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Continuity of the Yang-Mills flow on the set of
semistable bundles®
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Abstract: A recent paper [16] studied properties of a compact-
ification of the moduli space of irreducible Hermitian-Yang-Mills
connections on a hermitian bundle over a projective algebraic man-
ifold. In this follow-up note, we show that the Yang-Mills flow at
infinity on the space of semistable integrable connections defines a
continuous map to the set of ideal connections used to define this
compactification. Part of the proof involves a comparison between
the topologies of the Grothendieck Quot scheme and the space of
smooth connections.
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1. Introduction

Let (X,w) be a compact Kéhler manifold of dimension n and (E,h) — X
a C* hermitian vector bundle on X. The celebrated theorem of Donaldson-
Uhlenbeck-Yau states that if A is an integrable unitary connection on (E,h)
that induces an w-slope stable holomorphic structure on FE, then there is
a complex gauge transformation g such that g(A) satisfies the Hermitian-
Yang-Mills (HYM) equations. The proof in [40] uses the continuity method
applied to a deformation of the Hermitian-Einstein equations for the metric
h. The approach in [11, 12] deforms the metric using a nonlinear parabolic
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equation, the Donaldson flow. Deforming the metric is equivalent to acting
by a complex gauge transformation modulo unitary ones, and in this context
the Donaldson flow is equivalent (up to unitary gauge transformations) to the
Yang-Mills flow on the space of integrable unitary connections. The proof in
[12] assumes that X is a projective algebraic manifold (more precisely, that
w is a Hodge metric) whereas the argument in [40] does not. The methods
of Uhlenbeck-Yau and Donaldson were combined by Simpson [35] to prove
convergence of the Yang-Mills flow for stable bundles on all compact Kéahler
manifolds. The Yang-Mills flow thus defines a map A%(E, h) — M}, (E, h)
from the space of smooth integrable connections on (FE,h) inducing stable
holomorphic structures to the moduli space M., (E, h) of irreducible HYM
connections.! Continuity of this map follows by a comparison of Kuranishi
slices (see [15, 31]).

When the holomorphic bundle £4 = (E,0,4) is strictly semistable, then
the Donaldson flow fails to converge unless £4 splits holomorphically into a
sum of stable bundles (i.e. it is polystable). If n = 1 it is still true, however,
that the Yang-Mills flow converges to a smooth HYM connection on E for any
semistable initial condition. This was proven by Daskalopoulos and Réde [7,
32]. Moreover, the holomorphic structure of the limiting connection is isomor-
phic to the polystable holomorphic bundle Gr(€4) obtained from the associ-
ated gradation of the Jordan-Hélder filtration of £4. For n > 2, there is an ob-
struction to a smooth splitting into an associated graded bundle, and Gr(€4)
may not be locally free. The new phenomenon of bubbling occurs, and one
must talk of convergence in the sense of Uhlenbeck, that is, away from a singu-
lar set of complex codimension at least 2 (see Theorem 2.2 below). In [8] (see
also [9]) it was shown for n = 2 that the Yang-Mills flow converges in the sense
of Uhlenbeck to the reflexification Gr(£4)**, which is a polystable bundle. The
bubbling locus, which in this case is a collection of points with multiplicities,
is precisely the set where Gr(£4) fails to be locally free [10]. The extension
of these results in higher dimensions was achieved in [33, 34]. Here, even the
reflexified associated graded sheaf may fail to be locally free, and one must
use the notion of an admissible HYM connection introduced by Bando and
Siu [4]. Convergence of the flow to the associated graded sheaf for semistable
bundles in higher dimensions was independently proven by Jacob [22].

In a different direction, a compactification of M., was proposed by Tian
in [37] and further studied in [38]. This may be viewed as a higher dimensional
version of the Donaldson-Uhlenbeck compactification of ASD connections on

!The notion of (semi)stability depends on the choice of Kihler class [w]; however,
the class will remain fixed throughout, and we shall suppress this dependency from
the notation.
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a smooth manifold of real dimension 4 (cf. [14, 13]). It is based on a finer anal-
ysis of the bubbling locus for limits of HYM connections that is similar to
the one carried out for harmonic maps by Fang-Hua Lin [27]. More precisely,
Tian proves that the top dimensional stratum is rectifiable and calibrated by
w with integer multiplicities, and as a consequence of results of King [23] and
Harvey-Shiffman [19], it represents an analytic cycle. The compactification is
then defined by adding ideal points containing in addition to an admissible
HYM connection the data of a codimension 2 cycle in an appropriate coho-
mology class (see Section 2). At least when X is projective, the space Myywy
of ideal HYM connections is a compact topological space (Hausdorff), and the
compactification of M}, is obtained by taking its closure Myyy C Miya-
Under this assumption, we recently showed, in collaboration with Daniel Greb
and Matei Toma, that Myyy admits the structure of a seminormal complex
algebraic space [16].

The purpose of this note is to point out the compatibility of this construc-
tion with the Yang-Mills flow. For example, in the case of a Riemann surface,
the flow defines a continuous deformation retraction of the entire semistable
stratum onto the moduli space of semistable bundles. This is precisely what
is to be expected from Morse theory (see [2]). In higher dimensions, as men-
tioned above, bubbling along the flow needs to be accounted for. The result
is the following.

Main Theorem. Let (E,h) be a hermitian vector bundle over a compact
Kéhler manifold (X,w) with [w] € H*(X,Z). Let AY(E,h) denote the set
of integrable unitary connections on (E, h) with the smooth topology (see Sec-
tion 2). Let A% (E,h) C AYY(E, h) be the subset consisting of slope semistable
holomorphic bundles. Then:

1. A*(E,h) is an open subset of AV (E,h);
2. the Yang-Mills flow defines a continuous map

(1) T A*(E, h) = My (E, h) .

In particular, the restriction of F gives a continuous map A5(E,h) —
Muyu(E, h), where As(E,h) C A*(E,h) is the closure of A*(E,h) in
the smooth topology.

3. In fact, on the closure, the map F factors as follows:

A(E, h) —L= 1", h)

(2) x l@

MHYM(E7 h)
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where M”(E, h) is a modular compactification of the moduli space of
stable holomorphic structures on E, ® is a continuous comparison map
between the two compactifications, and Q) is a continuous map.

The proof of item (1) of the Main Theorem relies on a theorem of
Maruyama along with a comparison between A% (E, h) and the Quot scheme
(see Section 4 and Corollary 6.2 as well as 6.1). Part (2) is a consequence of
the work in [16], with small modifications. Part (3) is also a corollary of the
result of 6.1 in Section 6, combined with the continuity of the map ® proven
in [16]. For the case of Kéhler surfaces, the second statement of part (2) was
claimed in [10, Thm. 2]. Unfortunately, there is an error in the proof of Lemma
8 of that paper, and hence also in the proof of Theorem 2. The Main Theo-
rem above validates the statement in [10, Thm. 2], at least in the projective
case. We do not know if the result holds when X is only a Kéhler surface.
The advantage of projectivity is that a twist of the bundle is generated by
global holomorphic sections. These behave well with respect to Uhlenbeck
limits and provide a link between the algebraic geometry of geometric in-
variant theory quotients and the analytic compactification. We review this in
Section 4 below.

2. Uhlenbeck limits and admissible HYM connections

In this section we briefly review the compactification of M?,,,(E, h) by ideal
HYM connections. As in the introduction, let (E,h) be a hermitian vector
bundle on a compact Kéhler manifold (X, w) of dimension n, and let g denote
the bundle of skew-hermitian endomorphisms of E. The space A(E, h) of C*
unitary connections on F is an affine space over Q'(X, gg), and we endow it
with the smooth topology. A connection A € A(E, h) is called integrable if its
curvature form Fy is of type (1,1). Let A (E, h) denote the set of integrable
unitary connections on (E, h). Then A (E, h) C A(E, h) inherits a topology
as a closed subset. The locus A*(E,h) of stable holomorphic structures is
open in AY(E,R) (cf. [28, Thm. 5.1.1]). Under the assumption that w is a
Hodge metric we shall prove below that the subset A*(E, h) of semistable
holomorphic structures is also open in AY1(E, h) (see Corollary 6.2).

We call the contraction v/—1AF4 of F4 with the Kéhler metric the
Hermitian-FEinstein tensor. It is a hermitian endomorphism of E. The key
definition is the following (cf. [4] and [37, Sect. 2.3]).

Definition 2.1. An admissible connection is a pair (4, S) where

1. S C X is a closed subset of finite Hausdorff (2n — 4)-measure;
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2. A is a smooth integrable unitary connection on E| s’

3. x\s |Fal? dvoly < +o0;
4. supy\g [AFa| < +o0.

An admissible connection is called admissible HYM if there is a constant pu
such that /—1AF4 = - T on X\S.

The fundamental weak compactness result is the following.

Theorem 2.2 (Uhlenbeck [39]). Let A; be a sequence of smooth integrable
connections on (E,h) — X with uniformly bounded Hermitian-Einstein ten-
sors. Then for any p > n there is

1. a subsequence (still denoted A;),

2. a closed subset Soo C X of finite (2n — 4)-Hausdorff measure,
3. a connection Asy on a hermitian bundle Es — X\Ss, and
4. local isometries Eoo ~ E on compact subsets of X\ Seo

such that with respect to the local isometries, and modulo unitary gauge equiv-

alence, A; — Ao weakly in LY, (X\Seo).

1,loc

Remark 2.3. If one further assumes that ||d4,AFa,||2(xw) — 0, then the
limiting connection is Yang mills (see Section 3). For the proof of this see [8],
Prop. 2.11.

We call the limiting connection A, an Uhlenbeck limit. The set

wn
2
F 250} )

_ fn S 4—2n
Seo= [ {SE e X| hirgclgfa /Bg(m) |Fa,

op>0>0

where oy and ¢y are universal constants depending only on the geometry of
X, is called the (analytic) singular set.

For the definition of a gauge theoretic compactification more structure is
needed. This is provided by the following, which is a consequence of work of
Tian [37] and Hong-Tian [20] (see for example [37], Thm 4.3.3).

Proposition 2.4. The Uhlenbeck limit of a sequence of smooth HYM con-
nections on (E,h) is an admissible HYM connection. Moreover, the corre-
sponding singular set S s a holomorphic subvariety of codimension at least
2. The same is true for Uhlenbeck limits of sequences along the Yang-Mills

flow, except that the limiting connection is merely Yang-Mills in general (note
that the flow satisfies the condition of 2.3).



914 Benjamin Sibley and Richard Wentworth

For the definition of the flow see Section 3 below.
To be more precise, there is a decomposition Ss, = |[Coo| U S(Aw), where

(3) smmy:{xex

lima4_2n/ | F'a |2w—n5£0 }
cl0 Bo(z) <t nl

has codimension > 3, and |C| is the support of a codimension 2 cycle Cuo.
The cycle appears as the limiting current of the Yang-Mills energy densities,
just as in the classical approach of Donaldson-Uhlenbeck in real dimension 4.
This structure motivates the following

Definition 2.5 ([16, Def. 3.15]). An ideal HYM connection is a triple (A,C,
S(A)) satisfying the following conditions:

1. Cis an (n — 2)-cycle on X

2. the pair (4, |C| U S(A)) is an admissible HYM connection on the her-
mitian vector bundle (E, h) — X, where S(A) is given as in eq. (3);

3. [Chg(A)] = ChQ(E) + [C], in H4(X, Q),

Note that here, instead of allowing arbitrary sets S as in Definition 2.1,
we require the particular form in item (2) above. This gives better control
of these higher codimensional sets in sequences. We also remark that since
the set S(A) is determined by A, we can also think of an ideal connection as
simply a pair (A, C), and we will make this abuse of notation in the sequel.

Here we have denoted by cha(A) the (2,2)-current given by

mMMM:—L/MﬂAMMQ7

812 Jx

for smooth (2n — 4)-forms 2. This is well defined by Definition 2.1 (3), and in
[37, Prop. 2.3.1] it is shown to be a closed current. It thus defines a cohomology
class as above. By [4], there is a polystable reflexive sheaf £ extending the
holomorphic bundle (E|X\|C|US(A)75A)- The singular set sing(£4) of €4, that
is, the locus where €4 fails to be locally free, coincides with S(A) (see [38,
Thm. 1.4]). By the proof of [34, Prop. 3.3|, cha(A) represents the class chy(E).
Thus we may alternatively regard an ideal connection as a pair (€4, C), where
Ea is a reflexive sheaf, C is a codimension 2 cycle with chs(€) = cha(F) +
[C], and where the underlying smooth bundle of £4 on the complement of
|C| Using(&) is isomorphic to E. See [16, Sec. 3.3] for more details. Moreover
we consider two ideal connections (£4,,C1) and (€4,,C2) to be equivalent if
€, and &4, are isomorphic as sheaves (or equivalently A; and Ay are gauge
equivalent), and C; and Cq are equal.
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Definition 2.6. We define ]\//.THYM(E ,h) to be the space of gauge equivalence
classes of ideal HYM connections.

In what follows, we shall denote by [A] the unitary gauge equivalance
class of a connection A € AVY(E, h), and by [(A,C)] the equivalence class of
an ideal HYM connection (A,C). The main result is the following (see [16],
Thm 3.17).

Theorem 2.7. Assume w is a Hodge metric. Let [(4;,C;)] € Muym(E, h).
Then there is a subsequence (also denoted by {i}), and an ideal HYM connec-
tion (Aso, Coo, S(Ax)) such that C; converges to a subcycle of Co, and (up to
gauge transformations) A; — Ao in C5X. on X\(|Coo| U S(Ax)). Moreover,

(4) ChQ(AZ) — Cz — Chg (Aoo) — Coo

in the mass norm; in particular, also in the sense of currents.

__ Using the result above one can define a compact Hausdorff topology on
Muyn(E, h), and from there a compactification Mgy (E, h) of My (E, h).
For more details we refer to [37, 38] and [16, Thm. 1.1] which is proved in
Section 3 of that paper.

3. The Yang-Mills flow

The Yang-Mills flow is a time dependent family of integrable connections
A(t) depending on Ag € AVY(E, h) satisfying the equations:

DA(t)

(5) 5 = “daoFaw, A0) = Ao
Donaldson [11] shows that a solution to (5) exists (modulo gauge transfor-
mations) for all 0 < ¢ < 4o00. Eq. (5) is formally the negative gradient flow

for the Yang-Mills functional:

Y M(A) = 1/ Fal? duvol,.
2 /x

Critical points of Y M are called Yang-Mills connections and satisfy d% Fa =
0. A smooth integrable Yang-Mills connection A decomposes the bundle €4
holomorphically and isometrically into a direct sum of the (constant rank)
eigenbundles of v/—1A,F4, and the induced connections are Hermitian-Yang-
Mills. Similarly, an admissible Yang-Mills connection on a reflexive sheaf gives
a direct sum decomposition into reflexive sheaves admitting admissible HYM
connections.
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By Proposition 2.4, any sequence of times ¢; along the flow has an Uh-
lenbeck limit, which is Yang-Mills. A priori this limit might depend on the
choice of subsequence chosen to achieve convergence. It turns out that the
limit is independent of the chosen subsequence however. There is a canonical
ideal connection associated to the bundle £4, which is the putative limit for
all subsequences.

Let A € A*(E,h), i.e. the induced holomorphic bundle £4 = (E,4) is
semistable. Then there is a Seshadri filtration {0} = Fo C F; C --- C Fp =
&4 such that the successive quotients Q; = F;/F;—1, ¢ = 1,...,{ are stable
torsion-free sheaves all of equal slope to that of £4,. Let Gr(£4) = ®f_, Qs
and C the cycle defined by the codimension 2 support of Gr(€4)**/ Gr(£4)
(see Section 5). By the result of Bando-Siu [4], there is an admissible HYM
connection Ay, on Gr(€4)**, such that (Aw,Cs) defines an ideal HYM con-
nection in the sense of Definition 2.5. For a detailed description of this we
refer to [16, Sec. 3.1].

Theorem 3.1 ([8, 10, 33, 34, 22, 20]). Let Ay € A**(E,h). Then the Yang-
Mills flow Ay with initial condition Ag converges in the sense of Theorem 2.7
to an ideal connection (Ao, Coo), where Ay is the admissible HY M connection

on Gr(€a,)™, and Cs is the codimension 2 cycle defined by the torsion-free
sheaf Gr(Ea,).

Remark 3.2. Note that this says in particular that in the case that Ag gives a
semistable holomorphic structure, the Uhlenbeck limit is in fact HYM rather
than merely Yang-Mills. A version of the theorem also holds when €4, is a
general unstable bundle as well.

Remark 3.3. The theorem above states that there is a well-defined ideal
HYM connection % ([Ap]) defined by the limit at oo of the Yang-Mills flow,
and which is given purely in terms of the holomorphic initial data and the
solution for admissible HYM connections on reflexive sheaves. In particular, if
A and A are complex gauge equivalent (i.e. 4 ~ £7), then F ([A]) = Z([A]).
Thus, the map .Z in (1) is alternatively defined by setting

(6) T A (B, h) — Myuym(E, ) : [A] = [(As,Coo)] -
4. The method of holomorphic sections
Admissibility of a connection is precisely the correct analytic notion to make

contact with complex analysis. Bando [3] and Bando-Siu [4] show that bun-
dles with admissible connections admit sufficiently many local holomorphic
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sections to prove coherence of the sheaf of L?-holomorphic sections. This local
statement only requires the Kéhler condition. The key difference between the
projective vs. Kéhler case is, of course, the abundance of global holomorphic
sections. These provide a link between the algebraic and analytic moduli.
They are also well-behaved with respect to limits. The technique described
here mimics that introduced by Jun Li in [26].

We henceforth assume [w] € H?*(X,Z). Let L — X be a complex line
bundle with ¢;(L) = [w]. Define the numerical invariant:

(7) WWQ:K;ME®HMMXy

Since w is a (1,1) class, L may be endowed with a holomorphic structure £
making it the ample line bundle defining the polarization of X. We also fix
a hermitian metric on L with respect to which the Chern connection of L
has curvature —2miw. Use the following notation: £(m) := £ ® L™. The key
property we exploit is the following, which is a consequence of Maruyama’s
boundedness result [30], as well as the Hirzebruch-Riemann-Roch theorem.

Proposition 4.1. There is M > 1 such that for all m > M and all A €
A*(E h), if Ea = (E,04) then the bundle E4(m) is globally generated and all

higher cohomology groups vanish. In particular, dim H°(X,Ea(m)) = 7E(m)
form > M.

In the following, we shall assume m has been fixed sufficiently large. Fix
a vector space V' of dimension 75(m), and let

(8) H=VeL™.

The Grothendieck Quot scheme Quot(H, Tg) is a projective scheme parame-
trizing isomorphism classes of quotients H — F — 0, where F — X is a
coherent sheaf with Hilbert polynomial 75 [18, 1]. Proposition 4.1 states that
there is a uniform m such that for every A € A**(E, h) there is a quotient
H — E4 — 0 in Quot(H, 75) with £4 ~ (E,d4). The next result begins the
comparison between Uhlenbeck limits and limits in Quot(H, 7).

Proposition 4.2. Let {A;} C A% (E, h), and suppose A; — Ao in the sense
of Uhlenbeck (Theorem 2.2), and assume uniform bounds on the Hermitian-
Einstein tensors, and that A is Hermitian- Yang-Mills. Then there are quo-
tients H — F; in Quot(H,Tg), with F; = E4,, converging to a semistable
quotient H — Foo — 0 in Quot(H,7g) and an inclusion Foo < Ea.,. such
that FXX ~Ea,.
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The proof of this result for sequences of HYM connections is in [16, Prop.
4.2], but the proof there works as well under the weaker assumption of a
uniformly bounded Hermitian-Einstein tensor. Indeed, the first key point is
the application of the Bochner formula to obtain uniform bounds on L*-
holomorphic sections. The precise statement is that if s € H°(X,E4,(m))
then there is a constant C' depending only on the geometry of X, m, and
the uniform bound on the Hermitian-Einstein tensor, such that supy [s| <
C||s]|2- As noted above, we may realise the the bundles £4, as elements of
Quot(H, 7). In fact, any choice of L?-orthonormal basis for H%(X, E4,(m))
determines a specific representation ¢;: H — €4, — 0. Using the sup-norm
bound on sections, one can extract convergent subsequences for the elements
of these orthonormal bases to obtain a map ¢o : H — €4 . The limiting
sections may no longer form a basis of H°(X,Ex(m)), nor necessarily do
they generate the fiber of £4 . Remarkably, though, it is still the case that
the rank of the image sheaf €4 C €4, of ¢ agrees with rank(E) and has
Hilbert polynomial 7 (for this one may have to twist with a further power
of £). In fact, the quotient sheaf T, = E5/Ex turns out to be supported in
complex codimension 2 (the first Chern class is preserved under Uhlenbeck
limits). Hence, in particular, (£4.)** ~ Ea... See [16, proof of Lemma 4.3
for more details.

The second ingredient in the proof is the fact that Quot(H, 7g) is compact
in the analytic topology. Hence, after passing to a subsequence, we may as-
sume the ¢; converge. Convergence in Quot(#, 7z) means the following: there
is a convergent sequence of quotients F; — F, and isomorphisms f; making
the following diagram commute

H—F,——0

s

H—Ls 8y —0

The proof is completed, as in [16, Lemma 4.4], by showing that Fo, =~ g A -
The crucial point that is used in showing this is that the two sheaves are
quotients of ‘H with the same Hilbert polynomial.

5. Analytic cycles and the blow-up set

In the case of the stronger notion of convergence of Uhlenbeck-Tian, we go
one step further and identify the cycle associated to the sheaf F, with the
cycle Cy that arises from bubbling of the connections. The candidate is the
following: for any torsion-free sheaf F — X, define a codimension 2 cycle Cx
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from the top dimensional stratum of the support of F**/F. See for example
[16, Sec. 2.5.3].

Proposition 5.1. Let A; be a sequence of connections as in Proposition
4.2, and suppose furthermore that they converge to an ideal HYM connection
(Aso,Co0) in the sense of Theorem 2.7. Let H — Fu be as in the statement
of Proposition 4.2. Then Cx = Cr._.

The proof of this result follows from the discussion in [16, Sec. 4.3] (see in
particular Prop. 4.7). Although the result there is stated for sequence of HYM
connections, this is required only to obtain the same sup-norm inequality on
the global sections of £(m) that was used to obtain Proposition 4.2. Thus,
the uniform bound on the Hermitian-Einstein tensor suffices, we have first of
all that €4 = F3.

Let us sketch the argument. The first key point is that [Cr ] = [ Coo
in rational cohomology. Indeed, the connection A, is defined on the smooth
locus of the sheaf FX* and is smooth there, and cha(Ay) defines a closed
current (see Section 2). It then follows as in the proof of [34, Prop. 3.3] that
[cho(Ao)] = cha(F%). The exact sequence

0 —Fo —FL —Too—0,
implies that
[Chg(Aoo)] = Chg(foo) + Chg(Too) = ChQ(E) + {C]-‘oo} s

where in the second inequality we have used the fact that the Chern classes
of Fo are the same as those of F, and Proposition 3.1 of [34] (see also the
latest arxiv version of this reference). By the convergence of the currents in
Theorem 2.7 and Chern-Weil theory, we have

cha(E) + [Coo) = [cha(A4;)] + [Coo) = [cha(As)]-

Combining these two equalities gives the statement.

What remains to be shown is that given any irreducible component Z C
supp(7), for the associated multiplicity my as defined in [16, Sec. 2.5.3], we
have an equality

1
myz = lim jAtI(FAi /\FAi)_tr(FAw /\FAoo) ,

i—o00 ST

where ¥ is a generic real 4-dimensional slice intersecting Z transversely in a
single smooth point. For Hermitian-Yang-Mills connections this is [16, Prop
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4.9]. Again note that the proof provided there only uses the Hermitian-Yang-
Mills condition to obtain the quotient F,, and so by the preceding discussion
also applies here. With this in hand, the point is that if Z is contained in the
support |Coo| then it must be equal to one of the irreducible components. In
this case, the number on the right hand side of the equality above is exactly
the multiplicity of this component in the cycle Co,, and otherwise this number
is zero, (see [16, Lemma 3.13] and [34, Lemma 4.1] and again note that the
proof is completely general). If the equality holds, this number cannot be
zero, since my is strictly positive by definition, and therefore Z must be a
component of Cy, and the multiplicities agree. Since Co, and Cr_ are equal
in cohomology, there can be no other irreducible components of C.,, and so
Cs = Cr.,. For more details, see the proof of [16, Prop. 4.7].

Remark 5.2. It should be emphasized that Proposition 5.1 does not claim
that the support of FX*/F. coincides with the full bubbling locus |C| U
S(Aw); only the top dimensional strata are necessarily equal. This differs from
what occurs, for example, along the Yang-Mills flow (see [34, Thm. 1.1]). It
would be interesting to understand the behavior of the higher codimensional
pieces from this perspective. There are recent examples due to Chen-Sun
indicating that this should be subtle (see [5, 6]).

6. Relation with the topology of the Quot scheme

In this section we consider the relationship between the Quot scheme
Quot(H,7g) discussed in Section 4, and the infinite dimensional space
AVY(E| ) of integrable connections. Recall that Quot(H, 7z) has a PGL(V)
action obtained by change of basis in the vector space V. We are inter-
ested in the points in Quot(#,7g) where the quotient sheaf is locally free
and has underlying C*° bundle isomorphic to E. A PGL(V') orbit of such a
point corresponds to an isomorphism class of holomorphic structures on E, or
equivalently, to a complex gauge orbit in A (E, h). Conversely, a connection
A € AYY(E,h) gives a holomorphic bundle which, provided m is sufficiently
large, can be realized as a quotient. Complex gauge equivalent connections
give rise to different quotients in the same PGL(V') orbit. We wish to show that
this correspondence between complex gauge orbits in A (E, h) and PGL(V)-
orbits in Quot(H,7g) can be made continuous in the respective topologies.
Since the complex gauge orbit space in AV (E, h) is non-Hausdorff in gen-
eral (and similarly for Quot(H, 7g)), we will lift to a map from open sets in
AYL(E, h) itself.

This discussion gives rise to the following notion. Let U C AYM(E,h).
We call 0 : U — Quot(H,7r) a classifying map if the quotient o(A) is a
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holomorphic bundle isomorphic to (E,d4). Recall from Section 4 that the
bundle ‘H depends on a sufficiently large choice of m, which we omit from the
notation. Then the result is the following.

Theorem 6.1. Fiz Ay € AYY(E, h). Then for m sufficiently large (depending
on Ay), there is an open neighborhood U C AM(E, h) of Ay and a continuous
classifying map o : U — Quot(H,7g). On A**(E,h), the twist m may be
chosen uniformly.

Throughout the proof, as in Section 4, we fix a hermitian structure hy, on
L such that the curvature of the Chern connection of (£, hz,) defines a Kéhler
metric w on X.

Proof. Let d(m,n) = 7g(m) - dim H°(X, £™). For n > 1, Quot(H, 7g) is em-
bedded in the Grassmannian G(d(m,n), 7e(m+n)) of 7g(m+n)-dimensional
quotients of C¥™)  More precisely, suppose ¢ : H — & is a point in
Quot(H, 7g), and let K = ker . There is a sufficiently large n (uniform over
the whole Quot scheme) such that

(9) HY(X,K(m+n)) = H(X,E(m+n))={0}, i >1
(cf. 21, Lemmata 1.7.2 and 1.7.6]). We therefore have a short exact sequence:
(10) 0 — HY(X,K(m+n)) — HY(X,H(m+n)) — H°(E(m+n)) — 0

Since the middle term has dimension d(m,n), and by (9) the last term has
dimension 7g(m + n), we obtain a point in G(d(m,n),Te(m + n)). For n
sufficiently large, this correspondence between quotients and points in the
Grassmannian gives an embedding of the Quot scheme.

Given Ag € AYY(E,h), Ea, = (F,04,), choose m such that £4,(m) is
globally generated and has no higher cohomology. Set Vo = H?(X, E4,(m)).
Then dim Vy = 75(m). The map

ev: Vo ®Ox — Ex(m) :s®c fr fs

realizes £4,(m) as a quotient of Vp ® Ox. After twisting back by £, we
have a quotient H — £4, — 0.

For A € U (the open set U remains to be specified) in order to realize
Ea = (FE,d4) as a quotient of H, it suffices to give an isomorphism of Vj with
Vi =kerdy C T'(E® L™), for then 4 is obtained through this isomorphism
followed by evaluation ev as above. Note here that we assume already that
U has been chosen sufficiently small so that £4(m) is globally generated and



922 Benjamin Sibley and Richard Wentworth

has no higher cohomology. This is the first condition on U, and it can be
arranged by semicontinuity of cohomology (see [25, Ch. 7]).

On I'(E®L™) we have an L?-inner product. Since V4 and Vj are subspaces
of I'(EF ® L™), we can define a map by orthogonal projection w4 : V4 — Vj.
Let us write this explicitly. For s € Vy, let ma(s) = so = s + us, where
us € Vit We require 94,50 = 0, or da,(s + us) = 0. If we write 04 =
Oa, +a, a € Q¥(X,gg), then the above is J4,us = as. Let Gy be the
Green’s operator for the 04, laplacian acting on Q%' (E® L™). In general, the
Green’s operator inverts the laplacian up to projection onto the orthogonal
complement of the harmonic forms in Q%'(X, E @ L™). We have assumed
vanishing of H(X,E4,(m)), so in our case Gy is a genuine inverse. Set u; =
94,Go(as). Then

5A0us = 5A0520G0(as) = 04,Go(as) + 52051406?0(@5) =as ,

as desired. Here, we have used the fact that 5A0G0 = GoéAo, and that, by
the integrability of 94 and s € Vy, da,(as) = 0. Notice that this definition of
us guarantees that it is orthogonal to V. Now, by Hodge theory 520G0 is a
bounded operator on L?. More precisely, the image of 520 Gy lies in (ker 04,)",
94,(0%,Go) = I, and 0% (9%,Go) = 0 so boundedness follows from the elliptic
estimate for d4,. Namely, for any ¢ € Q%'(F ® L™) we have an estimate

(1) [193,Go(@d)llr2 < [194,Go(9)l]12 < Bll0a,(94,G0)(9)]12 = Bl ]l 12
We therefore obtain (setting ¢ = as) the estimate
(12) lus|lz> < Bllas|[r> < B(sup a)[ls] > -

In particular, for sup |a| sufficiently small, which we guarantee by shrinking
U, we have ||[ma(s)| |z > (1/2)||s]|z2. Hence, 74 is injective and therefore an
isomorphism. The classifying map is then defined by setting o(A) to be the
quotient:

—1 .
T, Rid ev

H——— VY QL™ —E4— 0.

It remains to show that o is continuous. We begin with a few preliminaries.
For se I'(E ® L™), let

Fa:T(E®L™) —T(E®L™): s s+ 04,Golas) ,
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so that 74 restricted to V4 is m4. Again using that 520G0 is a bounded
operator, for Ay, Ay € U, and 04, = 04, + a;, © = 1,2, we have

|Far — 7a)sllze = 193, Gol(ar — a2)s) 22 < Bll(ar — az)s] e
< Bsup lar — as| ]2 -

It follows that 74 is continuous in A. By the argument following (12), it is
also uniformly invertible for A € U, with

(13) 73 <2.
Hence,

~—1 _ ~—1 ~—1(~ ~ \~—1
(WAll - TFAZ)S =Ta, (Ta, — 7TA1)TFA23

172y = 7, )sllze < AllFa, — Tagll - Isllze < ABsuplar — azl|s]| 2= -

We conclude that the map 7' : Vo — I'(E ® L™), whose image is Vi, is
continuous for A € U. In fact, it satisfies an estimate:

(14) () — 74, )s0llz2 < 4Bsuplar — azll|solz2

for all sg € V.

The second ingredient we shall need is the following. Depending upon
the choice of the set U there is a uniform bound on the Hermitian-Einstein
tensors AF4 for each A € U. It follows as in Section 4 that we have an
estimate: sup |s| < C||s|| 2, for all s € V4. Therefore, using (13),

(15) sup [ (s0)] < Cllmx" (so)llze < 2C]sollr2

for all sg € V.
Finally, let sg € V4. The standard elliptic estimate states that there is a
uniform constant C' such that

£z < CUIfllz2 + 19z fll12)

for smooth sections f of £L". In case f is holomorphic we may bootstrap this
estimate and use Sobolev embedding L? C L*, k > n/2 to deduce an estimate
of the form || f]lpa < C|fllz2 (for a possibly different constant). Using (14)
and (15), there is a constant Cy > 0 such that:

1F (7, = may)sollze < FIZall (7 — 7, )soll7s
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< CullflZall (73, — 74, sollczllsol 2
(16) < Ci(sup |ar — az)[[soll 7211 1122 -

To prove continuity of o, we show that the corresponding quotients (10)
vary continuously in the Grassmannian for A € U. First, from the definition
(8),

HOCX, H(m +n)) = HO(X, Vo ® L) ~ Vo & HO(X, £7)
On Vo ® H°(X, L"), we choose the tensor product metric of the L? metrics
on Vg and H°(X, L™). The map induced by o is described as follows: for each
A € U we have

Ta:Vo@ HY X, L™) — T(E® L™™) : 50 @¢ [+ 71 (s50) Qoy f
with image H(X,E4(m + n)). Moreover, from (16) it follows that

(T4, = Tay)(s0 ® )72 < Ca(suplar — azf)llso ® f* .

Hence, T4 is continuous in A for A € U.
Recall that a smooth model for the Grassmannian G(N, k) of k-dimen-
sional quotients of CV is given by

G(N,k) = {P € EndCY | P* =P, P*= P, P =N —k} .

Indeed, a smooth transitive action of U(/V) on the right hand side above is
defined by (g, P) — ¢Pg*, and the stabilizer of the projection associated
to the standard coordinate splitting CV = CF x CN=* is U(k) x U(N — k).
Thus, the right hand side is indeed identified with the homogeneous space
U(N)/U(k) x U(N — k), which is the usual description of the Grassmannian.

With this understood, in the setting above let Py € End(Vo® H(X, L™))
denote the orthogonal projection to ker T4, viewed as a point in G(d(m,n),
Te(m + n)). It suffices to show P4 is continuous in A € U. Because the
dimensions of the kernels of T4 are constant on U, this reduces to showing
that for any sequence A; — A and s; € ker T, C Vo ® H*(X, L"), ||s;|| =1,
there is a subsequence such that s; — s € ker T4. Indeed, if this is the case
we may choose an orthonormal basis of such sections, {s?‘}, so that for any

se Vo HY X, L),
Pas = (s,59)s5,
and the right hand side converges to Pas, and so || P4, — Pall — 0.
By finite dimensionaliy of Vo®@ H°(X, L"), we may assume s; — s for some
s € Vo® HYX,L"). Let s; = 8? + s} be the orthogonal decomposition with
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respect to the splitting ker T4 @ (ker T4)*. In particular, there is a constant
¢ > 0 such that

(17) ITasjll > cllsjll V5

But then
0="Ta,s; = (Ta, — Ta)s; + Tas;
and so

(Ta—Ta,)s; =Tas; = |Tasi|| —0.
The estimate (17) implies 5; — 0. Hence, s € ker T4, and continuity of ¢ is
proven. The uniformity of m in the second statement follows from Proposition

4.1. O

By a theorem of Maruyama, the semistable quotients in Quot(H, 7) form
an open set [29, Thm. 2.8]. Combining this with Theorem 6.1 we obtain part
(1) of the Main Theorem.

Corollary 6.2. The set A%*(E,h) is open in AYY(E,h).
This is item (1) of the Main Theorem.

Remark 6.3. The result in Corollary 6.2 is straightforward for Riemann
surfaces (cf. [2, p. 576]) based on the Shatz stratification. More generally, an
analytic proof can be given for projective manifolds using the Yang-Mills flow,
answering a question in [24, Rem. 7.3.38]. A direct analytic proof for Kéahler or
Hermitian manifolds seems more difficult (for a partial result, [36, Thm. 3]).

7. Proof of the Main Theorem

In this section we prove items (2) and (3) of the Main Theorem (in reverse
order). As seen in Section 4, a consequence of the assumption that X be
projective is a representation of holomorphic bundles and Uhlenbeck limits as
quotients. The existence of many holomorphic sections also passes to certain
line bundles on moduli spaces. This fact implies strong separation properties
and will be used in this section to deduce the Main Theorem.

7.1. Item (3)

We wish to prove that .% is continuous on the closure of the stable locus. For
this we invoke the moduli space construction of Greb-Toma [17]. Let R** C
Quot(H, ) denote the open subset consisting of quotients that are slope
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semistable torsion-free sheaves. Then there exists a (seminormal) projective
variety M#** and a morphism (in particular, continuous map) RHS — MH5S :
F — [F] with the following properties:

1. If Fi >~ Fy, then [F1] = [Fo] in M#® (cf. the discussion preceding [16,
Def. 2.20]);
2. If [F1] = [Fo| in M#s5) then Fi* ~ F3* and Cr, = Cx, [17, Thm. 5.5].

The association [F] — (F**,Cr) gives a well-defined map ® : M"(FE, h) —
Myym(E, h), where M"(E, h) is the closure of M, (F, h) in M"** (see Sec-
tion 4.1 of [16]). The map As(E, h) < M"(E, h) in the diagram (2) is defined
by realizing a semistable bundle as a quotient in R*** (see the discussion fol-
lowing Proposition 4.1), and sending this quotient to its equivalence class in
MHss,

By construction, () may be locally exhibited as the composition of the
map R*® — MH with a classifying map o as discussed in the previous
section. The former map is a morphism of complex spaces and is therefore
continuous. By Theorem 6.1, ¢ is continuous as well. Since continuity is a
local property, we deduce the continuity of (). Now one of the main results of
[16] is Theorem 4.11, which states that ® is also continuous. By Theorem 3.1,

the diagram (2) commutes, and we therefore conclude that .# is continuous
on As(E, h).

7.2. Item (2)

To address the general situation, we first reduce the problem as in [10, Sec.
4]. Let A; — Ap be a sequence in A**(E, h) converging in the C* topology,
and let [As,CA, S(Ax)] = Z(JAo]). By the compactness theorem [16, Thm.
3.23], we may assume that, after passing to a subsequence, there is an ideal
connection (Buo,CE) such that F([A;]) — [(Beo,CZ)]. We must show that
the two limits agree.

Let A;; denote the Yang-Mills flow at time ¢ of A;. Smooth dependence
on initial conditions implies that for each fixed ' > 0, A;; — A; as i — 400,
uniformly for ¢ € [0, 7).

Lemma 7.1. There is a subsequence (whose index set will be also denoted by
{i}) and t; — +oo, such that [A;1,] — [(As,CA)] in the sense of Theorem
2.7.

Proof. The proof relies on several properties. First, since A;; — A; for every
t > 0, by a diagonalization argument we may choose a sequence A;; so
that (up to gauge), A;;, — Ao weakly in LY, . away from |C| U S(A).

1,loc
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Next, by the result in [20, Thm. C], any sequence A;;,, t; — +o0, has a
subsequence that converges to an ideal connection. This is shown in [20]
for a sequence of times along a single flow, but the argument extends more
generally. The key points are Theorem 8 and Proposition 9 of [20], and these
hold uniformly for a smoothly convergent sequence of initial conditions. Note
that there is a uniform bound on the Hermitian-Einstein tensor. Given this
fact, we are exactly in the set-up of the proof of [16, Proposition 3.20] (the
“boundedness” assumption of that result is guaranteed, since X is projective
algebraic; see [16, Lemma 3.16]). The conclusion of that result is that we may
choose the t; such that the limiting ideal HYM connection of {A;, } coincides
with [As,CL)). O

The Yang-Mills flow lies in a single complex gauge orbit: A;; is complex
gauge equivalent to A; for all ¢ € [0, +00). By Remark 3.3 it follows that and
F([Air]) = Z(JAi]). Therefore, in the same way as above we may choose
times s; such that for B; = A; ,,, [B;] is sufficiently close to .#([A;]) so as to
converge to [(Bso,C2)]. We state this as the following.

00 Yoo

Lemma 7.2. There are complex gauge transformations g; such that if B; =
9i(Aiy,), then after passing to a subsequence, [B;] — [(Beo,CL)] in the sense
of Theorem 2.7.

As in Section 4, the holomorphic bundles £4,, can be realized as a se-
quence of quotients in cH — SAW, and the composition ¢” with the g;
from the lemma above realizes £p, as quotients ¢”. Note that by definition of
the equivalence in the Quot scheme, since qZA and ¢ have the same kernels
in ‘H they represent the same points in Quot(#,7x). We now apply Propo-
sitions 4.2 and 5.1 to both sequences A;;, and B;. One obtains quotients
@ =g H = FA and ¢ — ¢ : H — FB in Quot(H, 7r). Moreover,
(FAy* ~ &, and (FB)* ~ £p_. In particular, since €4 and Ep_ have
admissible Hermitian-Einstein metrics, the sheaves FZ2 and FZ are slope
semistable, and so they lie in R**S. Also, C4 = Cza and C§ = Crs (see [16,
Lemma 2.10]).

Now [E4,, ] = [Ep;] in M# for every i, since B; is gauge equivalent to
A, +,. Because their limits are also semistable (in fact polystable), we conclude
again from item (1) above and the continuity of the projection to M#** that
[F2] = [FZ]. It then follows from item (2) that €4, ~ Ep.., and C4 = Cra =
Crz = CB. From the discussion following Definition 2.5, the isomorphism
Ea., ~ Ep,, implies that A and By are gauge equivalent on their common
smooth locus. Moreover, since the singular set of the HYM connection agrees
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with the singular set of the Bando-Siu extension, we have

S(As) = sing(€Ea,) =sing(€p..) = S(Bx) -

Finally, since the codimension 2-cycles also agree, the ideal HYM connections
are gauge equivalent. This completes the proof of the Main Theorem.
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