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1. Introduction

Let k be a field. Grothendieck’s Standard Conjecture D predicts that numerical equiv-
alence and homological equivalence coincide for cycles on a smooth, projective variety X
over k. Marcolli and Tabuada ([29], [49]) have formulated a non-commutative general-
ization of this conjecture, referred to as Conjecture D,,., which predicts that numerical
equivalence and homological equivalence coincide for a smooth and proper dg-category
C over a field k. In this paper, we prove that Conjecture D,,. (more precisely, its Z/2-
graded analogue) holds for the differential Z /2-graded category of matrix factorizations
associated to an isolated hypersurface singularity over a field of characteristic 0.

Before stating our results precisely, we give some background.

1.1. Grothendieck’s Standard Conjecture D

Let X be a smooth, projective k-variety. We write Z7(X) for the group of codimension
j algebraic cycles on X; by definition, it is the free abelian group on the set of integral
subvarieties of X having codimension j. Let H*(—) be any Weil cohomology theory for
smooth projective k-varieties; as a concrete example, the reader may take £k = C and
H*(—) to be singular cohomology. There is an associated cycle class map

cy: Z27(X) — H*(X),

and two algebraic cycles on X are homologically equivalent if their images in H*(X) under
this map coincide. Let (—, —) denote the intersection pairing for cycles, determined by
(W, Z) = deg(W N Z) for integral subvarieties Z, W of X meeting properly at a finite
number of points. Two cycles «, § are numerically equivalent if (o, —) = (B, —). Since
the intersection pairing is induced by a pairing on H* under the cycle class map, it is
immediate that whenever two cycles are homologically equivalent they are numerically
equivalent. Conjecture D predicts the converse holds:
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Conjecture 1.1 (Grothendieck’s Standard Conjecture D). For any field k, Weil coho-
mology theory H*, and smooth, projective variety X over k, if two cycles on X are
numerically equivalent then they are homologically equivalent.

Conjecture D remains open in general. It is known to hold, for instance, when X is
a complete intersection (we sketch the proof for complex hypersurfaces in Section 1.3),
and, by work of Lieberman [25], it holds both when X is an abelian variety and when
dim X < 4.

1.2. Noncommutative analogue

Assume now that char(k) = 0. Let € be a differential Z-graded category over k, i.e. a
category enriched over Z-graded complexes of k-vector spaces. We say C is

e smooth if the C°P ® C-module determined by C is perfect, and
o proper if the total homology of Home(«, ) is finite dimensional as a k-vector space

for all objects a and £.

Assume that € is smooth and proper. To formulate Conjecture D,,. for €, one needs
analogues of

e a Weil cohomology theory,

algebraic cycles,
e the cycle class map, and
o the intersection pairing.

These are given by

o the periodic cyclic homology of C, written as H P,(C),

o classes in the rational Grothendieck group Ky(C)g,

o the Chern character map chyp : Ko(C)g — HPy(C), and
o the Euler pairing x(—, —)e.

See Section 2 for the definition of the Grothendieck group of a dg-category, and see,
for instance, Sections 3 and 4 of [6] for the definitions of H P,(C) and the Chern character
map chpyp, respectively. The Euler pairing is defined on a pair of objects P, P’ € Perf(C)
to be

X(P,P')e =Y (~1)" dimg H' Hompeys(e) (P, P').

Since € is smooth and proper, Perf(C) is as well [50, Prop. 13], and thus the pairing
is well-defined. (One really just needs Perf(C) to be proper for the Euler pairing to be
well-defined.)
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Classes «, 5 in K(C)g are said to be homologically equivalent if chigp(a) = chgp(B),
and they are said to be numerically equivalent if the functions

X(Oé, _)@7X(B7 _)C : KO(G)@ - Q

coincide, or, equivalently, if x(a — 3, —)e is the zero function.
We may now state Conjecture D,,. in characteristic 0:

Conjecture 1.2 (/29]). If C is a smooth and proper differential Z-graded category over a
field k of characteristic 0, homological and numerical equivalence coincide for C.

Remark 1.3. By a theorem of Marcolli-Tabuada [28, Theorem 1.1], the notion of numer-
ical equivalence described above coincides with that of [29, Section 3.2], and it follows
directly from the definition of chyp that the above notion of homological equivalence
agrees with that of [29, Section 10].

Remark 1.4. A positive characteristic version of Conjecture D,,. is posed in [49], where
the role of periodic cyclic homology is played by topological periodic cyclic homology.

It follows from work of Shklyarov [43, Theorems 2 and 3] that the Euler pairing factors
through the map chgp. Therefore, just as in the classical setting, classes homologically
equivalent to 0 are numerically equivalent to 0; that is, the content of Conjecture D,
is:

Given a class a € Ko(C)q, if x(a, 8)e = 0 for all 5 € Ky(C)q, then chyp(a) = 0.

Conjectures 1.1 and 1.2 are related by a theorem of Tabuada [48, Theorem 1.1], which
states that, for a smooth, projective variety X over a field of characteristic 0, Conjecture
D holds for X if and only if Conjecture D,,. holds for the dg-category Perf(X) of perfect
complexes on X.

One may also state an analogue of Conjecture D,,. for differential Z/2-graded cat-
egories C, i.e. categories enriched over Z /2-graded complexes of k-vector spaces. The
notions of smooth and proper generalize in an evident manner to this setting, as do
the constructions H P.(—), Ko(—)q, chup, X(—, —)e and the notions of numerical and
homological equivalence. One shows that homological equivalence implies numerical
equivalence by adapting [43, Theorems 2 and 3] to the Z/2-graded setting.

Example 1.5. If @@ is a (non-graded) commutative k-algebra, and f € @ is any ele-
ment, matrix factorizations of f form a k-linear differential Z /2-graded category, written
mf(Q, f); see [14, Definition 2.1]. Section 2.2 below contains additional background on
matrix factorizations. By a theorem of Preygel ([38, Theorem 8.1.1(iii)]), if @ is smooth
over k, and Sing(Q/f) is zero dimensional, m f(Q, f) is smooth and proper.
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1.83. Main theorem

We may now state our main result.

Theorem 1.6. Let k be a field of characteristic 0, Q a smooth k-algebra, and f € Q a
non-zero-divisor such that the singular locus of Spec(Q/ f) is a finite set of points. Then,
for a € Ko(mf(Q, f)), we have

e X(a,0)msq,f) =0, and
o X(a,a)msq,f) = 0 if and only if chyp(a) = 0.

In particular, the analogue of Conjecture D, for smooth and proper differential 7 /2-
graded categories holds for mf(Q, f).

To give an idea of how the proof goes, we begin by reviewing the proof of Conjecture
D for a smooth, projective complex hypersurface Y C Pg. This is more than a mere
analogy: if Q = k[xg,...,x,], and f is a homogeneous polynomial, the Euler pairing
for mf(Q, f) is explicitly related to the classical intersection pairing on the smooth
projective hypersurface Y = Proj(Q/f); see [31] for details.

Conjecture D amounts to the following assertion:

Given a cycle a € ZI(Y), if (cy(a),cy(B)) = 0 for all cycles f € Z"17J(Y), then
cy(a) = 0.

Here, (—, —) denotes the pairing on H*(Y, Q) given as the composition
H*(Y,Q)® H*(Y,Q) = H*(Y,Q) — H*")(Y,Q) = Q.
Let h € H?(Y; Q) be the cohomology class of a generic hyperplane section of Y. Then

e H¥(Y;Q)=Q-h = Q whenever 2j # n — 1, and
o HYTLHY:;Q) =0 whenever 2j +1#n — 1.

Suppose a € Z7(Y) satisfies (cy(a),cy(B)) = 0 for all cycles 3 € Zn~1=3(Y). If
cy(a) = gh? for ¢ € Q, then (cy(a),h" 177) = gdeg(h" ') = gdeg(Y). Since h is
algebraic and deg(Y) > 0, we conclude cy(a) = 0. In particular, we may assume n is
odd and j = ”T_l Moreover, the map /=1 N — : H¥T2(Y;Q) — H* 2(Y;Q) is an
isomorphism, and hence cy(a)Nh = 0. That is, cy(a) belongs to PH" (Y, where PH*
denotes the primitive part of the cohomology of a smooth projective variety.

Finally, classical Hodge theory gives that, for any smooth projective complex variety
X, the intersection pairing is either positive or negative definite (depending on the parity

of dim(X)) on
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im(cy : Z*(X) — H*(X;Q)) N PH*(X;Q).

Since (cy(a), cy(a)) = 0, it follows that cy(a) = 0.

Our proof of Theorem 1.6 parallels the above proof. We first reduce to the case
where k = C, U := Spec(Q) is a Zariski open neighborhood of the origin in A%"H, and
the only singularity of f : U — A{ is at the origin; this is the content of Section 3.
In this situation, we have the associated (universal) Milnor fiber X, whose singular
cohomology H"(X; C) in degree n is a direct sum of polarized mixed Hodge structures.
The role of H*(Y;Q) in the proof sketched above is played, in our proof of Theorem 1.6,
by H"(Xo;C)1, the summand of H"(X;C) on which the operator (M — id) acts
nilpotently, where M is the monodromy operator. We recall the necessary background
concerning the Milnor fiber in Section 4.

We prove Theorem 1.6 by establishing the following facts:

(1) There is a map chx_ : Ko(mf(Q, f)) = H"(Xo; Q)1 such that the polarizing form
S on H"(X; Q) is positive definite on the image of chx__ (Proposition 5.3 and
Corollary 5.12).

(2) The pairings S(chx_ (—),chx. (—)) and xX(—, =)mf(q,) coincide (Theorem 6.5).

(3) chx_ (a) =0 if and only if chyp(a) = 0 (Theorem 7.5).

Remark 1.7. Step (2) in the above sketch of our proof of Theorem 1.6 may be thought
of as an analogue of Polishchuk-Vaintrob’s Hirzebruch-Riemann-Roch formula for ma-
trix factorizations (see (6.4) below). It was inspired by a similar result of Buchweitz-van
Straten ([8, Main Theorem (ii), p. 245]) which compares Hochster’s theta pairing (de-
fined below in Section 1.4) to the linking pairing associated to a complex hypersurface
singularity.

Remark 1.8. Theorem 1.6 implies that the canonical pairing on HPy(mf(Q, f)) (see
[45] for the definition of this pairing) is positive definite on the image of chyp. On the
other hand, the intersection form on the cohomology of a projective hypersurface of even
dimension is positive definite only when restricted to primitive cohomology. We explain
the reason for this discrepancy via the following example.

Suppose, in the setting of Theorem 1.6, that @Q = Clzo,...,z,], where n is odd, and
f € @ is homogeneous of degree n. Then X = Proj(Q/(f)) is smooth and Calabi-Yau. By
a famous result of Orlov ([32, Corollary 2.15)), it follows that there is a quasi-equivalence
of smooth and proper differential Z-graded categories

Perf(X) = mf&"(Q, f),

where mf&(Q, f) denotes the dg-category of Z-graded matrix factorizations of f. We
therefore have an induced quasi-equivalence of smooth and proper differential Z /2-graded
categories
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Perf(X)%/2 = mfer(Q, f)%/2,

Z/2

where (—)%/# denotes the Z /2-folding of a differential Z-graded category. There is an

obvious functor

mfe(Q, f)E* = mf(Q, f) (1.9)

of differential Z /2-graded categories given by forgetting the grading. H*(X;C) and
HPy(mf(Q, f)) are explicitly related by the composition

o

H Py(Perf(X)®/%) = HPo(mf®(Q, [)*/?) = HPy(mf(Q, f));
the fact that (1.9) is not typically an equivalence accounts for the discrepancy.
1.4. Application to a conjecture in commutative algebra

As an application of the positive semi-definiteness statement in Theorem 1.6, we make
progress on a conjecture in commutative algebra concerning “Hochster’s theta pairing”,
whose definition we now recall. Let @ and f be as in Theorem 1.6, and set R := Q/(f).
Any finitely generated R-module has an eventually 2-periodic projective resolution, and,
because of the assumption on the singular locus of R, sufficiently high Tor’s between
finitely generated R-modules are of finite length. Hochster’s theta pairing is the map
0 : Go(R) x Go(R) — Z given by

([M],[N]) = length Tors: (M, N) — length Tors:, (M, N), i > 0.
We prove the following in Section &:

Theorem 1.10. If k, Q and f are as in Theorem 1.6, and Q is equi-dimensional, then
dim Q

(—=1) =2 0(—,—) is positive semi-definite.

When dim @) is odd, the conclusion of this theorem is interpreted as meaning 6 = 0,
which was proven independently by Buchweitz-van Straten and Polishchuk-Vaintrob ([8,
Main Theorem (i), p. 245], [37, Remark 4.1.5]). The case when dim @ is even settles a con-
jecture of Moore-Piepmeyer-Spiroff-Walker [31, Conjecture 3.6] in characteristic 0. This
was previously known in the case where R is a graded hypersurface ([31] Theorem 3.4).

The proof of Theorem 1.10 uses techniques in algebraic and topological K-theory. In
more detail: we recall that Go(R) ® Q is isomorphic to @, A;(R) ® Q, where A;(R)
denotes the group of dimension i cycles in Spec(R) modulo rational equivalence. Assume
dim(Q) is even. The key step in the argument is a proof of a special case of a conjecture
of Dao-Kurano ([10, Conjecture 3.4]) which predicts that 6(«, —) : Go(R) — Z is the
zero map for any « corresponding to a class in A4;(R) ® Q such that i # dimT(@. This
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is the content of Theorem 8.3, whose proof uses techniques from topological K-theory
developed in [8] and expanded on in [4].

As an immediate corollary of Theorem 8.3, we conclude a special case of another
conjecture of Dao-Kurano ([10, Conjecture 3.1(4)]) which predicts that, if M and M’
are MCM R-modules, then 0(M*, M") = —(—1)dimT@)0(M, M'), where M* denotes the
R-linear dual of Mj; this is Corollary &8.4.

Acknowledgments. We thank the referee for his or her careful reading and helpful sug-
gestions.

2. Background
Throughout the paper, k denotes a field of characteristic 0.
2.1. The Grothendieck group of a dg-category
For the rest of this paper, “dg-category” means “k-linear differential Z /2-graded
category”, unless otherwise specified. We recall here a bit of background concerning
dg-categories, and we refer the reader to [50] for a comprehensive introduction.
e The homotopy category of a dg-category € is the category with the same objects as

€ and morphisms given by the k-vector spaces H? Home(—, —). We write [€] for the
homotopy category of C.

Given a dg-category C, let Perf(C) denote the dg-category of perfect right C-modules,
i.e. the triangulated hull of €, in the sense of [50].
e A dg functor € — D is a quasi-equivalence if
— the maps on morphism complexes are quasi-isomorphisms, and
— the induced map [€] — [D] on homotopy categories is essentially surjective.
e A dg functor F': C — D is a Morita equivalence if the induced map

F* : Perf(D) — Perf(C)
on triangulated hulls is a quasi-equivalence.

Remark 2.1. When € and D are pretriangulated, as defined in [3, Section 3], a dg functor
F : C — D is a quasi-equivalence (resp., a Morita equivalence) if and only if the induced
functor [€] — [D] (resp., [C]!4e™ — [D]idem) is an equivalence. Here, the superscript
“idem” indicates the idempotent completion of a triangulated category; see [2] for details.

For any triangulated category 7T, we write K& (T) for its Grothendieck group,
i.e. the free abelian group on isomorphism classes of objects of T" modulo relations
given by exact triangles. The Grothendieck group Ko(C) of a dg-category € is de-
fined to be K& ([Perf(€)]). If € is pre-triangulated, there is a canonical isomorphism
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Ko(C) = K& ([C)'9*™). (Note that the canonical map K& ([€]) — K& ([C]!9*™) need not
be an isomorphism.)

Recall from Section 1.2 that, when € is a proper dg category, K((C) is equipped with
an Euler pairing y; we only defined x in the setting of differential Z-graded categories,
but, as noted in Section 1.2, there is an evident analogue for differential Z /2-graded
categories. When C is pretriangulated, the canonical isomorphism

Ko(€) = Kg ([e]*™)

identifies ¥ with the pairing on K& ([C]!4*™) given as follows: Recall from [2] that the
objects of [C]'4°™ are pairs (P, e) with P an object of € and e € Ende(P, P) an idem-
potent. A morphism from (P, e) to (P’,¢’) is a morphism « : P — P’ in [C] such that
aoe=¢ oa = a. The pairing is given by

([P,e],[P',e']) = dimy, Homejiaem (P, €), (P, €")) — dimy, Homyejiaem (P, €), (P'[1],€'[1])),
where [1] denotes the translation functor for the triangulated category [C].
2.2. Matriz factorizations

Let @ be a regular k-algebra and f € @ a non-zero-divisor. The dg-category mf(Q, f)
of matrix factorizations of f is defined as follows:

o An object is a pair (P,d) (usually written as just P), where P is a finitely generated
7 /2-graded projective @-module written P = P; & Py, and d is an odd degree @Q-linear
endomorphism such that d? is multiplication by f.

« For any two objects P = (P,d) and P’ = (P’,d'), Hom,, ¢(P, P’") is the Z/2-graded
complex of finitely generated projective @Q-modules Homg (P, P’) with differential 0
given by

da)=d oa—(-1)aod.
e The composition rule and identities are the obvious ones.

Set R := Q/(f), and let D°(R) denote the dg quotient of the differential Z-graded
category of bounded chain complexes of R-modules by the subcategory spanned by
acyclic complexes. D?(R) is a dg enhancement of the bounded derived category of R;
this enhancement is unique by [27, Theorem 8.13]). Let D’(R)/ Perf(R) denote the dg
quotient of D?(R) by the subcategory spanned by perfect complexes. By a theorem of
Buchweitz ([9]), there is a quasi-equivalence

mf(Q, f) = D"(R)/Perf(R)
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of differential Z-graded dg-categories, where m f(Q, f) is regarded as Z-graded by “un-
folding”.

A free matriz factorization is an object (P,d) of mf(Q, f) such that P is a free @
module of finite rank. Since f is a non-zero-divisor, rank(Fy) = rank(P;). Upon choosing
bases of these components, a free matrix factorization may thus be represented by a pair
of r x r matrices, (A, B), with entries in @) such that AB = BA = fI,, where r is the
common rank of Py and P;.

Since mf(Q, f) is pretriangulated, Ko(mf(Q, f)) = K& (Imf(Q, f)]'4*™). In particu-
lar, objects of Ko(mf(Q, f)) are represented by pairs (P, e), where P € mf(Q, f), and e
is an idempotent endomorphism of P in the homotopy category [mf(Q, f)]. If Sing(R)
consists of just one maximal ideal m, there is an equivalence

[mf(Q, /9™ = (mf(Q, f)],

where Q denotes the m-adic completion of @ ([14, Theorem 5.7)).
3. Reduction to the case of a polynomial over C

In this section, we reduce the proof of Theorem 1.6 to a special case.

Proposition 3.1. Theorem 1.6 holds in general provided it holds in the following special
case:

k

(2) Q = Clzog,...,zn][1/h] for some odd integer n and some polynomial h such that
h(0,...,0) # 0, so that U := Spec(Q) is an affine Zariski open neighborhood of the
origin in Agfl;

(3) feClxo,...,zn] € Q; and

(4) the only singular point of the morphism fly : U — Ag is the origin.

The proof will require a pair of lemmas.
Lemma 3.2. Let Q be a reqular k-algebra and f € @ a non-zero-divisor such that
Sing(Q/f) is a finite set of maximal ideals {my,...,m,,}. Suppose hi,..., hy, € Q are

such that m; € Spec(Q[1/h;]), and m; ¢ Spec(Q[1/h;]) for all j # i. Then the natural
dg functor

mf(Q, f) — Hmf(Q[l/hz-], £)

is a Morita equivalence.
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Proof. Let Q" be the semi-localization of @ at the list {ms,...,m,,}, and let Q) denote
the localization of ) at m;. The natural maps

mf(Q, f) = mf(Q', f) and mf(Q[1/hi], f) — mf(Qi, f)

are quasi-equivalences by [33, Proposition 1.14], so it suffices to prove the functor

mf(Q, f) = [[mf(@Q f)

i=1
is a Morita equivalence. Let @\’ denote the m; N --- N m,,-adic completion of @', and

I/Gf Q) /Qenote the m;-adic completion of @Q}. The natural maps Q' — @} induce maps
Q' — Q', and the induced map

Q/_>Q’1><...><Q’/m

is an isomorphism. The bottom horizontal map in the commutative diagram

mf(Q, f) (3.3)

|

1, mf(Q, f) — [1 mf (@, f)

mf(Q', f)

is a Morita equivalence by [14, Theorem 5.7], and the right-most vertical map is an
isomorphism of dg-categories, i.e. a dg functor such that the map on objects is a bijection
and the maps on morphism complexes are isomorphisms. Thus, it suffices to show the
top horizontal map is a Morita equivalence.

Let k§*aP .. EStab € m f(Q’, f) denote the objects corresponding to the residue fields
Q' /my, ..., Q'/m,,; we will use the same notation for the corresponding objects of
mf(@\’, f). (Here, “stab” stands for “stabilization”) By [26, Theorem 3.5], ™, k5'*P is a
generator of [mf(Q’, f)], and the corresponding object of [m f (@\’, f)] is also a generator.
Finally, we claim that the natural map

End,, rq, p) (@zmzlkjjtab) — Endmf(@\/,f) (@glkzstab)

is a quasi-isomorphism. The cohomology of the source (resp., target) computes the
“stable Ext” modules over Q'/(f) (resp., @\’/ f) of the direct sum of the residue fields
ki,...,k, against itself. The cohomology of the target is the m; N---Nm,,-adic comple-
tion of the cohomology of the source; since the cohomology of the source is supported in
my N---Nm,,, the map to the completion is an isomorphism. O
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Lemma 3.4. Suppose k, Q and f are as in Theorem 1.6, and o belongs to Ko(mf(Q, f))-
For any field extension k C k', set Q' = Q Qi k' and f' = f® 1 € Q, and let &/ be the
image of a under the natural map Ko(mf(Q, f)) = Ko(mf(Q', f')) induced by extension
of scalars. Then,

(1) K, Q" and " also satisfy the hypotheses of Theorem 1.0,

(2) X, )mpq,p = x(@', & )mpqrp), and
(3) chuyp(a) =0 if and only if chgp(a’) = 0.

Proof. The first assertion follows from the isomorphism Sing(Q'/f') = Sing(Q/ f) Xspec k
Speck’ of k’-schemes (using the reduced subscheme structures on Sing(Q'/f’) and
Sing(Q/ f))-

For any finite length @Q-module N, we have N®¢ Q' = N @ k' and hence dimy/ (N ®¢
Q') = dimg(N). Given objects Py, P> of [mf(Q, f)] equipped with idempotents ey, ea,
set P/ = P, ®¢g @', e, = e; ® id. Then we have a canonical isomorphism

Hom[mf(Ql’f/)]idem<(P1/, 63), (PQ/, 6’2)) = Hom[mf(Q’f)}idem((Pl, 61), (Pg, 62)) ®Q Q/.

This proves the second assertion.
The final assertion holds since the map chygp is natural, and the map on its targets

HPy(Q/k) — HPy(Q'/K)
is injective, since HPy(Q ® k' /k') = HPy(Q/k) @ k'. O
Proof of Proposition 3.1. We split the proof into four steps.

Step 1: Reduction to the case where f : Spec(Q)) — A} has only one singular point.
Suppose Sing(Q/f) = {my,...,m,,} for m > 1. By generic smoothness on the target, f :
Spec(Q) — A} has only finitely many critical values. (Note that this requires char(k) =
0.) Let V C A,lg denote the Zariski open subset given by the complement of the nonzero
critical values of f, and let U C Spec(Q) denote the fiber product V' X AL Spec(Q); U is
an affine open subset of Spec(Q). By [33, Proposition 1.14], there is a quasi-equivalence

mf(Q, f) = mf(U, flv)

given by extension of scalars, and so, without loss of generality, we may assume the
only critical value of f : Spec(Q) — A}C is 0, i.e. the singular points of the morphism
f : Spec(Q) — A} coincide with the singular locus of Q/f.

Choose hi,...,hy, € @ such that the only singular point of f : Spec(Q) — A}C on
Spec(Q[1/h;]) is m;, and set Q; := Q[1/h;]. By Lemma 3.2, we have a Morita equivalence
of dg-categories
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mf(Q, f) = [[mf (@i ). (3.5)
i=1
This induces an isomorphism of inner product spaces

Ko(mf(Q. 1) = €D Ko(mf (@, 1)),

where the source is equipped with the pairing x(—, =), 7(Q.f), and the target with the
pairing ©;X(—, —)mf(.,f)- The Morita equivalence (3.5) also induces an isomorphism

HPy(mf(Q, f)) = D HP(m Qi 1),

and, by the naturality of the Chern character map, chypimy(qg,r)) corresponds to
Dichgpmys(Q,,r)) under these isomorphisms.

Step 2: Reduction to £ = C. By Step 1, we may assume f has only one singularity.
We may find a subfield ky of £ having finite transcendence degree over Q, a smooth kg-
algebra (o, an element fy € Qo and a class ag € Ko(mf(Qo, fo)) so that Q = Qo @y, k,
f=fo®1and ap — «. Since f has only one singular point, so does fy. By Lemma 3.4,
we may therefore assume k has finite transcendence degree over Q. Then there is an
embedding £ C C, so we may apply Lemma 3.4 again to reduce to the case where
k = C. Note that f ® 1 € Q ®; C may no longer have just one singularity, but we can
apply Step 1 again, noting that the argument for that step does not involve changing
the ground field.

Step 3: Reduction to the case where () = Clzg,...,z,][1/h] for some h and f €
Clzo,...,xy]. Let @ denote the completion of @ at the singular point of f. By the
Cohen Structure Theorem, there is a C-algebra isomorphism

\I/Z@gc[[CEOa-":an?

and by “finite determinacy” (see, for instance, [18, Theorem 4.1]), there is a C-algebra
automorphism @ of C[[xzo, ..., z,]] such that p := &(¥(f)) € Clzo,...,x,]. Observe that
C[[zo, - .., z,]]/p has an isolated singularity. Applying the argument in Step 1, choose
h € Clxg,...,x,] such that h does not vanish at the origin, and the only singularity of
the map

p : Spec(Clxo, - - ., zn][1/h]) = Ag
is at the origin. We have a chain of Morita equivalences

mf(Q, f) =mf(@Q, f) =mf(Cllzo,...,za]}, ¥(f)) = mf(Clao,...,xa][1/h],p).
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The first and third Morita equivalences follow from [14, Theorem 5.7], and the second
is in fact an isomorphism of dg categories. The Morita invariance of Ky and H Py, along
with the naturality of the Chern character, give the commutative diagram

Ko(mf(Q, f)) — Ko(mf(Clxo, ..., 2a)[1/h],p)) (3.6)

iChHP \LChHP

~

HPy(mf(Q, f)) —= HPy(mf(Clxo, ..., za][1/h],p)),
from which the claim follows.

Step 4: Reduction to the case where n is odd. When n is even, HPy(mf(Q, f)) = 0 by
[14, Theorem 6.6, Section 7]. O

4. The Milnor fibration

We now recall some background concerning the Milnor fibration. Everything in this
section is likely well-known to experts in the field. We found Hertling’s paper [20], his
book [21], and Kulikov’s book [22] to be particularly valuable.

Throughout this section,

o Q=Clzg,...,z,][1/h] for some h ¢ m := (zq,...,x,),
o U = Spec(Q), and
o [ € Q is such that the only singularity of the morphism f: U — Ag is at m.

4.1. The Milnor fiber and its monodromy operator

Let €,n be positive real numbers. Assume € is chosen to be so small that B, C U,
where B, denotes the open ball in A%“ of radius € centered at the origin. We set some
more notation:

o T is the open disc of radius 7 centered at the origin in Ag;

X = f~YT)N B

by a slight abuse of notation, f : X — T denotes the map induced by f;
o T':=T\{0};

o f': X" — T is the pullback of f, so that X' = X \ f~1(0).

For € small enough and n < €, f’ is a fibration, the Milnor fibration. We will be
interested in the fiber of f’, the Milnor fiber. Let T.o — T’ be the universal cover of
T'; explicitly, T is a suitable open half plane. Let fo : Xoo — T be the pullback of
f'. For each t € T’, a choice of a lifting of ¢ to £ € T, determines a diffeomorphism
F7Ht) = f<1(P), and the inclusion map fZ!(f) = X is a homotopy equivalence. To
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avoid making a choice of fiber of f/, we will consider the space X,. By a famous theorem
of Milnor [30], X is homotopy equivalent to a wedge sum of p copies of S™, where

of

...,amn

pimdime Q/(1 ) <o

In particular, its (reduced) cohomology is concentrated in degree n. Since f’ is a fibration
over 7", H"(X w; Z) is equipped with a monodromy operator M. The group H"(Xoo;Z)
equipped with its monodromy is a rich topological invariant of the morphism f : U —
A<1C; we refer the reader to [13, Chapter 3] for a detailed discussion. For instance, by a
theorem of Steenbrink ([47]), the subgroup

H"(Xoo; Z)1 = U ker((M —id))

J=1

may be equipped with a polarized mixed Hodge structure (PMHS) of level n 4+ 1 (see
Appendix A for background on PMHS’s). The goal of the rest of this section is to describe
Steenbrink’s PMHS.

Remark 4.1. When necessary, we write T;), X, ,, T, X{,, X" and T to indicate the

€1 €,M)
dependence on these parameters. If €, 7 are chosen such that X é,n — T 7’) is a fibration,
and we have € < e and 1’ <7, then the induced maps from T,/, X¢ ., etc. to T,,, X,
etc. are all diffeomorphisms. In particular, we have an isomorphism

H"(X>®:7) = H" (X2 7).

!
€,17 €,m

4.2. The Gauf-Manin connection

To describe Steenbrink’s polarized mixed Hodge structure on H"(X;Z)1, we realize
H™(X; C); as a subspace of a certain D-module Gy, the Gauf-Manin connection, which
we now describe. Our reference for this section is [20, Section 4].

The nth higher direct image R"™ f.Cx/ of f' : X’ — T’ applied to the constant sheaf
Cx- is a complex vector bundle on 77 whose fiber over ¢t € T" is H"(X;;C), where X}
denotes the fiber of X’ — T over t. Let £ be the sheaf of holomorphic sections of this
bundle; that is, £ is the sheaf R" f{Cxs ®c,, OF' of Of'-modules. Let i : 7" < T be
the inclusion, and define the sheaf G := i,£ on T. For an open subset V of T, T'(V, G) is
a subspace of the collection of all functions sending ¢ € V'\ {0} to a class in H"(Xy; C).
Finally, define Gy to be the stalk of G at the origin. So, we may identify Gy as a subspace
of the collection of germs of functions sending ¢ to a class in H™(Xy; C), for 0 < ||¢]| < 1.

Write C{t} for the DVR consisting of power series in ¢ having a positive radius of
convergence. By construction, Gy is a C{t}[t~!]-vector space (in fact, dimc (y11-11 G0 = W,
where p is as defined in 4.1). Moreover, Gy is a D-module; that is, it is equipped with a
C-linear “covariant differentiation” endomorphism 0; satisfying 0;t = id +tJ;. In other
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words, Go is a module over the Weyl algebra C{t}(9;). We will describe the operator 0,
explicitly in Remark 4.8 below.
For each complex number «, we define a C-linear subspace

Co = | ker ((td, — )7 : Go — Go) (4.2)

=1

of Go. The following lemma explains the relationship between Gy and H™(X;C);. In
this lemma and hereafter, we write H}, (Y'; C) for the n-th de Rham cohomology space
of a complex manifold Y. In general, the complex vector space HJ, (Y, C) is defined
to be the n-th hypercohomology of the holomorphic de Rham complex Q”{,’an, but when
Y is a Stein manifold, as it will be in all the cases that arise in this paper, it is given
by the n-th cohomology of the global sections of the complex Qy/*". The isomorphism
H} (Y;C) = H"(Y;C) is induced by the canonical map of complexes of sheaves Cy —
03", When Y is Stein, it may also be defined by integrating closed forms along classes
in H,(Y;C).

Lemma 4.3 (Section 4 of [20]). There is an isomorphism of complex vector spaces
Yo : H"(Xoo; €)1 = Co € Go
such that the composition of
Hjop(X';€) = H"(X':€) % H" (X0 ©)1 % Go

sends |w], for any w € ker(Q5," 4, Q%Y to the element of Gy represented by the
function

t— wlx,] € Hj.p(X4;C) = H"(X;C), for0<t < 1.
4.8. The Brieskorn lattice

In order to describe the PMHS on H™(X;C);, we will need to exploit some ad-
ditional structure on the Gauf-Manin connection Gyp: namely, an embedding of the
Brieskorn lattice

an,n+1
" . X,0

in Gp, where QZ;?({ is the stalk of Q??’j at the origin. Our reference here is once again
[20, Section 4].
There is an injective map

so : HY — Go (4.4)
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defined by the formula
w
so([w]) = <t - bm} € H'(X,;:C): 0 < |t < 1) € Go,

where the % is the Gelfand-Leray form of w ([1, Section 7.1]). Here is a more precise

df
definition of sg: for any w € Q}nbnﬂ, there exists N > 0 such that fNw = df A 3 for
some (3 € Q%'7". Choose an open neighborhood V' of the origin such that § extends to

an element of I'(V, Q*™). The element sq([w]) of Gy is represented by the function
te [tV B|x,] € HYp(Xy;C) = H"(Xy;C), for 0 < |t < 1.

In order for this to make sense, we need X = X., C V, but by using Remark 4.1 we
may assume e is small enough so that this holds.

Remark 4.5. The image of s is a “lattice” of Gy in the sense that it is a free C{t¢}-module
of finite rank u, and im(s)[1/t] = Go.

Equipping H{ with a C{t¢}-action by letting ¢ act via multiplication by f on Q?’Onﬂ
makes so a C{t}-linear map. Define also a C-linear endomorphism 9; * of HY by

9; H([w]) = [df A v], where dv = w (4.6)

(using that the map d : Q%" — Qé;??’onﬂ is surjective). This makes H} a module over
the ring C{t}(9; ) defined by the relation td; * = 9;? + 9; 't. The reason for the
notation “0, 17 is that the operator d; acts invertibly on the image of sg, and s is a
C{t}(9; !)-linear map. To explain this, we must introduce some more notation.

Recall the subspaces C, C Gy from (4.2). Since it = id +td;, multiplication by ¢
induces a map t : C,, — Cyy1 for each «, and this map is an isomorphism. Similarly,
multiplication by 9; induces a map 0; : Cpy1 — Cy, and it is an isomorphism for all
a # —1. For all 8 € R, we define C{t}-submodules

V>0 =" C{t}Cq and V/ = > " C{t}C,

B<a B<La

of Gyo. We are particularly interested in V>~1. Upon restricting the indexing to —1 <
a < 0 in the definition of V>~!, we have an internal direct sum decomposition

vol=  c{tic..

—-1<a<0

Notice that d; induces an isomorphism

o)

o, : V>0 = V>_1;
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we equip V>~ with the structure of a C{t}(9; ')-module by defining
otV vt

to be the composition of the inverse of the isomorphism d; : V>0 = V>=1 with the
inclusion V>0 C V>—1,

Lemma 4.7 (/20] Section 4). The image of so : HY — Go is contained in V>"1, and the
map s : HY — V>=1 is C{t}(0; ') -linear.

Remark 4.8. In fact, the lemma determines the operator 0; on Gy completely. Since sg
induces an isomorphism

HY[1/1] = Gy

(Remark 4.5), for any element 3 € Gy we have t¥ 3 = so(a) for N > 0 and some « € HJ}.
As discussed above in the definition of the map sg, for any o € H{/, it is known that
tMa = 9,71y for M > 0 and some v € HY. Tt follows that

th8 = 50(9; ') for L > 0 and some v € Hy.
By the lemma, we get so(y) = 0y50(0; ') = 0;(t*B) = Lt*~13 + t%9,(/3), and hence
0i(B) =t~ so(y) — Lt

4.4. Steenbrink’s polarized mixed Hodge structure

We now describe Steenbrink’s PMHS of level n+1 on H" (X ; Z)1, following Sections
3 and 4 of [20]. As discussed in Appendix A, we must specify

o an endomorphism N of H"(X;Q); such that N"*2 =0,
e a decreasing filtration F'®* on Hc, and
e a symmetric Q-bilinear form

S:Hg ®q Hgo — Q.

The map N is — Nilp(M), where Nilp(M) denotes the nilpotent part of the rational
monodromy operator M ® Q on H"(X;Q); the coefficient of —1 on Nilp(M) doesn’t
appear in [20], but this is due to an error which the author notes in [21, Remarks 10.25].
The weight filtration W, on H" (X ; Q) is induced from N, as described in Appendix A.
In particular,

im (H"(X';Q) = H" (Xoe3 Q) = ker(N) € W1 H" (Xoo; Q)1 (4.9)
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The pairing
S:H"(X%;Q)1 ®0 H"(Xx;Q)1 — Q

is described in ([20, page 13]). It is non-degenerate ([20, page 13]) and therefore induces
an isomorphism

0 H"(Xoo; Q)1 — Hp(Xoo; Q)1

A formula for S, in terms of o, is given as follows ([20, page 14]):

S(a,b) = (—1)"n=D/2 " E(%G(lea),a(b)), (4.10)

m>1

where / is the Seifert pairing ([1, page 40]).
Remark 4.11. If a € H" (X ; Q) is fixed by M, we have
S(a,b) = (—1)""=D"20((a), o (b)).

To describe the filtration F'* on H"(X; C)1, we apply the discussions in 4.2 and 4.3:

(VOO so(HY) + V0
ST (L R

This description of F'* in terms of the Gau3-Manin connection is due to work of Pham
[35], M. Saito [40], Scherk-Steenbrink [41], and Varchenko [51].

Remark 4.12. Since im(vg) C V°, we conclude that, if z € H" (X, C); satisfies 1 (z) €
;- so(HY), then z € FIH"( X, C);.

Remark 4.13. The isomorphism in Remark 4.1 is an isomorphism of PMHS’s.
5. The map chx__ and its properties

Throughout this section, we adopt the following notations and assumptions:
Assumptions 5.1. Assume that
(1) n is an odd positive integer;
(2) Q@ = Clxg,...,z,]|[1/h] for some h & (zq,...,x,);

(3) fisanelement of m := (xg,...,x,) @ such that the only singularity of the associated
morphism f : Spec(Q) — Ag of smooth affine varieties is at m; and
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(4) X = Xegm, X' = X! etc., are defined from f as in 4.1 for sufficiently small

€0,7M07

parameters 0 < 1y <K €9 <K 1.
The goal of this section is to define a Chern-character-type map

chx. : Ko(mf(Q, f)) = H"(Xoo; Q)1

that satisfies certain key properties; see Corollary 5.12. To define this map, we will utilize
the henselization of ) at m. We start by recalling the relevant definitions.
Define C|[zg, ..., 7,]]*9 to be the collection of algebraic power series in xq, ..., Ty:

Cl[zo,- - -, 2,]]" ={P € C|[[zo, ..., z,]] | g(P)= 0, for some 0 # g(t) €C][zq,...,z,][t]}.
Then the following properties hold (see, for instance, [39, Lemma 2.29]):

(1) There are inclusions

Q C Cllzo, ..., z,]]"" C O,
(2) Cl[zo,. .. ,xn]]alg is a hensel, regular local ring and its algebraic completion is
C[[I‘O,...,$n]]. ~
(3) Cl[xo, .- - ,xn]]alg is a filtered union of sub-C-algebras ) that are étale extensions of
Q.
The latter two properties listed amount to the fact that C|[[xo, ..., z,]]*" is the henseliza-
tion of @) at m (or, equivalently, the henselization of C|zo,...,z,] at (zg,...,x,)). For
brevity, we write Q" = C[[xo, ..., 2,]]*? from now on.

We may describe Q" in more geometric language as follows: Set U = Spec(Q), and let
u € U be the closed point determined by m. Then Spec(Q") is isomorphic to the filtered
limit

Uh= lim V
(V,u)—(U,u)
indexed by all pointed étale neighborhoods p : (V,v) — (U, u).

To relate these two constructions, suppose we are given a pointed étale neighborhood
p: (V,v) = (Uyu), and let pc : V(C) — U(C) denote the induced map on complex
points. Then we may find a pair €, n such that X , is contained in X Nim(pc) (since pc
is an open mapping). The inclusion of X , into U(C) then factors as

X., > V(C) X U(0), (5.2)

for a unique open inclusion ¢ of complex manifolds. Taking colimits of rings of functions
realizes the inclusion Q" C %o above.
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Put differently, suppose @ C @ is an étale extension of () that is contained in Q" C
O%'- Since é is a finitely generated C-algebra, and each generator converges on an open
neighborhood of the origin, there exist sufficiently small €, such that each element of
Q converges absolutely on X . This induces the open inclusion ¢ : X, ,, < V(C) above.

We next recall the classical Chern character map for K;. For an essentially smooth
C-algebra R and each j > 0, there is a map

ch¥ : Ki(R) — HY ;' (V(C);C),

where V' = Spec(R), that sends the class of an invertible matrix Y to the class of the
(25 — 1)-form

~1 (j—1!
(2mi)i (27 — 1)!

tr(Y LY (d(Y ™ HdY ) 1) e D(V, Q21

(Recall that, since V' (C) is a Stein manifold, we may identify its de Rham cohomology
with the cohomology of the complex (I'(V(C), Q*™*),d).)
Using d(Y 1) = =Y~ }(dY)Y 1, we can also write this as

en () =~ Uy,

The factor of ﬁ in this formula (which is not included by some authors) ensures that
the image of the composition

Ki(R) %5 B2 (V(C);€) = B (V(C); )

lies in H2~1(V(C); Q); see [34, Section 2] for a proof. Abusing notation a bit, we write
ch%] also for the induced map

ch? : Ki(R) - HY(V(C); Q).
Given an étale extension Q) C @ of ) inside Q", we proceed to define a map
b5 Kl(@[l/f]) — H"(Xoo; Q)1
as follows. Let V' = Spec(@), a smooth affine complex variety, and let V' = Spec(@ 1/,
an open subvariety of V. As noted above, the inclusion @ C OY"; determines an open

inclusion ¢ : X, < V(C) of complex manifolds for €, n sufficiently small. We define gzﬁ@
to be the composition of

Ky QL) S5 5 (v (€),Q) Sy BY(XY, Q) = HP(XETQ)y S H™ (X Q)1
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where the penultimate map is pull-back along the canonical covering space map X7 —
X¢,, and the final map is the inverse of the isomorphism H"(Xoo; Q)1 = H™ (XS, Q)
given by pull-back along the inclusion X§" C X . It is clear from the construction that
the map gb@ is independent of the choice of €, 7.

Proposition 5.3. With the notation and assumptions listed above, there is a unique ho-
momorphism of abelian groups

chx : K& (Imf(Q", f)]) = H™(Xoo; Q)1

such that the following property holds: Given an étale extension QQ C @, with @ c Q"
and given a free matriz factorization (A, B) € mf(Q, f), we have

chx. ([(4, B)n]) = ¢5([A]),

where (A, B)y denotes the image of (A, B) under the canonical map mf(@,f) —
mf(Q", f), and [A] is the class in Ki(Q[1/f]) given by regarding A as an invertible
matriz with entries in Q[1/f].

Proof. Given two étale extension @) C @1 and @ C @2 inside Q" such that @1 C @2,
the composition of

Ky (O [1/f]) = K (QalL/ ) 22 H (X1 Q)

coincides with ¢>©1. We thus obtain an induced map

colim K1 (Q[1/f]) = H™(Xoe: Q)1,

where the colimit is indexed by all such étale extensions. Since K-theory commutes with
filtered colimits of rings, and colim Q@ = Q", which gives that colim Q[1/f] = Q"[1/f],
we obtain a map

o K1(Q"[1/f]) = H"(Xoo, Q)1

The map ¢;, is uniquely determined by the following property: for each étale extension
Q C Q C Q" the composition

Ky(Q[1/f)) = Ky (Q"[1/f)) 2% H™(Xoo, Q)1

coincides with the map gb@.
By [53, Theorem 3.2], we have an exact sequence

Ki(Q") = K1(Q"[1/f]) 2 Go(Q"/f) = Ko(Q") — Ko(Q"[1/f]) — 0
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such that, for any matrix factorization (A, B) € mf(Q", f), O([A]) = [coker(A)]. Since
Q" is local, the last map is an isomorphism, and so we obtain the right exact sequence

Ki(Q") — Ky (Q"[1/f]) % Go(@"/ ) — 0.

Combining the canonical map D*(Q"/f) — D®(Q"/f)/ Perf(Q"/f) with the quasi-
equivalence

mf(Q", f) = D*(Q"/f)/ Perf(Q"/ f)

discussed in Section 2.2, we obtain a map

Go(Q"/f) = K§l(mf(Q", f))] (5:4)

whose kernel is generated by [Q"/f]. We have [Q"/f] = d([f]), where [f] € K1(Q"[1/f]))
is the class of f regarded as a 1 x 1 invertible matrix. From this, we obtain a surjection

™ K1(Q"[1/f]) = K§ (Imf(Q", )])

such that

o if (A, B) € mf(Q", f), then w([A]) = [(4, B)], and
o the kernel of 7 is generated by [f] and the image of (Q")* = K1(Q") — K1(Q"[1/f]).

We claim that ¢, annihilates the kernel of 7. For the generator [f], this is obvious
when n > 3, since

-1 (p—1)!
(2mi)P (2p — 1)!

n—1

ff(df )= =0,

chi ™ ([f]) =

When n = 1, observe that, for any pair (e,7) and t € Ty, the restriction of the class
fdf € HéeR(Xé,n;C> to HY(X.,, N f~1(t); C) is 0, and hence ¢p([f]) = 0. To show
¢5, annihilates the image of K1(Q") — Ki(Q"[1/f]), it suffices to prove it annihilates

the image of the composition K1 (Q) — K1(Q") — K1(Q"[1/f]) for each étale extension
Q C QQ C Q. This holds since the composition of

Chn+1

K1(Q) — K1(Q[1/f]) —— H"(X';Q)

factors through H"(B.;Q) = 0, for € sufficiently small, by the naturality of the Chern
character.
It follows that ¢ factors through 7 and induces the map we seek:

chx. : K&(mf(Q" F)]) » H(Xoc: Q1.
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This map has the desired property by construction, and its uniqueness holds since every
object in mf(Q", f) is of the form (A, B)j for some Q, A, and B as above. O

Theorem 5.5. Using Assumptions 5.1, set p = "TH Then the map chx_ defined in

Proposition 5.5 enjoys the following properties:

(1) For (A, B) € mf(Q", f), we have

Yo(chx, (A, B)) = (M) :

(2 )P (n+1)!

where g, Oy, and sg are as defined in Sections /.2 and /.3, and dA,dB are viewed
as matrices with entries in Qggnbl.
(2) Using the notation of Section /.4, we have

m(chx_ ) Cker(N)NEFPH"(X; C)1.

In particular, im(chx_ ) C W41 H"(Xoo; Q)1.

Remark 5.6. For any smooth complex variety Y, the image of the map
chitt  Ki(Y) — H"(Y;Q) C H"(Y;C)

is contained in FPH"(Y;C), where F'* is the Hodge filtration on H"(Y;C) defined by
Deligne ([11], [12]). The last statement of part (2) of Theorem 5.5 would thus follow from
the assertion that the canonical map

H*(VQ) = H™ (Xoo; Q)1

is a morphism of MHS’s, where V' = Spec(é[l/f]) for any étale extension Q C Q
contained in Q". Although this seems likely to be true, we were unable to prove it or
find a reference for it, and we have opted for a more direct proof of the last statement
of part (2).

The proof of Theorem 5.5 will use the following;:

Lemma 5.7. Suppose (A, B) is a free matriz factorization of f in R, for an essentially
smooth k-algebra R and a non-zero-divisor f € R. Then, for any positive integer j, we
have

f - tr((dAdB)?) = jdf A tr(AdB(dAdB)' ") € Q7 .

Proof. Since f is a non-zero divisor on R, and R is essentially smooth over k, the map
Qiz]/k — Qiﬂ/k[l/f] QQ]l/f}/k is an injection, and so without loss we may assume f is

a unit in R. Then A and B are invertible matrices such that A = fB~!, and so



M.K. Brown, M.E. Walker / Advances in Mathematics 366 (2020) 107092 25

dA = fd(B™') +dfB~*.

Using that df Adf = 0 and tr(XY) = (—=1)P9tr(YX) if X,Y are matrices with entries
in QP and Q9 respectively, we get

tr((dAdB)’) = tr((fdB~'dB + df B"*dB)?)
= f/tr((dB~'dB)?) + jf/~df tr(B~'dB(dB~'dB)’ ).

Also, dBdB~! = —(dBB~')? and so
tr((dBdB~1)?) = (=1) tr((dBB~1)%) = 0;

the last equation holds since the trace of an even power of a matrix with odd degree
entries over any graded commutative ring is 0. Using B~! = f~1A, dB~! = f~1dA —
df B~', and df A df = 0 therefore gives

tr((dAdB)?) = j 7~ df tr(B~'dB(dB~'dB)’~ 1)
= jfldf tr(AdB(dAdB)’~'). O

Proof of Theorem 5.5. The second assertion follows from the first: by construction,
chx_ (A, B) belongs to im(H"(X";Q) — H"(Xw;Q)1) = ker(N), and, granting that
(1) holds, chx_(A,B) € FPH"(X;C); follows from Remark 4.12. The final clause
follows from (4.9).

To prove (1), choose a lift of (A4, B) € mf(Q", f) to an object of mf(@,f) for some
étale extension Q C Q contained in Q". Set V = Spec(Q) and V' := Spec(Q'[1/f]).
Without loss of generality, we may assume X is sufficiently small so that every element
of @ converges absolutely on X, and thus we may interpret A, B as matrices with entries
in I'(X, O%").

The composition

+1
ch?

Ky(V') —— Hg.z(V';C) = Hi.p(X';C)
sends [A] to the class of

~1 (p-—
(2mi)P n!

]‘)' —1 —1 -1 / an,n
tr(A" dA(dA™dA)PT) e (X', QF").
Since AB = f we have
dA™! = f~YdB — f2Bdf,

and hence the image of ch™*([A]) in H}, (X';C) is the class represented by



26 M.K. Brown, M.E. Walker / Advances in Mathematics 366 (2020) 107092

-1 (p —
(2mi)P  nl

Dl fPtr(BdA(dBdAP™Y) +df Aw

for some w € T'(X', Q%" "). The composition
Hir(X;C) = H"(X;C) = H"(Xo0; C)

sends df Aw to 0, because, for any t € T", X, and f~1(t)N X’ are homotopy equivalent,
and df restricts to 0 in the de Rham cohomology of f~1(¢)NX’. Thus, vo(chx_ (A, B)) €
Gy is given by the function

—1 (p_ 1)' —p p—1
Lo i Ir(BAAW@BAAY ) x,

By Lemma 5.7, we have
[ftr((dAdB)P)] = [pdf Atr(AdB(dAdB)P~1)] in H,
and so the definition of sg gives that sq(tr((dAdB)P)) € Gp is the function
t s pt ' tr(AdB(dAdB)P 1), .
Since the class in [(B, A)] € K& ([mf(Q", f)]) is equal to —[(4, B)], we arrive at

1 (p—1)!
(2mi)P p-n!

tP~Ypo(chx (A, B)) = so(tr(dAdB)P). (5.8)

By [20, p. 16], we have
Dy 0thg = —t~ 1 oapg o N/(2mi),
and hence
Oho(chx . (A, B)) = 0.

By applying 97" to (5.8) we thus get

1 (p—1)

|
S ap—1 p
@i ponl 07" “so(tr(dAdB)?),

(p — Do (chx (A, B)) =
which implies (1). O
Lemma 5.9. The canonical map

[mf(Q, )] = [mf(Q", f)]
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exhibits [mf(Q", f)] as the idempotent completion of [mf(Q, f)]. In particular, the
canonical maps

Ko(mf(Q, f)) = Ko(mf(Q", f)) + Kg ([mf(Q", f)])

are isomorphisms.
Proof. Let @ denote the m-adic completion of @ (which coincides with the m-adic com-

pletion of Q). By [33, Proposition 1.14] and [14, Theorem 5.7], each of the canonical
maps

mf(Q, )] = [mf(Q, f)] < [mf(Q", f)] (5.10)

exhibit its target as the idempotent completion of its source. On the other hand, the
proof of [14, Lemma 5.6], along with an application of [24, Theorem 1.8], shows that
[mf(Q", f)] is idempotent complete. The first assertion follows. The rest follows from
the results described in Section 2. O

Composing the map chx__ defined in Proposition 5.3 with the isomorphism

Ko(mf(Q, f)) = K§ (Imf(Q", f)])

of the Lemma gives a map
Ko(mf(Q,f)) = H"(X; Q), (5.11)
which, abusing notation a bit, we also write as chx__.
Corollary 5.12. In the setting of Theorem 5.5, for any a € Ko(mf(Q, f)), we have
S(chx (@), chx (@) > 0,
and
S(chx_ (@), chx_(a)) =0 if and only if chx__(a) =0,
where S is the pairing on H™(Xoo; Q)1 described in (4.10).

Proof. This follows from Theorem 5.5 (2) and Lemma A.6 of the Appendix. O
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6. Positive semi-definiteness of the Euler pairing

Throughout this section, we continue to operate under Assumptions 5.1. By [20, 4.1
and 4.4], there is a “higher residue” pairing

Pg: V>l x V>t = Clo; ]

taking values in the ring of formal powers series on the symbol d; ' that satisfies the
following properties:

(1) For elements a,b € H"(X;C)1, we have

—1

WS(G/, b)@t_Q

Ps(¢o(a), vo(b)) =
(2) For [w],[v] € Hy, we have
Ps(so([w]), so([v])) = Resf(w,v) - 97"~ * + terms involving &/ for j < —n — 1,
where Resy denotes the classical residue pairing on

an,n+1
QX,O

(3) For a,3€ V>4,
Ps(9; ', B) = 0 ' Ps(a, B)
and
Ps(a, 0,1 8) = =9, ' Ps(av, B).

Remark 6.1. Item (1) above differs from [20, Definition 4.1 by a sign. This is due to an
error in [20], which is corrected in [21, (10.83)].

As above, set p = ”TH For any object (A, B) € mf(Q", f), define

2 tr(dAdB)P

Chpv(A,B) = (n+1)'

e Q¥ (6.2)

the reason for the choice of notation chpy will be made clear below. By Theorem 5.5,
we have

So(Chpv(A, B)) = (Zﬁi)pa;p+1¢0(chxoo (A, B)),
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and so the third property of Pg listed above implies

Ps(S()(Chpv(A, B)), So(Chpv(Al, BI)))
= (—=1)P~1(2mi)" T Ps (1o (chx_ (A, B),chx_ (A, B')))o; "

for any (A, B), (A’, B") € mf(Q", f). From the first two properties of Pg, we get

Ps(So(Cth (A, B)), So(Chpv(A,, B/))) = Resf (Chpv(A, B), Chpv(A/, B/)) 6,;”_1

+ terms of lower degree,

and

Ps(to(chx... (A, B)), Yo(chx, (4, B'))a; "+
—1

= Gy S (e (4, B),chx (4, B)OT "

By comparing coefficients, we deduce
Resf(chpy (A, B),chpy(A’, B")) = (=1)?S(chx_ (A, B),chx_(A', B")). (6.3)

Finally, by Polishchuk-Vaintrob’s Hirzebruch-Riemann-Roch formula for matrix fac-
torizations ([37, (0.2), (0.5), (0.6)]), we have

n+1

X((A, B), (A", B))mpq.py) = (=1)\"2 ) Res(chpy (A, B), chpv (A, B')).  (6.4)
(Recall that, by Lemma 5.9, any class in Ko(mf(Q, f)) may be represented by a free ma-
trix factorization in mf(Q", f).) Combining (6.3) and (6.4), and noting that (—1)(n_zH) =
(—1)P, we obtain the following analogue of Polishchuk-Vaintrob’s Hirzebruch-Riemann-
Roch formula:
Theorem 6.5. For any matriz factorizations (A, B), (A’, B") € mf(Q, f), we have

X((A, B), (A/, B,))mf(Q,f) = S(ChxoO (A, B), ChXoo (A/, B,))

Corollary 6.6. With the notation as above, given o € Ko(mf(Q, f)) we have

X( @)mrq,5) =0,

and

X(, @) myq,r) = 0 if and only if chx_ (a) = 0.
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Remark 6.7. It is asserted in [31] that the “Herbrand difference” h is negative definite
for the graded case of this Corollary. The Herbrand difference coincides with the Euler
pairing; see the proof of Corollary 8.5 below. But [31] is incorrect, since the authors
overlooked the minus sign in O(M,M') = —h(M*,M’); see [9, Corollary 6.4.1]. The
same error occurs in [8, Remark 1.2].

7. Proof of the main theorem

Throughout this section, we continue to operate under Assumptions 5.1. As in the in-
troduction, we let HP(—) denote the periodic cyclic homology functor for dg-categories,
and we write HH(—) and HN(—) for the Hochschild and negative cyclic homology
functors. As discussed in the introduction, there is a Chern character map

Cth : KO(—) — HPO(—),

and there are analogous maps chyn, chyg. There are canonical natural transformations

HNy — HHy and HNy — HF,, and each of chyp and chy g factor through chy . Note
that the subscript 0 on HP, HH, and HN is to be understood modulo 2, since we are
working with differential Z /2-graded categories.

Proposition 7.1. Let Q and f be as in Assumptions 5.1. As in Section 4.5, let Hj denote
the Brieskorn lattice, and let HJ denote its m-adic completion. There is a canonical
isomorphism

H] = HNo(mf(Q, f))

such that, for any class [(A, B)] € K&([mf(Q", f)]) & Ko(mf(Q, f)), the class in HY
represented by chpy (A, B) (as defined in (6.2)) is sent, under the composition

~

H) — HI = HNo(mf(Q, f)), (7.2)
to ChHN(A,B).

Remark 7.3. As an aside, we note that, by [45, Theorem 1] and [5, Theorem 1.8], the
map (7.2) identifies, up to multiplication by the sign (—1)@) , the higher residue pairing
on H{/ with the natural pairing on H No(mf(Q, f)) defined as in [45, line (6)].

Proof. By [15, Proposition 3.14] and [36, Section 4.8], there is an HKR~type isomorphism

HN(mf(Q, f)) = (Q,cllul], ud — df)

in the derived category of Z /2-graded k-vector spaces. Here, the target is the (Z /2-graded
folding of the) direct product totalization of the upper-half plane bicomplex B**, where
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BP1 = QS;?C u9, the horizontal differential is given by — Adf, and the vertical differential
is given by the de Rham differential d. Because of the isolated singularity assumption,
each row is exact everywhere except in the right-most position. Considering the spectral
sequence associated to the filtration of B** by rows ([52, Definition 5.6.2]), one sees

HNo(mf(Q, f)) = coker (2 [[ul] <=L @it [[ul]).

Let C/Q\ be the completion of ) at m, set Qr = Qg c @Q @, and form the analogous
bicomplex B** with direct product totalization (Q°[[u]],ud — df). The map B** —
B** is a quasi-isomorphism along each row, and so, by comparing spectral sequences
associated to these bicomplexes, one sees the canonical map

(8 cl[ull, ud — df ) — (Q°[[u]], ud — df)

is a quasi-isomorphism. We thus have an isomorphism

HNo(m(Q, f)) 2 coker (@ [[u]] “=%> Q"1 [[u]]) . (7.4)

Moreover, by [6, Example 6.1], for any (A4, B) € mf(Q", f), chun(A, B) € HNo(mf(Q",
f)) = HNo(mf(Q, f)) corresponds, under (7.4), to the class represented by

2
(n+1)!

tr((dAdB)"* ) € Q"L

By [42, Section 2] (see also the discussion in [44, Section 5]), there is a canonical
isomorphism

HI 25 coker (ﬁn[[u]] wd—df, §n+1[[u]]) 7

and the composition

~

H = H = coker (Q"[[u]] “=%» Q" [[u]]) = HNo(mf(Q, f))
has the desired property. 0O

Theorem 7.5. The following statements are equivalent:

(1) x(o, )mypq,p) =0

(2) chx_(a) =0 in H"(Xo; Q)1.

(3) chun(a) =0 in HNo(mf(Q, f)).
(4) chap(a) =0 in HPy(mf(Q, f)).
(5) chum(a) =0 in HHo(mf(Q, f)).
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Proof. The equivalence of (1) and (2) is implied by Corollary 6.6. (2) = (3) follows from
Theorem 5.5 and Proposition 7.1. (3) = (4) and (3) = (5) hold since chyp and chyy
factor through chyn, and (4) = (3) holds since the canonical map

HNo(mf(Q, f)) = HRy(mf(Q, f))

is an injection; as discussed in [45, page 12], this is equivalent to noncommutative Hodge-
to-de Rham degeneration for mf(Q, f), which holds by [14, Section 7]. Finally, (5) =
(1) follows from [43, Theorems 2 and 3]. (Note that, by [14, Theorem 5.2], mf(Q, f) is

Morita equivalent to a dga, so the results of [43] apply.) O

Proof of Theorem 1.6. Apply Proposition 3.1, Corollary 6.6, and Theorem 7.5. O
8. Hochster’s theta pairing

We now apply Corollary 6.6 to prove Theorem 1.10 from the introduction. Let @) and
f be as in the statement of Theorem 1.10. Set R = Q/f,Y = Spec(Q), and Z = Spec(R).

8.1. Background on intersection theory

Let KZ(Y) denote the Grothendieck group of the triangulated category of perfect
complexes on Y with support in Z. Let

ch? KE(Y) = A(2)2Q

denote the localized Chern character, as defined in [16, Definition 18.1]. Here, A;(—)
denotes the group of dimension i cycles modulo rational equivalence. Note that chZ is
an isomorphism upon tensoring with Q. Let ch; denote the composition of chZ with the
projection of A,(Z) onto A;(Z). Gillet-Soulé define Adams operations ¥ on KZ(Y") for
[ >0in [17, Section 4]; by a theorem of Kurano-Roberts ([23, Theorem 3.1]), we have

ch; o zpl = [%"ch,

fori > 0 and [ > 1, where d = dim(Q).
The map

Tz :Go(Z) = A(Z) @ Q
defined in [16, Section 18.2] is also an isomorphism upon tensoring with Q. Let 7; denote
the composition of 7 with the projection of A.(Z) onto A;(Z). There are also Adams

operations vy defined on Go(Z) ([46]), and, by [19, Proposition 2.4], we have

T; © wl = l_iTi.
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There is an isomorphism
r:KZ(Y) S Go(2)
([17, Lemma 1.9]), and, by [19, line (5)], we have
Yror=1"%4royl). (8.1)
Let
Go,i)(Z) CGo(Z2) ®Q
be the inverse image of 7; ® Q and let
K5 (V) S K7 (Y)®Q
be the inverse image of ch; ® Q. Using (8.1) we obtain
T’(Koz,(i)(y)) = GO,(i)(Z)~ (8.2)
8.2. Proof of Theorem 1.10

Let
0:Go(Z)x Go(Z) = Z

denote the Hochster theta pairing, as defined in Section 1.4. A conjecture of Dao-Kurano
([10, Conjecture 3.4]) predicts that 0(«, —) : Go(Z) ® Q — Z is the zero map for any
a € G (;)(Z) when i # dimT(@; in particular, if dim(Q) is odd, # vanishes. The first goal
of this section is to prove this conjecture in the case where R is a complex hypersurface:

Theorem 8.3. Suppose g € Clxg,...,x,] is such that g(0,...,0) # 0, and let f €
m = (zo,...,z,) € Clxg,...,zn][1/g] be such that the singular locus of R :=
Clzo, ..., xzn][1/g]/(f) consists of only the mazimal ideal m. Then

O(o,—): Go(Z2) 2 Q = Z

is the zero map whenever o € G (;)(Z) for i # ”TH; in particular, it is 0 for all o when

n 1s even.

Proof. As discussed in Section 1.4, the case where n is even was proven independently by
Buchweitz-van Straten and Polishchuk-Vaintrob ([8], [37]), so we may assume n is odd. By
[4, Section 4] and [8, Propositions 4.1 and 4.2], there is a map v : KZ(Y) — KU(Be, Xoo),
where B, and X, are chosen as in Section 4.1, such that
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(1) v commutes with pth Adams operations for any prime p, and
(2) if v(B) =0, 6(r(B),—) : KZ(Y) — Z is the zero function.

Observe that, since the (reduced) cohomology of X, is concentrated in degree n, the only
nonzero eigenspace of KU (B,, X4.) for any Adams operation 1! is the one corresponding
to the eigenvalue "2 . The statement now follows from (8.2). O

As a corollary, we prove [10, Conjecture 3.1(4)] in the setting of Theorem 8.3:

Corollary 8.4. If R is as in the statement of Theorem 8.3, and M, M’ are maximal
Cohen-Macaulay R-modules, then

O(M*, M) = —(—1) "5 0(M, M").
Proof. Combine [16, Example 18.3.19] and Theorem 8.3. O

Let o denote the map Go(Z) — Ko(mf(Q, f)) defined in the same way as the map
in (5.4).

Corollary 8.5. If Q = Clzg,...,x,][1/g] and f are as in Theorem 8.3, we have

X0 (=)o (Nmpan = (~1)F6(—, ).

Proof. Let M and M’ be maximal Cohen-Macaulay R-modules. The Herbrand difference
of M and N is the integer

h(M,M') := length  Ext% (M, M) — length , Extp, (M, M')
= dimc Ext%(M, M') — dimc Ext (M, M").

It follows from [9, Corollary 6.4.1] that
O(M,M') = —h(M",M'),

where M* denotes the R-linear dual of M. (Beware that in both [31] and [8, Remark
1.2] the sign is omitted in this formula.) Moreover,

xX(o(M),o(M'))mpq.p) = h(M, M').
The result therefore holds for M, M’ maximal Cohen-Macaulay, by Corollary 8.4. Since

Go(R) is generated as an abelian group by classes of maximal Cohen-Macaulay R-
modules, the proof is complete. 0O
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Proof of Theorem 1.10. Using arguments similar to those in Section 3, we may reduce to
the case when @) and f are as in Theorem 8.3. Then the result follows from Corollaries 6.6
and 8.5. O

Remark 8.6. We observe that each of Conjectures (1) — (5) in [10, Conjecture 3.1] is
now proven over the complex numbers: to summarize, (1) is proven independently by
Buchweitz-van Straten [8] and Polishchuk-Vaintrob [37]; (2) and (3) are established in
[7] and [4], respectively; and (4) and (5) follow from Corollary 8.4 and Theorem 1.10,
respectively. (As noted in the introduction, (5) was originally posed in [31].)

Appendix A. Polarized mixed Hodge structures

Our reference here is [20, Section 2]|. Let V' be a finite dimensional vector space over
a field k, and let m be a non-negative integer. For any k-linear endomorphism N of V
such that N™*! = 0, there is a unique increasing filtration W, of V of the form

O=W_1CWygC---CWy,, =V

such that N(W;) € W;_5 and the induced map N': Gr)\,, — Gr),_, is an isomorphism
for all [ > 0 (here, Gr;/v =W, /W;_1). W, is called the weight filtration of V associated
to (IV,m). Note that the filtration depends not just on N, but also on the specified
integer m.

The weight filtration is natural, in the sense that if g : V' — V’ is a k-linear transfor-
mation, N, N” are endomorphisms of V, V' whose (m+1)%* power is 0, and N'og = goN,
then g(W;(V')) € W;(V’) for all j.

Definition A.1. For a non-negative integer m, a mized Hodge structure of level m (MHS
of level m, for short) consists of the following data:

« a finitely generated abelian group H with associated vector spaces Hgp = H ®z Q
and Hc = H ®z C,

o a Q-linear endomorphism N : Hp — Hg such that N ! =0, and

e a decreasing filtration F'® of the complex vector space Hc.

These data are required to satisfy two conditions. Let W, be the weight filtration of Hg
associated to (N, m) as defined above, and, for each j, let F'*® Gr;-/v be the decreasing
filtration of Gr}” ®gC induced by F'*. Then

e For all j, Gr;-/v ®oC may be written as an internal direct sum F? Gr}’v DF4 Gr}/v for
all integers p, ¢ such that p+q¢ =7+ 1, and
e N(FP)C FP~1 for all p.
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Here, the m notation indicates complex conjugation: given an element of F'¢ Gr}/V of
the form v ® z, its conjugate is v ® Z. By abuse of notation, we usually write an MHS of
level m, which consists of the triple of data (H, N, F'*), by just H.

A morphism of MHS’s of level m, from H to H’, is a homomorphism of the underlying
abelian groups g : H — H’ such that Ny og = go Ny and g(FPHc) C FPHg for all p.

Example A.2. For a non-negative even integer m and a finitely generated abelian group
A, the trivial MHS of level m on A is defined by taking N = 0 and

Fp_ Ac, if p<m/2, and
0, if p > m/2.

Note that

0, if j <m-—1, and
W; =
Ag, ifj>m

so that Gr!Y Ag = Ag and Gr}’V Ag = 0 for all j # m. The induced Hodge filtration on
GrlV(Ac) = Ac is given by

Ac, if p<m/2, and

FPGr)V (Ac) =
0, if p > m/2.
Since p + ¢ = m + 1 implies that either p > m/2 and ¢ < m/2 or vice versa, the only
non-trivial axiom is satisfied.
If H is an MHS of level m, then a morphism g of MHS’s of level m from A to H is
the same thing as a homomorphism of ordinary abelian groups from A to the subgroup

ker(N : Ho — Ho) N F™*Hc N H
of H. It follows from the axioms that ker(/N) C W,, Hg, which means g induces a map
GrV(g): A — Gr)Y (H).

More generally, if A is any (not necessarily finitely generated) abelian group, and ¢ :
A — Hg is a group homomorphism whose image is contained in ker(N)N F™/2H¢, then
g induces a map A — Gr)¥ (H), which we also denote by Gr)" (g).

Lemma A.3. Suppose m is an even integer, and H = (H,N,F*) is an MHS of level
m. If A is a (not necessarily finitely generated) abelian group, and g : A — Hg is a
homomorphism of groups whose image is contained in ker(N) N F™/2Hc, then ker(g) =
ker(GrY (9)).
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Proof. If Gr¥ (g)(a) = 0, then g(a) € W,,_1Hg N F™/?Hc. But the axioms of an MHS
of level m imply that W,,_1Ho N F™/?Hc =0. O

Given an MHS (H, N, F'*), the primitive subspace of GrnVZH is defined to be
PG, ==ker(N™: Gr) ., — Gy, _,).

Definition A.4. For a non-negative integer m, a polarized mixed Hodge structure (PMHS,
for short) of level m consists of the data of an MHS H = (H, N, F**) of level m along
with a non-degenerate, (—1)"-symmetric Q-bilinear form

S:Hg ®g Hgp — Q.
The data (H, N, F*,S) are required to satisfy the following additional conditions:

e S(Na,b)+ S(a, Nb) =0 for all a,b € Hg, and
o S(FP,F1) =0 for all pairs of integers p and ¢ satisfying p + ¢ =m + 1.

Using the first of these two properties, we may define, for each [ > 0, an induced pairing
S; on the primitive subspace P Gr)" 4 by

Sy(a,b) = S(a, N'b), where a,b € W,,; are representatives of a, b.
We extend ) to a sesquilinear complex pairing on P Grnm; 11 ®C by
Sila® z,b®@w) = S5(a,b)w.
We also require that

o for each [ > 0, we have S;(FPP Gry,y1, F9P Gr,,1;) = 0 for all p and ¢ satisfying
p+g=m+1+1, and

o for each [ > 0 and all p, we have \/—_12p_m_l5l(a,a) > 0 whenever
a € FPPGr,  ,NFm+-rPGr)_, and a # 0.

A morphism of PMHS’s of level m, from H = (H, N, F*,S) to H = (H',N',F*,5), is
a morphism ¢ of MHS’s of level m such that S(a,b) = S’(g(a), g(b)) for all a,b € Hg.

Example A.5. Suppose m is an even integer and A is a finitely generated abelian group
equipped with the trivial MHS of level m. An extension of this data to a PMHS of level

m on A consists of a positive definite symmetric bilinear form S on Ag. Indeed, the first
5
which case (since Gr,,, Ag = Ag) it asserts that S(a,a) > 0 for all a« € Ac, where S is

extended sesquilinearly to Ac as before.

three axioms hold trivially. The last one only has content when [ = 0 and p = in
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Lemma A.6. Let m be an even integer, and suppose H is a PMHS of level m. If A is an
abelian group, and g : A — Hg is a homomorphism of groups with image contained in
ker(N) N F% He, then the induced pairing Sa on Ag defined by

Sa(a,b) = S(g(a), g(b))

is a positive semi-definite symmetric bilinear pairing with kernel equal to ker(gq). That
is, Sa(a,—) = 0 if and only if a € ker(gg), and the induced pairing on Ag/ker(gg) is
positive definite.

Proof. It suffices to consider the case A = ker(Np, : Hy — Hg) N F2 Hc and g is the
identity map. That is, we just need to prove that the restriction of S to this subspace A is
positive definite (it is symmetric since m is even). Given «a € A, since ker(Ng) C W,, Hg
and a € F%, we have an induced class

a:=Gr(a) e F? GrY .

m m

Since o € Hg, we have @ = a and so
a € F% GrY NF% Gr).

m
2

The axioms for S (with p = 2 and | = 0) give

So(a,a) >0, and if Sp(a,a) =0, then a = 0,

where Sy(a,a) = S(a,a). This proves that the restriction of S to A is positive semi-
definite with kernel equal to the kernel of the canonical map A — Gr!/ (Hg). But this
map is injective by Lemma A.3. O
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