUs. To figure out the reason, we report the miss rates of
different types of metadata in Fig. 9. From Fig. 9, we can
see that with unified metadata cache, the miss rate of different
metadata all raises. From 22.77% to 24.03% for encryption



counters, from 31.75% to 31.82% for MACs and from 4.02%
to 5.93% for BMT. The reason is, the newly fetched metadata
blocks keep on evicting the other metadata blocks from the
unified metadata cache due to the streaming access pattern of
the GPU workloads, which results in higher metadata misses.
Moreover, every evicted counter and BMT node may need
to update their parents, which potentially leads to more write
updates to the BMT cache and more dirty evictions from BMT
nodes. Our evaluation results show that the memory traffic due
to metadata writebacks in unified metadata cache can be 1.47X
higher than those with separate metadata caches on average.

We also study the reuse distance of metadata in GPU secure
memory. We choose the benchmark fdtd2d as our case study
and present the reuse distance distribution of its counter and
MAC accesses in Fig. 10 and Fig. 11, respectively. With the
unified cache, we first collect the metadata access trace from
partition O and extract sub-traces for each type of metadata.
Then we compute the reuse distance based on the sub-
traces. The references are grouped into different reuse distance
buckets, where [x,y] means the reuse distance between x and y.
From the figure, we can see that since GPUs feature streaming
data access pattern, the metadata also shows a streaming
pattern as most metadata accesses have a reuse distance of
zero (i.e., accessing the same metadata cache line). In addition,
with unified metadata caches, the counter and MAC accesses
show higher numbers of accesses with reuse distances in the
range between 65 and 512 while having smaller numbers of
accesses with reuse distances between 1 and 8. This indicates
that higher capacities are required to capture these reuses using
unified caches compared to separate caches. Note that accesses
with small reuse distances (e.g., 0) do not always result in
cache hits. The reason is that if the first access is a miss and
the data has not been fetched, subsequent accesses to the same
cache line become secondary misses.

Overall, our conclusion is that for streaming data access
patterns, we may either use separate metadata caches or adopt
smart replacement policies to avoid the thrashing behavior.
Note that the thrashing-avoiding replacement policies pro-
posed for CPU last-level caches may not be readily adopted.
The reason is that each newly fetched metadata block may
be accessed multiple times as each metadata block protects
multiple data blocks. For example, one MAC block contains
MAC:s for 16 data blocks, with perfectly streaming accesses,
the MAC block will be reused for 16 times.

E. AES Engine Throughput

To achieve high-throughput computation, GPUs usually
have high requirements for the memory bandwidth. For exam-
ple, our baseline GPU has a peak memory bandwidth of 868
GB/s. So far, we have assumed that each memory partition
can be equipped with 2 pipelined AES engines such that
the encryption throughput can catch up with the memory
bandwidth. In this case, there would be a total of 64 (=2*%32)
AES engines residing on the GPU chip.

To analyze the performance impact with different numbers
of AES engines for each memory partition/unit, we reduce the
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Fig. 8: Normalized IPC of unified metadata caches vs separate
metadata caches.
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Fig. 9: Miss rates for different types of metadata in unified vs.
separate metadata caches.
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Fig. 10: Reuse distance of counters of the benchmark fdtd2d

number of AES engines in each memory partition/unit from 2
to 1 and the performance results are shown in Fig. 12. From
the figure, we can see that although some benchmarks such as
b+tree and kmeans observe a little performance degradation,
most of the benchmarks are not affected by having just one
pipeline AES engine in each memory partition. The reason is
that for benchmarks with relatively low memory utilization,
neither the memory bandwidth nor the AES throughput is the
performance bottleneck. For the workloads with high memory
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bandwidth utilization, the performance bottleneck is the extra
memory traffic generated by metadata accesses. Only after
the memory bottleneck is addressed, the limitation due to
AES throughput may be exposed. Some memory-intensive
benchmarks, such as srad_v2, streamcluster, 2Dconvolution,
fdtd2d and Ibm also exhibit slight performance improvement
when the number of AES engines is reduced from 2 to 1. The
reason is that these benchmarks have relatively high memory
bandwidth utilization and large numbers of metadata write
backs. Delaying some memory accesses due to limited AES
throughput leads to a change in warp scheduling decisions
as well as the cache access patterns, which results in small
performance increase.
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engines in each memory partition

F. Die Area

GPUs are highly-parallel processors, and most of their
die area is dedicated for computational resources such as
SIMT cores. For example, our baseline GPU models Nvidia
QV_100 (Quadro GV100), which is fabricated using 12nm
FinFET Nvidia (FNN) technology with 21.1 billion transistors
integrated on a die with the size of 815mm? [9]. It integrates
80 SMs and each SM has 64 FP32 cores, 32 FP64 and 8
Tensor cores, which means a total of 5120 FP32 cores, 2560
FP64 cores and 640 Tensor cores.

TABLE VI: Die area of the AES engine

[ - [[ Tech | Die Area ]
JSSC’11 [17] || 45nm 0.15mm?
JSSC’19 [23] || 130nm 13241pm, 2
JSSC’20 [13] || 14nm 4900 pum *

TABLE VII: Scaled down die area of the AES engine and
caches

l -

H Area(mm?)/tech [ Area(mm?)/12nm ‘

AES engine || 0.0049/14nm 0.0036
64KB cache || 0.125821/32nm | 0.01769
96KB cache || 0.128101/32nm | 0.01801

To evaluate the die area required for counter-mode encryp-
tion, we estimate the area of both AES engine and the metadata
caches. We list the results from prior works on AES design in
Table VI and scale the most recent design [13] to the 12nm
technology as shown in Table VII. From the table, we can see
that the area of one AES engine is estimated as 0.0036 mm?.
As there are 32 memory partitions, the total area for 32/64
AES engines is 0.1152/0.2304 mm?.

We use CACTI v6.5 to estimate the die area for the caches.
As CACTI reports the area estimation using the 32nm technol-
ogy, we also scale the results down to the 12nm technology, as
shown in Table VII. As CACTI does not support modeling of
small caches like 2KB, we report the area estimate of 64KB
as 64KB is the aggregated capacity of one type of metadata
caches in 32 partitions.

To make room for the die area required by the AES
engines and metadata caches, we choose to reduce the L2
cache size. Since each L2 bank is 96KB, we also use
CACTI to estimate the area. To accommodate 32 AES en-
gines, the L2 cache capacity would need to be reduced
by 0.1152 mm?/0.01801mm?*96KB = 614KB. Similarly, the
metadata caches will occupy 0.01769%3 = 0.05307 mm?
on chip area, and hence reducing the L2 capacity by
0.05307/0.01801*%96KB = 283KB. If we assume MAC units
have similar die area compared to AES engines, the security
related hardware resources will reduce the L2 capacity by
614+614+298 = 1526KB in total (24.84% L2 cache capacity).
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Fig. 13: Normalized IPC with different L2 cache capacities



To evaluate the performance impact of the reduced L2 ca-
pacity, Fig. 13 shows the normalized performance for different
L2 cache sizes, ranging from 4MB to 6MB. From the figure,
we can see that although many benchmarks are not sensitive
to the L2 cache capacity, a few of them show relatively high
performance degradation. To better understand the reasons,
we also report the L2 cache miss rate in Fig. 14. From
the figure, we can see that some medium-memory-intensive
benchmarks show high sensitivity to L2 capacity. It is expected
since computation-intensive benchmarks (e.g., heartwall and
lavaMD) have small numbers of L2 accesses whereas highly
memory intensive benchmarks such as Ibm or fdtd2d have very
high L2 miss rates. Changing L2 capacity has little impact on

these workloads.
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VI. DIRECT ENCRYPTION

In this section, we evaluate direct encryption and explore the
option of different levels of integrity protection. The designs
that we evaluate in this section are listed in Table VIII.

A. Performance Overheads of Direction Encryption

As direct encryption exposes the decryption latency to
the critical path of memory read accesses, it can slowdown
the performance heavily on CPUs [31]. However, GPUs are
designed for high-throughput computation by exploiting the
high degrees of TLP. Hence, GPUs are able to tolerate long
operation latency. It is expected that adding some encryption
latency to the memory access would not hurt the GPU perfor-
mance significantly.

We model the direct encryption with different encryp-
tion/decryption latencies upon our baseline GPU and the
performance results are shown in Fig. 15. As expected, direct
encryption does not affect the GPU performance much. When
the encryption latency varies from 40 cycles to 160 cycles,
the TPC slowdown is 1.33%, 3.02%, 5.93%, respectively on
average. Some benchmark, e.g., b+tree, nw and streamcluster,
show more than 10% slowdowns at the high encryption latency
of 160 cycles. The reasons are different among these three
benchmarks: (1) benchmark streamcluster suffers from high
L2 miss rate (97.02%) as shown in Fig. 14, which leads to

TABLE VIII: Evaluated designs for direct encryption

Scheme [[ What It Represents ]

direct encryption with different encryp-
tion latency of x cycles

ctr counter-mode memory encryption
without any integrity protection
counter-mode encryption with BMT to
protect counter integrity

counter-mode encryption with BMT
and MACs

direct encryption with MACs.

direct encryption with MACs and MT.

direct_x

ctr_bmt

ctr_mac_bmt

direct_mac
direct_mac_mt

mdirect_ 40 mdirect 80 mdirect 160

1

0.
0.
0.
0.
0
&

MNormalized IPC
= [=:] [=+]

A8 ]

bb@\e
'\, & g P
& ¥ @ f\ea%“é@
qu
'Oé_’ <€? t’z@@o‘\
&P

Fig. 15: Normalized IPC of direct encryption with different
encryption latencies.

many memory read accesses, (2) benchmark nw is limited by
the small kernel (shown in Table IV) such that they do not have
enough threads to hide the encryption latency. (3) benchmark
b+tree shows interesting results because it’s neither bounded
by kernel size nor L2 miss rate. Digging deeper, we find that
with a high encryption latency of 160 cycles, b+tree suffers
from 2.42X dram stall time compared the baseline GPU. Our
results show that given longer dram stall time, all the available
warps in b+tree suffer 12.2% more pipeline cycles to wait data
from memory on average, and thus slowdown the performance.
Although high encryption/decryption latency does not impact
the GPU performance significantly, we choose 40 cycles as
the default encryption/decryption latency, which is consistent
with prior work on AES encryption for CPUs [15].

B. Direct Encryption vs. Counter-mode Encryption

To better understand the trade-offs between direct encryp-
tion and counter-mode encryption, we examine their perfor-
mance in Fig. 16. From Fig. 16, we can make two observa-
tions. First, as discussed above, the performance impact of
direct encryption is almost negligible. Second, compared with
direct encryption, counter-mode encryption without integrity
checks can lead to a relatively high performance overhead
(33.06% on average, and up to 66.44% for the memory-
intensive workload Ibm). As we studied in section V, the
main reason is that counter-mode encryption will generate
additional memory traffic to fetch/store counters from/to the
off-chip main memory.
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Fig. 16: Normalized IPC of direct encryption and counter-
mode encryption

Moreover, as we discussed in section II-C, counter-mode
encryption fundamentally relies on counter integrity protection
to provide data confidentiality. The reason is that the counters
are used for encryption and decryption. Without integrity
checks of the counters, the GPU cannot tell whether a counter
has been altered by the attacker or not. In this case, an attacker
may be able to manipulate the counters to recover the plaintext.
It can be illustrated as follows. Let us use P as the plaintext,
C as the ciphertext, and K as the secret key of AES. Then the
ciphertext is generated by C = Ex (A||Ctr) @ P, where A is
the address of the memory block and C'tr is the counter. P can
be recovered with C' @ Ex (A||Ctr) if Ctr can be controlled
by the attacker. Hence, with counter-mode encryption, BMT is
needed anyway to provide integrity protection to the counters
stored in the off-chip memory.

As we can see from Fig. 16, adding the integrity protec-
tion to counters further increases the performance overhead,
43.94% on average for all the benchmarks in our study.

In summary, our evaluation suggests that if the memory only
needs to be encrypted, direct encryption would be a better
choice for GPUs.

C. Integrity Protection

Memory encryption can provide data confidentiality. How-
ever, it cannot provide memory integrity protection when the
attackers have the ability to tamper the memory contents. With
counter-mode encryption, data integrity protection is provided
by stateful MACs, and counter integrity protection is provided
by BMT. With direct encryption, one can choose to build MAC
upon cyphertext with/without a Merkle Tree (MT). The MT
is needed to prevent replay attacks and can be built with the
MAGC:s as its leaf nodes.

We model these schemes and compare the performance
results in Fig. 17. For fairness, we assume the same on chip
resource used by the metadata caches. In counter-mode en-
cryption, as mentioned in Section V, a 2KB on-chip metadata
cache is used for each type of metadata and a total of 6KB
on-chip resource is used in each memory partition. In direct
encryption with MAC, we model a MAC cache with the size
of 6KB. In direct encryption with both MAC and MT, we

model a 3KB MAC cache and 3KB MT cache (the MACs
will not access the MT cache as they are cached in the MAC
cache).
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Fig. 17: Normalized IPC of direct encryption and counter-
mode encryption with integrity protection

From Fig. 17, we can make two observations. First, given
the same on-chip resource for metadata caches, direct encryp-
tion with MAC can still perform better than counter-mode
encryption scheme with BMT (42.65% vs. 63.45% IPC slow-
down on average). Second, MT can have high performance
impact upon direct encryption. Combined with MACs, it can
slowdown the GPUs IPC by 71.87% on average. The reason
is that with the same memory protection range, the height
of MT (7-level 16-ary tree) is higher than the BMT (6-level
16-ary tree). On one hand, a higher hash tree means that the
integrity verification process (every newly fetched MAC block
must be authenticated) needs to traverse a longer path and
potentially incurs more memory traffic to fetch/store the tree
nodes from/to off-chip memory. On the other hand, a higher
hash tree, although just 1 level higher, has much larger capacity
(due to the arity), which leads to high contention for the MT
cache.

VII. CONCLUSIONS

In this paper, we perform detailed performance analysis of
different secure memory architecture designs for accelerators
like GPUs. From our study, we conclude that we need to archi-
tect GPU secure memory differently from it in CPUs. Our key
observations include: (1) Due to the latency-hiding capability,
direct encryption can be a better alternative to counter-mode
encryption for GPUs if only data confidentiality is needed. (2)
The AES throughput limitation can be reasonably addressed
with one pipelined AES engine in each memory partition. (3)
To support integrity verification, both counter-mode encryption
and direct encryption need to be further optimized to reduce
the performance overhead. In either design, the key bottleneck
is the memory traffic generated by security metadata accesses.
(4) Metadata caches can reduce the memory traffic and sep-
arate metadata caches can be a better choice than unified
metadata caches for GPUs. (5) The use of sectored L2 cache
on GPUs necessities MSHRs for the metadata caches to reduce
the memory traffic.



ACKNOWLEDGMENT

We thank the anonymous reviewers for their valuable com-
ments. For this work, the NSCU team is funded in part by NSF
grants 1717550 and 1908406, and the UCF team is supported
in part by NSF grant 1908079 and by UCF.

[1]

[5]

[6]

[8]

[9]

[10]

[11]

(12]

[13]

[14]

[15]

[16]

[17]

[18]

REFERENCES

S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S.-H. Lee,
, and K. Skadron., “Rodinia: A benchmark suite for heterogeneous
computing,” in Proceedings of the IEEE International Symposium on
Workload Characterization (IISWC), 2009.

V. Costan and S. Devadas, “Intel sgx explained,” Cryptology ePrint
Archive, Report 2016/086, 2016.

cott Grauer-Gray, L. Xu, R. Searles, S. Ayalasomayajula, and J. Cavazos,
“Auto-tuning a high-level language targeted to gpu codes,” in To Appear
In Proceedings of Innovative Parallel Computing, 2009.

B. Gassend, G. E. Suh, D. Clarke, M. van Dijk, and S. Devadas, “Caches
and hash trees for efficient memory integrity verification,” in The Ninth
International Symposium on High-Performance Computer Architecture,
2003. HPCA-9 2003. Proceedings., 2003.

S. Gueron, “A memory encryption engine suitable for general purpose
processors,” IACR Cryptol. ePrint Arch., vol. 2016, p. 204, 2016.
[Online]. Available: http://eprint.iacr.org/2016/204

W. Hua, M. Umar, Z. Zhang, and G. E. Suh,
“Guardnn: Secure dnn accelerator for privacy-preserving deep
learning,” CoRR, vol. abs/2008.11632, 2020. [Online]. Available:

https://arxiv.org/abs/2008.11632

W. Hua, M. Umar, Z. Zhang, and G. E. Suh, “Mgx: Near-zero
overhead memory protection with an application to secure dnn
acceleration,” CoRR, vol. abs/2004.09679, 2020. [Online]. Available:
https://arxiv.org/pdf/1804.06826.pdf

I. Jang, A. Tang, T. Kim, S. Sethumadhavan, and J. Huh, “Heterogeneous
isolated execution for commodity gpus,” in Proceedings of the 13th
USENIX Symposium on Operating Systems Design and Implementation
(0SDI'18), 2018.

Z. Jia, M. Maggioni, B. Staiger, and D. P. Scarpazza,
“Dissecting the nvidia volta gpu architecture via microbench-
marking,” CoRR, vol. abs/1804.06826, 2018. [Online]. Available:
https://arxiv.org/pdf/1804.06826.pdf

Z. H. Jiang, Y. Fei, and D. Kaeli, “A complete key recovery timing attack
on a gpu,” in Symposium on High Performance Computer Architecture
(HPCA), 2016.

D. Kaplan, J. Powell, and T. Woller, “Amd memory encryption,” 2016.
M. Khairy, Z. Shen, T. M. Aamodt, and T. G. Rogers., “Accel-sim: An
extensible simulation framework for validated gpu modeling,” in pro-
ceedings of the 47th IEEE/ACM International Symposium on Computer
Architecture(ISCA), 2020.

R. Kumar, V. Suresh, M. Kar, M. A. Anders, H. Kaul, A. Agarwal,
S. Hsu, G. K. Chen, R. K. Krishnamurthy, V. De, and S. K. Mathew,
“A 4900—pum 2 839-mb/s side-channel attack-resistant aes-128 in 14-
nm cmos with heterogeneous sboxes, linear masked mixcolumns, and
dual-rail key addition,” IEEE Journal of Solid-State Circuits ( Volume:
55, Issue: 4, April 2020), 2020.

R. B. Lee, P. C. S. Kwan, J. P. McGregor, J. Dwoskin, and Zhenghong
Wang, “Architecture for protecting critical secrets in microprocessors,”
in 32nd International Symposium on Computer Architecture (ISCA’05),
2005.

T. S. Lehman, A. D. Hilton, and B. C. Lee, “MAPS: understanding
metadata access patterns in secure memory,” in [EEE International
Symposium on Performance Analysis of Systems and Software, ISPASS
2018, Belfast, United Kingdom, April 2-4, 2018. IEEE Computer
Society, 2018, pp. 33-43.

Y. Liu, Y. Xie, and A. Srivastava, “Neural torjans,” in 2017 IEEE
International Conference on Computer Design (ICCD), 2017.

S. K. Mathew, F. Sheikh, M. Kounavis, S. Gueron, A. Agarwal, S. K.
Hsu, H. Kaul, M. A. Anders, and R. K. Krishnamurthy, “53 gbps
native gf(2 4 ) 2 composite-field aes-encrypt/decrypt accelerator for
content-protection in 45 nm high-performance microprocessors,” in
IEEE Journal of Solid-State Circuits, 2011.

S. Pinto and N. Santos, “Demystifying arm trustzone: A comprehensive
survey,” ACM Comput. Surv., vol. 51, no. 6, pp. 130:1-130:36, 2019.
[Online]. Available: https://doi.org/10.1145/3291047

[19]

[20]

(21]

[22]

(23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

(31]

(32]

[33]

[34]

B. Rogers, , M. Prvulovic, and Y. Solihin, “Effective data protection
for distributed shared memory multiprocessors,” in in Proceedings of
the International Conference of Parallel Architecture and Compilation
Techniques (PACT), 2006.

B. Rogers, S. Chhabra, M. Prvulovic, and Y. Solihin, “Using address
independent seed encryption and bonsai merkle trees to make secure
processors os- and performance-friendly,” 40th Annual IEEE/ACM In-
ternational Symposium on Microarchitecture (MICRO), 2007.

B. Rogers, C. Yan, S. Chhabra, M. Prvulovic, and Y. Solihin, “Single-
level integrity and confidentiality protection for distributed shared
memory multiprocessors,” in in Proceedings of the 14th International
Symposium on High Performance Computer Architecture (HPCA-14,
2008.

B. Rogers, C. Yan, M. Prvulovic, and Y. Solihin, “Single-level integrity
and confidentiality protection for distributed shared memory multipro-
cessors,” in HPCA, 2008.

A. Singh, M. Kar, S. K. Mathew, A. Rajan, V. De, and S. Mukhopad-
hyay, “Improved power/em side-channel attack resistance of 128-bit aes
engines with random fast voltage dithering,” IEEE Journal of Solid-State
Circuits, 2019.

Y. Solihin, Fundamentals of Parallel Multicore Architecture.
Chapman and Hall/CRC, 2015.

J. A. Stratton, C. Rodrigues, I.-J. Sung, N. Obeid, L.-W. Chang,
N. Anssari, G. D. Liu, and W. mei W. Hwu, “Parboil: A revised
benchmark suite for scientific and commercial throughput computing,”
in IMPACT Technical Report, 2009.

G. Suh, D. Clarke, B. Gassend, M. van Dijk, and S. Devadas, “Efficient
memory integrity verification and encryption for secure processors,”
in Proceedings. 36th Annual IEEE/ACM International Symposium on
Microarchitecture, 2003. MICRO-36., 2003.

G. E. Suh, C. W. O’Donnell, and S. Devadas, “Aegis: A single-chip
secure processor,” IEEE Design Test of Computers, 2007.

D. L. C. Thekkath, M. Mitchell, P. Lincoln, D. Boneh, J. Mitchell,
and M. Horowitz, “Architectural support for copy and tamper resistant
software,” in Proceedings of the Ninth International Conference on Ar-
chitectural Support for Programming Languages and Operating Systems,
2000.

S. Volos, K. Vaswani, and R. Bruno, “Graviton: Trusted execution
environments on gpus,” in Proceedings of the 13th USENIX Symposium
on Operating Systems Design and Implementation (OSDI’18), 2018.
C. Yan, D. Englender, M. Prvulovic, B. Rogers, and Y. Solihin,
“Improving cost, performance, and security of memory encryption
and authentication,” in Proceedings of the 33rd Annual International
Symposium on Computer Architecture (ISCA), 2006.

J. Yang, Y. Zhang, and L. Gao, “Fast secure processor for inhibiting
software piracy and tampering,” in Proceedings of the 36th Annual
IEEE/ACM International Symposium on Microarchitecture, 2003.

Y. Zhang, L. Gao, J. Yang, and R. Gupta, “Senss: Security enhancement
to symmetric shared memory multiprocessors,” in in Proceedings of the
International Symposium on High-Performance Computer Architecture
(HPCA), 2005.

Y. Zou and M. Lin, “Fast: A frequency-aware skewed merkle tree
for fpga-secured embedded systems,” in 2019 IEEE Computer Society
Annual Symposium on VLSI (ISVLSI), 2019.

P. Zuwo, Y. Hua, L. Liang, X. Xie, X. Hu, and Y. Xie,
“Sealing neural network models in secure deep learning
accelerators,” CoRR, vol. abs/2008.03752, 2020. [Online]. Available:
https://arxiv.org/pdf/1804.06826.pdf

London:



