
Advances in Mathematics 366 (2020) 107092

Contents lists available at ScienceDirect

Advances in Mathematics

www.elsevier.com/locate/aim

Standard conjecture D for matrix factorizations ✩

Michael K. Brown a,∗, Mark E. Walker b

a Department of Mathematics, University of Wisconsin-Madison, WI 53706-1388, 
USA
b Department of Mathematics, University of Nebraska-Lincoln, NE 68588-0130, 
USA

a r t i c l e i n f o a b s t r a c t

Article history:
Received 13 May 2019
Received in revised form 9 February 
2020
Accepted 26 February 2020
Available online 4 March 2020
Communicated by Tony Pantev

Keywords:
Matrix factorization
Standard Conjectures
Differential graded category
Milnor fiber
Chern character

We prove the non-commutative analogue of Grothendieck’s 
Standard Conjecture D for the dg-category of matrix factor-
izations of an isolated hypersurface singularity in character-
istic 0. Along the way, we show the Euler pairing for such 
dg-categories of matrix factorizations is positive semi-definite.

Published by Elsevier Inc.

Contents

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.1. Grothendieck’s Standard Conjecture D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2. Noncommutative analogue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3. Main theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.4. Application to a conjecture in commutative algebra . . . . . . . . . . . . . . . . . . . . . . . 7

2. Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

✩ MB and MW gratefully acknowledge support from the National Science Foundation (NSF award DMS-
1502553) and the Simons Foundation (grant #318705), respectively.
* Corresponding author.

E-mail addresses: mkbrown5@wisc.edu (M.K. Brown), mark.walker@unl.edu (M.E. Walker).

https://doi.org/10.1016/j.aim.2020.107092
0001-8708/Published by Elsevier Inc.



2 M.K. Brown, M.E. Walker / Advances in Mathematics 366 (2020) 107092

2.1. The Grothendieck group of a dg-category . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2. Matrix factorizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3. Reduction to the case of a polynomial over C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
4. The Milnor fibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4.1. The Milnor fiber and its monodromy operator . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.2. The Gauß-Manin connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.3. The Brieskorn lattice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.4. Steenbrink’s polarized mixed Hodge structure . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

5. The map chX∞ and its properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
6. Positive semi-definiteness of the Euler pairing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
7. Proof of the main theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
8. Hochster’s theta pairing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

8.1. Background on intersection theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
8.2. Proof of Theorem 1.10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

Appendix A. Polarized mixed Hodge structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

1. Introduction

Let k be a field. Grothendieck’s Standard Conjecture D predicts that numerical equiv-
alence and homological equivalence coincide for cycles on a smooth, projective variety X
over k. Marcolli and Tabuada ([29], [49]) have formulated a non-commutative general-
ization of this conjecture, referred to as Conjecture Dnc, which predicts that numerical 
equivalence and homological equivalence coincide for a smooth and proper dg-category 
C over a field k. In this paper, we prove that Conjecture Dnc (more precisely, its Z/2-
graded analogue) holds for the differential Z/2-graded category of matrix factorizations 
associated to an isolated hypersurface singularity over a field of characteristic 0.

Before stating our results precisely, we give some background.

1.1. Grothendieck’s Standard Conjecture D

Let X be a smooth, projective k-variety. We write Zj(X) for the group of codimension 
j algebraic cycles on X; by definition, it is the free abelian group on the set of integral 
subvarieties of X having codimension j. Let H∗(−) be any Weil cohomology theory for 
smooth projective k-varieties; as a concrete example, the reader may take k = C and 
H∗(−) to be singular cohomology. There is an associated cycle class map

cy : Zj(X) → H2j(X),

and two algebraic cycles on X are homologically equivalent if their images in H∗(X) under 
this map coincide. Let 〈−, −〉 denote the intersection pairing for cycles, determined by 
〈W, Z〉 = deg(W ∩ Z) for integral subvarieties Z, W of X meeting properly at a finite 
number of points. Two cycles α, β are numerically equivalent if 〈α, −〉 = 〈β, −〉. Since 
the intersection pairing is induced by a pairing on H∗ under the cycle class map, it is 
immediate that whenever two cycles are homologically equivalent they are numerically 
equivalent. Conjecture D predicts the converse holds:
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Conjecture 1.1 (Grothendieck’s Standard Conjecture D). For any field k, Weil coho-
mology theory H∗, and smooth, projective variety X over k, if two cycles on X are 
numerically equivalent then they are homologically equivalent.

Conjecture D remains open in general. It is known to hold, for instance, when X is 
a complete intersection (we sketch the proof for complex hypersurfaces in Section 1.3), 
and, by work of Lieberman [25], it holds both when X is an abelian variety and when 
dimX ≤ 4.

1.2. Noncommutative analogue

Assume now that char(k) = 0. Let C be a differential Z-graded category over k, i.e. a 
category enriched over Z-graded complexes of k-vector spaces. We say C is

• smooth if the Cop ⊗ C-module determined by C is perfect, and
• proper if the total homology of HomC(α, β) is finite dimensional as a k-vector space 

for all objects α and β.

Assume that C is smooth and proper. To formulate Conjecture Dnc for C, one needs 
analogues of

• a Weil cohomology theory,
• algebraic cycles,
• the cycle class map, and
• the intersection pairing.

These are given by

• the periodic cyclic homology of C, written as HP∗(C),
• classes in the rational Grothendieck group K0(C)Q,
• the Chern character map chHP : K0(C)Q → HP0(C), and
• the Euler pairing χ(−, −)C.

See Section 2 for the definition of the Grothendieck group of a dg-category, and see, 
for instance, Sections 3 and 4 of [6] for the definitions of HP∗(C) and the Chern character 
map chHP , respectively. The Euler pairing is defined on a pair of objects P, P ′ ∈ Perf(C)
to be

χ(P, P ′)C :=
∑

(−1)i dimk H
i HomPerf(C)(P, P ′).

Since C is smooth and proper, Perf(C) is as well [50, Prop. 13], and thus the pairing 
is well-defined. (One really just needs Perf(C) to be proper for the Euler pairing to be 
well-defined.)



4 M.K. Brown, M.E. Walker / Advances in Mathematics 366 (2020) 107092

Classes α, β in K0(C)Q are said to be homologically equivalent if chHP (α) = chHP (β), 
and they are said to be numerically equivalent if the functions

χ(α,−)C, χ(β,−)C : K0(C)Q → Q

coincide, or, equivalently, if χ(α− β, −)C is the zero function.
We may now state Conjecture Dnc in characteristic 0:

Conjecture 1.2 ([29]). If C is a smooth and proper differential Z-graded category over a 
field k of characteristic 0, homological and numerical equivalence coincide for C.

Remark 1.3. By a theorem of Marcolli-Tabuada [28, Theorem 1.1], the notion of numer-
ical equivalence described above coincides with that of [29, Section 3.2], and it follows 
directly from the definition of chHP that the above notion of homological equivalence 
agrees with that of [29, Section 10].

Remark 1.4. A positive characteristic version of Conjecture Dnc is posed in [49], where 
the role of periodic cyclic homology is played by topological periodic cyclic homology.

It follows from work of Shklyarov [43, Theorems 2 and 3] that the Euler pairing factors 
through the map chHP . Therefore, just as in the classical setting, classes homologically 
equivalent to 0 are numerically equivalent to 0; that is, the content of Conjecture Dnc

is:

Given a class α ∈ K0(C)Q, if χ(α, β)C = 0 for all β ∈ K0(C)Q, then chHP (α) = 0.

Conjectures 1.1 and 1.2 are related by a theorem of Tabuada [48, Theorem 1.1], which 
states that, for a smooth, projective variety X over a field of characteristic 0, Conjecture 
D holds for X if and only if Conjecture Dnc holds for the dg-category Perf(X) of perfect 
complexes on X.

One may also state an analogue of Conjecture Dnc for differential Z/2-graded cat-
egories C, i.e. categories enriched over Z/2-graded complexes of k-vector spaces. The 
notions of smooth and proper generalize in an evident manner to this setting, as do 
the constructions HP∗(−), K0(−)Q, chHP , χ(−, −)C and the notions of numerical and 
homological equivalence. One shows that homological equivalence implies numerical 
equivalence by adapting [43, Theorems 2 and 3] to the Z/2-graded setting.

Example 1.5. If Q is a (non-graded) commutative k-algebra, and f ∈ Q is any ele-
ment, matrix factorizations of f form a k-linear differential Z/2-graded category, written 
mf(Q, f); see [14, Definition 2.1]. Section 2.2 below contains additional background on 
matrix factorizations. By a theorem of Preygel ([38, Theorem 8.1.1(iii)]), if Q is smooth 
over k, and Sing(Q/f) is zero dimensional, mf(Q, f) is smooth and proper.
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1.3. Main theorem

We may now state our main result.

Theorem 1.6. Let k be a field of characteristic 0, Q a smooth k-algebra, and f ∈ Q a 
non-zero-divisor such that the singular locus of Spec(Q/f) is a finite set of points. Then, 
for α ∈ K0(mf(Q, f)), we have

• χ(α, α)mf(Q,f) ≥ 0, and
• χ(α, α)mf(Q,f) = 0 if and only if chHP (α) = 0.

In particular, the analogue of Conjecture Dnc for smooth and proper differential Z/2-
graded categories holds for mf(Q, f).

To give an idea of how the proof goes, we begin by reviewing the proof of Conjecture 
D for a smooth, projective complex hypersurface Y ⊆ Pn

C. This is more than a mere 
analogy: if Q = k[x0, . . . , xn], and f is a homogeneous polynomial, the Euler pairing 
for mf(Q, f) is explicitly related to the classical intersection pairing on the smooth 
projective hypersurface Y = Proj(Q/f); see [31] for details.

Conjecture D amounts to the following assertion:

Given a cycle α ∈ Zj(Y ), if 〈cy(α), cy(β)〉 = 0 for all cycles β ∈ Zn−1−j(Y ), then 
cy(α) = 0.

Here, 〈−, −〉 denotes the pairing on H∗(Y, Q) given as the composition

H∗(Y,Q) ⊗H∗(Y,Q) ∪−→ H∗(Y,Q) ! H2(n−1)(Y,Q) ∼= Q.

Let h ∈ H2(Y ; Q) be the cohomology class of a generic hyperplane section of Y . Then

• H2j(Y ; Q) = Q · hj ∼= Q whenever 2j ,= n − 1, and
• H2j+1(Y ; Q) = 0 whenever 2j + 1 ,= n − 1.

Suppose α ∈ Zj(Y ) satisfies 〈cy(α), cy(β)〉 = 0 for all cycles β ∈ Zn−1−j(Y ). If 
cy(α) = qhj for q ∈ Q, then 〈cy(α), hn−1−j〉 = q deg(hn−1) = q deg(Y ). Since h is 
algebraic and deg(Y ) > 0, we conclude cy(α) = 0. In particular, we may assume n is 
odd and j = n−1

2 . Moreover, the map hj−1 ∩ − : H2j+2(Y ; Q) → H2n−2(Y ; Q) is an 
isomorphism, and hence cy(α) ∩h = 0. That is, cy(α) belongs to PHn−1(Y ), where PH∗

denotes the primitive part of the cohomology of a smooth projective variety.
Finally, classical Hodge theory gives that, for any smooth projective complex variety 

X, the intersection pairing is either positive or negative definite (depending on the parity 
of dim(X)) on
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im(cy : Z∗(X) → H2∗(X;Q)) ∩ PH2∗(X;Q).

Since 〈cy(α), cy(α)〉 = 0, it follows that cy(α) = 0.
Our proof of Theorem 1.6 parallels the above proof. We first reduce to the case 

where k = C, U := Spec(Q) is a Zariski open neighborhood of the origin in An+1
C , and 

the only singularity of f : U → A1
C is at the origin; this is the content of Section 3. 

In this situation, we have the associated (universal) Milnor fiber X∞, whose singular 
cohomology Hn(X∞; C) in degree n is a direct sum of polarized mixed Hodge structures. 
The role of H∗(Y ; Q) in the proof sketched above is played, in our proof of Theorem 1.6, 
by Hn(X∞; C)1, the summand of Hn(X∞; C) on which the operator (M − id) acts 
nilpotently, where M is the monodromy operator. We recall the necessary background 
concerning the Milnor fiber in Section 4.

We prove Theorem 1.6 by establishing the following facts:

(1) There is a map chX∞ : K0(mf(Q, f)) → Hn(X∞; Q)1 such that the polarizing form 
S on Hn(X∞; Q)1 is positive definite on the image of chX∞ (Proposition 5.3 and 
Corollary 5.12).

(2) The pairings S(chX∞(−), chX∞(−)) and χ(−, −)mf(Q,f) coincide (Theorem 6.5).
(3) chX∞(α) = 0 if and only if chHP (α) = 0 (Theorem 7.5).

Remark 1.7. Step (2) in the above sketch of our proof of Theorem 1.6 may be thought 
of as an analogue of Polishchuk-Vaintrob’s Hirzebruch-Riemann-Roch formula for ma-
trix factorizations (see (6.4) below). It was inspired by a similar result of Buchweitz-van 
Straten ([8, Main Theorem (ii), p. 245]) which compares Hochster’s theta pairing (de-
fined below in Section 1.4) to the linking pairing associated to a complex hypersurface 
singularity.

Remark 1.8. Theorem 1.6 implies that the canonical pairing on HP0(mf(Q, f)) (see 
[45] for the definition of this pairing) is positive definite on the image of chHP . On the 
other hand, the intersection form on the cohomology of a projective hypersurface of even 
dimension is positive definite only when restricted to primitive cohomology. We explain 
the reason for this discrepancy via the following example.

Suppose, in the setting of Theorem 1.6, that Q = C[x0, . . . , xn], where n is odd, and 
f ∈ Q is homogeneous of degree n. Then X = Proj(Q/(f)) is smooth and Calabi-Yau. By 
a famous result of Orlov ([32, Corollary 2.15]), it follows that there is a quasi-equivalence 
of smooth and proper differential Z-graded categories

Perf(X) &−→ mfgr(Q, f),

where mfgr(Q, f) denotes the dg-category of Z-graded matrix factorizations of f . We 
therefore have an induced quasi-equivalence of smooth and proper differential Z/2-graded 
categories
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Perf(X)Z/2 &−→ mfgr(Q, f)Z/2,

where (−)Z/2 denotes the Z/2-folding of a differential Z-graded category. There is an 
obvious functor

mfgr(Q, f)Z/2 → mf(Q, f) (1.9)

of differential Z/2-graded categories given by forgetting the grading. H∗(X; C) and 
HP0(mf(Q, f)) are explicitly related by the composition

HP0(Perf(X)Z/2)
∼=−→ HP0(mfgr(Q, f)Z/2) → HP0(mf(Q, f));

the fact that (1.9) is not typically an equivalence accounts for the discrepancy.

1.4. Application to a conjecture in commutative algebra

As an application of the positive semi-definiteness statement in Theorem 1.6, we make 
progress on a conjecture in commutative algebra concerning “Hochster’s theta pairing”, 
whose definition we now recall. Let Q and f be as in Theorem 1.6, and set R := Q/(f). 
Any finitely generated R-module has an eventually 2-periodic projective resolution, and, 
because of the assumption on the singular locus of R, sufficiently high Tor’s between 
finitely generated R-modules are of finite length. Hochster’s theta pairing is the map 
θ : G0(R) ×G0(R) → Z given by

([M ], [N ]) .→ lengthR TorR2i(M,N) − lengthR TorR2i+1(M,N), i / 0.

We prove the following in Section 8:

Theorem 1.10. If k, Q and f are as in Theorem 1.6, and Q is equi-dimensional, then 
(−1) dim Q

2 θ(−, −) is positive semi-definite.

When dimQ is odd, the conclusion of this theorem is interpreted as meaning θ = 0, 
which was proven independently by Buchweitz-van Straten and Polishchuk-Vaintrob ([8, 
Main Theorem (i), p. 245], [37, Remark 4.1.5]). The case when dimQ is even settles a con-
jecture of Moore-Piepmeyer-Spiroff-Walker [31, Conjecture 3.6] in characteristic 0. This 
was previously known in the case where R is a graded hypersurface ([31] Theorem 3.4).

The proof of Theorem 1.10 uses techniques in algebraic and topological K-theory. In 
more detail: we recall that G0(R) ⊗ Q is isomorphic to 

⊕
i Ai(R) ⊗ Q, where Ai(R)

denotes the group of dimension i cycles in Spec(R) modulo rational equivalence. Assume 
dim(Q) is even. The key step in the argument is a proof of a special case of a conjecture 
of Dao-Kurano ([10, Conjecture 3.4]) which predicts that θ(α, −) : G0(R) → Z is the 
zero map for any α corresponding to a class in Ai(R) ⊗ Q such that i ,= dim(Q)

2 . This 
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is the content of Theorem 8.3, whose proof uses techniques from topological K-theory 
developed in [8] and expanded on in [4].

As an immediate corollary of Theorem 8.3, we conclude a special case of another 
conjecture of Dao-Kurano ([10, Conjecture 3.1(4)]) which predicts that, if M and M ′

are MCM R-modules, then θ(M∗, M ′) = −(−1) dim(Q)
2 θ(M, M ′), where M∗ denotes the 

R-linear dual of M ; this is Corollary 8.4.

Acknowledgments. We thank the referee for his or her careful reading and helpful sug-
gestions.

2. Background

Throughout the paper, k denotes a field of characteristic 0.

2.1. The Grothendieck group of a dg-category

For the rest of this paper, “dg-category” means “k-linear differential Z/2-graded 
category”, unless otherwise specified. We recall here a bit of background concerning 
dg-categories, and we refer the reader to [50] for a comprehensive introduction.

• The homotopy category of a dg-category C is the category with the same objects as 
C and morphisms given by the k-vector spaces H0 HomC(−, −). We write [C] for the 
homotopy category of C.

• Given a dg-category C, let Perf(C) denote the dg-category of perfect right C-modules, 
i.e. the triangulated hull of C, in the sense of [50].

• A dg functor C → D is a quasi-equivalence if
– the maps on morphism complexes are quasi-isomorphisms, and
– the induced map [C] → [D] on homotopy categories is essentially surjective.

• A dg functor F : C → D is a Morita equivalence if the induced map

F ∗ : Perf(D) → Perf(C)

on triangulated hulls is a quasi-equivalence.

Remark 2.1. When C and D are pretriangulated, as defined in [3, Section 3], a dg functor 
F : C → D is a quasi-equivalence (resp., a Morita equivalence) if and only if the induced 
functor [C] → [D] (resp., [C]idem → [D]idem) is an equivalence. Here, the superscript 
“idem” indicates the idempotent completion of a triangulated category; see [2] for details.

For any triangulated category T , we write K∆
0 (T ) for its Grothendieck group, 

i.e. the free abelian group on isomorphism classes of objects of T modulo relations 
given by exact triangles. The Grothendieck group K0(C) of a dg-category C is de-
fined to be K∆

0 ([Perf(C)]). If C is pre-triangulated, there is a canonical isomorphism 
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K0(C) ∼= K∆
0 ([C]idem). (Note that the canonical map K∆

0 ([C]) → K∆
0 ([C]idem) need not 

be an isomorphism.)
Recall from Section 1.2 that, when C is a proper dg category, K0(C) is equipped with 

an Euler pairing χ; we only defined χ in the setting of differential Z-graded categories, 
but, as noted in Section 1.2, there is an evident analogue for differential Z/2-graded 
categories. When C is pretriangulated, the canonical isomorphism

K0(C) ∼= K∆
0 ([C]idem)

identifies χ with the pairing on K∆
0 ([C]idem) given as follows: Recall from [2] that the 

objects of [C]idem are pairs (P, e) with P an object of C and e ∈ End[C](P, P ) an idem-
potent. A morphism from (P, e) to (P ′, e′) is a morphism α : P → P ′ in [C] such that 
α ◦ e = e′ ◦ α = α. The pairing is given by

〈[P, e], [P ′, e′]〉 = dimk Hom[C]idem((P, e), (P ′, e′)) − dimk Hom[C]idem((P, e), (P ′[1], e′[1])),

where [1] denotes the translation functor for the triangulated category [C].

2.2. Matrix factorizations

Let Q be a regular k-algebra and f ∈ Q a non-zero-divisor. The dg-category mf(Q, f)
of matrix factorizations of f is defined as follows:

• An object is a pair (P, d) (usually written as just P ), where P is a finitely generated 
Z/2-graded projective Q-module written P = P1⊕P0, and d is an odd degree Q-linear 
endomorphism such that d2 is multiplication by f .

• For any two objects P = (P, d) and P ′ = (P ′, d′), Hommf (P, P ′) is the Z/2-graded 
complex of finitely generated projective Q-modules HomQ(P, P ′) with differential ∂
given by

∂(α) = d′ ◦ α− (−1)|α|α ◦ d.

• The composition rule and identities are the obvious ones.

Set R := Q/(f), and let Db(R) denote the dg quotient of the differential Z-graded 
category of bounded chain complexes of R-modules by the subcategory spanned by 
acyclic complexes. Db(R) is a dg enhancement of the bounded derived category of R; 
this enhancement is unique by [27, Theorem 8.13]). Let Db(R)/ Perf(R) denote the dg 
quotient of Db(R) by the subcategory spanned by perfect complexes. By a theorem of 
Buchweitz ([9]), there is a quasi-equivalence

mf(Q, f) &−→ Db(R)/Perf(R)
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of differential Z-graded dg-categories, where mf(Q, f) is regarded as Z-graded by “un-
folding”.

A free matrix factorization is an object (P, d) of mf(Q, f) such that P is a free Q
module of finite rank. Since f is a non-zero-divisor, rank(P0) = rank(P1). Upon choosing 
bases of these components, a free matrix factorization may thus be represented by a pair 
of r × r matrices, (A, B), with entries in Q such that AB = BA = fIr, where r is the 
common rank of P0 and P1.

Since mf(Q, f) is pretriangulated, K0(mf(Q, f)) = K∆
0 ([mf(Q, f)]idem). In particu-

lar, objects of K0(mf(Q, f)) are represented by pairs (P, e), where P ∈ mf(Q, f), and e
is an idempotent endomorphism of P in the homotopy category [mf(Q, f)]. If Sing(R)
consists of just one maximal ideal m, there is an equivalence

[mf(Q, f)]idem ∼= [mf(Q̂, f)],

where Q̂ denotes the m-adic completion of Q ([14, Theorem 5.7]).

3. Reduction to the case of a polynomial over C

In this section, we reduce the proof of Theorem 1.6 to a special case.

Proposition 3.1. Theorem 1.6 holds in general provided it holds in the following special 
case:

(1) k = C;
(2) Q = C[x0, . . . , xn][1/h] for some odd integer n and some polynomial h such that 

h(0, . . . , 0) ,= 0, so that U := Spec(Q) is an affine Zariski open neighborhood of the 
origin in An+1

C ;
(3) f ∈ C[x0, . . . , xn] ⊆ Q; and
(4) the only singular point of the morphism f |U : U → A1

C is the origin.

The proof will require a pair of lemmas.

Lemma 3.2. Let Q be a regular k-algebra and f ∈ Q a non-zero-divisor such that 
Sing(Q/f) is a finite set of maximal ideals {m1, . . . , mm}. Suppose h1, . . . , hm ∈ Q are 
such that mi ∈ Spec(Q[1/hi]), and mj /∈ Spec(Q[1/hi]) for all j ,= i. Then the natural 
dg functor

mf(Q, f) →
m∏

i=1
mf(Q[1/hi], f)

is a Morita equivalence.
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Proof. Let Q′ be the semi-localization of Q at the list {m1, . . . , mm}, and let Q′
i denote 

the localization of Q at mi. The natural maps

mf(Q, f) → mf(Q′, f) and mf(Q[1/hi], f) → mf(Q′
i, f)

are quasi-equivalences by [33, Proposition 1.14], so it suffices to prove the functor

mf(Q′, f) →
m∏

i=1
mf(Q′

i, f)

is a Morita equivalence. Let Q̂′ denote the m1 ∩ · · · ∩ mm-adic completion of Q′, and 
let Q̂′

i denote the mi-adic completion of Q′
i. The natural maps Q′ → Q′

i induce maps 
Q̂′ → Q̂′

i, and the induced map

Q̂′ → Q̂′
1 × · · · × Q̂′

m

is an isomorphism. The bottom horizontal map in the commutative diagram

mf(Q′, f) mf(Q̂′, f)

∏m
i=1 mf(Q′

i, f)
∏m

i=1 mf(Q̂′
i, f)

(3.3)

is a Morita equivalence by [14, Theorem 5.7], and the right-most vertical map is an 
isomorphism of dg-categories, i.e. a dg functor such that the map on objects is a bijection 
and the maps on morphism complexes are isomorphisms. Thus, it suffices to show the 
top horizontal map is a Morita equivalence.

Let kstab
1 , . . . , kstab

m ∈ mf(Q′, f) denote the objects corresponding to the residue fields 
Q′/m1, . . . , Q′/mm; we will use the same notation for the corresponding objects of 
mf(Q̂′, f). (Here, “stab” stands for “stabilization”.) By [26, Theorem 3.5], ⊕m

i=1k
stab
i is a 

generator of [mf(Q′, f)], and the corresponding object of [mf(Q̂′, f)] is also a generator. 
Finally, we claim that the natural map

Endmf(Q′,f)(⊕m
i=1k

stab
i ) → Endmf(Q̂′,f)(⊕

m
i=1k

stab
i )

is a quasi-isomorphism. The cohomology of the source (resp., target) computes the 
“stable Ext” modules over Q′/(f) (resp., Q̂′/f) of the direct sum of the residue fields 
k1, . . . , kn against itself. The cohomology of the target is the m1 ∩ · · · ∩mm-adic comple-
tion of the cohomology of the source; since the cohomology of the source is supported in 
m1 ∩ · · · ∩ mm, the map to the completion is an isomorphism. !
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Lemma 3.4. Suppose k, Q and f are as in Theorem 1.6, and α belongs to K0(mf(Q, f)). 
For any field extension k ⊆ k′, set Q′ = Q ⊗k k′ and f ′ = f ⊗ 1 ∈ Q, and let α′ be the 
image of α under the natural map K0(mf(Q, f)) → K0(mf(Q′, f ′)) induced by extension 
of scalars. Then,

(1) k′, Q′ and f ′ also satisfy the hypotheses of Theorem 1.6,
(2) χ(α, α)mf(Q,f) = χ(α′, α′)mf(Q′,f ′), and
(3) chHP (α) = 0 if and only if chHP (α′) = 0.

Proof. The first assertion follows from the isomorphism Sing(Q′/f ′) ∼= Sing(Q/f) ×Spec k
Spec k′ of k′-schemes (using the reduced subscheme structures on Sing(Q′/f ′) and 
Sing(Q/f)).

For any finite length Q-module N , we have N⊗QQ′ ∼= N⊗k k′ and hence dimk′(N⊗Q

Q′) = dimk(N). Given objects P1, P2 of [mf(Q, f)] equipped with idempotents e1, e2, 
set P ′

i = Pi ⊗Q Q′, e′i = ei ⊗ id. Then we have a canonical isomorphism

Hom[mf(Q′,f ′)]idem((P ′
1, e

′
1), (P ′

2, e
′
2)) ∼= Hom[mf(Q,f)]idem((P1, e1), (P2, e2)) ⊗Q Q′.

This proves the second assertion.
The final assertion holds since the map chHP is natural, and the map on its targets

HP0(Q/k) → HP0(Q′/k′)

is injective, since HP0(Q ⊗k k′/k′) ∼= HP0(Q/k) ⊗k k′. !

Proof of Proposition 3.1. We split the proof into four steps.

Step 1: Reduction to the case where f : Spec(Q) → A1
k has only one singular point.

Suppose Sing(Q/f) = {m1, . . . , mm} for m > 1. By generic smoothness on the target, f :
Spec(Q) → A1

k has only finitely many critical values. (Note that this requires char(k) =
0.) Let V ⊆ A1

k denote the Zariski open subset given by the complement of the nonzero 
critical values of f , and let U ⊆ Spec(Q) denote the fiber product V ×A1

k
Spec(Q); U is 

an affine open subset of Spec(Q). By [33, Proposition 1.14], there is a quasi-equivalence

mf(Q, f) &−→ mf(U, f |U )

given by extension of scalars, and so, without loss of generality, we may assume the 
only critical value of f : Spec(Q) → A1

k is 0, i.e. the singular points of the morphism 
f : Spec(Q) → A1

k coincide with the singular locus of Q/f .
Choose h1, . . . , hm ∈ Q such that the only singular point of f : Spec(Q) → A1

k on 
Spec(Q[1/hi]) is mi, and set Qi := Q[1/hi]. By Lemma 3.2, we have a Morita equivalence 
of dg-categories
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mf(Q, f) &−→
m∏

i=1
mf(Qi, f). (3.5)

This induces an isomorphism of inner product spaces

K0(mf(Q, f))
∼=−→

⊕

i

K0(mf(Qi, f)),

where the source is equipped with the pairing χ(−, −)mf(Q,f), and the target with the 
pairing ⊕iχ(−, −)mf(Qi,f). The Morita equivalence (3.5) also induces an isomorphism

HP0(mf(Q, f))
∼=−→

⊕

i

HP0(mf(Qi, f)),

and, by the naturality of the Chern character map, chHP (mf(Q,f)) corresponds to 
⊕ichHP (mf(Qi,f)) under these isomorphisms.

Step 2: Reduction to k = C. By Step 1, we may assume f has only one singularity. 
We may find a subfield k0 of k having finite transcendence degree over Q, a smooth k0-
algebra Q0, an element f0 ∈ Q0 and a class α0 ∈ K0(mf(Q0, f0)) so that Q = Q0 ⊗k0 k, 
f = f0 ⊗ 1 and α0 .→ α. Since f has only one singular point, so does f0. By Lemma 3.4, 
we may therefore assume k has finite transcendence degree over Q. Then there is an 
embedding k ⊆ C, so we may apply Lemma 3.4 again to reduce to the case where 
k = C. Note that f ⊗ 1 ∈ Q ⊗k C may no longer have just one singularity, but we can 
apply Step 1 again, noting that the argument for that step does not involve changing 
the ground field.

Step 3: Reduction to the case where Q = C[x0, . . . , xn][1/h] for some h and f ∈
C[x0, . . . , xn]. Let Q̂ denote the completion of Q at the singular point of f . By the 
Cohen Structure Theorem, there is a C-algebra isomorphism

Ψ : Q̂ ∼= C[[x0, . . . , xn]],

and by “finite determinacy” (see, for instance, [18, Theorem 4.1]), there is a C-algebra 
automorphism Φ of C[[x0, . . . , xn]] such that p := Φ(Ψ(f)) ∈ C[x0, . . . , xn]. Observe that 
C[[x0, . . . , xn]]/p has an isolated singularity. Applying the argument in Step 1, choose 
h ∈ C[x0, . . . , xn] such that h does not vanish at the origin, and the only singularity of 
the map

p : Spec(C[x0, . . . , xn][1/h]) → A1
C

is at the origin. We have a chain of Morita equivalences

mf(Q, f) 2 mf(Q̂, f) 2 mf(C[[x0, . . . , xn]],Ψ(f)) 2 mf(C[x0, . . . , xn][1/h], p).
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The first and third Morita equivalences follow from [14, Theorem 5.7], and the second 
is in fact an isomorphism of dg categories. The Morita invariance of K0 and HP0, along 
with the naturality of the Chern character, give the commutative diagram

K0(mf(Q, f))
∼=

chHP

K0(mf(C[x0, . . . , xn][1/h], p))

chHP

HP0(mf(Q, f))
∼=

HP0(mf(C[x0, . . . , xn][1/h], p)),

(3.6)

from which the claim follows.

Step 4: Reduction to the case where n is odd. When n is even, HP0(mf(Q, f)) = 0 by 
[14, Theorem 6.6, Section 7]. !

4. The Milnor fibration

We now recall some background concerning the Milnor fibration. Everything in this 
section is likely well-known to experts in the field. We found Hertling’s paper [20], his 
book [21], and Kulikov’s book [22] to be particularly valuable.

Throughout this section,

• Q = C[x0, . . . , xn][1/h] for some h /∈ m := (x0, . . . , xn),
• U = Spec(Q), and
• f ∈ Q is such that the only singularity of the morphism f : U → A1

C is at m.

4.1. The Milnor fiber and its monodromy operator

Let ε, η be positive real numbers. Assume ε is chosen to be so small that Bε ⊆ U , 
where Bε denotes the open ball in An+1

C of radius ε centered at the origin. We set some 
more notation:

• T is the open disc of radius η centered at the origin in A1
C;

• X := f−1(T ) ∩Bε;
• by a slight abuse of notation, f : X → T denotes the map induced by f ;
• T ′ := T \ {0};
• f ′ : X ′ → T ′ is the pullback of f , so that X ′ = X \ f−1(0).

For ε small enough and η 3 ε, f ′ is a fibration, the Milnor fibration. We will be 
interested in the fiber of f ′, the Milnor fiber. Let T∞ → T ′ be the universal cover of 
T ′; explicitly, T∞ is a suitable open half plane. Let f∞ : X∞ → T∞ be the pullback of 
f ′. For each t ∈ T ′, a choice of a lifting of t to t̃ ∈ T∞ determines a diffeomorphism 
f−1(t) 

∼=−→ f−1
∞ (t̃), and the inclusion map f−1

∞ (t̃) &−→ X∞ is a homotopy equivalence. To 
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avoid making a choice of fiber of f ′, we will consider the space X∞. By a famous theorem 
of Milnor [30], X∞ is homotopy equivalent to a wedge sum of µ copies of Sn, where

µ := dimC Q/( ∂f

∂x0
, . . . ,

∂f

∂xn
) < ∞.

In particular, its (reduced) cohomology is concentrated in degree n. Since f ′ is a fibration 
over T ′, Hn(X∞; Z) is equipped with a monodromy operator M . The group Hn(X∞; Z)
equipped with its monodromy is a rich topological invariant of the morphism f : U →
A1
C; we refer the reader to [13, Chapter 3] for a detailed discussion. For instance, by a 

theorem of Steenbrink ([47]), the subgroup

Hn(X∞;Z)1 :=
⋃

j≥1
ker((M − id)j)

may be equipped with a polarized mixed Hodge structure (PMHS) of level n + 1 (see 
Appendix A for background on PMHS’s). The goal of the rest of this section is to describe 
Steenbrink’s PMHS.

Remark 4.1. When necessary, we write Tη, Xε,η, T ′
η, X ′

ε,η, Xε,η
∞ and T η

∞ to indicate the 
dependence on these parameters. If ε, η are chosen such that X ′

ε,η → T ′
η is a fibration, 

and we have ε′ ≤ ε and η′ ≤ η, then the induced maps from Tη′ , Xε′,η′ , etc. to Tη, Xε,η, 
etc. are all diffeomorphisms. In particular, we have an isomorphism

Hn(X∞
ε,η;Z)

∼=−→ Hn(X∞
ε′,η′ ;Z).

4.2. The Gauß-Manin connection

To describe Steenbrink’s polarized mixed Hodge structure on Hn(X∞; Z)1, we realize 
Hn(X∞; C)1 as a subspace of a certain D-module G0, the Gauß-Manin connection, which 
we now describe. Our reference for this section is [20, Section 4].

The nth higher direct image Rnf ′
∗CX′ of f ′ : X ′ → T ′ applied to the constant sheaf 

CX′ is a complex vector bundle on T ′ whose fiber over t ∈ T ′ is Hn(Xt; C), where Xt

denotes the fiber of X ′ → T ′ over t. Let E be the sheaf of holomorphic sections of this 
bundle; that is, E is the sheaf Rnf ′

∗CX′ ⊗CT ′ Oan
T ′ of Oan

T ′ -modules. Let i : T ′ ↪→ T be 
the inclusion, and define the sheaf G := i∗E on T . For an open subset V of T , Γ(V, G) is 
a subspace of the collection of all functions sending t ∈ V \ {0} to a class in Hn(Xt; C). 
Finally, define G0 to be the stalk of G at the origin. So, we may identify G0 as a subspace 
of the collection of germs of functions sending t to a class in Hn(Xt; C), for 0 < ||t|| 3 1.

Write C{t} for the DVR consisting of power series in t having a positive radius of 
convergence. By construction, G0 is a C{t}[t−1]-vector space (in fact, dimC{t}[t−1] G0 = µ, 
where µ is as defined in 4.1). Moreover, G0 is a D-module; that is, it is equipped with a 
C-linear “covariant differentiation” endomorphism ∂t satisfying ∂tt = id +t∂t. In other 
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words, G0 is a module over the Weyl algebra C{t}〈∂t〉. We will describe the operator ∂t
explicitly in Remark 4.8 below.

For each complex number α, we define a C-linear subspace

Cα =
⋃

j≥1
ker

(
(t∂t − α)j : G0 → G0

)
(4.2)

of G0. The following lemma explains the relationship between G0 and Hn(X∞; C)1. In 
this lemma and hereafter, we write Hn

deR(Y ; C) for the n-th de Rham cohomology space 
of a complex manifold Y . In general, the complex vector space Hn

deR(Y, C) is defined 
to be the n-th hypercohomology of the holomorphic de Rham complex Ω∗,an

Y , but when 
Y is a Stein manifold, as it will be in all the cases that arise in this paper, it is given 
by the n-th cohomology of the global sections of the complex Ω∗,an

Y . The isomorphism 
Hn

deR(Y ; C) ∼= Hn(Y ; C) is induced by the canonical map of complexes of sheaves CY →
Ω∗,an

Y . When Y is Stein, it may also be defined by integrating closed forms along classes 
in Hn(Y ; C).

Lemma 4.3 (Section 4 of [20]). There is an isomorphism of complex vector spaces

ψ0 : Hn(X∞;C)1
∼=−→ C0 ⊆ G0

such that the composition of

Hn
deR(X ′;C) ∼= Hn(X ′;C) can−−→ Hn(X∞;C)1

ψ0−−→ G0

sends [ω], for any ω ∈ ker(Ωan,n
X′

d−→ Ωan,n+1
X′ ), to the element of G0 represented by the 

function

t .→ [ω|Xt ] ∈ Hn
deR(Xt;C) ∼= Hn(Xt;C), for 0 < t 3 1.

4.3. The Brieskorn lattice

In order to describe the PMHS on Hn(X∞; C)1, we will need to exploit some ad-
ditional structure on the Gauß-Manin connection G0: namely, an embedding of the 
Brieskorn lattice

H ′′
0 :=

Ωan,n+1
X,0

df ∧ dΩan,n−1
X,0

in G0, where Ωan,j
X,0 is the stalk of Ωan,j

X at the origin. Our reference here is once again 
[20, Section 4].

There is an injective map

s0 : H ′′
0 → G0 (4.4)
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defined by the formula

s0([ω]) =
(
t .→

[
ω

df
|Xt

]
∈ Hn(Xt;C) : 0 < |t| 3 1

)
∈ G0,

where the ω
df is the Gelfand-Leray form of ω ([1, Section 7.1]). Here is a more precise 

definition of s0: for any ω ∈ Ωan,n+1
X,0 , there exists N / 0 such that fNω = df ∧ β for 

some β ∈ Ωan,n
X,0 . Choose an open neighborhood V of the origin such that β extends to 

an element of Γ(V, Ωan,n). The element s0([ω]) of G0 is represented by the function

t .→ [t−Nβ|Xt ] ∈ Hn
deR(Xt;C) ∼= Hn(Xt;C), for 0 < |t| 3 1.

In order for this to make sense, we need X = Xε,η ⊆ V , but by using Remark 4.1 we 
may assume ε is small enough so that this holds.

Remark 4.5. The image of s0 is a “lattice” of G0 in the sense that it is a free C{t}-module 
of finite rank µ, and im(s0)[1/t] = G0.

Equipping H ′′
0 with a C{t}-action by letting t act via multiplication by f on Ωan,n+1

X,0
makes s0 a C{t}-linear map. Define also a C-linear endomorphism ∂−1

t of H ′′
0 by

∂−1
t ([ω]) = [df ∧ ν],where dν = ω (4.6)

(using that the map d : Ωan,n
X,0 → Ωan,n+1

X,0 is surjective). This makes H ′′
0 a module over 

the ring C{t}〈∂−1
t 〉 defined by the relation t∂−1

t = ∂−2
t + ∂−1

t t. The reason for the 
notation “∂−1

t ” is that the operator ∂t acts invertibly on the image of s0, and s0 is a 
C{t}〈∂−1

t 〉-linear map. To explain this, we must introduce some more notation.
Recall the subspaces Cα ⊆ G0 from (4.2). Since ∂tt = id +t∂t, multiplication by t

induces a map t : Cα → Cα+1 for each α, and this map is an isomorphism. Similarly, 
multiplication by ∂t induces a map ∂t : Cα+1 → Cα, and it is an isomorphism for all 
α ,= −1. For all β ∈ R, we define C{t}-submodules

V >β =
∑

β<α

C{t}Cα and V β =
∑

β≤α

C{t}Cα

of G0. We are particularly interested in V >−1. Upon restricting the indexing to −1 <
α ≤ 0 in the definition of V >−1, we have an internal direct sum decomposition

V >−1 =
⊕

−1<α≤0
C{t}Cα.

Notice that ∂t induces an isomorphism

∂t : V >0 ∼=−→ V >−1;
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we equip V >−1 with the structure of a C{t}〈∂−1
t 〉-module by defining

∂−1
t : V >−1 → V >−1

to be the composition of the inverse of the isomorphism ∂t : V >0 ∼=−→ V >−1 with the 
inclusion V >0 ⊆ V >−1.

Lemma 4.7 ([20] Section 4). The image of s0 : H ′′
0 → G0 is contained in V >−1, and the 

map s0 : H ′′
0 → V >−1 is C{t}〈∂−1

t 〉-linear.

Remark 4.8. In fact, the lemma determines the operator ∂t on G0 completely. Since s0
induces an isomorphism

H ′′
0 [1/t]

∼=−→ G0

(Remark 4.5), for any element β ∈ G0 we have tNβ = s0(α) for N / 0 and some α ∈ H ′′
0 . 

As discussed above in the definition of the map s0, for any α ∈ H ′′
0 , it is known that 

tMα = ∂−1
t γ for M / 0 and some γ ∈ H ′′

0 . It follows that

tLβ = s0(∂−1
t γ) for L / 0 and some γ ∈ H ′′

0 .

By the lemma, we get s0(γ) = ∂ts0(∂−1
t γ) = ∂t(tLβ) = LtL−1β + tL∂t(β), and hence

∂t(β) = t−Ls0(γ) − Lt−1β.

4.4. Steenbrink’s polarized mixed Hodge structure

We now describe Steenbrink’s PMHS of level n +1 on Hn(X∞; Z)1, following Sections 
3 and 4 of [20]. As discussed in Appendix A, we must specify

• an endomorphism N of Hn(X∞; Q)1 such that Nn+2 = 0,
• a decreasing filtration F • on HC, and
• a symmetric Q-bilinear form

S : HQ ⊗Q HQ → Q.

The map N is − Nilp(M), where Nilp(M) denotes the nilpotent part of the rational 
monodromy operator M ⊗Q on Hn(X∞; Q); the coefficient of −1 on Nilp(M) doesn’t 
appear in [20], but this is due to an error which the author notes in [21, Remarks 10.25]. 
The weight filtration W• on Hn(X∞; Q) is induced from N , as described in Appendix A. 
In particular,

im (Hn(X ′;Q) → Hn(X∞;Q)) = ker(N) ⊆ Wn+1H
n(X∞;Q)1. (4.9)
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The pairing

S : Hn(X∞;Q)1 ⊗Q Hn(X∞;Q)1 → Q

is described in ([20, page 13]). It is non-degenerate ([20, page 13]) and therefore induces 
an isomorphism

σ : Hn(X∞;Q)1
∼=−→ Hn(X∞;Q)1.

A formula for S, in terms of σ, is given as follows ([20, page 14]):

S(a, b) = (−1)n(n−1)/2
∑

m≥1
.( 1
m!σ(Nm−1a), σ(b)), (4.10)

where . is the Seifert pairing ([1, page 40]).

Remark 4.11. If a ∈ Hn(X∞; Q) is fixed by M , we have

S(a, b) = (−1)n(n−1)/2.(σ(a), σ(b)).

To describe the filtration F • on Hn(X∞; C)1, we apply the discussions in 4.2 and 4.3:

F qHn(X∞;C)1 = ψ−1
0

(
V 0 ∩ ∂n−q

t s0(H ′′
0 ) + V >0

V >0

)
.

This description of F • in terms of the Gauß-Manin connection is due to work of Pham 
[35], M. Saito [40], Scherk-Steenbrink [41], and Varchenko [51].

Remark 4.12. Since im(ψ0) ⊆ V 0, we conclude that, if z ∈ Hn(X∞, C)1 satisfies ψ0(z) ∈
∂n−q
t · s0(H ′′

0 ), then z ∈ F qHn(X∞, C)1.

Remark 4.13. The isomorphism in Remark 4.1 is an isomorphism of PMHS’s.

5. The map chX∞ and its properties

Throughout this section, we adopt the following notations and assumptions:

Assumptions 5.1. Assume that

(1) n is an odd positive integer;
(2) Q = C[x0, . . . , xn][1/h] for some h /∈ (x0, . . . , xn);
(3) f is an element of m := (x0, . . . , xn) ·Q such that the only singularity of the associated 

morphism f : Spec(Q) → A1
C of smooth affine varieties is at m; and



20 M.K. Brown, M.E. Walker / Advances in Mathematics 366 (2020) 107092

(4) X = Xε0,η0 , X ′ = X ′
ε0,η0 , etc., are defined from f as in 4.1 for sufficiently small 

parameters 0 < η0 3 ε0 3 1.

The goal of this section is to define a Chern-character-type map

chX∞ : K0(mf(Q, f)) → Hn(X∞;Q)1

that satisfies certain key properties; see Corollary 5.12. To define this map, we will utilize 
the henselization of Q at m. We start by recalling the relevant definitions.

Define C[[x0, . . . , xn]]alg to be the collection of algebraic power series in x0, . . . , xn:

C[[x0, . . . , xn]]alg ={P ∈ C[[x0, . . . , xn]] | g(P )= 0, for some 0 ,= g(t)∈C[x0, . . . , xn][t]}.

Then the following properties hold (see, for instance, [39, Lemma 2.29]):

(1) There are inclusions

Q ⊆ C[[x0, . . . , xn]]alg ⊆ Oan
X,0.

(2) C[[x0, . . . , xn]]alg is a hensel, regular local ring and its algebraic completion is 
C[[x0, . . . , xn]].

(3) C[[x0, . . . , xn]]alg is a filtered union of sub-C-algebras Q̃ that are étale extensions of 
Q.

The latter two properties listed amount to the fact that C[[x0, . . . , xn]]alg is the henseliza-
tion of Q at m (or, equivalently, the henselization of C[x0, . . . , xn] at (x0, . . . , xn)). For 
brevity, we write Qh = C[[x0, . . . , xn]]alg from now on.

We may describe Qh in more geometric language as follows: Set U = Spec(Q), and let 
u ∈ U be the closed point determined by m. Then Spec(Qh) is isomorphic to the filtered 
limit

Uh = lim
(V,v)→(U,u)

V

indexed by all pointed étale neighborhoods p : (V, v) → (U, u).
To relate these two constructions, suppose we are given a pointed étale neighborhood 

p : (V, v) → (U, u), and let pC : V (C) → U(C) denote the induced map on complex 
points. Then we may find a pair ε, η such that Xε,η is contained in X ∩ im(pC) (since pC
is an open mapping). The inclusion of Xε,η into U(C) then factors as

Xε,η
ι−→ V (C) pC−−→ U(C), (5.2)

for a unique open inclusion ι of complex manifolds. Taking colimits of rings of functions 
realizes the inclusion Qh ⊆ Oan

X,0 above.
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Put differently, suppose Q ⊆ Q̃ is an étale extension of Q that is contained in Qh ⊆
Oan

X,0. Since Q̃ is a finitely generated C-algebra, and each generator converges on an open 
neighborhood of the origin, there exist sufficiently small ε, η such that each element of 
Q̃ converges absolutely on Xε,η. This induces the open inclusion ι : Xε,η ↪→ V (C) above.

We next recall the classical Chern character map for K1. For an essentially smooth 
C-algebra R and each j ≥ 0, there is a map

ch2j
1 : K1(R) → H2j−1

deR (V (C);C),

where V = Spec(R), that sends the class of an invertible matrix Y to the class of the 
(2j − 1)-form

−1
(2πi)j

(j − 1)!
(2j − 1)! tr(Y −1dY (d(Y −1)dY )j−1) ∈ Γ(V,Ωan,2j−1).

(Recall that, since V (C) is a Stein manifold, we may identify its de Rham cohomology 
with the cohomology of the complex (Γ(V (C), Ωan,•), d).)

Using d(Y −1) = −Y −1(dY )Y −1, we can also write this as

ch2j
1 ([Y ]) = −(−1)j−1

(2πi)j
(j − 1)!
(2j − 1)! tr((Y −1dY )2j−1).

The factor of 1
(2πi)j in this formula (which is not included by some authors) ensures that 

the image of the composition

K1(R) ch2j
1−−−→ H2j−1

deR (V (C);C) ∼= H2j−1(V (C);C)

lies in H2j−1(V (C); Q); see [34, Section 2] for a proof. Abusing notation a bit, we write 
ch2j

1 also for the induced map

ch2j
1 : K1(R) → H2j−1(V (C);Q).

Given an étale extension Q ⊆ Q̃ of Q inside Qh, we proceed to define a map

φQ̃ : K1(Q̃[1/f ]) → Hn(X∞;Q)1

as follows. Let V = Spec(Q̃), a smooth affine complex variety, and let V ′ = Spec(Q̃[1/f ]), 
an open subvariety of V . As noted above, the inclusion Q̃ ⊆ Oan

X,0 determines an open 
inclusion ι : Xε,η ↪→ V (C) of complex manifolds for ε, η sufficiently small. We define φQ̃

to be the composition of

K1(Q̃[1/f ]) chn+1
1−−−−→ Hn(V ′(C);Q) ι∗−→ Hn(X ′

ε,η;Q) −→ Hn(Xε,η
∞ ;Q)1

∼=−→ Hn(X∞;Q)1,
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where the penultimate map is pull-back along the canonical covering space map Xε,η
∞ !

X ′
ε,η and the final map is the inverse of the isomorphism Hn(X∞; Q)1

∼=−→ Hn(Xε,η
∞ ; Q)1

given by pull-back along the inclusion Xε,η
∞ ⊆ X∞. It is clear from the construction that 

the map φQ̃ is independent of the choice of ε, η.

Proposition 5.3. With the notation and assumptions listed above, there is a unique ho-
momorphism of abelian groups

chX∞ : K∆
0 ([mf(Qh, f)]) → Hn(X∞;Q)1

such that the following property holds: Given an étale extension Q ⊆ Q̃, with Q̃ ⊆ Qh, 
and given a free matrix factorization (A, B) ∈ mf(Q̃, f), we have

chX∞([(A,B)h]) = φQ̃([A]),

where (A, B)h denotes the image of (A, B) under the canonical map mf(Q̃, f) →
mf(Qh, f), and [A] is the class in K1(Q̃[1/f ]) given by regarding A as an invertible 
matrix with entries in Q̃[1/f ].

Proof. Given two étale extension Q ⊆ Q̃1 and Q ⊆ Q̃2 inside Qh such that Q̃1 ⊆ Q̃2, 
the composition of

K1(Q̃1[1/f ]) → K1(Q̃2[1/f ])
φQ̃2−−→ Hn(X∞;Q)1

coincides with φQ̃1
. We thus obtain an induced map

colimK1(Q̃[1/f ]) → Hn(X∞;Q)1,

where the colimit is indexed by all such étale extensions. Since K-theory commutes with 
filtered colimits of rings, and colim Q̃ = Qh, which gives that colim Q̃[1/f ] = Qh[1/f ], 
we obtain a map

φh : K1(Qh[1/f ]) → Hn(X∞,Q)1.

The map φh is uniquely determined by the following property: for each étale extension 
Q ⊆ Q̃ ⊆ Qh, the composition

K1(Q̃[1/f ]) → K1(Qh[1/f ]) φh−−→ Hn(X∞,Q)1

coincides with the map φQ̃.
By [53, Theorem 3.2], we have an exact sequence

K1(Qh) → K1(Qh[1/f ]) ∂−→ G0(Qh/f) → K0(Qh) → K0(Qh[1/f ]) → 0
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such that, for any matrix factorization (A, B) ∈ mf(Qh, f), ∂([A]) = [coker(A)]. Since 
Qh is local, the last map is an isomorphism, and so we obtain the right exact sequence

K1(Qh) → K1(Qh[1/f ]) ∂−→ G0(Qh/f) → 0.

Combining the canonical map Db(Qh/f) → Db(Qh/f)/ Perf(Qh/f) with the quasi-
equivalence

mf(Qh, f) &−→ Db(Qh/f)/Perf(Qh/f)

discussed in Section 2.2, we obtain a map

G0(Qh/f) → K∆
0 [(mf(Qh, f))] (5.4)

whose kernel is generated by [Qh/f ]. We have [Qh/f ] = ∂([f ]), where [f ] ∈ K1(Qh[1/f ]))
is the class of f regarded as a 1 × 1 invertible matrix. From this, we obtain a surjection

π : K1(Qh[1/f ]) ! K∆
0 ([mf(Qh, f)])

such that

• if (A, B) ∈ mf(Qh, f), then π([A]) = [(A, B)], and
• the kernel of π is generated by [f ] and the image of (Qh)× ∼= K1(Qh) → K1(Qh[1/f ]).

We claim that φh annihilates the kernel of π. For the generator [f ], this is obvious 
when n ≥ 3, since

chn+1
1 ([f ]) = −1

(2πi)p
(p− 1)!
(2p− 1)!f

−1df(df−1df)n−1
2 = 0.

When n = 1, observe that, for any pair (ε, η) and t ∈ T ′
η, the restriction of the class 

f−1df ∈ H1
deR(X ′

ε,η; C) to H1(Xε,η ∩ f−1(t); C) is 0, and hence φh([f ]) = 0. To show 
φh annihilates the image of K1(Qh) → K1(Qh[1/f ]), it suffices to prove it annihilates 
the image of the composition K1(Q̃) → K1(Qh) → K1(Qh[1/f ]) for each étale extension 
Q ⊆ Q̃ ⊆ Qh. This holds since the composition of

K1(Q̃) → K1(Q̃[1/f ]) chn+1
1−−−−→ Hn(X ′;Q)

factors through Hn(Bε; Q) = 0, for ε sufficiently small, by the naturality of the Chern 
character.

It follows that φh factors through π and induces the map we seek:

chX∞ : K∆
0 ([mf(Qh, f)]) → Hn(X∞;Q)1.
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This map has the desired property by construction, and its uniqueness holds since every 
object in mf(Qh, f) is of the form (A, B)h for some Q̃, A, and B as above. !

Theorem 5.5. Using Assumptions 5.1, set p := n+1
2 . Then the map chX∞ defined in 

Proposition 5.3 enjoys the following properties:

(1) For (A, B) ∈ mf(Qh, f), we have

ψ0(chX∞(A,B)) = 1
(2πi)p ∂

p−1
t s0

(2 tr((dAdB)p)
(n + 1)!

)
,

where ψ0, ∂t, and s0 are as defined in Sections 4.2 and 4.3, and dA, dB are viewed 
as matrices with entries in Ωan,1

X,0 .
(2) Using the notation of Section 4.4, we have

im(chX∞) ⊆ ker(N) ∩ F pHn(X∞;C)1.

In particular, im(chX∞) ⊆ Wn+1Hn(X∞; Q)1.

Remark 5.6. For any smooth complex variety Y , the image of the map

chn+1
1 : K1(Y ) → Hn(Y ;Q) ⊆ Hn(Y ;C)

is contained in F pHn(Y ; C), where F • is the Hodge filtration on Hn(Y ; C) defined by 
Deligne ([11], [12]). The last statement of part (2) of Theorem 5.5 would thus follow from 
the assertion that the canonical map

Hn(V ′;Q) → Hn(X∞;Q)1

is a morphism of MHS’s, where V ′ = Spec(Q̃[1/f ]) for any étale extension Q ⊆ Q̃

contained in Qh. Although this seems likely to be true, we were unable to prove it or 
find a reference for it, and we have opted for a more direct proof of the last statement 
of part (2).

The proof of Theorem 5.5 will use the following:

Lemma 5.7. Suppose (A, B) is a free matrix factorization of f in R, for an essentially 
smooth k-algebra R and a non-zero-divisor f ∈ R. Then, for any positive integer j, we 
have

f · tr((dAdB)j) = jdf ∧ tr(AdB(dAdB)j−1) ∈ Ω2j
R/k.

Proof. Since f is a non-zero divisor on R, and R is essentially smooth over k, the map 
Ω2j

R/k → Ω2j
R/k[1/f ] ∼= Ω2j

R[1/f ]/k is an injection, and so without loss we may assume f is 
a unit in R. Then A and B are invertible matrices such that A = fB−1, and so
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dA = fd(B−1) + dfB−1.

Using that df ∧ df = 0 and tr(XY ) = (−1)pq tr(Y X) if X, Y are matrices with entries 
in Ωp and Ωq, respectively, we get

tr((dAdB)j) = tr((fdB−1dB + dfB−1dB)j)
= f j tr((dB−1dB)j) + jf j−1df tr(B−1dB(dB−1dB)j−1).

Also, dBdB−1 = −(dBB−1)2 and so

tr((dBdB−1)j) = (−1)j tr((dBB−1)2j) = 0;

the last equation holds since the trace of an even power of a matrix with odd degree 
entries over any graded commutative ring is 0. Using B−1 = f−1A, dB−1 = f−1dA −
dfB−1, and df ∧ df = 0 therefore gives

tr((dAdB)j) = jf j−1df tr(B−1dB(dB−1dB)j−1)
= jf−1df tr(AdB(dAdB)j−1). !

Proof of Theorem 5.5. The second assertion follows from the first: by construction, 
chX∞(A, B) belongs to im(Hn(X ′; Q) → Hn(X∞; Q)1) = ker(N), and, granting that 
(1) holds, chX∞(A, B) ∈ F pHn(X∞; C)1 follows from Remark 4.12. The final clause 
follows from (4.9).

To prove (1), choose a lift of (A, B) ∈ mf(Qh, f) to an object of mf(Q̃, f) for some 
étale extension Q ⊆ Q̃ contained in Qh. Set V = Spec(Q̃) and V ′ := Spec(Q′[1/f ]). 
Without loss of generality, we may assume X is sufficiently small so that every element 
of Q̃ converges absolutely on X, and thus we may interpret A, B as matrices with entries 
in Γ(X, Oan

X ).
The composition

K1(V ′) chn+1
1−−−−→ Hn

deR(V ′;C) → Hn
deR(X ′;C)

sends [A] to the class of

−1
(2πi)p

(p− 1)!
n! tr(A−1dA(dA−1dA)p−1) ∈ Γ(X ′,Ωan,n

X ).

Since AB = f we have

dA−1 = f−1dB − f−2Bdf,

and hence the image of chn+1
1 ([A]) in Hn

deR(X ′; C) is the class represented by



26 M.K. Brown, M.E. Walker / Advances in Mathematics 366 (2020) 107092

−1
(2πi)p

(p− 1)!
n! f−p tr(BdA(dBdA)p−1) + df ∧ ω

for some ω ∈ Γ(X ′, Ωan,n−1
X ). The composition

Hn
deR(X ′;C) ∼= Hn(X ′;C) → Hn(X∞;C)

sends df ∧ω to 0, because, for any t ∈ T ′, X∞ and f−1(t) ∩X ′ are homotopy equivalent, 
and df restricts to 0 in the de Rham cohomology of f−1(t) ∩X ′. Thus, ψ0(chX∞(A, B)) ∈
G0 is given by the function

t .→ −1
(2πi)p

(p− 1)!
n! t−p tr(BdA(dBdA)p−1)|Xt .

By Lemma 5.7, we have

[f tr((dAdB)p)] = [pdf ∧ tr(AdB(dAdB)p−1)] in H ′′
0 ,

and so the definition of s0 gives that s0(tr((dAdB)p)) ∈ G0 is the function

t .→ pt−1 tr(AdB(dAdB)p−1)|Xt .

Since the class in [(B, A)] ∈ K∆
0 ([mf(Qh, f)]) is equal to −[(A, B)], we arrive at

tp−1ψ0(chX∞(A,B)) = 1
(2πi)p

(p− 1)!
p · n! s0(tr(dAdB)p). (5.8)

By [20, p. 16], we have

∂t ◦ ψ0 = −t−1 ◦ ψ0 ◦N/(2πi),

and hence

∂tψ0(chX∞(A,B)) = 0.

By applying ∂p−1
t to (5.8) we thus get

(p− 1)!ψ0(chX∞(A,B)) = 1
(2πi)p

(p− 1)!
p · n! ∂p−1

t s0(tr(dAdB)p),

which implies (1). !

Lemma 5.9. The canonical map

[mf(Q, f)] → [mf(Qh, f)]
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exhibits [mf(Qh, f)] as the idempotent completion of [mf(Q, f)]. In particular, the 
canonical maps

K0(mf(Q, f)) → K0(mf(Qh, f)) ← K∆
0 ([mf(Qh, f)])

are isomorphisms.

Proof. Let Q̂ denote the m-adic completion of Q (which coincides with the m-adic com-
pletion of Qh). By [33, Proposition 1.14] and [14, Theorem 5.7], each of the canonical 
maps

[mf(Q, f)] → [mf(Q̂, f)] ← [mf(Qh, f)] (5.10)

exhibit its target as the idempotent completion of its source. On the other hand, the 
proof of [14, Lemma 5.6], along with an application of [24, Theorem 1.8], shows that 
[mf(Qh, f)] is idempotent complete. The first assertion follows. The rest follows from 
the results described in Section 2. !

Composing the map chX∞ defined in Proposition 5.3 with the isomorphism

K0(mf(Q, f)) ∼= K∆
0 ([mf(Qh, f)])

of the Lemma gives a map

K0(mf(Q, f)) → Hn(X∞;Q), (5.11)

which, abusing notation a bit, we also write as chX∞ .

Corollary 5.12. In the setting of Theorem 5.5, for any α ∈ K0(mf(Q, f)), we have

S(chX∞(α), chX∞(α)) ≥ 0,

and

S(chX∞(α), chX∞(α)) = 0 if and only if chX∞(α) = 0,

where S is the pairing on Hn(X∞; Q)1 described in (4.10).

Proof. This follows from Theorem 5.5 (2) and Lemma A.6 of the Appendix. !
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6. Positive semi-definiteness of the Euler pairing

Throughout this section, we continue to operate under Assumptions 5.1. By [20, 4.1 
and 4.4], there is a “higher residue” pairing

PS : V >−1 × V >−1 → C[[∂−1
t ]]

taking values in the ring of formal powers series on the symbol ∂−1
t that satisfies the 

following properties:

(1) For elements a, b ∈ Hn(X∞; C)1, we have

PS(ψ0(a), ψ0(b)) = −1
(2πi)n+1S(a, b)∂−2

t .

(2) For [ω], [ν] ∈ H ′′
0 , we have

PS(s0([ω]), s0([ν])) = Resf (ω, ν) · ∂−n−1
t + terms involving ∂j

t for j < −n− 1,

where Resf denotes the classical residue pairing on

Ωan,n+1
X,0

df ∧ Ωan,n
X,0

.

(3) For α, β ∈ V >−1,

PS(∂−1
t α, β) = ∂−1

t PS(α, β)

and

PS(α, ∂−1
t β) = −∂−1

t PS(α, β).

Remark 6.1. Item (1) above differs from [20, Definition 4.1] by a sign. This is due to an 
error in [20], which is corrected in [21, (10.83)].

As above, set p = n+1
2 . For any object (A, B) ∈ mf(Qh, f), define

chPV (A,B) := 2 tr(dAdB)p
(n + 1)! ∈ Ωan,n+1

X,0 ; (6.2)

the reason for the choice of notation chPV will be made clear below. By Theorem 5.5, 
we have

s0(chPV (A,B)) = (2πi)p∂−p+1
t ψ0(chX∞(A,B)),
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and so the third property of PS listed above implies

PS(s0(chPV (A,B)), s0(chPV (A′, B′)))

= (−1)p−1(2πi)n+1PS(ψ0(chX∞(A,B), chX∞(A′, B′)))∂−n+1
t

for any (A, B), (A′, B′) ∈ mf(Qh, f). From the first two properties of PS, we get

PS(s0(chPV (A,B)), s0(chPV (A′, B′))) = Resf (chPV (A,B), chPV (A′, B′)) ∂−n−1
t

+ terms of lower degree,

and

PS(ψ0(chX∞(A,B)), ψ0(chX∞(A′, B′)))∂−n+1
t

= −1
(2πi)n+1S(chX∞(A,B), chX∞(A′, B′))∂−n−1

t .

By comparing coefficients, we deduce

Resf (chPV (A,B), chPV (A′, B′)) = (−1)pS(chX∞(A,B), chX∞(A′, B′)). (6.3)

Finally, by Polishchuk-Vaintrob’s Hirzebruch-Riemann-Roch formula for matrix fac-
torizations ([37, (0.2), (0.5), (0.6)]), we have

χ((A,B), (A′, B′))mf(Q,f) = (−1)
(n+1

2
)
Resf (chPV (A,B), chPV (A′, B′)). (6.4)

(Recall that, by Lemma 5.9, any class in K0(mf(Q, f)) may be represented by a free ma-
trix factorization in mf(Qh, f).) Combining (6.3) and (6.4), and noting that (−1)

(n+1
2

)
=

(−1)p, we obtain the following analogue of Polishchuk-Vaintrob’s Hirzebruch-Riemann-
Roch formula:

Theorem 6.5. For any matrix factorizations (A, B), (A′, B′) ∈ mf(Q, f), we have

χ((A,B), (A′, B′))mf(Q,f) = S(chX∞(A,B), chX∞(A′, B′)).

Corollary 6.6. With the notation as above, given α ∈ K0(mf(Q, f)) we have

χ(α, α)mf(Q,f) ≥ 0,

and

χ(α, α)mf(Q,f) = 0 if and only if chX∞(α) = 0.
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Remark 6.7. It is asserted in [31] that the “Herbrand difference” h is negative definite 
for the graded case of this Corollary. The Herbrand difference coincides with the Euler 
pairing; see the proof of Corollary 8.5 below. But [31] is incorrect, since the authors 
overlooked the minus sign in θ(M, M ′) = −h(M∗, M ′); see [9, Corollary 6.4.1]. The 
same error occurs in [8, Remark 1.2].

7. Proof of the main theorem

Throughout this section, we continue to operate under Assumptions 5.1. As in the in-
troduction, we let HP (−) denote the periodic cyclic homology functor for dg-categories, 
and we write HH(−) and HN(−) for the Hochschild and negative cyclic homology 
functors. As discussed in the introduction, there is a Chern character map

chHP : K0(−) → HP0(−),

and there are analogous maps chHN , chHH . There are canonical natural transformations 
HN0 → HH0 and HN0 → HP0, and each of chHP and chHH factor through chHN . Note 
that the subscript 0 on HP, HH, and HN is to be understood modulo 2, since we are 
working with differential Z/2-graded categories.

Proposition 7.1. Let Q and f be as in Assumptions 5.1. As in Section 4.3, let H ′′
0 denote 

the Brieskorn lattice, and let Ĥ ′′
0 denote its m-adic completion. There is a canonical 

isomorphism

Ĥ ′′
0

∼=−→ HN0(mf(Q, f))

such that, for any class [(A, B)] ∈ K∆
0 ([mf(Qh, f)]) ∼= K0(mf(Q, f)), the class in H ′′

0
represented by chPV (A, B) (as defined in (6.2)) is sent, under the composition

H ′′
0 → Ĥ ′′

0
∼=−→ HN0(mf(Q, f)), (7.2)

to chHN (A, B).

Remark 7.3. As an aside, we note that, by [45, Theorem 1] and [5, Theorem 1.8], the 
map (7.2) identifies, up to multiplication by the sign (−1)(n2), the higher residue pairing 
on H ′′

0 with the natural pairing on HN0(mf(Q, f)) defined as in [45, line (6)].

Proof. By [15, Proposition 3.14] and [36, Section 4.8], there is an HKR-type isomorphism

HN(mf(Q, f)) ∼= (Ω•
Q/C[[u]], ud− df)

in the derived category of Z/2-graded k-vector spaces. Here, the target is the (Z/2-graded 
folding of the) direct product totalization of the upper-half plane bicomplex B∗,∗, where 
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Bp,q = Ωp+q
Q/Cu

q, the horizontal differential is given by − ∧df , and the vertical differential 
is given by the de Rham differential d. Because of the isolated singularity assumption, 
each row is exact everywhere except in the right-most position. Considering the spectral 
sequence associated to the filtration of B∗,∗ by rows ([52, Definition 5.6.2]), one sees

HN0(mf(Q, f)) ∼= coker
(
Ωn

Q/C[[u]] ud−df−−−−→ Ωn+1
Q/C[[u]]

)
.

Let Q̂ be the completion of Q at m, set Ω̂p = Ωp
Q/C ⊗Q Q̂, and form the analogous 

bicomplex B̂∗,∗ with direct product totalization (Ω̂•[[u]], ud − df). The map B∗,∗ →
B̂∗,∗ is a quasi-isomorphism along each row, and so, by comparing spectral sequences 
associated to these bicomplexes, one sees the canonical map

(Ω•
Q/C[[u]], ud− df) → (Ω̂•[[u]], ud− df)

is a quasi-isomorphism. We thus have an isomorphism

HN0(mf(Q, f)) ∼= coker
(
Ω̂n[[u]] ud−df−−−−→ Ω̂n+1[[u]]

)
. (7.4)

Moreover, by [6, Example 6.1], for any (A, B) ∈ mf(Qh, f), chHN (A, B) ∈ HN0(mf(Qh,

f)) ∼= HN0(mf(Q, f)) corresponds, under (7.4), to the class represented by

2
(n + 1)! tr((dAdB)n+1

2 ) ∈ Ω̂n+1.

By [42, Section 2] (see also the discussion in [44, Section 5]), there is a canonical 
isomorphism

Ĥ ′′
0

∼=−→ coker
(
Ω̂n[[u]] ud−df−−−−→ Ω̂n+1[[u]]

)
,

and the composition

H ′′
0 → Ĥ ′′

0
∼=−→ coker

(
Ω̂n[[u]] ud−df−−−−→ Ω̂n+1[[u]]

)
∼= HN0(mf(Q, f))

has the desired property. !

Theorem 7.5. The following statements are equivalent:

(1) χ(α, α)mf(Q,f) = 0.
(2) chX∞(α) = 0 in Hn(X∞; Q)1.
(3) chHN (α) = 0 in HN0(mf(Q, f)).
(4) chHP (α) = 0 in HP0(mf(Q, f)).
(5) chHH(α) = 0 in HH0(mf(Q, f)).
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Proof. The equivalence of (1) and (2) is implied by Corollary 6.6. (2) ⇒ (3) follows from 
Theorem 5.5 and Proposition 7.1. (3) ⇒ (4) and (3) ⇒ (5) hold since chHP and chHH

factor through chHN , and (4) ⇒ (3) holds since the canonical map

HN0(mf(Q, f)) → HP0(mf(Q, f))

is an injection; as discussed in [45, page 12], this is equivalent to noncommutative Hodge-
to-de Rham degeneration for mf(Q, f), which holds by [14, Section 7]. Finally, (5) ⇒
(1) follows from [43, Theorems 2 and 3]. (Note that, by [14, Theorem 5.2], mf(Q, f) is 
Morita equivalent to a dga, so the results of [43] apply.) !

Proof of Theorem 1.6. Apply Proposition 3.1, Corollary 6.6, and Theorem 7.5. !

8. Hochster’s theta pairing

We now apply Corollary 6.6 to prove Theorem 1.10 from the introduction. Let Q and 
f be as in the statement of Theorem 1.10. Set R = Q/f , Y = Spec(Q), and Z = Spec(R).

8.1. Background on intersection theory

Let KZ
0 (Y ) denote the Grothendieck group of the triangulated category of perfect 

complexes on Y with support in Z. Let

chZ
Y : KZ

0 (Y ) → A∗(Z) ⊗Q

denote the localized Chern character, as defined in [16, Definition 18.1]. Here, Ai(−)
denotes the group of dimension i cycles modulo rational equivalence. Note that chZ

Y is 
an isomorphism upon tensoring with Q. Let chi denote the composition of chZ

Y with the 
projection of A∗(Z) onto Ai(Z). Gillet-Soulé define Adams operations ψl on KZ

0 (Y ) for 
l ≥ 0 in [17, Section 4]; by a theorem of Kurano-Roberts ([23, Theorem 3.1]), we have

chi ◦ ψl = ld−ichi

for i ≥ 0 and l ≥ 1, where d = dim(Q).
The map

τZ : G0(Z) → A∗(Z) ⊗Q

defined in [16, Section 18.2] is also an isomorphism upon tensoring with Q. Let τi denote 
the composition of τZ with the projection of A∗(Z) onto Ai(Z). There are also Adams 
operations ψl defined on G0(Z) ([46]), and, by [19, Proposition 2.4], we have

τi ◦ ψl = l−iτi.
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There is an isomorphism

r : KZ
0 (Y )

∼=−→ G0(Z)

([17, Lemma 1.9]), and, by [19, line (5)], we have

ψl ◦ r = l−d(r ◦ ψl). (8.1)

Let

G0,(i)(Z) ⊆ G0(Z) ⊗Q

be the inverse image of τi ⊗Q and let

KZ
0,(i)(Y ) ⊆ KZ

0 (Y ) ⊗Q

be the inverse image of chi ⊗Q. Using (8.1) we obtain

r(KZ
0,(i)(Y )) = G0,(i)(Z). (8.2)

8.2. Proof of Theorem 1.10

Let

θ : G0(Z) ×G0(Z) → Z

denote the Hochster theta pairing, as defined in Section 1.4. A conjecture of Dao-Kurano 
([10, Conjecture 3.4]) predicts that θ(α, −) : G0(Z) ⊗ Q → Z is the zero map for any 
α ∈ G0,(i)(Z) when i ,= dim(Q)

2 ; in particular, if dim(Q) is odd, θ vanishes. The first goal 
of this section is to prove this conjecture in the case where R is a complex hypersurface:

Theorem 8.3. Suppose g ∈ C[x0, . . . , xn] is such that g(0, . . . , 0) ,= 0, and let f ∈
m = (x0, . . . , xn) ⊆ C[x0, . . . , xn][1/g] be such that the singular locus of R :=
C[x0, . . . , xn][1/g]/(f) consists of only the maximal ideal m. Then

θ(α,−) : G0(Z) ⊗Q → Z

is the zero map whenever α ∈ G0,(i)(Z) for i ,= n+1
2 ; in particular, it is 0 for all α when 

n is even.

Proof. As discussed in Section 1.4, the case where n is even was proven independently by 
Buchweitz-van Straten and Polishchuk-Vaintrob ([8], [37]), so we may assume n is odd. By 
[4, Section 4] and [8, Propositions 4.1 and 4.2], there is a map γ : KZ

0 (Y ) → KU(Bε, X∞), 
where Bε and X∞ are chosen as in Section 4.1, such that
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(1) γ commutes with pth Adams operations for any prime p, and
(2) if γ(β) = 0, θ(r(β), −) : KZ

0 (Y ) → Z is the zero function.

Observe that, since the (reduced) cohomology of X∞ is concentrated in degree n, the only 
nonzero eigenspace of KU(Bε, X∞) for any Adams operation ψl is the one corresponding 
to the eigenvalue l

n+1
2 . The statement now follows from (8.2). !

As a corollary, we prove [10, Conjecture 3.1(4)] in the setting of Theorem 8.3:

Corollary 8.4. If R is as in the statement of Theorem 8.3, and M, M ′ are maximal 
Cohen-Macaulay R-modules, then

θ(M∗,M ′) = −(−1)
dim(Q)

2 θ(M,M ′).

Proof. Combine [16, Example 18.3.19] and Theorem 8.3. !

Let σ denote the map G0(Z) → K0(mf(Q, f)) defined in the same way as the map 
in (5.4).

Corollary 8.5. If Q = C[x0, . . . , xn][1/g] and f are as in Theorem 8.3, we have

χ(σ(−), σ(−))mf(Q,f) = (−1)
dim(Q)

2 θ(−,−).

Proof. Let M and M ′ be maximal Cohen-Macaulay R-modules. The Herbrand difference
of M and N is the integer

h(M,M ′) := lengthR Ext2R(M,M ′) − lengthR Ext1R(M,M ′)
= dimC Ext2R(M,M ′) − dimC Ext1R(M,M ′).

It follows from [9, Corollary 6.4.1] that

θ(M,M ′) = −h(M∗,M ′),

where M∗ denotes the R-linear dual of M . (Beware that in both [31] and [8, Remark 
1.2] the sign is omitted in this formula.) Moreover,

χ(σ(M), σ(M ′))mf(Q,f) = h(M,M ′).

The result therefore holds for M, M ′ maximal Cohen-Macaulay, by Corollary 8.4. Since 
G0(R) is generated as an abelian group by classes of maximal Cohen-Macaulay R-
modules, the proof is complete. !



M.K. Brown, M.E. Walker / Advances in Mathematics 366 (2020) 107092 35

Proof of Theorem 1.10. Using arguments similar to those in Section 3, we may reduce to 
the case when Q and f are as in Theorem 8.3. Then the result follows from Corollaries 6.6
and 8.5. !

Remark 8.6. We observe that each of Conjectures (1) – (5) in [10, Conjecture 3.1] is 
now proven over the complex numbers: to summarize, (1) is proven independently by 
Buchweitz-van Straten [8] and Polishchuk-Vaintrob [37]; (2) and (3) are established in 
[7] and [4], respectively; and (4) and (5) follow from Corollary 8.4 and Theorem 1.10, 
respectively. (As noted in the introduction, (5) was originally posed in [31].)

Appendix A. Polarized mixed Hodge structures

Our reference here is [20, Section 2]. Let V be a finite dimensional vector space over 
a field k, and let m be a non-negative integer. For any k-linear endomorphism N of V
such that Nm+1 = 0, there is a unique increasing filtration W• of V of the form

0 = W−1 ⊆ W0 ⊆ · · · ⊆ W2m = V

such that N(Wl) ⊆ Wl−2 and the induced map N l : GrWm+l → GrWm−l is an isomorphism 
for all l ≥ 0 (here, GrWj := Wj/Wj−1). W• is called the weight filtration of V associated 
to (N, m). Note that the filtration depends not just on N , but also on the specified 
integer m.

The weight filtration is natural, in the sense that if g : V → V ′ is a k-linear transfor-
mation, N, N ′ are endomorphisms of V, V ′ whose (m +1)st power is 0, and N ′◦g = g◦N , 
then g(Wj(V )) ⊆ Wj(V ′) for all j.

Definition A.1. For a non-negative integer m, a mixed Hodge structure of level m (MHS 
of level m, for short) consists of the following data:

• a finitely generated abelian group H with associated vector spaces HQ = H ⊗Z Q
and HC = H ⊗Z C,

• a Q-linear endomorphism N : HQ → HQ such that Nm+1 = 0, and
• a decreasing filtration F • of the complex vector space HC.

These data are required to satisfy two conditions. Let W• be the weight filtration of HQ

associated to (N, m) as defined above, and, for each j, let F • GrWj be the decreasing 
filtration of GrWj ⊗QC induced by F •. Then

• For all j, GrWj ⊗QC may be written as an internal direct sum F p GrWj ⊕F q GrWj for 
all integers p, q such that p + q = j + 1, and

• N(F p) ⊆ F p−1 for all p.
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Here, the (−) notation indicates complex conjugation: given an element of F q GrWj of 
the form v⊗ z, its conjugate is v⊗ z. By abuse of notation, we usually write an MHS of 
level m, which consists of the triple of data (H, N, F •), by just H.

A morphism of MHS’s of level m, from H to H ′, is a homomorphism of the underlying 
abelian groups g : H → H ′ such that NH′ ◦ g = g ◦NH and g(F pHC) ⊆ F pH ′

C for all p.

Example A.2. For a non-negative even integer m and a finitely generated abelian group 
A, the trivial MHS of level m on A is defined by taking N = 0 and

F p =
{
AC, if p ≤ m/2, and
0, if p > m/2.

Note that

Wj =
{

0, if j ≤ m− 1, and
AQ, if j ≥ m

so that GrWm AQ = AQ and GrWj AQ = 0 for all j ,= m. The induced Hodge filtration on 
GrWm (AC) = AC is given by

F p GrWm (AC) =
{
AC, if p ≤ m/2, and
0, if p > m/2.

Since p + q = m + 1 implies that either p > m/2 and q ≤ m/2 or vice versa, the only 
non-trivial axiom is satisfied.

If H is an MHS of level m, then a morphism g of MHS’s of level m from A to H is 
the same thing as a homomorphism of ordinary abelian groups from A to the subgroup

ker(N : HQ → HQ) ∩ Fm/2HC ∩H

of H. It follows from the axioms that ker(N) ⊆ WmHQ, which means g induces a map

GrWm (g) : A → GrWm (H).

More generally, if A is any (not necessarily finitely generated) abelian group, and g :
A → HQ is a group homomorphism whose image is contained in ker(N) ∩Fm/2HC, then 
g induces a map A → GrWm (H), which we also denote by GrWm (g).

Lemma A.3. Suppose m is an even integer, and H = (H, N, F •) is an MHS of level 
m. If A is a (not necessarily finitely generated) abelian group, and g : A → HQ is a 
homomorphism of groups whose image is contained in ker(N) ∩Fm/2HC, then ker(g) =
ker(GrWm (g)).
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Proof. If GrWm (g)(a) = 0, then g(a) ∈ Wm−1HQ ∩ Fm/2HC. But the axioms of an MHS 
of level m imply that Wm−1HQ ∩ Fm/2HC = 0. !

Given an MHS (H, N, F •), the primitive subspace of GrWm+l is defined to be

P GrWm+l := ker(N l+1 : GrWm+l → GrWm−l−2).

Definition A.4. For a non-negative integer m, a polarized mixed Hodge structure (PMHS, 
for short) of level m consists of the data of an MHS H = (H, N, F •) of level m along 
with a non-degenerate, (−1)m-symmetric Q-bilinear form

S : HQ ⊗Q HQ → Q.

The data (H, N, F •, S) are required to satisfy the following additional conditions:

• S(Na, b) + S(a, Nb) = 0 for all a, b ∈ HQ, and
• S(F p, F q) = 0 for all pairs of integers p and q satisfying p + q = m + 1.

Using the first of these two properties, we may define, for each l ≥ 0, an induced pairing 
Sl on the primitive subspace P GrWm+l by

Sl(a, b) = S(ã, N lb̃), where ã, b̃ ∈ Wm+l are representatives of a, b.

We extend Sl to a sesquilinear complex pairing on P GrWm+l ⊗QC by

Sl(a⊗ z, b⊗ w) = Sl(a, b)zw.

We also require that

• for each l ≥ 0, we have Sl(F pP Grm+l, F qP Grm+l) = 0 for all p and q satisfying
p + q = m + l + 1, and

• for each l ≥ 0 and all p, we have 
√
−12p−m−l

Sl(a, a) > 0 whenever
a ∈ F pP GrWm+l ∩Fm+l−pP GrWm+l and a ,= 0.

A morphism of PMHS’s of level m, from H = (H, N, F •, S) to H ′ = (H ′, N ′, F •, S′), is 
a morphism g of MHS’s of level m such that S(a, b) = S′(g(a), g(b)) for all a, b ∈ HQ.

Example A.5. Suppose m is an even integer and A is a finitely generated abelian group 
equipped with the trivial MHS of level m. An extension of this data to a PMHS of level 
m on A consists of a positive definite symmetric bilinear form S on AQ. Indeed, the first 
three axioms hold trivially. The last one only has content when l = 0 and p = m

2 , in 
which case (since Grm AQ = AQ) it asserts that S(a, a) > 0 for all a ∈ AC, where S is 
extended sesquilinearly to AC as before.
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Lemma A.6. Let m be an even integer, and suppose H is a PMHS of level m. If A is an 
abelian group, and g : A → HQ is a homomorphism of groups with image contained in 
ker(N) ∩ F

m
2 HC, then the induced pairing SA on AQ defined by

SA(a, b) = S(g(a), g(b))

is a positive semi-definite symmetric bilinear pairing with kernel equal to ker(gQ). That 
is, SA(a, −) ≡ 0 if and only if a ∈ ker(gQ), and the induced pairing on AQ/ ker(gQ) is 
positive definite.

Proof. It suffices to consider the case A = ker(NHQ : HQ → HQ) ∩ F
m
2 HC and g is the 

identity map. That is, we just need to prove that the restriction of S to this subspace A is 
positive definite (it is symmetric since m is even). Given α ∈ A, since ker(NQ) ⊆ WmHQ

and α ∈ F
m
2 , we have an induced class

a := GrWm (α) ∈ F
m
2 GrWm .

Since α ∈ HQ, we have a = a and so

a ∈ F
m
2 GrWm ∩F m

2 GrWm .

The axioms for S (with p = m
2 and l = 0) give

S0(a, a) ≥ 0, and if S0(a, a) = 0, then a = 0,

where S0(a, a) = S(α, α). This proves that the restriction of S to A is positive semi-
definite with kernel equal to the kernel of the canonical map A → GrWm (HQ). But this 
map is injective by Lemma A.3. !
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