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ABSTRACT
In this paper, we investigate the secure memory architecture for
GPUs and point out that conventional CPU secure memory archi-
tecture can not be directly adopted to the GPUs. The key reasons
include: (1) accessing the security metadata, including encryption
counters, message authentication codes (MACs) and integrity trees,
requires significant memory bandwidth, which may lead to severe
bandwidth competition with normal data accesses and degrade the
GPU performance; (2) contemporary GPUs use partitioned memory
organization, which results in storage and coherence problems for
encryption counters and integrity trees since different partitions
may need to update the same counter/integrity tree blocks; and
(3) the existing split-counter block organization is not friendly to
sectored caches, which are commonly used in GPU for bandwidth
savings. Based on these observations, we propose partitioned and
sectored security metadata (PSSM), which has two components: (a)
using the offset addresses (referred to as local addresses) within
each partition, instead of the virtual or physical addresses, to gener-
ate the metadata so as to solve the counter or integrity tree storage
and coherence problems and (b) reorganizing the security meta-
data to make them friendly to the sectored cache structure so as to
reduce the memory bandwidth consumption of metadata accesses.
With these proposed schemes, the performance overhead of se-
cure GPU memory is reduced from 59.22% to 16.84% on average. If
only memory encryption is required, the performance overhead is
reduced from 29.53% to 5.18%.
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1 INTRODUCTION
Hardware supports for trusted execution environments (TEEs), such
as Intel SGX [5, 10] and ARM TrustZone [24], have been integrated
onto the CPUs to provide secure isolated computing environment
for cloud users. TEEs can protect against both compromised system
software, e.g., hypervisors and operating system (OS), and physical
attacks such as memory tampering [10]. However, TEE support
is missing on contemporary GPUs. As GPUs are widely used as
accelerators in the cloud servers for many workloads such as ma-
chine learning, scientific computing, 3D rendering, etc., there is a
growing need for strong security protection like TEE on GPUs.

Some recent works, including Graviton [33] and HIX [14], aim to
provide TEE for the workloads offloaded to GPUs. Graviton assumes
that the system software stack, including GPU drivers, the OS,
and hypervisor, cannot be trusted and the attackers have physical
access to the hardware. To protect against software attacks, the
GPU management operations are offloaded to the GPU command
processors instead of being relegated to the GPU drivers, which
runs within the untrusted host kernel space. Furthermore, Graviton
provides new primitives, such as secure memory copy, to prevent
attackers from snooping upon the PCIe bus. HIX, alternatively,
mainly focuses on protecting the I/O path between the hardware
and software. Although it also keeps the GPU drivers out of the
trust boundary by isolating it from the kernel space, it relies on the
secure CPU enclaves to protect the refactored GPU drivers.

A key observation is that the threat models of previous works
such as Graviton [33] and HIX [14] are significantly weaker than
that of the CPU TEE. Specifically, they include the GPU device mem-
ory in the trusted computing base (TCB). The GPU device memory
is left unprotected, i.e., no memory encryption and integrity pro-
tection are provided. As a result, the device memory is vulnerable
to attacks, which may include eavesdropping or tampering of data
in memory. Examples include passive eavesdropping between GPU
and its device memory [32], cold boot attacks [11], rowhammer
attacks [21], etc.

In particular, Graviton assumes that the GPU device memory is
soldered within the GPU package and thus assumes physical at-
tacks on device memory are out of reach. However, due to the high
cost of 3D stacked memory, discrete GDDR memory remains to be
widely used in commercial GPUs, including the latest Nvidia Am-
pere GPUs [2]. Discrete GDDR memory chips are readily accessible
as it is a common practice to replace faulty GDDR-memory chips.
Thus, GPU device memory will still be vulnerable to physical at-
tacks. Moreover, with the new attack scheme like rowhammer [21],
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even the content of stacked memory can also be altered by attackers.
Hence, we argue that secure memory support is needed for GPUs
to provide strong confidentiality and integrity protection.

Figure 1: Secure GPU architecture with the trust boundary
as the GPU chip

In this paper, we explore the architectural design of secure mem-
ory for GPUs. The overall secure GPU architecture is shown in
Fig. 1. The GPU chip forms the trust boundary and each memory
partition on the GPU chip integrates a memory encryption engine
(MEE) [10], metadata caches (MDC), and a special register storing
the root of the integrity tree.

One may consider adopting CPU secure memory architecture [4,
34, 35] for GPUs. However, we argue that CPU secure memory
support cannot be directly adopted to the GPUs. As pointed out in
our earlier study [38], the main reason is that the memory accesses
to the security metadata, including encryption counters, message
authentication codes (MACs) and integrity trees, often lead to band-
width contention, which degrade GPU performance. This paper
builds upon the findings from our previous study and leverages
the recommended designs including the MDC architecture and the
pipelined MEEs to further reduce the performance overhead. In
particular, we make the following new observations: (1) GPU se-
cure memory needs to support partitioned memory organization,
which is used in contemporary GPUs [2] to achieve high memory
bandwidth. As a result of partitioned memory, memory blocks are
interleaved to different memory partitions and physical address
based security metadata requires either cross partition communi-
cation and/or redundant storage, which worsens the bandwidth
contention problem. (2) Sectored caches are often used in GPUs as
a bandwidth saving technique but the security metadata, especially
the split counters, are not well suited for such sectored organiza-
tions. (3) MAC verification presents a new trade off for sectored
data caches. On one hand, if a MAC is computed for each cache line,
all the sectors in a cache would be needed for MAC verification,
defeating the purpose of sectored data caches. On the other hand,
if a MAC is computed for each sector, higher MAC storage and
bandwidth would be resulted. If we truncate the MAC to reduce the
storage and bandwidth overhead, the strength of MAC verification
might be compromised.

Based on our observations, we propose a simple yet effective
scheme, partitioned and sectored security metadata (PSSM). PSSM
has two components. First, to address the issues with partitioned

memory organization, we propose to use the "partition-local ad-
dresses" (or simply local addresses) within each partition to generate
the metadata. In partitioned memory organization, physical ad-
dresses are mapped to partition ids and partition offsets using some
carefully crafted hash functions. We refer to the partition offsets
as partition-local addresses. Using local addresses to generate the
security metadata essentially protects each partition independently:
each partition has its own local counters and its own integrity tree
with an on-chip root. Therefore, as shown in Fig. 1, a root register is
added in each memory partition. Second, we propose to reorganize
the metadata so as to make them friendly to the sectored cache
structure. In addition, given the high performance impact from
MAC accesses, we choose to have one MAC for each cache line
instead of one MAC per sector. In other words, a sectored L2 cache
is essentially forced to behave like a non-sectored one.

To summarize, the contributions of this paper are as follows:

• We show that conventional physical address-based metadata
are not compatible with GPU partitioned memory. Naive
adoption of physical address-based metadata results in meta-
data replication and/or cross partition communication.

• We propose to use the partition-local address to organize
the encryption counters and build an integrity tree for each
memory partition to address the problem.

• Based on the GPU memory access pattern, we propose to
reorganize the security metadata and make them friendly
to the sectored cache structure to reduce the memory band-
width contention.

• We recognize that MAC accesses can be a major performance
overhead and show that the design of one MAC per sector in-
curs higher performance overhead than one MAC per cache
line, although it makes a sectored L2 cache to behave like a
non-sectored one.

• We present detailed evaluation and show that PSSM can
reduce the GPU secure memory performance overhead from
59.22% to 16.84% on average. If we only consider GPU mem-
ory encryption, the overhead is reduced from 29.53% to 5.18%.

The remainder of the paper is organized as follows. Section 2
presents the background on secure memory and specifies the threat
model. Section 3 discusses our main observations and motivations
of our work. Section 4 introduces our architecture design. Section 5
evaluates the performance of our design. Section 6 discusses the
related work. And Section 7 concludes our work.

2 BACKGROUND
2.1 Thread Model and Scope of Our Work
Hardware-based CPU TEEs, e.g., Intel SGX, assume two types of
threats [10]: compromised system software (such as the OS and/or
hypervisor) and physical attacks including bus snooping and mem-
ory scanning/tampering attacks. The processor chip forms the trust
computing boundary (TCB) [19], and all on-chip components are
assumed to be out of the reach for attackers. In other words, all
the data going off the processor chip need to be protected. This
protection scheme requires three major architecture supports [6]:
hardware key management, remote attestation, and secure mem-
ory. Among them, secure memory incurs the highest performance
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overhead because it needs to be in operation all the time, encrypt-
ing/decrypting and verifying the integrity of all the data stored in
off-chip main memory, and affects the critical-path delay of load
instructions.

This paper assumes that the same physical attacks considered in
CPU TEEs can also affect GPUs. In contrast to previous work [14,
33], we exclude the GPU memory module from the trust boundary,
and assume that the GPU chip forms the security boundary. In
other words, we consider that GPU memory is vulnerable to the
conventional memory bus snooping and memory tampering attacks
if the attackers have the physical control of the server.

Our focus is on exploring the secure memory architecture for
GPUs. Hardware key management and remote attestation have
been studied in previous work including Graviton [33], HIX [14]
and Intel SGX [10]. Also, secure GPU context isolation and manage-
ment as well as PCIe bus protection scheme have been addressed
in previous works like Graviton [33], and we assume such support
when designing our secure memory architecture for GPUs. Fur-
thermore, side channel attacks [7, 22, 23] such as timing-based side
channel attacks are out of the scope of our work.

2.2 Memory Encryption
Memory encryption is one of the key functionalities of secure mem-
ory. It performs encryption/decryption for all the traffic between
last-level caches and off-chip DRAM. The state-of-the-art memory
encryption uses counter-mode encryption. A counter value is main-
tained for each memory block/cache line. At the time when a data
request is fetched from off-chip memory, the block address (physical
address typically) and the counter value are combined to generate a
one-time pad (OTP). And the memory controller recovers the plain-
text with a single-cycle XOR operation. This encryption/decryption
process is illustrated in Fig. 2.

Figure 2: Counter-mode encryption

In counter-mode encryption, encryption counters can be mono-
lithic [10] or split [4, 34]. The benefits of split counters is that they
have low storage overhead. With split counters, a major counter is
shared by the memory blocks within a physical memory page, and
one minor counter is maintained for each memory block. At the
time of each memory (read/write) access, the major counter and the
minor counter are concatenated to form the counter used for en-
cryption/decryption.With monolithic counters, eachmemory block
has one counter. Counter-mode encryption fundamentally relies
on counter integrity protection to provide data confidentiality [34].

2.3 Memory Integrity
The integrity of the off-chip data can be protected by a combination
of MACs and integrity/hash trees. MACs can protect against mem-
ory tampering attacks where value in memory is changed or moved

to a different location, but the memory can still be impacted by the
replay attack because the attacker can replay both data and its MAC
to pass the MAC verification logic. In early designs [19, 30, 35], a
Merkle/Hash tree built on top of the entire memory is used to pro-
tect against replay attacks. Later on, Rogers et al. [26, 34] proposed a
stateful MAC, which includes the ciphertext, block address, and the
counter value of the block into the MAC calculation, and reduces
the replay attack surface to only the encryption counters. A variant
of Merkle Tree, named Bonsai Merkle Tree (BMT), was proposed
to cover the encryption counters to prevent counter-replay attacks
and the BMT is much smaller and shallower than the hash/integrity
tree built upon the memory data blocks. Any modification to the
data or MACs stored in off-chip memory can be detected by compar-
ing the MACs when the data is fetched frommemory. Similarly, any
modification or replay of the counters can be detected by traversing
the BMT and comparing the hash values in the BMT nodes stored
on chip, either the on-chip BMT cache or the on-chip BMT root.

Alternatively, a counter tree is used in Intel SGX [10] to protect
the integrity of counters. The advantage of the counter tree is that
the updates of the nodes along the update path from the leave to
the root can be done in parallel, resulting in low latency of integrity
tree updates at the cost of multiple MAC engines. As shown in
Section 3, GPUs are not sensitive to the latency of cryptographic
operations. Therefore, we use BMTs in this work.

3 MOTIVATIONS
3.1 Performance Impacts of Naive Design
To pinpoint the performance bottlenecks of adopting CPU secure
memory to GPUs directly, we first perform a detailed performance
analysis. The simulation methodology is presented in Section 5.1.
We model the secure memory architecture with split-counter mode
encryption, combined with MAC and BMT for integrity protection.
A 64KB cache is added for each type of security metadata. There
are 32 memory partitions in our baseline GPU model, thus each
memory partition is equipped with a 2KB counter cache, a 2KB
BMT cache, and a 2KB MAC cache. We assume the metadata cache
(MDC) line size of 128B, the same as the data cache line size. A
split-counter block with 128B consists of 1 × 128-bit major counter
and 128 × 7-bit minor counters (SC_128) is adopted in this naive
design, as shown in Fig. 7. This way, one counter block is used for
128 data blocks or a major counter is shared among 128 data blocks.

Fig. 3 reports the instruction per cycle or IPC (higher is better)
of secure memory designs normalized to the baseline GPU without
secure memory support. In the figure, the design directly adopted
from CPU secure memory is labeled secureMem. Two idealistic
(but infeasible) designs are also included to determine performance
bottlenecks. large_mdc represents an ideal design with unlimited
MDC capacity, while 0_crypto represents an ideal design with
zero-latency cryptographic operations (i.e., zero encryption and
MAC computation latencies). In all these designs, the metadata
are generated using the physical addresses. In other words, the
addresses used in counter mode encryption and MACs are physical
addresses of the data blocks.

From Fig. 3, we can see that directly adopting the CPU secure
memory design results in a performance slowdown for GPU of
59.66% on average (geometric mean). The performance degradation
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Figure 3: Normalized performance of secure memory de-
signs to the baseline GPU without secure memory support.

is even higher for memory-intensive benchmarks like lbm (91%)
and srad_v2 (84%). Zero cryptographic latency does not improve
the performance of secure memory, primarily because GPUs being
designed to be latency tolerant. On the other hand, with unlimited
MDC sizes, the average performance is more than doubled and
approaches the baseline GPU without secure memory, indicating
that the memory accesses to fetch/store security metadata from/to
off-chip memory is the main performance bottleneck. Moreover,
we can observe that even with unlimited MDC capacity, where only
cold misses on metadata remain, the performance slowdown can
still be significant, 13% on average. The reason is that the perfor-
mance of GPUs is highly bounded by memory bandwidth and we
would better avoid any additional memory bandwidth contention.

3.2 Problem Diagnosis
As presented in Section 3.1, even with unlimited MDCs, there is
a performance gap between the baseline GPU and the one with
secure memory support. By analyzing the MDCs in different par-
titions, we discover that the partitioned memory structure and
memory interleaving used in contemporary GPUs lead to redun-
dant metadata being fetched to and stored in the MDCs in different
partitions. This implies that some memory bandwidth is wasted due
to unnecessary data transfers. The main reason for the redundant
metadata among different memory partitions is that the state-of-
the-art split-counter mode encryption organizes the counters based
on data blocks’ physical addresses. However, with partitioned mem-
ory structure, memory blocks within the same physical page are
mapped to different memory partitions so as to avoid the partition
camping problem [1][36]. In our baseline GPU, pseudo random
memory interleaving is employed and the interleaving granularity
is 256B (2 memory blocks or cache lines with the block/line size of
128B). With split counters, one counter block contains the encryp-
tion counters for many data blocks mapped to different partitions.
Since each memory partition has its own memory controllers and
cannot access other partitions directly, there is a question of how
to maintain the split counters.

The problem is further illustrated with Fig 4. Here, we simply
assume the sequential interleaving scheme and the interleaving
granularity is 2 memory blocks. With split counters, one 128B
counter block protects 128 data blocks and these data blocks are
distributed across the 32 memory partitions. As a result, the same

Figure 4: A single (128B) counter block corresponds to 128
data blocks in 32 partitions. Similarly, one BMT node re-
quires multiple counter blocks.

counter block needs to be accessed by all the 32 memory partitions
and it may be stored in the counter cache in each partition, lead-
ing to significant redundancy. Besides the redundancy in counter
caches, another key problem is, which memory partition should
be used to accommodate this counter block in off-chip memory?
There are two options.

Option 1: Redundant countersWe can store several copies of
the counter block in different partitions such that each partition can
access the its own copy. For example, a copy of counter block 0 can
be stored in off-chip memory corresponding to partition 0, another
stored in partition 1, etc. However, the issue is the coherence among
the multiple copies of the same counter block. If there is one minor
counter overflow in one partition, the major counter would need to
be updated for all the copies of the counter block. But there is no
communication channel across different partitions to support such
an operation. The remedywould be adding an interconnect network
across different partitions, which would incur high hardware cost.In
our paper, we adopt this design with redundant counters as our
baseline.

Option 2: Single copy of counters We can also store all the
metadata in one partition. For example, all counter blocks can be
stored in partition 1. When partition 2 received a memory request,
which needs to access its counter block, the memory controller in
partition 2 would have to access partition 1, thereby requiring the
interconnects across different partitions.

Note that the BMT nodes share the same problems as the coun-
ters since the BMT is built on top of the counter blocks. In other
words, a BMT node needs to be accessed by multiple partitions.

3.3 Coarse-Grain Interleaving
To solve the counter redundancy and coherence problem, one pos-
sible solution is to enlarge the interleaving granularity to larger
memory chunks like page-level memory interleaving [39]. For ex-
ample, if four consecutive memory pages in the physical memory
space (assuming 4KB pages) can be assigned to the same memory
partition, all the 128 data blocks (16kB = 128*128B) corresponding
to a 128B counter block would reside in the same memory partition.
However, the problem of such coarse interleaving granularity is
partition camping [1], which means that multiple streaming multi-
processors (SMs) may try to access the data from the same memory
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partition, resulting in contention at the partition and low memory
bandwidth utilization overall.

To evaluate the performance impact of coarse interleaving gran-
ularity, we model the memory interleaving at 1-page and 4-page
granularity without secure memory and normalize the performance
to the IPC of baseline GPU without secure memory. The results
are shown in Fig. 5. As we can see from Fig. 5, 1-page interleav-
ing slows down GPU performance by 13% on average compared
to the baseline GPU, which uses 2-block/256B interleaving. More-
over, 1-page interleaving cannot solve the counter storage problem
as one counter block still contains the counters from more than
one partition. In comparison, 4-page interleaving can eliminate
the counter storage problem entirely, as all the data blocks, whose
counters are in the same counter block, reside in the same partition.
The overheads, however, are increased: 4-page interleaving reduces
GPU performance by almost 29% on average due to more severe
partition camping.

Figure 5: The IPC of different page interleaving granulari-
ties, normalized to the baseline GPU with 256B interleaving
and without secure memory support.

Even with coarse-grain interleaving, the problem with the BMT
remains. Some BMT nodes, especially those in high levels of the
tree, are still needed by different partitions, as one BMT node may
have several children nodes that span over multiple partitions.

3.4 Sectored MDC
Sectored caches are commonly used for commercial GPUs to reduce
memory bandwidth consumption. As pointed out in Section 3.1, the
key performance bottleneck of GPUs with secure memory support
is the bandwidth contention due to metadata accesses. Therefore,
we expect that the GPU performance can benefit from sectored
MDCs. In our baseline GPU, the data caches (both L1 and L2) use
128B cache lines and each cache line has 4 sectors, i.e., each sector
has a size of 32B. Similarly, we model the MDC with 4 sectors in
each cache line. Fig. 6 shows the performance comparison of secure
GPU with sectored and regular (i.e., non-sectored) MDCs of the
same capacity and set associativity. As expected, we can clearly see
that the performance of sectored MDC is significantly better than
the non-sectored MDC. As such, we conclude that sectored MDCs
are preferred for GPU secure memory design.

However, there is a problem with separating split-counters into
sectors as shown in Fig. 7. With a 128B counter block being divided

Figure 6: Performance comparison of secure GPU with non-
sectored MDCs (labeled ’secureMem’) and sectored MDCs
(labeled ’sec_mdc’).

into 4 sectors, the major counter (128b) along with 18 minor coun-
ters (7b each) is usually stored in the first sector (32B) while the
remaining minor counters are stored in other sectors. If an L2 cache
miss leads to a counter access to the sector other than the first, the
memory controller still needs to issue 2 memory requests to fetch 2
sectors containing the major counter and the corresponding minor
counter to recover the counter value needed for memory encryp-
tion/decryption. To avoid such additional memory transactions, the
counter block organization needs to be redesigned such that it can
be friendly to the sectored cache structure.

Figure 7: A Split-counter block of 128B, containing 1 × 128-
bit major counter and 128×7-bit minor counters. When split
into 4 sectors, the first sector contains themajor counter and
some minor counters.

3.5 Sectored Data Cache and MAC Verification
In CPU secure memory, a MAC is calculated for each cache line.
On GPUs, sectored data caches are commonly used to save band-
width consumption. However, secure memory presents a new trade
off between regular data bandwidth and metadata bandwidth con-
sumption. On one hand, if a MAC is generated for each line, MAC
computation and verification would require all the sectors in the
cache line, which would force a sectored cache to operate like a
non-sectored one. On the other hand, if one MAC is used for each
sector, the amount of MAC data will be highly increased, which
would lead to high MAC data storage and bandwidth overheads.
One partial solution is to truncate the MAC size for a sector. Al-
though this might compromise the strength of MAC verification,
we consider the performance impact of such MAC truncation in
our evaluation.

As the design of one MAC per cache line would essentially make
a sectored cache to behave like a non-sectored one, we examine
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the performance difference between the sectored and non-sectored
caches for GPUs without secure memory. In our experiment, we
compare a non-sectored L2 cache with a sectored L2 while keeping
L1 caches as sectored. The reason is that sectored L1 caches help
reduce bandwidth pressure on the L1-L2 interconnect network. We
report the IPCs of non-sectored L2 cache designs normalized to the
sectored L2 cache design in Fig. 8. The label ’nL2_N’ denotes the
model of non-sectored L2 cache where each L2 MSHR (miss status
handling register) can merge up to N requests that missed in the
L2 cache and each request is a cache line. In our baseline GPU with
sectored L2 cache, each L2 MSHR can merge 4 L2 miss requests
and each request is one sector (i.e., 32B) rather than a cache line.
The structure of such a MSHR is illustrated in Fig. 9 (a), where the
primary miss (labeled ’priMiss’) is the first request to the cache
line/sector and the secondary misses (labeled ’secMiss’) are the
merged requests. If a request finds a matching MSHR but all its
entries have been occupied, the request will be stalled and block
the subsequent requests.

As we can see from Fig. 8, the performance of non-sectored L2
is very close to it of the sectored L2 for most benchmarks when
N is 16 or larger. For N being 4, the sectored L2 has significantly
higher performance for several memory intensive benchmark. The
reason is that the non-sectored L2 design suffers many more MSHR
stalls due to the merging granularity. Considering a streaming-like
access sequence, A1, A2, A3, A4, A5, all of which are misses and
map to different sectors in the same cache line: A1 and A5 to sector
1, A2 to sector 2, A3 to sector 3, and A4 to sector 4. With a sectored
L2, A1, A2, A3, and A4 reside in different MSHRs and A5 merges
with A1, as illustrated in Fig. 9 (b). With a non-sectored L2, A1, A2,
A3, and A4 reside in the same MSHR and A5 is blocked since the
matching MSHR is fully occupied, as illustrated in Fig. 9 (c). After
fixing this MSHR stall with higher N values, the performance of the
non-sectored L2 is very close to the sectored one. One exception is
benchmark kmeans, for which sectored accesses reduce the overall
bandwidth and a sectored L2 has better performance as a result
of poor spatial locality of the benchmark. On the contrary, the
benchmark lbm exhibits strong spatial locality and the non-sectored
L2 designs show higher performance than the sectored one.

In summary, we can see that although a sectored L2 is beneficial
for certain workloads, the performance of a non-sectored L2 cache
is very close the sectored one on average. Note that for a sectored
cache with one MAC per cache line, the MSHRs would not be a
bottleneck since the requests are processed at the sector granularity.

4 ARCHITECTURE DESIGN
4.1 Overall Architecture
From our performance study in Section 3, we observed that CPU
secure memory scheme cannot be directly adopted to GPU without
losing much performance. To adapt the secure memory architecture
design for GPUs, we propose partitioned and sectored securitymeta-
data (PSSM). PSSM has two simple yet effective components. First,
it uses the partition-local addresses, which are the offsets within
a partition, instead of physical addresses to construct the security
metadata. Second, it reorganizes the split counter blocks to make
them friendly to sectored caches. Our overall architecture design is
shown in Fig. 1. With partitioned memory, each memory partition

Figure 8: The IPC of a non-sectored L2 cache with different
numbers of request merges in an L2 MSHR normalized to
the baseline sectored L2.

Figure 9: The L2MSHRs. (a) The structure of an L2MSHR. (b)
The MSHR state of a sectored L2 after the access sequence
A1-A5. (c) The MSHR state of a non-sectored L2 cache after
the same access sequence A1-A5.

has its own memory controller. The memory encryption engine
(MEE) [10] and MDCs are integrated into the on-chip memory con-
troller. PSSM eliminates the metadata redundancy and coherence
problem, and thus we can store the security metadata locally in
each memory partition. There is also no need for cross-partition
communication.

The MEE operates as an extension to the memory controller. It
contains the AES encryption engines and hash/MAC engines. All
the L2-to-DRAM requests are forwarded to the MEE, and the MEE
will encrypt/decrypt data before sending/fetching it to/from the off-
chip memory. To verify data integrity, the MEE will also generate
additional memory transactions to validate the MAC for each data
block, and traverse/update the integrity tree. A special register
(labeled as Root in Fig. 1) is used for the root of the integrity tree.
Also, a special off-chip memory region is reserved in each memory
partition to store the security metadata including counters, MACs
and intermediate integrity tree nodes.

4.2 Using Local Addresses for Security
Metadata

With a partitioned memory structure, each memory access will
be mapped to a partition. If this access misses in the L2 cache
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banks of the partition, the access goes to the off-chip memory
through the memory controller of the partition. There is a mapping
function, which converts the physical address into a partition id
and a partition offset. In our design, we propose to use the partition
offset, which we refer to as local address, to generate/organize the
security metadata.

In Fig. 10, we illustrate the difference between physical and lo-
cal addresses with an example of sequential interleaving across 32
memory partitions and the interleaving granularity is 2 memory
blocks. With a 4KB page size, 32 memory blocks within the same
physical page are mapped to 16 partitions, i.e., blk0, blk1, ..., blk15,
where the blkids are physical addresses. With sequential interleav-
ing, the partition id can be computed as (physical address / partition
granularity) % number of partitions or blkid/2%32 whereas the par-
tition offset is (physical address / number of partitions / partition
granularity) * partition granularity + physical address % partition
granularity), or (blkid/64)*2 + blkid % 2, where ’/’ is integer divi-
sion and ’%’ is remainder. PSSM uses local addresses for security
metadata. As shown in Fig. 10, a local page contains 32 blocks with
consecutive local addresses while their physical addresses are not
consecutive.

Figure 10: Physical and local addresses in partitioned mem-
ory organization.

Using local addresses to organize the counter blocks, memory
blocks within the same local page will share one counter block.
PSSM stores the counter blocks locally within each partition mem-
ory. Therefore, the BMT is also constructed solely based on the
counter blocks within the same partition. In other words, each
partition has its own BMT with the root stored in the correspond-
ing on-chip memory controller. The benefits of this design are:
(1) metadata (counter/bmt node) redundancies are eliminated and
there is no coherence issue, (2) smaller and shallower integrity trees
compared to a single BMT for all partitions.

Our baseline GPU uses pseudo random interleaving [25] memory.
There are also other memory interleaving schemes, e.g., sequential
interleaving, prime-module interleaving [18], skewed-interleaving [12],
etc. A common feature of memory interleaving is the nature of bijec-
tion [25], which means that with local addresses and partition ids,
the corresponding physical addresses can be computed, and vise
versa. Also, the cost of address transformation between a physical
address and a local address is usually minor.

4.3 Making Metadata Friendly to Sectored
Caches

As discussed in Section 3, sectored MDCs are preferred than non-
sectored ones because their bandwidth-saving effects. AMAC cache
line and a BMT cache line can be easily broken into smaller sectors
since the MAC size and the hash values are a multiple of bytes (e.g.,
8). A counter cache line or a counter block, however, is not friendly
to sectored caches as discussed in Section 3.4. In PSSM, a single
major counter is divided into multiple major counters and a major
counter is shared by a smaller number of minor counters. Taking a
4-way sectored block as an example in Fig. 11, for each sector of
32B, there is a 32-bit major counter and 32 7-bit minor counters
and we refer to this counter block design as SC_32. In other words,
one sector in a counter block corresponds to 32 data blocks.

Figure 11: Sectored split-counter design: each sector has 1 ×
32-bit major counter and 32 × 7-bit minor counters.

Our sectored counter design is inspired from the memory write
characteristics of GPU applications. In Fig. 12, we report the num-
bers of stores per kilo instructions. The figure clearly shows that
memory writes only account for a very small portion of overall in-
structions. The write back caches (i.e., L2) combine multiple stores
to the same cache lines, further reducing the numbers of writes to
memory. As a result, although PSSM uses a smaller major counter
(32 bits) than the design in Fig. 7 (128 bits), there would not be
a problem with the potential major counter overflows. Moreover,
compared to the design in Fig. 7, the PSSM counter block design in
Fig. 11 has lower overhead of a minor counter overflow: each minor
counter overflow leads to 32 blocks to be re-encrypted rather than
128 blocks in Fig. 7.

Note that even with our proposed PSSM counter block design,
there are subtle issues with sectored MDCs, counter and BMT
caches in particular, due to BMT verification. With the secure hash
function, a 128B counter block (or a 128B BMT node) is hashed into
an 8B value as a part of the counter block’s (or the node’s) parent.
To verify a sector in a counter block (or a BMT node), all the sectors
in the same counter block (or the node) are needed to generate the
hash. Therefore, the sectored counter cache or the sectored BMT
cache needs to operate like a non-sectored one for the verification
purpose. The benefit of a sectored counter cache or BMT cache is
the reduced write traffic: when a dirty counter block or a BMT node
is evicted, not all its sectors are dirty.

In the case where BMT verification is not needed, the sectored
counter cache can operate normally for both read misses and dirty
evictions, i.e., one sector at a time rather than one line at a time.
4.4 Encryption and MAC Engine
In counter-mode encryption, the choice of pad value is critical for
security because pad reuse can lead to information leakage. In other
words, the pad value must be unique. In conventional CPU secure
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Figure 12: Numbers of stores per kilo instructions (SPKI).

memory, to ensure the temporal uniqueness, which means that
pads are unique over time for each memory block, a counter value
is maintained for each memory block as a pad component and is
incremented on each write back. Tomaintain the spatial uniqueness,
the physical block address is also included to form the encryption
pads.

In PSSM, the encryption/decryption is performed at the granu-
larity of a cache sector. It can be illustrated with Fig. 13. However,
given that local addresses can be the same across different memory
partitions and lead to pad-reuse, PSSM includes the partition id
and sector id into the encryption pad. Let us use 𝑃 as the plaintext,
𝐶 as the ciphertext, and K as the secret key of AES. The memory
encryption can be denoted as

𝐶 = 𝐸𝐾 (𝑙𝑜𝑐𝑎𝑙_𝑎𝑑𝑑𝑟 | |𝐶𝑡𝑟 | |𝑝𝑖𝑑 | |𝑠𝑒𝑐_𝑖𝑑) ⊕ 𝑃

where 𝑙𝑜𝑐𝑎𝑙_𝑎𝑑𝑑𝑟 is the local address of the memory block, 𝐶𝑡𝑟
is the combination of major counter and minor counter, 𝑝𝑖𝑑 is the
memory partition id, 𝑠𝑒𝑐_𝑖𝑑 is the sector id within the cache line.
The size of each input field is shown in Fig. 13. Depending on the
number of memory partitions and partition granularity, the sizes
of each field for the encryption input are adjusted accordingly.

Figure 13: The encryption/decryption process in PSSM. The
input to the AES encryption engine ensures encryption seed
uniqueness, both temporally and spatially.

In PSSM, the MAC may be calculated based on a cache sector
or a cache line. The input fields and MAC calculation process are
illustrated with Fig. 14. PSSM includes the sector id, partition id,
and the local address into the MAC calculation to make the MAC

Figure 14: The MAC generation process in PSSM. The MAC
computation output is truncated to 64/32 bits. Sector id is
used when a MAC is generated for each sector.

location dependent. Note that depending on what MAC algorithm
being used, the padding bits of the MAC engine can be different.

4.5 Bandwidth for Accessing MACs
Among different types of metadata, accessing MACs incur high
memory bandwidth (See Section 5.2). To address this performance
bottleneck, PSSM may opt to truncate the MAC value to a smaller
size. In our default setup, a MAC of 8B is used for each 32B sec-
tor/128B cache line. In our experiments, we evaluate the perfor-
mance when we truncate the MAC value to 4B. We think that
the truncated MAC is sufficient for GPU security for a few rea-
sons. First, any random modification only has a very small chance
of producing a hash collision due to the nature of computation
resistance of the underlying hash function. With 4B MAC, an at-
tacker only has 1

232 or less than 1 in a billion chance to successfully
bypass the MAC verification by randomly changing any bits of
the data in off-chip memory. Second, unlike CPUs which may run
long-running server applications, most GPU applications execute
short-running kernels. Every instance of kernel execution uses
a different session key hence the attacker cannot succeed across
different kernel executions. Hence, the attacker must succeed in
producing a hash collision within a single kernel lifetime. Some
attacks, such as rowhammer, takes a while to succeed, e.g., 0.64
second on average to flip a single bit in the RAMbleed attack [8].
Therefore, as long as a single kernel executes for less than 1 hour,
the chance of thousands of bit flips producing a hash collision is still
much less than one in a million. Furthermore, once MAC mismatch
is detected, GPU will be rebooted hence the attacker for practical
purposes can only modify memory once before detection.

5 EVALUATION
5.1 Methodology
We evaluate our designs with GPGPU-Sim v4.0 [17]. Our baseline
GPU configuration is shown in Table 1, which is modeled based on
the Nvidia Volta architecture [15].

In our experiments, we assume that a range of 4GB device mem-
ory is protected. The detailed MDC and MEE organization is listed
in Table 2. The MDCs are sectored by default unless otherwise
specified. The different secure memory designs that we evaluate
in our experiments are listed in Table 4. In one of our experiments,
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Table 1: Baseline GPU Configuration

SM config 80 SMs, 1132 MHz
Register File 256KB/SM, 20MB in total
L1 D-Cache 32KB/SM
Shared Memory 96KB/SM
L2 cache 2 banks per memory partition, each L2 cache

bank is 96KB, 6MB in total
DRAM 850MHz, 32 partitions, 868GB/s, pseudo ran-

dom memory interleaving.

Table 2: MDC and MEE Organization

Counter cache 2KB / memory partition, 128B blk, 4-way sec-
tored, 256 MSHRs, allocate-on-fill policy, sec-
tored as default unless otherwise noted.

Mac cache 2KB / memory partition, 128B blk, 4-way sec-
tored, 256 MSHRs, allocate-on-fill policy, sec-
tored as default unless otherwise noted.

Bonsai Merkle Tree
cache

2KB / memory partition, 128B blk, 4-way sec-
tored, 256 MSHRs, allocate-on-fill policy, sec-
tored as default unless otherwise noted.

Hash/Mac latency 40 cycles
AES engines 1 pipelined AES/memory partition

we also relax our threat model and only focus on GPU memory en-
cryption without integrity protection. Table 5 lists the schemes we
evaluate for GPU memory encryption, including different designs
using split-counters and one using monolithic counters.

We use 16 benchmarks from a wide range of benchmark suites
including Rodinia 3.1 [3], Parboil [28] and Polybench [9]. Table 3
elaborates the details of these benchmarks. For each benchmark,
we simulate 4 million cycles. The reason is that previous works [20]
have pointed out that the variation of statistic counters becomes
very small after the kernel is simulated for 2 million cycles for
these benchmarks. Table 3 also classify the benchmarks based on
their bandwidth utilization when running on the baseline GPU
without secure memory support. We report normalized IPCs in our
evaluation with the baseline as the GPU with sectored data caches
and without secure memory support.

5.2 Performance
Overall Performance We evaluate our PSSM designs for both
one MAC per sector and one MAC per cache line MAC with dif-
ferent MAC sizes, and report the performance results (normalized
to the baseline GPU) in Fig. 15. From the figure, we can make the
following observations. First, compared with the baseline secure
memory design, labeled ’secureMem’, our PSSM scheme improve
the performance significantly. The average performance overhead is
reduced from 59.22% to 42.03% for PSSM_sL2_8B_sMdc, 31.09% for
PSSM_sL2_4B_sMdc, 19.06% for PSSM_nL2_8B_sMdc and 16.84%
for PSSM_nL2_4B_sMdc. The main reason is that the redundant
metadata are eliminated. One exception is benchmark nw, for which
our PSSM_sL2_8B design performs worse than the secure memory
baseline. The reason is that this benchmark has an irregular small
kernel, whose baseline IPC is only 23.4. With our PSSM and the
8B MAC per L2 sector design, the warp scheduling decision was

Table 3: Benchmarks

Categorization Benchmark
name

Bandwidth
utilization

non memory
intensive

heartwall <1%
lavaMD <1%
stencil <1%
sad 5%-7%
nw <2%
b+tree 12%-14%

medium
memory
intensive

backprop 25%
cfd 15%-50%
dwt2d 20%-50%
kmeans 40%-45%

memory
intensive

bfs 5%-60%
srad_v2 79%- 80%
streamcluster 78%-80%
2Dconvolution 53%
fdtd2d 82%-83%
lbm 58%

Table 4: Evaluated designs for GPU secure memory with
both memory encryption and integrity verification.

Scheme What It Represents
secureMem Baseline GPU with secure memory, and the

security metadata is organized with physical
address. Sectored L2 cache and 2B MAC per
sector.

PSSM_sL2_xB_sMdc secure GPU memory with our PSSM design,
the L2 cache is sectored, and the MAC is x
bytes per sector.

PSSM_sL2_8B_nMac secure GPU memory with our PSSM design,
the L2 cache is sectored, and the MAC is
8B bytes per sector. The MAC cache is non-
sectored to show the impact of sectoredMAC
cache.

PSSM_nL2_xB_sMdc secure GPU memory with our PSSM design,
the L2 cache is sectored (but behaving like
non-sectored) since the MAC is x bytes per
cache line.

altered, leading to performance variation. Second, MAC caches
benefit from sectored cache designs, as we can see from Fig. 15,
PSSM_sL2_8B_sMdc performs better than PSSM_sL2_8B_nMac. It
is expected because MAC accounts for the most storage overhead
for security metadata, and every DRAM access must be authenti-
cated with MAC. Third, a sectored L2 with one MAC per cache line
outperforms sectored L2 caches with one MAC per sector MAC.
The reason is that the MAC storage overhead of the one-MAC-
per-sector design is much higher (N times) that of one-MAC-per-
cache-line design, where N is the number of sectors in a cache
line. Consequently, the bandwidth requirement of MAC accesses
is much higher in one-MAC-per-sector designs, leading to more
severe memory bandwidth contention. Fourth, truncating the MAC
size from 8B to 4B further reduces the memory bandwidth con-
tention, resulting in a performance overhead reduction for both
PSSM_sL2_4B_sMdc and PSSM_nL2_4B_sMdc.
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Table 5: Evaluated designs for GPU memory encryption.

Scheme What It Represents
SC_128_nMdc Encrypted GPU memory with split counters.

The major counter is 128-bit and the encryp-
tion counters are organized with physical ad-
dress and the counter cache is non-sectored.

PSSM_Mono_Ctr_sMdc Encrypted GPU memory with 32-bit mono-
lithic counters. The counters are organized
with local addresses and the counter cache
is sectored.

PSM_SC_128_nMdc Encrypted GPU memory with split counters.
The counters are organized with local ad-
dresses. The major counter is 128-bit and the
counter cache is non-sectored.

PSSM_SC_32_sMdc Encrypted GPU memory in split counters.
The counters are organized with local ad-
dresses. The major counter is 32-bit and the
counter cache is sectored.

Figure 15: Normalized IPC of different secure GPUmemory
designs.

Figure 16: MDC miss rates (in MPKI) of the
PSSM_nL2_4B_sMdc design.

To better understand the performance impacts, we also present
the numbers of metadata cache misses per kilo instructions of our
PSSM_nL2_sMdc design in Fig. 16. From the figure, we can make
two observations: First, the MAC cache has high miss rates for most

workloads and potentially contributes to high memory bandwidth
consumption, especially for the memory intensive benchmarks.
Second, the benchmarks kmeans and lbm have very high cache
miss rates for all the three types of metadata. The reason is that
these two benchmarks have L2 miss rates higher than 95%, and each
DRAM access needs its corresponding metadata, which contends
for memory bandwidth. High L2 miss rates combined with high
miss rates of metadata caches lead to high performance overheads,
as we can see from Fig. 15. As a result, kmeans and lbm still show
significant performance slowdowns even with our PSSM design.
Remaining Performance BottleneckAs we can see from Fig. 15,
even with our best design, there is still some performance overhead,
16.84% on average for PSSM_nL2_SC_32_sMdc. To better under-
stand where the remaining overhead comes from, we model ideal
MDCs under different scenarios. These ideal designs will limit one
specific MDC resource and make the other MDC resource unlimited
(meaning that there are only cold misses for these types of meta-
data). For example, the label smallCtrmodels a 2KB counter cache
per partition while the MAC cache and the BMT cache have unlim-
ited capacity. Similarly, the label smallMac and smallBmt means
the MAC cache or BMT cache is 2KB while the others are unlimited.
The label large_mdc models unlimited cache capacity for all the
three types of metadata. We present the results in Fig. 17. From
Fig. 17, we can see that the MAC accesses remain to be the main
bottleneck. The reason is that the MACs incur the most storage
overhead among all three types of metadata. At every memory read
or write, the corresponding MACs must be accessed to verify the
data or updated and any MAC cache miss would lead to additional
bandwidth pressure.

Figure 17: Normalized IPC of the PSSM_nL2_4B_sMdc de-
sign with different ideal MDCs.

Memory Encryption For the systems where data confidentiality
is the main concern, we may forego data integrity protection to
reduce the performance and the hardware overhead. With this
application scenarios in mind, we evaluate different GPU memory
encryption designs as listed in Table 5 and the results are shown in
Fig. 18.

From Fig. 18, we can make the following observations. First,
compare with the direct adoption of the split-counter mode en-
cryption from the CPU (labeled ’SC_128_nMdc’), our PSSM designs
can improve the performance significantly. The main reason is
that the counter redundancy is totally eliminated and the memory
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Figure 18: Normalized IPC of different GPUmemory encryp-
tion schemes.

bandwidth consumption for the counters is reduced significantly.
Second, with our PSSM design, split-counter schemes perform bet-
ter than the one using monolithic counters. The reason is that with
monolithic counters, each 128B block needs a 32-bit counter. In
comparison, with split counters, one 128B counter block is shared
by 128 128B data blocks. Therefore, one 128B data block requires 8
bits as its counter storage overhead. The 4X higher counter storage
in the monolithic counter scheme leads to higher pressure on the
counter cache and subsequently higher bandwidth consumption.
Third, with split counters in our PSSM design, our sectored counter
organization, i.e., SC_32, performs better than the SC_128 organi-
zation on average. Hence, we conclude that if the focus is on data
confidentiality, the PSSM_SC_32 design would be the choice.

6 RELATEDWORK
Secure Memory: An early prototype of secure memory design
was proposed in Execution only machine (XOM) [19]. XOM defines
the basic threat models (bus snooping, memory tampering), key
exchanges and hardware based memory encryption/integrity pro-
tection. The TCB is limited to only the processor chip in an XOM
machine. Later on, AEGIS [29] proposed by Suh et al. uses integrity
trees to prevent replay attacks. Yang et al. proposed one-time pad
encryption that offloads the encryption/decryption latency from
the critical path [35]. Suh et al. proposed efficient memory integrity
protection with the schemes of speculative verification and lazy
update of integrity tree [30]. Rogers et al. proposed Bonsai Merkle
Tree (BMT) [26] based on the observation of stateful MACs and
reduced the replay attack surface to only encryption counters.
Compact Integrity Tree: Previous works also recognize that the
encryption counters and integrity tree of secure memory can incur
high performance overhead. Yitbarek et al. [37] proposed to improve
the counter storage overhead by compressing the encryption coun-
ters with delta encoding. Their work assumes monolithic counters.
With delta encoding, the reference counter for the memory blocks
within one memory page is extracted and the remaining delta value
is maintained for each memory block. Taassori et al. [31] identified
that paging overhead of sensitive pages can be very high due the
limited size of Enclave Page Cache (EPC), and proposed a variable
arity unified tree (VAULT) organization to reduce the height of the
integrity tree, which leads to a more compact and smaller integrity

tree. Saileshwar et. al [27] proposed the morphable counter design
and their observation was that the memory blocks within the same
page is not uniformly updated. Hence, they proposed to dynami-
cally change the number of bits used for each minor counter and
thus each counter block can hold more minor counters. In other
words, each counter block can protect more data blocks. Their de-
sign also leads to a more compact integrity tree without hurting
the system security. These approach can be compatible with our
PSSM design and the only change is that the encryption counters
and integrity tree should be organized with local addresses rather
than physical addresses.
GPU TEEs: Recognizing the needs for GPUs TEE, recent works
including Graviton [33], HIX [14], Telekine [13] and CommonCoun-
ters [16] try to integrated TEE for GPUs from both software and
hardware perspectives. Graviton and HIX have been discussed
earlier in the paper. Telekine partitions a GPU application into a
sensitive part and a non-sensitive part and guarantees that secret-
dependent behaviors can only run on GPU TEE and trusted clients.
Common counters integrate the hardware-based memory protec-
tion upon Graviton. Their key observation was that the streaming
access pattern of GPU applications usually updates a consecutive
memory chunk in an uniform manner, which results in common
counter values for these memory chunks. By compressing and stor-
ing only one copy of these common counter values, the memory
bandwidth for fetching/storing encryption counters can be saved.
Common counters are complementary to our work and can be com-
bined to further reduce the performance overhead of GPU secure
memory. Our earlier work [38] presents a detailed performance
study on GPU secure memory architecture. Besides pointing out
the performance bottlenecks due to meatadata accesses, it explores
MDC organizations, the MSHRs for MDCs, the MEE designs, and
different encryption designs (counter-mode and direct encryption)
to support GPU secure memory. Our paper uses the recommended
designs from this work as the baseline in our experiments.

7 CONCLUSIONS
In this paper, we propose architectural designs for secure mem-
ory support on GPUs. Our performance analysis identifies that the
partitioned memory architecture of GPUs is not compatible with
conventional secure metadata and the existing counter block orga-
nization is not friendly to sectored cache structures. We propose
Partitioned and Sectored Security Metadata, which is a simple-yet-
effective approach to (a) use partition-local addresses for metadata
and (b) reorganize the split-counter block to make it fit with sec-
tored caches.Our results show that our proposed scheme effectively
reduces the performance overheads of secure memory support on
GPUs. Our study also reveals that even with our proposed scheme,
memory bandwidth contention due to metadata accesses remains a
performance bottleneck for memory intensive workloads. For sys-
tems only requiring data confidentiality, the metadata is reduced
to only counters. In such a case, our proposed scheme incurs only
5.18% performance overhead on average.
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