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Abstract: A recent paper [16] studied properties of a compact-
ification of the moduli space of irreducible Hermitian-Yang-Mills
connections on a hermitian bundle over a projective algebraic man-
ifold. In this follow-up note, we show that the Yang-Mills flow at
infinity on the space of semistable integrable connections defines a
continuous map to the set of ideal connections used to define this
compactification. Part of the proof involves a comparison between
the topologies of the Grothendieck Quot scheme and the space of
smooth connections.
Keywords: Yang-Mills Flow, Semistable Bundles, Donaldson-
Uhlenbeck Compactification.

1. Introduction

Let (X, ω) be a compact Kähler manifold of dimension n and (E, h) → X
a C∞ hermitian vector bundle on X. The celebrated theorem of Donaldson-
Uhlenbeck-Yau states that if A is an integrable unitary connection on (E, h)
that induces an ω-slope stable holomorphic structure on E, then there is
a complex gauge transformation g such that g(A) satisfies the Hermitian-
Yang-Mills (HYM) equations. The proof in [40] uses the continuity method
applied to a deformation of the Hermitian-Einstein equations for the metric
h. The approach in [11, 12] deforms the metric using a nonlinear parabolic
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equation, the Donaldson flow. Deforming the metric is equivalent to acting
by a complex gauge transformation modulo unitary ones, and in this context
the Donaldson flow is equivalent (up to unitary gauge transformations) to the
Yang-Mills flow on the space of integrable unitary connections. The proof in
[12] assumes that X is a projective algebraic manifold (more precisely, that
ω is a Hodge metric) whereas the argument in [40] does not. The methods
of Uhlenbeck-Yau and Donaldson were combined by Simpson [35] to prove
convergence of the Yang-Mills flow for stable bundles on all compact Kähler
manifolds. The Yang-Mills flow thus defines a map As(E, h) → M∗

HYM
(E, h)

from the space of smooth integrable connections on (E, h) inducing stable
holomorphic structures to the moduli space M∗

HYM
(E, h) of irreducible HYM

connections.1 Continuity of this map follows by a comparison of Kuranishi
slices (see [15, 31]).

When the holomorphic bundle EA = (E, ∂̄A) is strictly semistable, then
the Donaldson flow fails to converge unless EA splits holomorphically into a
sum of stable bundles (i.e. it is polystable). If n = 1 it is still true, however,
that the Yang-Mills flow converges to a smooth HYM connection on E for any
semistable initial condition. This was proven by Daskalopoulos and Råde [7,
32]. Moreover, the holomorphic structure of the limiting connection is isomor-
phic to the polystable holomorphic bundle Gr(EA) obtained from the associ-
ated gradation of the Jordan-Hölder filtration of EA. For n ≥ 2, there is an ob-
struction to a smooth splitting into an associated graded bundle, and Gr(EA)
may not be locally free. The new phenomenon of bubbling occurs, and one
must talk of convergence in the sense of Uhlenbeck, that is, away from a singu-
lar set of complex codimension at least 2 (see Theorem 2.2 below). In [8] (see
also [9]) it was shown for n = 2 that the Yang-Mills flow converges in the sense
of Uhlenbeck to the reflexification Gr(EA)∗∗, which is a polystable bundle. The
bubbling locus, which in this case is a collection of points with multiplicities,
is precisely the set where Gr(EA) fails to be locally free [10]. The extension
of these results in higher dimensions was achieved in [33, 34]. Here, even the
reflexified associated graded sheaf may fail to be locally free, and one must
use the notion of an admissible HYM connection introduced by Bando and
Siu [4]. Convergence of the flow to the associated graded sheaf for semistable
bundles in higher dimensions was independently proven by Jacob [22].

In a different direction, a compactification of M∗
HYM

was proposed by Tian
in [37] and further studied in [38]. This may be viewed as a higher dimensional
version of the Donaldson-Uhlenbeck compactification of ASD connections on

1The notion of (semi)stability depends on the choice of Kähler class [ω]; however,
the class will remain fixed throughout, and we shall suppress this dependency from
the notation.
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a smooth manifold of real dimension 4 (cf. [14, 13]). It is based on a finer anal-
ysis of the bubbling locus for limits of HYM connections that is similar to
the one carried out for harmonic maps by Fang-Hua Lin [27]. More precisely,
Tian proves that the top dimensional stratum is rectifiable and calibrated by
ω with integer multiplicities, and as a consequence of results of King [23] and
Harvey-Shiffman [19], it represents an analytic cycle. The compactification is
then defined by adding ideal points containing in addition to an admissible
HYM connection the data of a codimension 2 cycle in an appropriate coho-
mology class (see Section 2). At least when X is projective, the space M̂HYM

of ideal HYM connections is a compact topological space (Hausdorff), and the
compactification of M∗

HYM
is obtained by taking its closure MHYM ⊂ M̂HYM.

Under this assumption, we recently showed, in collaboration with Daniel Greb
and Matei Toma, that MHYM admits the structure of a seminormal complex
algebraic space [16].

The purpose of this note is to point out the compatibility of this construc-
tion with the Yang-Mills flow. For example, in the case of a Riemann surface,
the flow defines a continuous deformation retraction of the entire semistable
stratum onto the moduli space of semistable bundles. This is precisely what
is to be expected from Morse theory (see [2]). In higher dimensions, as men-
tioned above, bubbling along the flow needs to be accounted for. The result
is the following.

Main Theorem. Let (E, h) be a hermitian vector bundle over a compact
Kähler manifold (X, ω) with [ω] ∈ H2(X,Z). Let A1,1(E, h) denote the set
of integrable unitary connections on (E, h) with the smooth topology (see Sec-
tion 2). Let Ass(E, h) ⊂ A1,1(E, h) be the subset consisting of slope semistable
holomorphic bundles. Then:

1. Ass(E, h) is an open subset of A1,1(E, h);
2. the Yang-Mills flow defines a continuous map

(1) F : Ass(E, h) → M̂HYM(E, h) .

In particular, the restriction of F gives a continuous map As(E, h) →
MHYM(E, h), where As(E, h) ⊂ Ass(E, h) is the closure of As(E, h) in
the smooth topology.

3. In fact, on the closure, the map F factors as follows:

As(E, h)
Q

F

M
μ
(E, h)

Φ

MHYM(E, h)

(2)
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where M
μ
(E, h) is a modular compactification of the moduli space of

stable holomorphic structures on E, Φ is a continuous comparison map
between the two compactifications, and Q is a continuous map.

The proof of item (1) of the Main Theorem relies on a theorem of
Maruyama along with a comparison between A1,1(E, h) and the Quot scheme
(see Section 4 and Corollary 6.2 as well as 6.1). Part (2) is a consequence of
the work in [16], with small modifications. Part (3) is also a corollary of the
result of 6.1 in Section 6, combined with the continuity of the map Φ proven
in [16]. For the case of Kähler surfaces, the second statement of part (2) was
claimed in [10, Thm. 2]. Unfortunately, there is an error in the proof of Lemma
8 of that paper, and hence also in the proof of Theorem 2. The Main Theo-
rem above validates the statement in [10, Thm. 2], at least in the projective
case. We do not know if the result holds when X is only a Kähler surface.
The advantage of projectivity is that a twist of the bundle is generated by
global holomorphic sections. These behave well with respect to Uhlenbeck
limits and provide a link between the algebraic geometry of geometric in-
variant theory quotients and the analytic compactification. We review this in
Section 4 below.

2. Uhlenbeck limits and admissible HYM connections

In this section we briefly review the compactification of M∗
HYM

(E, h) by ideal
HYM connections. As in the introduction, let (E, h) be a hermitian vector
bundle on a compact Kähler manifold (X, ω) of dimension n, and let gE denote
the bundle of skew-hermitian endomorphisms of E. The space A(E, h) of C∞

unitary connections on E is an affine space over Ω1(X, gE), and we endow it
with the smooth topology. A connection A ∈ A(E, h) is called integrable if its
curvature form FA is of type (1,1). Let A1,1(E, h) denote the set of integrable
unitary connections on (E, h). Then A1,1(E, h) ⊂ A(E, h) inherits a topology
as a closed subset. The locus As(E, h) of stable holomorphic structures is
open in A1,1(E, h) (cf. [28, Thm. 5.1.1]). Under the assumption that ω is a
Hodge metric we shall prove below that the subset Ass(E, h) of semistable
holomorphic structures is also open in A1,1(E, h) (see Corollary 6.2).

We call the contraction
√

−1ΛFA of FA with the Kähler metric the
Hermitian-Einstein tensor. It is a hermitian endomorphism of E. The key
definition is the following (cf. [4] and [37, Sect. 2.3]).

Definition 2.1. An admissible connection is a pair (A, S) where

1. S ⊂ X is a closed subset of finite Hausdorff (2n − 4)-measure;



Continuity of the Yang-Mills flow on the set of semistable bundles 913

2. A is a smooth integrable unitary connection on E
∣∣
X\S

;

3.
∫

X\S |FA|2 dvolX < +∞;

4. supX\S |ΛFA| < +∞.

An admissible connection is called admissible HYM if there is a constant μ

such that
√

−1ΛFA = μ · I on X\S.

The fundamental weak compactness result is the following.

Theorem 2.2 (Uhlenbeck [39]). Let Ai be a sequence of smooth integrable

connections on (E, h) → X with uniformly bounded Hermitian-Einstein ten-

sors. Then for any p > n there is

1. a subsequence (still denoted Ai),

2. a closed subset S∞ ⊂ X of finite (2n − 4)-Hausdorff measure,

3. a connection A∞ on a hermitian bundle E∞ → X\S∞, and

4. local isometries E∞ ≃ E on compact subsets of X\S∞

such that with respect to the local isometries, and modulo unitary gauge equiv-

alence, Ai → A∞ weakly in Lp
1,loc(X\S∞).

Remark 2.3. If one further assumes that ||dAi
ΛFAi

||L2(X,ω) → 0, then the

limiting connection is Yang mills (see Section 3). For the proof of this see [8],

Prop. 2.11.

We call the limiting connection A∞ an Uhlenbeck limit. The set

S∞ =
⋂

σ0≥σ>0

{
x ∈ X | lim inf

i→∞
σ4−2n

∫

Bσ(x)
|FAi

|2 ωn

n!
≥ ε0

}
,

where σ0 and ε0 are universal constants depending only on the geometry of

X, is called the (analytic) singular set.

For the definition of a gauge theoretic compactification more structure is

needed. This is provided by the following, which is a consequence of work of

Tian [37] and Hong-Tian [20] (see for example [37], Thm 4.3.3).

Proposition 2.4. The Uhlenbeck limit of a sequence of smooth HYM con-

nections on (E, h) is an admissible HYM connection. Moreover, the corre-

sponding singular set S∞ is a holomorphic subvariety of codimension at least

2. The same is true for Uhlenbeck limits of sequences along the Yang-Mills

flow, except that the limiting connection is merely Yang-Mills in general (note

that the flow satisfies the condition of 2.3).
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For the definition of the flow see Section 3 below.
To be more precise, there is a decomposition S∞ = |C∞| ∪ S(A∞), where

(3) S(A∞) :=

{
x ∈ X

∣∣∣∣ lim
σ↓0

σ4−2n

∫

Bσ(x)
|FA∞

|2 ωn

n!
�= 0

}
.

has codimension ≥ 3, and |C∞| is the support of a codimension 2 cycle C∞.
The cycle appears as the limiting current of the Yang-Mills energy densities,
just as in the classical approach of Donaldson-Uhlenbeck in real dimension 4.
This structure motivates the following

Definition 2.5 ([16, Def. 3.15]). An ideal HYM connection is a triple (A, C,
S(A)) satisfying the following conditions:

1. C is an (n − 2)-cycle on X;
2. the pair (A, |C| ∪ S(A)) is an admissible HYM connection on the her-

mitian vector bundle (E, h) → X, where S(A) is given as in eq. (3);
3. [ch2(A)] = ch2(E) + [C], in H4(X,Q);

Note that here, instead of allowing arbitrary sets S as in Definition 2.1,
we require the particular form in item (2) above. This gives better control
of these higher codimensional sets in sequences. We also remark that since
the set S(A) is determined by A, we can also think of an ideal connection as
simply a pair (A, C), and we will make this abuse of notation in the sequel.

Here we have denoted by ch2(A) the (2, 2)-current given by

ch2(A)(Ω) := − 1

8π2

∫

X
tr(FA ∧ FA) ∧ Ω ,

for smooth (2n−4)-forms Ω. This is well defined by Definition 2.1 (3), and in
[37, Prop. 2.3.1] it is shown to be a closed current. It thus defines a cohomology
class as above. By [4], there is a polystable reflexive sheaf E extending the
holomorphic bundle (E|X\|C|∪S(A), ∂A). The singular set sing(EA) of EA, that
is, the locus where EA fails to be locally free, coincides with S(A) (see [38,
Thm. 1.4]). By the proof of [34, Prop. 3.3], ch2(A) represents the class ch2(E).
Thus we may alternatively regard an ideal connection as a pair (EA, C), where
EA is a reflexive sheaf, C is a codimension 2 cycle with ch2(E) = ch2(E) +
[C], and where the underlying smooth bundle of EA on the complement of
|C| ∪ sing(E) is isomorphic to E. See [16, Sec. 3.3] for more details. Moreover
we consider two ideal connections (EA1

, C1) and (EA2
, C2) to be equivalent if

EA1
and EA2

are isomorphic as sheaves (or equivalently A1 and A2 are gauge
equivalent), and C1 and C2 are equal.
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Definition 2.6. We define M̂HYM(E, h) to be the space of gauge equivalence
classes of ideal HYM connections.

In what follows, we shall denote by [A] the unitary gauge equivalance
class of a connection A ∈ A1,1(E, h), and by [(A, C)] the equivalence class of
an ideal HYM connection (A, C). The main result is the following (see [16],
Thm 3.17).

Theorem 2.7. Assume ω is a Hodge metric. Let [(Ai, Ci)] ∈ M̂HYM(E, h).
Then there is a subsequence (also denoted by {i}), and an ideal HYM connec-
tion (A∞, C∞, S(A∞)) such that Ci converges to a subcycle of C∞, and (up to
gauge transformations) Ai → A∞ in C∞

loc on X\(|C∞| ∪ S(A∞)). Moreover,

(4) ch2(Ai) − Ci −→ ch2(A∞) − C∞

in the mass norm; in particular, also in the sense of currents.

Using the result above one can define a compact Hausdorff topology on
M̂HYM(E, h), and from there a compactification MHYM(E, h) of MHYM(E, h).
For more details we refer to [37, 38] and [16, Thm. 1.1] which is proved in
Section 3 of that paper.

3. The Yang-Mills flow

The Yang-Mills flow is a time dependent family of integrable connections
A(t) depending on A0 ∈ A1,1(E, h) satisfying the equations:

(5)
∂A(t)

∂t
= −dA∗(t)FA(t), A(0) = A0

Donaldson [11] shows that a solution to (5) exists (modulo gauge transfor-
mations) for all 0 ≤ t < +∞. Eq. (5) is formally the negative gradient flow
for the Yang-Mills functional:

Y M(A) =
1

2

∫

X
|FA|2 dvolω.

Critical points of Y M are called Yang-Mills connections and satisfy d∗
AFA =

0. A smooth integrable Yang-Mills connection A decomposes the bundle EA

holomorphically and isometrically into a direct sum of the (constant rank)
eigenbundles of

√
−1ΛωFA, and the induced connections are Hermitian-Yang-

Mills. Similarly, an admissible Yang-Mills connection on a reflexive sheaf gives
a direct sum decomposition into reflexive sheaves admitting admissible HYM
connections.
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By Proposition 2.4, any sequence of times tj along the flow has an Uh-
lenbeck limit, which is Yang-Mills. A priori this limit might depend on the
choice of subsequence chosen to achieve convergence. It turns out that the
limit is independent of the chosen subsequence however. There is a canonical
ideal connection associated to the bundle EA0

which is the putative limit for
all subsequences.

Let A ∈ Ass(E, h), i.e. the induced holomorphic bundle EA = (E, ∂̄A) is
semistable. Then there is a Seshadri filtration {0} = F0 ⊂ F1 ⊂ · · · ⊂ Fℓ =
EA such that the successive quotients Qi = Fi/Fi−1, i = 1, . . . , ℓ are stable
torsion-free sheaves all of equal slope to that of EA0

. Let Gr(EA) = ⊕ℓ
i=1Qi

and C∞ the cycle defined by the codimension 2 support of Gr(EA)∗∗/ Gr(EA)
(see Section 5). By the result of Bando-Siu [4], there is an admissible HYM
connection A∞ on Gr(EA)∗∗, such that (A∞, C∞) defines an ideal HYM con-
nection in the sense of Definition 2.5. For a detailed description of this we
refer to [16, Sec. 3.1].

Theorem 3.1 ([8, 10, 33, 34, 22, 20]). Let A0 ∈ Ass(E, h). Then the Yang-
Mills flow At with initial condition A0 converges in the sense of Theorem 2.7
to an ideal connection (A∞, C∞), where A∞ is the admissible HYM connection
on Gr(EA0

)∗∗, and C∞ is the codimension 2 cycle defined by the torsion-free
sheaf Gr(EA0

).

Remark 3.2. Note that this says in particular that in the case that A0 gives a
semistable holomorphic structure, the Uhlenbeck limit is in fact HYM rather
than merely Yang-Mills. A version of the theorem also holds when EA0

is a
general unstable bundle as well.

Remark 3.3. The theorem above states that there is a well-defined ideal
HYM connection F ([A0]) defined by the limit at ∞ of the Yang-Mills flow,
and which is given purely in terms of the holomorphic initial data and the
solution for admissible HYM connections on reflexive sheaves. In particular, if
A and Ã are complex gauge equivalent (i.e. EA ≃ E

Ã
), then F ([A]) = F ([Ã]).

Thus, the map F in (1) is alternatively defined by setting

(6) F : Ass(E, h) −→ M̂HYM(E, h) : [A] �→ [(A∞, C∞)] .

4. The method of holomorphic sections

Admissibility of a connection is precisely the correct analytic notion to make
contact with complex analysis. Bando [3] and Bando-Siu [4] show that bun-
dles with admissible connections admit sufficiently many local holomorphic
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sections to prove coherence of the sheaf of L2-holomorphic sections. This local
statement only requires the Kähler condition. The key difference between the
projective vs. Kähler case is, of course, the abundance of global holomorphic
sections. These provide a link between the algebraic and analytic moduli.
They are also well-behaved with respect to limits. The technique described
here mimics that introduced by Jun Li in [26].

We henceforth assume [ω] ∈ H2(X,Z). Let L → X be a complex line
bundle with c1(L) = [ω]. Define the numerical invariant:

(7) τE(m) :=

∫

X
ch(E ⊗ Lm)td(X) .

Since ω is a (1, 1) class, L may be endowed with a holomorphic structure L
making it the ample line bundle defining the polarization of X. We also fix
a hermitian metric on L with respect to which the Chern connection of L
has curvature −2πiω. Use the following notation: E(m) := E ⊗ Lm. The key
property we exploit is the following, which is a consequence of Maruyama’s
boundedness result [30], as well as the Hirzebruch-Riemann-Roch theorem.

Proposition 4.1. There is M ≥ 1 such that for all m ≥ M and all A ∈
Ass(E, h), if EA = (E, ∂̄A) then the bundle EA(m) is globally generated and all
higher cohomology groups vanish. In particular, dim H0(X, EA(m)) = τE(m)
for m ≥ M .

In the following, we shall assume m has been fixed sufficiently large. Fix
a vector space V of dimension τE(m), and let

(8) H = V ⊗ L−m .

The Grothendieck Quot scheme Quot(H, τE) is a projective scheme parame-
trizing isomorphism classes of quotients H → F → 0, where F → X is a
coherent sheaf with Hilbert polynomial τE [18, 1]. Proposition 4.1 states that
there is a uniform m such that for every A ∈ Ass(E, h) there is a quotient
H → EA → 0 in Quot(H, τE) with EA ≃ (E, ∂̄A). The next result begins the
comparison between Uhlenbeck limits and limits in Quot(H, τE).

Proposition 4.2. Let {Ai} ⊂ Ass(E, h), and suppose Ai → A∞ in the sense
of Uhlenbeck (Theorem 2.2), and assume uniform bounds on the Hermitian-
Einstein tensors, and that A∞ is Hermitian-Yang-Mills. Then there are quo-
tients H → Fi in Quot(H, τE), with Fi

∼= EAi
, converging to a semistable

quotient H → F∞ → 0 in Quot(H, τE) and an inclusion F∞ →֒ EA∞
such

that F∗∗
∞ ≃ EA∞

.
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The proof of this result for sequences of HYM connections is in [16, Prop.
4.2], but the proof there works as well under the weaker assumption of a
uniformly bounded Hermitian-Einstein tensor. Indeed, the first key point is
the application of the Bochner formula to obtain uniform bounds on L2-
holomorphic sections. The precise statement is that if s ∈ H0(X, EAi

(m))
then there is a constant C depending only on the geometry of X, m, and
the uniform bound on the Hermitian-Einstein tensor, such that supX |s| ≤
C‖s‖L2 . As noted above, we may realise the the bundles EAi

as elements of
Quot(H, τE). In fact, any choice of L2-orthonormal basis for H0(X, EAi

(m))
determines a specific representation qi: H → EAi

→ 0. Using the sup-norm
bound on sections, one can extract convergent subsequences for the elements
of these orthonormal bases to obtain a map q∞ : H → EA∞

. The limiting
sections may no longer form a basis of H0(X, E∞(m)), nor necessarily do
they generate the fiber of EA∞

. Remarkably, though, it is still the case that
the rank of the image sheaf ẼA∞

⊂ EA∞
of q∞ agrees with rank(E) and has

Hilbert polynomial τE (for this one may have to twist with a further power
of L). In fact, the quotient sheaf T∞ = E∞/Ẽ∞ turns out to be supported in
complex codimension 2 (the first Chern class is preserved under Uhlenbeck
limits). Hence, in particular, (ẼA∞

)∗∗ ≃ EA∞
. See [16, proof of Lemma 4.3]

for more details.
The second ingredient in the proof is the fact that Quot(H, τE) is compact

in the analytic topology. Hence, after passing to a subsequence, we may as-
sume the qi converge. Convergence in Quot(H, τE) means the following: there
is a convergent sequence of quotients Fi → F∞ and isomorphisms fi making
the following diagram commute

H Fi

fi

0

H qi EAi
0

The proof is completed, as in [16, Lemma 4.4], by showing that F∞ ≃ ẼA∞
.

The crucial point that is used in showing this is that the two sheaves are
quotients of H with the same Hilbert polynomial.

5. Analytic cycles and the blow-up set

In the case of the stronger notion of convergence of Uhlenbeck-Tian, we go
one step further and identify the cycle associated to the sheaf F∞ with the
cycle C∞ that arises from bubbling of the connections. The candidate is the
following: for any torsion-free sheaf F → X, define a codimension 2 cycle CF
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from the top dimensional stratum of the support of F∗∗/F . See for example
[16, Sec. 2.5.3].

Proposition 5.1. Let Ai be a sequence of connections as in Proposition
4.2, and suppose furthermore that they converge to an ideal HYM connection
(A∞, C∞) in the sense of Theorem 2.7. Let H → F∞ be as in the statement
of Proposition 4.2. Then C∞ = CF∞

.

The proof of this result follows from the discussion in [16, Sec. 4.3] (see in
particular Prop. 4.7). Although the result there is stated for sequence of HYM
connections, this is required only to obtain the same sup-norm inequality on
the global sections of E(m) that was used to obtain Proposition 4.2. Thus,
the uniform bound on the Hermitian-Einstein tensor suffices, we have first of
all that EA∞

∼= F∗∗
∞ .

Let us sketch the argument. The first key point is that [CF∞
] = [ C∞]

in rational cohomology. Indeed, the connection A∞ is defined on the smooth
locus of the sheaf F∗∗

∞ and is smooth there, and ch2(A∞) defines a closed
current (see Section 2). It then follows as in the proof of [34, Prop. 3.3] that
[ch2(A∞)] = ch2(F∗∗

∞ ). The exact sequence

0 −→ F∞ −→ F∗∗
∞ −→ T∞ −→ 0 ,

implies that

[ch2(A∞)] = ch2(F∞) + ch2(T∞) = ch2(E) + [CF∞
] ,

where in the second inequality we have used the fact that the Chern classes
of F∞ are the same as those of E, and Proposition 3.1 of [34] (see also the
latest arxiv version of this reference). By the convergence of the currents in
Theorem 2.7 and Chern-Weil theory, we have

ch2(E) + [C∞] = [ch2(Ai)] + [C∞] = [ch2(A∞)].

Combining these two equalities gives the statement.
What remains to be shown is that given any irreducible component Z ⊂

supp(T∞), for the associated multiplicity mZ as defined in [16, Sec. 2.5.3], we
have an equality

mZ = lim
i→∞

1

8π2

∫

Σ
tr(FAi

∧ FAi
) − tr(FA∞

∧ FA∞
) ,

where Σ is a generic real 4-dimensional slice intersecting Z transversely in a
single smooth point. For Hermitian-Yang-Mills connections this is [16, Prop
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4.9]. Again note that the proof provided there only uses the Hermitian-Yang-
Mills condition to obtain the quotient F∞, and so by the preceding discussion
also applies here. With this in hand, the point is that if Z is contained in the
support |C∞| then it must be equal to one of the irreducible components. In
this case, the number on the right hand side of the equality above is exactly
the multiplicity of this component in the cycle C∞, and otherwise this number
is zero, (see [16, Lemma 3.13] and [34, Lemma 4.1] and again note that the
proof is completely general). If the equality holds, this number cannot be
zero, since mZ is strictly positive by definition, and therefore Z must be a
component of C∞, and the multiplicities agree. Since C∞ and CF∞

are equal
in cohomology, there can be no other irreducible components of C∞, and so
C∞ = CF∞

. For more details, see the proof of [16, Prop. 4.7].

Remark 5.2. It should be emphasized that Proposition 5.1 does not claim
that the support of F∗∗

∞ /F∞ coincides with the full bubbling locus |C∞| ∪
S(A∞); only the top dimensional strata are necessarily equal. This differs from
what occurs, for example, along the Yang-Mills flow (see [34, Thm. 1.1]). It
would be interesting to understand the behavior of the higher codimensional
pieces from this perspective. There are recent examples due to Chen-Sun
indicating that this should be subtle (see [5, 6]).

6. Relation with the topology of the Quot scheme

In this section we consider the relationship between the Quot scheme
Quot(H, τE) discussed in Section 4, and the infinite dimensional space
A1,1(E, h) of integrable connections. Recall that Quot(H, τE) has a PGL(V )
action obtained by change of basis in the vector space V . We are inter-
ested in the points in Quot(H, τE) where the quotient sheaf is locally free
and has underlying C∞ bundle isomorphic to E. A PGL(V ) orbit of such a
point corresponds to an isomorphism class of holomorphic structures on E, or
equivalently, to a complex gauge orbit in A1,1(E, h). Conversely, a connection
A ∈ A1,1(E, h) gives a holomorphic bundle which, provided m is sufficiently
large, can be realized as a quotient. Complex gauge equivalent connections
give rise to different quotients in the same PGL(V ) orbit. We wish to show that
this correspondence between complex gauge orbits in A1,1(E, h) and PGL(V )-
orbits in Quot(H, τE) can be made continuous in the respective topologies.
Since the complex gauge orbit space in A1,1(E, h) is non-Hausdorff in gen-
eral (and similarly for Quot(H, τE)), we will lift to a map from open sets in
A1,1(E, h) itself.

This discussion gives rise to the following notion. Let U ⊂ A1,1(E, h).
We call σ : U → Quot(H, τE) a classifying map if the quotient σ(A) is a
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holomorphic bundle isomorphic to (E, ∂̄A). Recall from Section 4 that the
bundle H depends on a sufficiently large choice of m, which we omit from the
notation. Then the result is the following.

Theorem 6.1. Fix A0 ∈ A1,1(E, h). Then for m sufficiently large (depending
on A0), there is an open neighborhood U ⊂ A1,1(E, h) of A0 and a continuous
classifying map σ : U → Quot(H, τE). On Ass(E, h), the twist m may be
chosen uniformly.

Throughout the proof, as in Section 4, we fix a hermitian structure hL on
L such that the curvature of the Chern connection of (L, hL) defines a Kähler
metric ω on X.

Proof. Let d(m, n) = τE(m) · dim H0(X, Ln). For n ≫ 1, Quot(H, τE) is em-
bedded in the Grassmannian G(d(m, n), τE(m+n)) of τE(m+n)-dimensional
quotients of Cd(m,n). More precisely, suppose q : H → E is a point in
Quot(H, τE), and let K = ker q. There is a sufficiently large n (uniform over
the whole Quot scheme) such that

(9) H i(X, K(m + n)) = H i(X, E(m + n)) = {0}, i ≥ 1

(cf. [21, Lemmata 1.7.2 and 1.7.6]). We therefore have a short exact sequence:

(10) 0 −→ H0(X, K(m+n)) −→ H0(X, H(m+n)) −→ H0(E(m+n)) −→ 0

Since the middle term has dimension d(m, n), and by (9) the last term has
dimension τE(m + n), we obtain a point in G(d(m, n), τE(m + n)). For n
sufficiently large, this correspondence between quotients and points in the
Grassmannian gives an embedding of the Quot scheme.

Given A0 ∈ A1,1(E, h), EA0
= (E, ∂̄A0

), choose m such that EA0
(m) is

globally generated and has no higher cohomology. Set V0 = H0(X, EA0
(m)).

Then dim V0 = τE(m). The map

ev : V0 ⊗ OX −→ EA0
(m) : s ⊗C f �→ fs

realizes EA0
(m) as a quotient of V0 ⊗ OX . After twisting back by L−m, we

have a quotient H → EA0
→ 0.

For A ∈ U (the open set U remains to be specified) in order to realize
EA = (E, ∂̄A) as a quotient of H, it suffices to give an isomorphism of V0 with
VA = ker ∂̄A ⊂ Γ(E ⊗ Lm), for then EA is obtained through this isomorphism
followed by evaluation ev as above. Note here that we assume already that
U has been chosen sufficiently small so that EA(m) is globally generated and
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has no higher cohomology. This is the first condition on U , and it can be

arranged by semicontinuity of cohomology (see [25, Ch. 7]).

On Γ(E⊗Lm) we have an L2-inner product. Since VA and V0 are subspaces

of Γ(E ⊗ Lm), we can define a map by orthogonal projection πA : VA → V0.

Let us write this explicitly. For s ∈ VA, let πA(s) = s0 = s + us, where

us ∈ V ⊥
0 . We require ∂̄A0

s0 = 0, or ∂̄A0
(s + us) = 0. If we write ∂̄A =

∂̄A0
+ a, a ∈ Ω0,1(X, gE), then the above is ∂̄A0

us = as. Let G0 be the

Green’s operator for the ∂̄A0
laplacian acting on Ω0,1(E ⊗Lm). In general, the

Green’s operator inverts the laplacian up to projection onto the orthogonal

complement of the harmonic forms in Ω0,1(X, E ⊗ Lm). We have assumed

vanishing of H1(X, EA0
(m)), so in our case G0 is a genuine inverse. Set us =

∂̄∗
A0

G0(as). Then

∂̄A0
us = ∂̄A0

∂̄∗
A0

G0(as) = �A0
G0(as) + ∂̄∗

A0
∂̄A0

G0(as) = as ,

as desired. Here, we have used the fact that ∂̄A0
G0 = G0∂̄A0

, and that, by

the integrability of ∂̄A and s ∈ VA, ∂̄A0
(as) = 0. Notice that this definition of

us guarantees that it is orthogonal to V0. Now, by Hodge theory ∂̄∗
A0

G0 is a

bounded operator on L2. More precisely, the image of ∂̄∗
A0

G0 lies in (ker ∂̄A0
)⊥,

∂̄A0
(∂̄∗

A0
G0) = I, and ∂̄∗

A0
(∂̄∗

A0
G0) = 0 so boundedness follows from the elliptic

estimate for ∂̄A0
. Namely, for any φ ∈ Ω0,1(E ⊗ Lm) we have an estimate

(11) ||∂̄∗
A0

G0(φ)||L2 ≤ ||∂̄∗
A0

G0(φ)||L2

1

≤ B||∂̄A0
(∂̄∗

A0
G0)(φ)||L2 = B||φ||L2 .

We therefore obtain (setting φ = as) the estimate

(12) ‖us‖L2 ≤ B‖as‖L2 ≤ B(sup |a|)‖s‖L2 .

In particular, for sup |a| sufficiently small, which we guarantee by shrinking

U , we have ‖πA(s)‖L2 ≥ (1/2)‖s‖L2 . Hence, πA is injective and therefore an

isomorphism. The classifying map is then defined by setting σ(A) to be the

quotient:

H
π−1

A
⊗ id

−−−−−−→ VA ⊗ L−m
ev

−−→ EA −→ 0 .

It remains to show that σ is continuous. We begin with a few preliminaries.

For s ∈ Γ(E ⊗ Lm), let

π̃A : Γ(E ⊗ Lm) −→ Γ(E ⊗ Lm) : s �→ s + ∂̄∗
A0

G0(as) ,
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so that π̃A restricted to VA is πA. Again using that ∂̄∗
A0

G0 is a bounded

operator, for A1, A2 ∈ U , and ∂̄Ai
= ∂̄A0

+ ai, i = 1, 2, we have

‖(π̃A1
− π̃A2

)s‖L2 = ‖∂̄∗
A0

G0((a1 − a2)s)‖L2 ≤ B‖(a1 − a2)s‖L2

≤ B sup |a1 − a2|‖s‖L2 .

It follows that π̃A is continuous in A. By the argument following (12), it is
also uniformly invertible for A ∈ U , with

(13) ‖π̃−1
A ‖ ≤ 2 .

Hence,

(π̃−1
A1

− π̃−1
A2

)s = π̃−1
A1

(π̃A2
− π̃A1

)π̃−1
A2

s

‖(π̃−1
A1

− π̃−1
A2

)s‖L2 ≤ 4‖π̃A1
− π̃A2

‖ · ‖s‖L2 ≤ 4B sup |a1 − a2|‖s‖L2 .

We conclude that the map π−1
A : V0 → Γ(E ⊗ Lm), whose image is VA, is

continuous for A ∈ U . In fact, it satisfies an estimate:

(14) ‖(π−1
A1

− π−1
A2

)s0‖L2 ≤ 4B sup |a1 − a2|‖s0‖L2 ,

for all s0 ∈ V0.
The second ingredient we shall need is the following. Depending upon

the choice of the set U there is a uniform bound on the Hermitian-Einstein
tensors ΛFA for each A ∈ U . It follows as in Section 4 that we have an
estimate: sup |s| ≤ C‖s‖L2 , for all s ∈ VA. Therefore, using (13),

(15) sup |π−1
A (s0)| ≤ C‖π−1

A (s0)‖L2 ≤ 2C‖s0‖L2 ,

for all s0 ∈ V0.
Finally, let s0 ∈ V0. The standard elliptic estimate states that there is a

uniform constant C such that

‖f‖L2

1

≤ C(‖f‖L2 + ‖∂̄Lnf‖L2)

for smooth sections f of Ln. In case f is holomorphic we may bootstrap this
estimate and use Sobolev embedding L2

k ⊂ L4, k ≥ n/2 to deduce an estimate
of the form ‖f‖L4 ≤ C‖f‖L2 (for a possibly different constant). Using (14)
and (15), there is a constant C1 > 0 such that:

‖f(π−1
A1

− π−1
A2

)s0‖2
L2 ≤ ‖f‖2

L4‖(π−1
A1

− π−1
A2

)s0‖2
L4
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≤ C1‖f‖2
L2‖(π−1

A1
− π−1

A2
)s0‖L2‖s0‖L2

≤ C1(sup |a1 − a2|)‖s0‖2
L2‖f‖2

L2 .(16)

To prove continuity of σ, we show that the corresponding quotients (10)
vary continuously in the Grassmannian for A ∈ U . First, from the definition
(8),

H0(X, H(m + n)) = H0(X, V0 ⊗ Ln) ≃ V0 ⊗ H0(X, Ln) .

On V0 ⊗ H0(X, Ln), we choose the tensor product metric of the L2 metrics
on V0 and H0(X, Ln). The map induced by σ is described as follows: for each
A ∈ U we have

TA : V0 ⊗ H0(X, Lm) −→ Γ(E ⊗ Lm+n) : s0 ⊗C f �→ π−1
A (s0) ⊗OX

f

with image H0(X, EA(m + n)). Moreover, from (16) it follows that

‖(TA1
− TA2

)(s0 ⊗ f)‖2
L2 ≤ C1(sup |a1 − a2|)‖s0 ⊗ f‖2 .

Hence, TA is continuous in A for A ∈ U .
Recall that a smooth model for the Grassmannian G(N, k) of k-dimen-

sional quotients of CN is given by

G(N, k) =
{

P ∈ EndCN | P ∗ = P, P 2 = P, tr P = N − k
}

.

Indeed, a smooth transitive action of U(N) on the right hand side above is
defined by (g, P ) �→ gPg∗, and the stabilizer of the projection associated
to the standard coordinate splitting CN = Ck × CN−k is U(k) × U(N − k).
Thus, the right hand side is indeed identified with the homogeneous space
U(N)/U(k) × U(N − k), which is the usual description of the Grassmannian.

With this understood, in the setting above let PA ∈ End(V0⊗H0(X, Lm))
denote the orthogonal projection to ker TA, viewed as a point in G(d(m, n),
τE(m + n)). It suffices to show PA is continuous in A ∈ U . Because the
dimensions of the kernels of TA are constant on U , this reduces to showing
that for any sequence Aj → A and sj ∈ ker TAj

⊂ V0 ⊗ H0(X, Ln), ‖sj‖ = 1,
there is a subsequence such that sj → s ∈ ker TA. Indeed, if this is the case
we may choose an orthonormal basis of such sections, {sα

j }, so that for any
s ∈ V0 ⊗ H0(X, Ln),

PAj
s =

∑

α

〈s, sα
j 〉sα

j ,

and the right hand side converges to PAs, and so ‖PAj
− PA‖ → 0.

By finite dimensionaliy of V0⊗H0(X, Ln), we may assume sj → s for some
s ∈ V0 ⊗ H0(X, Ln). Let sj = s0

j + s1
j be the orthogonal decomposition with
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respect to the splitting ker TA ⊕ (ker TA)⊥. In particular, there is a constant
c > 0 such that

(17) ‖TAs1
j‖ ≥ c‖s1

j‖ ∀j .

But then

0 = TAj
sj = (TAj

− TA)sj + TAs1
j

and so

(TA − TAj
)sj = TAs1

j =⇒ ‖TAs1
j‖ → 0 .

The estimate (17) implies s1
j → 0. Hence, s ∈ ker TA, and continuity of σ is

proven. The uniformity of m in the second statement follows from Proposition
4.1.

By a theorem of Maruyama, the semistable quotients in Quot(H, τE) form
an open set [29, Thm. 2.8]. Combining this with Theorem 6.1 we obtain part
(1) of the Main Theorem.

Corollary 6.2. The set Ass(E, h) is open in A1,1(E, h).

This is item (1) of the Main Theorem.

Remark 6.3. The result in Corollary 6.2 is straightforward for Riemann
surfaces (cf. [2, p. 576]) based on the Shatz stratification. More generally, an
analytic proof can be given for projective manifolds using the Yang-Mills flow,
answering a question in [24, Rem. 7.3.38]. A direct analytic proof for Kähler or
Hermitian manifolds seems more difficult (for a partial result, [36, Thm. 3]).

7. Proof of the Main Theorem

In this section we prove items (2) and (3) of the Main Theorem (in reverse
order). As seen in Section 4, a consequence of the assumption that X be
projective is a representation of holomorphic bundles and Uhlenbeck limits as
quotients. The existence of many holomorphic sections also passes to certain
line bundles on moduli spaces. This fact implies strong separation properties
and will be used in this section to deduce the Main Theorem.

7.1. Item (3)

We wish to prove that F is continuous on the closure of the stable locus. For
this we invoke the moduli space construction of Greb-Toma [17]. Let Rμss ⊂
Quot(H, τE) denote the open subset consisting of quotients that are slope
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semistable torsion-free sheaves. Then there exists a (seminormal) projective
variety Mμss and a morphism (in particular, continuous map) Rμss → Mμss :
F �→ [F ] with the following properties:

1. If F1 ≃ F2, then [F1] = [F2] in Mμss (cf. the discussion preceding [16,
Def. 2.20]);

2. If [F1] = [F2] in Mμss, then F∗∗
1 ≃ F∗∗

2 and CF1
= CF2

[17, Thm. 5.5].

The association [F ] → (F∗∗, CF ) gives a well-defined map Φ : M
μ
(E, h) →

MHYM(E, h), where M
μ
(E, h) is the closure of M∗

HYM
(E, h) in Mμss (see Sec-

tion 4.1 of [16]). The map As(E, h)
Q−→ M

μ
(E, h) in the diagram (2) is defined

by realizing a semistable bundle as a quotient in Rμss (see the discussion fol-
lowing Proposition 4.1), and sending this quotient to its equivalence class in
Mμss.

By construction, Q may be locally exhibited as the composition of the
map Rμss → Mμss with a classifying map σ as discussed in the previous
section. The former map is a morphism of complex spaces and is therefore
continuous. By Theorem 6.1, σ is continuous as well. Since continuity is a
local property, we deduce the continuity of Q. Now one of the main results of
[16] is Theorem 4.11, which states that Φ is also continuous. By Theorem 3.1,
the diagram (2) commutes, and we therefore conclude that F is continuous
on As(E, h).

7.2. Item (2)

To address the general situation, we first reduce the problem as in [10, Sec.
4]. Let Ai → A0 be a sequence in Ass(E, h) converging in the C∞ topology,
and let [A∞, CA

∞, S(A∞)] = F ([A0]). By the compactness theorem [16, Thm.
3.23], we may assume that, after passing to a subsequence, there is an ideal
connection (B∞, CB

∞) such that F ([Ai]) → [(B∞, CB
∞)]. We must show that

the two limits agree.
Let Ai,t denote the Yang-Mills flow at time t of Ai. Smooth dependence

on initial conditions implies that for each fixed T > 0, Ai,t → At as i → +∞,
uniformly for t ∈ [0, T ).

Lemma 7.1. There is a subsequence (whose index set will be also denoted by
{i}) and ti → +∞, such that [Ai,ti

] → [(A∞, CA
∞)] in the sense of Theorem

2.7.

Proof. The proof relies on several properties. First, since Ai,t → At for every
t ≥ 0, by a diagonalization argument we may choose a sequence Ai,ti

so
that (up to gauge), Ai,ti

→ A∞ weakly in Lp
1,loc away from |C| ∪ S(A∞).
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Next, by the result in [20, Thm. C], any sequence Ai,ti
, ti → +∞, has a

subsequence that converges to an ideal connection. This is shown in [20]

for a sequence of times along a single flow, but the argument extends more

generally. The key points are Theorem 8 and Proposition 9 of [20], and these

hold uniformly for a smoothly convergent sequence of initial conditions. Note

that there is a uniform bound on the Hermitian-Einstein tensor. Given this

fact, we are exactly in the set-up of the proof of [16, Proposition 3.20] (the

“boundedness” assumption of that result is guaranteed, since X is projective

algebraic; see [16, Lemma 3.16]). The conclusion of that result is that we may

choose the ti such that the limiting ideal HYM connection of {Ai,ti
} coincides

with [A∞, CA
∞)].

The Yang-Mills flow lies in a single complex gauge orbit: Ai,t is complex

gauge equivalent to Ai for all t ∈ [0, +∞). By Remark 3.3 it follows that and

F ([Ai,t]) = F ([Ai]). Therefore, in the same way as above we may choose

times si such that for Bi = Ai,si
, [Bi] is sufficiently close to F ([Ai]) so as to

converge to [(B∞, CB
∞)]. We state this as the following.

Lemma 7.2. There are complex gauge transformations gi such that if Bi =

gi(Ai,ti
), then after passing to a subsequence, [Bi] → [(B∞, CB

∞)] in the sense

of Theorem 2.7.

As in Section 4, the holomorphic bundles EAi,ti
can be realized as a se-

quence of quotients qA
i : H → EAi,ti

, and the composition qB
i with the gi

from the lemma above realizes EBi
as quotients qB

i . Note that by definition of

the equivalence in the Quot scheme, since qA
i and qB

i have the same kernels

in H they represent the same points in Quot(H, τE). We now apply Propo-

sitions 4.2 and 5.1 to both sequences Ai,ti
and Bi. One obtains quotients

qA
i → qA

∞ : H → FA
∞ and qB

i → qB
∞ : H → FB

∞ in Quot(H, τE). Moreover,

(FA
∞)∗∗ ≃ EA∞

and (FB
∞)∗∗ ≃ EB∞

. In particular, since EA∞
and EB∞

have

admissible Hermitian-Einstein metrics, the sheaves FA
∞ and FB

∞ are slope

semistable, and so they lie in Rμss. Also, CA
∞ = CFA

∞

and CB
∞ = CFB

∞

(see [16,

Lemma 2.10]).

Now [EAi,ti
] = [EBi

] in Mμss for every i, since Bi is gauge equivalent to

Ai,ti
. Because their limits are also semistable (in fact polystable), we conclude

again from item (1) above and the continuity of the projection to Mμss that

[FA
∞] = [FB

∞]. It then follows from item (2) that EA∞
≃ EB∞

, and CA
∞ = CFA

∞

=

CFB
∞

= CB
∞. From the discussion following Definition 2.5, the isomorphism

EA∞
≃ EB∞

implies that A∞ and B∞ are gauge equivalent on their common

smooth locus. Moreover, since the singular set of the HYM connection agrees
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with the singular set of the Bando-Siu extension, we have

S(A∞) = sing(EA∞
) = sing(EB∞

) = S(B∞) .

Finally, since the codimension 2-cycles also agree, the ideal HYM connections
are gauge equivalent. This completes the proof of the Main Theorem.
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