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We consider hypotheses testing problems for three parameters in high-dimensional linear models with minimal
sparsity assumptions of their type but without any compatibility conditions. Under this framework, we construct
the first

√
n-consistent estimators for low-dimensional coefficients, the signal strength, and the noise level. We

support our results using numerical simulations and provide comparisons with other estimators.
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1. Introduction

In the past decade, there has been substantial interest in high-dimensional linear models, particularly
following the work of Tibshirani [25]. However, it was not until the past few years that there have been
methods to construct confidence intervals and p-values for particular covariates in the model. Consider
a high-dimensional partially linear model

Y = Xβ + μ + ε, (1.1)

with X ∈ R
n×q , and Y,μ, ε ∈R

n. In addition, we also observe covariates Z ∈ R
n×p such that μ ≈ Zγ

for some sparse vector γ ∈ R
p (see Section 1.2 for details). The vector μ represents some underlying

random nuisance parameters in the model that affect the response Y ; the covariates Z allow us to
control for these confounding factors. Regarding the size of each matrix, we assume that q < n is
fixed but p > n is high-dimensional. Our goal is to construct a confidence region for the entire vector
β ∈R

q .
In recent years, there have been mainly two approaches to constructing confidence intervals in high-

dimensional linear models. On one hand, authors like Lee et al. [18] construct conditional confidence
intervals for β given that β was selected by a procedure, such as the lasso. Simultaneously, there
has been work to construct unconditional confidence intervals for β , where X is the a priori selected
covariate of interest, such as Javanmard and Montanari [15], van de Geer et al. [27], and Zhang and
Zhang [30]; the latter is also our focus. To avoid digressions, we will not elaborate on the former.
A review of many of the current methods is available in Dezeure et al. [7]. Much of the existing
literature relies on using a version of the de-sparsified lasso introduced simultaneously by Javanmard
and Montanari [15], van de Geer et al. [27], and Zhang and Zhang [30]. The idea behind the existing
approaches is to invert the KKT conditions of the lasso and perform nodewise lasso to approximate the
inverse covariance matrix of the design, which attempts to correct the bias introduced by the lasso.

Since the lasso forms the basis for the procedure, certain assumptions must be made in order to
ensure that the lasso enjoys the nice theoretical properties that have been developed over the past two
decades. The paper by van de Geer and Bühlmann [26] provides an overview of various assumptions
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that have been used to prove oracle inequalities for the lasso. These assumptions are a consequence
of the fact the lasso is used rather than being needed for the statistical problem. In particular, for
confidence intervals, van de Geer et al. [27] assume that the compatibility condition holds for the
Gram matrix, which is the weakest assumption from van de Geer and Bühlmann [26], and is essentially
a necessary assumption for the lasso to enjoy the fast rate (cf. Bellec [1]). To quote the popular book
by Bühlmann and van de Geer [4], “In fact, a compatibility condition is nothing else than simply an
assumption that makes our proof go through.” However, this raises an important question on necessity:
Is the compatibility condition necessary for constructing confidence intervals in high-dimensions?

The main contribution of this paper is proving that the compatibility condition or any of its variants
is indeed not necessary for the statistical problem. To this end, we provide an estimator that does not
require the compatibility condition but still attains the semi-parametric efficiency bound. Our assump-
tion regarding sparsity is slightly stronger than the minimax rate required by Javanmard and Montanari
[16] since we allow a broader class of designs. In particular, we show that, in the absence of compat-
ibility, the rate established by Javanmard and Montanari [16] is unattainable and a stronger sparsity
assumption is required.

To help clarify the connection between our notion of partially linear model and the high-dimensional
linear models of the aforementioned works, we note that our model is many times written as a linear
model y = xTβ + zTγ + ε, reserving the notion of partially linear model to y = xTβ + μ(t) + ε for
some unknown smooth function μ(·). We use the partially linear model terminology to emphasize that
(i) zTγ is only an approximation, and (ii) z is a high-dimensional nuisance parameter, which plays the
role of the nonparametric component of a semi-parametric model. For more details, see Remark 1.1
below.

There is also the recent work of Chernozhukov et al. [6], who consider the general problem of
conducting inference on low-dimensional parameters with high-dimensional nuisance parameters. One
application of their general theory is for high-dimensional partially linear models, which is also our
problem of interest. A further discussion of their procedure is given in Remark 2.4 below.

As a consequence of our estimation procedure for β , we are able to construct a
√

n-consistent esti-
mator of the signal strength and the noise variance, which we denote by σ 2

μ and σ 2
ε respectively, also

without the compatibility condition. The paper by Reid, Tibshirani and Friedman [22] provides a nice
overview of different proposals for estimation of σ 2

ε using the lasso. An early work in this direction
is Fan, Guo and Hao [9], who construct asymptotic confidence intervals for σ 2

ε under a sure screening
property of the covariates; in the setting of the lasso, this requires a β-min condition. Dicker [8] consid-
ers a similar problem of variance estimation using moment estimators that do not require sparsity of the
underlying signal. However, he does not consider the ultra high-dimensional setting nor the problem of
inference. Later, Janson, Barber and Candès [14] considered inference on the signal to noise ratio but
the theory developed only applies to Gaussian designs. For the problem of inference for σ 2

μ, the work
most similar with ours is Cai and Guo [5], who consider a more general problem in the semi-supervised
setting, but their results for the supervised framework require minimal non-zero eigenvalues on the co-
variance matrix. To this end, we construct estimators that attain asymptotic variances equal to that of
the efficient estimator in low-dimensions.

For both problems, our approach involves using exponential weighting to aggregate over all models
of a particular size. Prima facie, this is a computationally hard problem but can be well approximated
in practice. To this end, we propose an algorithm inspired by Rigollet and Tsybakov [23].

1.1. Organization of the paper

We will end the current section with the notation that will be used throughout the paper. In Section 2,
we discuss the problem of conducting inference for low-dimensional β in the presence of a high-
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dimensional nuisance vector μ. The setting of univariate β is considered separately in Section 2.1 to
motivate the general multivariate procedure of Section 2.3. We take a slight detour in Section 2.2 to
consider inference when the errors are correlated. The section ends with a discussion on the necessity of
the sparsity assumption in Section 2.4. Then, in Section 3.1 and Section 3.2, we consider the problems
of inference for σ 2

μ and σ 2
ε , respectively. In Section 4, we provide an overview of the computation of

the estimators, which we apply in Section 5 for numerical simulations. The proofs for Sections 2.1 and
2.4 are provided in Section 6. Additional simulation tables and the proofs for the remaining results are
available in the Supplement [17].

1.2. General notation and definitions

Throughout, all of our variables (except β) have a dependence on n, but when it should not cause
confusion, this dependence will be suppressed. For a general vector a and a matrix A, aj will denote
the j ’th entry of a, Aj the j ’th column of A, and A(j) the j ’th row of A. Then, ‖a‖ will denote
the standard Euclidean norm, with the dimension of the space being implicit from the vector, ‖a‖1
the L1-norm, and ‖a‖0 the L0-norm. Furthermore, ‖A‖ will denote the operator norm and ‖A‖HS the
Hilbert–Schmidt norm. If A is square, A−1 is to be interpreted in a generalized sense whenever the
matrix A is rank deficient.

Before defining weak sparsity, we will need to introduce some notation. For u ∈N, Mu will denote
the collection of all models of Z of size u. That is,

Mu �
{
m ⊆ {1, . . . , p} : |m| = u

}
.

Then, for each m ∈ Mu, Zm will denote the n × u sub-matrix of Z corresponding to the columns
indexed by m. Moreover, Pm will denote the projection onto the column space of Zm and P ⊥

m the
projection onto the orthogonal complement. We can now state the definition of weak sparsity.

Definition 1.1. A sequence of vectors μ is said to satisfy the weak sparsity property relative to Z with
sparsity s at rate k if the set

Sμ �
{
m ∈Ms : ∥∥P ⊥

m μ
∥∥2 = o(k)

}
is non-empty. A set S ∈ Sμ is said to be a weakly sparse set for the vector μ.

If the sequence of vectors μn is random, then it satisfies the weak sparsity property relative to Z in
probability with sparsity s at rate k if the set

Sμ = {
m ∈Ms : ∥∥P ⊥

m μ
∥∥2 = oP(k)

}
is nonempty. A set S ∈ Sμ is said to be a weakly sparse set in probability for the vector μ.

Remark 1.1. There are two distinctions to be made, between strong and weak sparsity on one hand,
and between weak sparsity and weak sparsity in probability on the other. The following examples may
help to clarify these notions.

First, suppose that μ = Zγ for a sparse vector γ ∈ R
p with support S. We refer to this case as strong

sparsity and is the commonly assumed setting in high-dimensional linear models (for example, see van
de Geer et al. [27]). Since ‖P ⊥

S μ‖2 = 0, strong sparsity implies weak sparsity.
Second, consider a smooth function μ(·) : R → R. This corresponds to a standard partially linear

model, where μ(t) depends on time. Let Z be a dictionary of basis functions, say, the harmonic or
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wavelet basis. Then, μ may be well approximated by a linear combination of a few basis functions,
with the remainder converging to zero, and weak sparsity holds.

Third, in random designs, on a set with small probability, μ may not be well approximated by any
members of Ms , while it is well approximated on the complement. This case is referred to as weak
sparsity in probability.

In general, if Sμ is non-empty, then we may let γ = (ZT
SZS)−1ZSμ for any S ∈ Sμ. Depending on

context, we will either view γ as a vector in R
p or Rs .

Finally, similar to other works on de-biased inference, we will consider sub-Gaussian errors, which
is defined below.

Definition 1.2. A mean zero random vector ξ ∈R
n is said to be sub-Gaussian with parameter K if

E exp
(
λTξ

) ≤ exp

(
K2‖λ‖2

2

)

for all vectors λ ∈R
n.

2. Inference for β

In this section, we consider the main problem of constructing confidence regions for β . The model that
we consider is given in equation (1.1), which we reproduce below for convenience,

Y = Xβ + μ + ε. (2.1)

We will write σ 2
ε � Var(ε1). For this section, we will assume that μ satisfies the weak sparsity property

relative to Z at rate
√

n, but the results still hold if we assume the weak sparsity property in probability.

2.1. The special case: q = 1

In this sub-section, we will assume throughout that q = 1. In addition to the partially linear model
given in equation (2.1), we also assume that X satisfies a partially linear model, denoted by

X = ν + η, (2.2)

where ν satisfies the weak sparsity property relative to Z at rate
√

n. We allow the weakly sparse set
for ν to be different from that of μ. We will also assume that η is a sub-Gaussian vector with variance
σ 2

η � Var(η1). The sub-Gaussianity assumption is needed to ensure that the empirical estimate of the
norm squared residuals approximates the expectation well enough. Note that this structural assumption
is implied if we assume the design is Gaussian, which is a common assumption in the literature. In this
setting, the distribution of η will be Gaussian and the weak sparsity property would be satisfied if the
inverse covariance matrix is row sparse. By direct substitution, it follows that

Y = νβ + μ + ηβ + ε.

Since μ and ν both satisfy the weak sparsity property relative to Z at rate
√

n, the vector νβ + μ also
satisfies the weak sparsity property relative to Z at rate

√
n.
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To motivate our procedure, we will assume temporarily that the models are in fact low-dimensional
linear models. That is, suppose there are sets Sδ and Sγ such that ν = ZSδδ and μ = ZSγ γ for sparse

vectors δ and γ . Moreover, assume that the set S � Sδ ∪ Sγ is known and ε ∼Nn(0n, σ
2
ε In). Thus, we

are temporarily assuming the low-dimensional linear models

Y = Xβ + ZSγ γ + ε = ZSθ + ηβ + ε,

X = ZSδδ + η,

where θ = δβ + γ . Then, by the Gauss-Markov theorem, it is known that the efficient estimator in this
low-dimensional problem is given by least-squares, which may be framed as the following three stage
procedure:

1. Regress Y on ZS using least-squares to obtain the fitted values Ŷ .
2. Regress X on ZS using least-squares to obtain the fitted values X̂.
3. Regress the residuals Y − Ŷ on the the residuals X − X̂ using least-squares to obtain the least-

squares estimator β̂LS.

In the high-dimensional setting, the first two stages can no longer be achieved using the classi-
cal least-squares approach. However, since we are only interested in the fitted values Ŷ and X̂, this
suggests using a high-dimensional prediction procedure to obtain the fitted values, and then applying
low-dimensional least-squares on the residuals in the third stage. The high-dimensional procedure that
we will adopt is the exponential weights of Leung and Barron [19], which has the salient feature of
prediction consistency under very mild assumptions on the design.

Before defining our estimators, we will state all of our assumptions.

(A1) The means μ and ν have squared norms that are OP(n).
(A2) The entries of η and ε are mutually independent and also independent of Z. Moreover, the

entries of η and ε are each identically distributed sub-Gaussians with parameters Kη and Kε ,
respectively.

(A3) The means μ, ν, and νβ + μ are weakly sparse relative to Z with sparsities sγ , sδ , and sθ ,
respectively at rate

√
n. Furthermore, it is assumed that the statistician knows sequences uγ ,

uδ and uθ with uγ ≥ sγ , uδ ≥ sδ , and uθ ≥ sθ for n sufficiently large and max(uγ ,uδ, uθ ) =
o(

√
n/ log(p)).

Condition (A1) avoids the trivial situations where the signal to noise ratios, ‖μ‖2/nσ 2
ε and

‖ν‖2/nσ 2
η , approach either zero or infinity. If either ‖μ‖2/nσ 2

ε → 0 or ‖ν‖2/nσ 2
η → ∞, the infor-

mation in estimating β will approach zero as σ 2
ε /σ 2

η → ∞. Conversely, if either ‖μ‖2/nσ 2
ε → ∞

or ‖ν‖2/nσ 2
η → 0, then the asymptotic distribution will be degenerate, even in the low-dimensional

problem.
Now, we may define two sets of exponential weights, wm,Y and wm,X , to estimate Ŷ and X̂, respec-

tively. Let

wm,Y �
exp(− 1

αY
‖P ⊥

m Y‖2)∑
k∈Muθ

exp(− 1
αY

‖P ⊥
k Y‖2)

,

with αY > 4K2
ε .

Remark 2.1. The exponential weights defined above do not subtract off the rank of the projection in
the exponent as in Leung and Barron [19] since we only consider models of size uθ ; the rank will
cancel from the numerator and the denominator.
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Now, let θ̂m � (ZT
mZm)−1ZT

mY be the least-squares estimator for θ using the covariates Zm. We will
identify θ̂m with a vector in R

p , with the support of θ̂m being indexed by m. Then, we may estimate θ

by

θ̂EW �
∑

m∈Muθ

wm,Y θ̂m,

with the prediction Ŷ given by Ŷ = Zθ̂EW. Similarly, we will define

wm,X �
exp(− 1

αX
‖P ⊥

m X‖2)∑
k∈Muδ

exp(− 1
αX

‖P ⊥
k X‖2)

,

with αX > 4K2
η . Letting δ̂m denote the least-squares estimator of δ using the covariates Zm and identi-

fying it with a vector in R
p , we may define

δ̂EW �
∑

m∈Muδ

wm,Xδ̂m.

Then, the fitted values of X will be X̂ = Zδ̂EW. Finally, for the last stage, the regression of Y − Zθ̂EW
on X − Zδ̂EW will be given by

β̂EW � (X − Zδ̂EW)T(Y − Zθ̂EW)

‖X − Zδ̂EW‖2
.

Before stating our main result, we will state a proposition regarding exponential weighting with
sub-Gaussian errors.

Proposition 2.1. Consider a high-dimensional linear model given by

Y = μ + ξ,

for ξ sub-Gaussian with parameter Kξ . Assume that μ is weakly sparse relative to Z with sparsity
s and that lim supn→∞ ‖μ‖2 = O(n). Assume further that the chosen sequence of sparsities u ≥ s

satisfy u = o(nτ / log(p)) for τ > 0 fixed. Letting γ̂m denote the least-squares estimator for γ using the
covariates Zm, define the exponential weights as

wm �
exp(− 1

α
‖P ⊥

m Y‖2)∑
k∈Mu

exp(− 1
α
‖P ⊥

k Y‖2)
,

with α > 4K2
ξ . Then,

E

∥∥∥∥ ∑
m∈Mu

wmZγ̂m − μ

∥∥∥∥
2

= o
(
nτ

)
.

Remark 2.2. We would like to remark that the choice of α is consistent with Leung and Barron
[19]. In particular, when ξ ∼ Nn(0n, σ

2
ξ In), the sub-Gaussian parameter is K2 = σ 2

ξ , which gives the

requirement that α > 4σ 2
ξ . In this setting, we would like to emphasize that the required value of α is not
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consistent with a simple Bayesian interpretation since the Bayes procedure requires a leading constant
of 2, as shown by Leung and Barron [19]. However, one of the referees pointed out that Grünwald and
van Ommen [12] show a way of explaining this in a Bayesian way in some extended models.

Remark 2.3. The assumption that lim supn→∞ ‖μ‖2 = O(n) can be relaxed to hold in probability by
weakening the conclusion to hold in probability rather than expectation (cf. Corollary 6.4).

For the remainder of the paper, we will only consider the setting where τ = 1/2. As an immediate
corollary, we have the following.

Corollary 2.2. Consider the models given in equations (2.1) and (2.2) with q = 1. Under assumptions
(A1)–(A3),

‖νβ + μ − Zθ̂EW‖2 = oP(
√

n),

‖ν − Zδ̂EW‖2 = oP(
√

n).

Finally, we can state the main result for β̂EW.

Theorem 2.3. Consider the models given in equations (2.1) and (2.2) with q = 1. Under assumptions
(A1)–(A3),

√
n(β̂EW − β)

L→N
(

0,
σ 2

ε

σ 2
η

)
.

We would like to note that β̂EW attains the information bound for estimating β (cf. Example 2.4.5
of Bickel et al. [2] and Section 2.3.3 of van de Geer et al. [27]). Moreover, the convergence of β̂EW is
actually uniform. Consider the following parameter space

B �
{(

β,σ 2
η , σ 2

ε ,Kη,Kε

) : β ∈ R, σ 2
η > 0, σ 2

ε > 0,Kη > 0,Kε > 0
}
.

This induces a set of probability measures (Pϑ)ϑ∈B . Then, we have the following corollary.

Corollary 2.4. Let K be a compact set of (Pϑ)ϑ∈B with respect to variational distance. Under the
setup of Theorem 2.3,

√
n(β̂EW − β) = A + B,

where

A ∼N
(

0,
σ 2

ε

σ 2
η

)
,

|B| = oP(1),

uniformly for ϑ ∈ K .

Corollary 2.4 asserts that β̂EW is uniformly Gaussian regular. Like Theorem 2.3 of van de Geer et
al. [27], the estimator β̂EW is regular on one-dimensional parametric sub-models of (14) of van de
Geer et al. [27] and attains asymptotic semi-parametric efficiency. The main difference is replacing the
assumption of compatibility of the design with the sparsity assumption (A3).
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Remark 2.4. The estimator, β̂EW, at first glance seems similar to the double/de-biased estimator of
Chernozhukov et al. [6] by considering exponential weighting as the estimation procedure for the
propensity function. However, the primary difference is that we do not rely on cross fitting to estimate
the conditional mean of X and Y given the covariates Z. Therefore, β̂EW does not fall within the
general framework of Chernozhukov et al. [6] since we are using exponential weighting to solve in the
in-sample prediction problem.

To construct confidence intervals, we will need to estimate both σ 2
ε and σ 2

η . We will defer explicitly
defining estimators for the variance until Section 3.2 but let σ̂ 2

ε and σ̂ 2
η be any of the three estimators

proposed by Theorem 3.4 for estimating variance. Then, an asymptotic (1 − α) confidence interval for
β is given by

(
β̂EW − zα/2

√
σ̂ 2

ε

σ̂ 2
η n

, β̂EW + zα/2

√
σ̂ 2

ε

σ̂ 2
η n

)
,

where zα/2 denotes the α/2 upper quantile of the standard Gaussian distribution.

2.2. Correlated Gaussian errors

In this sub-section, we take a slight detour away from classical high-dimensional partially linear models
and consider the setting where the errors, ε, are Gaussian but not necessarily independent and identi-
cally distributed. The goal is to conduct inference on β , but, for simplicity, we will only consider the
setting where q = 1. This model arises naturally if the model was a linear mixed model given by

Y = Xβ + μ + Wζ + ξ,

where ζ are Gaussian random effects and ξ is independent Gaussian noise. Bradic, Claeskens and
Gueuning [3] and Li, Cai and Li [20] consider more general problems of testing fixed effects in high-
dimensional linear mixed models, whereas we simply view the problem as a linear model with corre-
lated noise. Even when the errors are correlated, β̂EW still has a Gaussian limit under proper rescaling.
Before stating the theorem, we will slightly modify assumption (A2) to the setting where ε is corre-
lated:

(A2∗) The entries of η ∼ Nn(0n, σ
2
η In) are independent of Z and ε. The vector ε ∼ Nn(0n,�ε) is

independent of Z with ‖�ε‖ = O(1) and tr(�ε)/n → d̄ > 0.

Now, we may state the main result for β̂EW under correlation.

Theorem 2.5. Consider the models given in equations (2.1) and (2.2) with q = 1. Under assumptions
(A1), (A2∗), and (A3),

√
n(β̂EW − β)

L→ N
(

0,
d̄

σ 2
η

)
.

Again, we will defer defining an estimator for d̄ and σ 2
η until Section 3.2, in particular Corollary 3.5.

Similar to the previous section, we may now construct confidence intervals for β under this setting of
correlation.
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2.3. The general case: q > 1

In the general setting where q > 1, we may still rely on the perspective of high-dimensional prediction.
Analogous to Section 2.1, we will assume that each column of X satisfies a partially linear model.
That is, there exist matrices N,H ∈ R

n×q (read, capital N and capital H , respectively) such that each
column of X satisfies Xj = Nj + Hj , where Nj satisfies the weak sparsity property relative to Z at
rate

√
n for each 1 ≤ j ≤ q . The weakly sparse set for each Nj may be different but the sparsity rate is

uniformly
√

n. In matrix form, we have that

X = N + H. (2.3)

Since q is fixed and μ and each Nj satisfy the weak sparsity property relative to Z at rate
√

n, the vector
Nβ + μ also satisfies the weak sparsity property relative to Z at rate

√
n. Moreover, H is assumed to

be sub-Gaussian with the covariance matrix of each row of H given by �H � Var(H (1)).
Then, for 1 ≤ j ≤ q , we may let δ̂EW,j denote the analogue of δ̂EW for regressing Xj on Z and

estimate Xj by Zδ̂EW,j . Let �̂EW ∈ R
p×q denote the matrix with columns given by δ̂EW,j for 1 ≤

j ≤ q . Then, the multidimensional analogue of β̂EW from Section 2.1 is given by

β̂EW �
(
(X − Z�̂EW)T(X − Z�̂EW)

)−1
(X − Z�̂EW)T(Y − Zθ̂EW).

We would like to emphasize that the definition here is identical to that given in Section 2.1 when q = 1.
Then, we will make the following assumptions.

(B1) The mean vectors μ and Nj for 1 ≤ j ≤ q have squared norms that are uniformly OP(n).
(B2) The rows of H and the entries of ε are independent and also independent of Z. Moreover, the

entries of the rows of H and the entries of ε are each identically distributed sub-Gaussian with
parameters Kη,j and Kε respectively. Furthermore, �H is an invertible matrix.

(B3) All the mean vectors μ, Nj for 1 ≤ j ≤ q , and Nβ + μ are weakly sparse relative to Z with
sparsities sγ , sδ,j for 1 ≤ j ≤ q , and sθ , respectively at rate

√
n. Furthermore, it is assumed

that the statistician knows sequences uγ , uδ,j , and uθ with uγ ≥ sγ , uδ,j ≥ sδ,j for 1 ≤ j ≤ q

and uθ ≥ sθ for n sufficiently large and max(uγ ,max1≤j≤q(uδ,j ), uθ ) = o(
√

n/ log(p)).

We can now state the asymptotic distribution for β̂EW.

Theorem 2.6. Consider the models given in equations (2.1) and (2.3). Under assumptions (B1)–(B3),

√
n(β̂EW − β)

L→ Nq

(
0q, σ 2

ε �−1
H

)
.

Similar to before, to construct confidence regions, we will need to estimate �H . Therefore, we will
consider

�̂H � 1

n
(X − Z�̂EW)T(X − Z�̂EW).

This leads to the following proposition.

Proposition 2.7. Consider the models given in equations (2.1) and (2.3). Under assumptions (B1),
(B2), and (B3),

�̂H
P→ �H .
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Then, an asymptotic (1 − α) confidence region for β is given by{
β ∈ R

q : n

σ̂ 2
ε

(β̂EW − β)T�̂H (β̂EW − β) ≤ χ2
q,α

}
,

where χ2
q,α denotes the α upper quantile of a χ2

q random variable.

2.4. Necessity of sparsity assumption

In Section 2.1, it was assumed that both μ and ν are weakly sparse with sparsity sγ and sδ respec-
tively at rate

√
n in order for β̂EW to have an asymptotic Gaussian distribution. For simplicity, in the

ensuing discussion, we will only consider the case where q = 1, there exists an S ∈ Sμ such that
‖P ⊥

S μ‖2 = 0, and the design (X,Z) is fully Gaussian with population covariance matrix �. That is,
� = Var((X1, (Z

(1))T)T). We will write �Z,Z to denote the p ×p sub-block of � corresponding to Z.
Letting � = �−1, it follows that

sδ = ∣∣{1 ≤ j ≤ p : �1,j �= 0}∣∣,
which is equivalent to s� from Javanmard and Montanari [16]. Compared to the de-biased lasso, Ja-
vanmard and Montanari [16] showed that, if sγ = o(n/ log2(p)) and min(sγ , sδ) = o(

√
n/ log(p)),

then the de-biased lasso has an asymptotic Gaussian distribution. However, β̂EW is a valid estimator
on a larger class of designs, in particular incompatible designs, and Theorem 2.8 below formalizes this
trade-off between sparsity and compatibility. Before stating the theorem, we will need to introduce a
bit of notation regarding our parameter space �, which is defined as

�(sγ , sδ) �
{
ϑ = (

β,γ, δ,�Z,Z,σ 2
η , σ 2

ε

) : ‖γ ‖0 ≤ sγ ,‖δ‖0 ≤ sδ,

max
(
γ T�Z,Zγ, δT�Z,Zδ,σ 2

η , σ 2
ε

) =O(1)
}
.

Theorem 2.8. For ϑ ∈ �(sγ , sδ), consider the following model

Z(1), . . . ,Z(n) i.i.d.∼ Np(0p,�Z,Z),

ε ∼Nn

(
0n, σ

2
ε In

)
,

η ∼Nn

(
0n, σ

2
η In

)
,

Y = Xβ + Zγ + ε,

X = Zδ + η.

Assume that either sγ = o(
√

n/ log(p)) or sδ = o(
√

n/ log(p)). If there exists a
√

n-consistent estima-
tor of β for all ϑ ∈ �(sγ , sδ), then both sγ =O(

√
n/ log(p)) and sδ =O(

√
n/ log(p)).

In light of the results of Javanmard and Montanari [16], to construct a
√

n-consistent estimator of
β , it must be the case that either sγ = o(

√
n/ log(p)) or sδ = o(

√
n/ log(p)). The previous theorem

implies that the other sparsity must satisfy O(
√

n/ log(p)). Assumption (A3) is only mildly stronger,
requiring max(sγ , sδ) = o(

√
n/ log(p)).

Corollary 2.9. For ϑ ∈ �(sγ , sδ), consider the model in Theorem 2.8. If there exists
√

n-consistent
estimator of β for all ϑ ∈ �(sγ , sδ), then max(sγ , sδ) =O(

√
n/ log(p)).
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3. Inference for σ 2
μ and σ 2

ε

In this section, we consider the problem of conducting inference for both σ 2
μ and σ 2

ε . Dicker [8], Janson,
Barber and Candès [14], and Cai and Guo [5] provide interesting applications of both estimation and
inference to which we refer the interested reader. The main model that we consider is slightly different
than that considered in the previous section. Since we are not interested in the contribution of any
particular covariate, we do not need to distinguish X from Z. Hence, we will set q = 0 and consider
the following model,

Y = μ + ε. (3.1)

Unlike Section 2, we view μ as a random quantity, with σ 2
μ � Var(μ1). Thus, σ 2

μ can be viewed as
the explained variation in the data using the covariates Z. Throughout this section, Sγ will denote the
weakly sparse set for μ with sparsity sγ . When constructing a

√
n-consistent estimator for σ 2

μ, the

asymptotic distribution will depend on the variance of μ2
1, which we will denote by κμ � Var(μ2

1).
Similarly, we will need to let κε � Var(ε2

1) when constructing confidence intervals for σ 2
ε .

3.1. Inference for σ 2
μ

To motivate our high-dimensional procedure, we will start by considering the low-dimensional setting.
Letting Sγ denote a weakly sparse set for μ relative to Z and identifying γ with a vector in R

sγ , we
will temporarily consider the linear model

Y = ZSγ γ + ε. (3.2)

The natural estimator for σ 2
μ is given by n−1‖PSγ Y‖2. The following proposition shows that this natural

estimator is in fact efficient for estimating σ 2
μ with Gaussian errors.

Proposition 3.1. Consider the model given in equation (3.2). Assume that the design ZSγ has full
column rank and sγ < n is fixed. Then, the estimator n−1‖PSγ Y‖2 is efficient for estimating σ 2

μ.

From the central limit theorem, it is immediate that

√
n
(
n−1‖PSγ Y‖2 − σ 2

μ

) L→ N
(
0, κμ + 4σ 2

μσ 2
ε

)
.

In the high-dimensional setting, there are three natural extensions of this low-dimensional efficient
estimator using exponential weighting. The first idea is to view PSγ Y as the predicted values of Y

and directly use take the squared norm of the predicted values given by exponential weighting. For
m ∈ Muγ , let γ̂m denote the least-squares estimator for γ using the covariates Zm and set

μ̂�
∑

m∈Muγ

wm,Y Zmγ̂m,

where wm,Y is defined in Section 2.1. Then, we may consider the estimator

σ̂ 2
μ,I �

1

n
‖μ̂‖2.
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Alternatively, we may take the perspective that exponential weights concentrate well around the models
with high predictive capacity, which would suggest aggregating the squared norms,

σ̂ 2
μ,II �

1

n

∑
m∈Muγ

wm,Y ‖PmY‖2.

The last estimator that we consider is inspired by the low-dimensional maximum likelihood estimator
for σ 2

ε and the fact that Var(Y1) = σ 2
μ + σ 2

ε :

σ̂ 2
μ,III �

1

n

(‖Y‖2 − ‖Y − μ̂‖2).
Before stating the main results for these estimators, we will first provide all of our assumptions.

(C1) The mean vector μ has independent and identically distributed entries with finite fourth mo-
ment.

(C2) The entries of ε are independent of Z. Moreover, the entries of ε are independent and identi-
cally distributed sub-Gaussians with parameter Kε .

(C3) The vector μ is weakly sparse relative to Z with sparsity sγ . Furthermore, it is assumed
that the statistician knows a sequence uγ with uγ ≥ sγ for n sufficiently large and uγ =
o(

√
n/ log(p)).

Assumption (C1) implies that ‖μ‖2 = OP(n). By Jensen’s inequality, it is immediate that σ̂ 2
μ,I ≤

σ̂ 2
μ,II ≤ σ̂ 2

μ,III. However, it turns out that, under the above assumptions, these estimators are asymp-

totically equivalent at the
√

n-rate. Recall that κμ � Var(μ2
1). The following theorem provides the

asymptotic distribution of the three estimators.

Theorem 3.2. Consider the model given in equation (3.1). Suppose that σ 2
μ > 0. Under assumptions

(C1)–(C3),

√
n
(
σ̂ 2

μ − σ 2
μ

) L→ N
(
0, κμ + 4σ 2

ε σ 2
μ

)
,

where σ̂ 2
μ is either σ̂ 2

μ,I, σ̂ 2
μ,II, or σ̂ 2

μ,III.

Since our interest is mainly asymptotic, we will write σ̂ 2
μ to denote generically one of the estimators

for σ 2
μ. To construct confidence intervals for σ 2

μ, we will need to estimate κμ, which may be accom-
plished by considering

κ̂μ � 1

n

n∑
j=1

(
μ̂2

j − σ̂ 2
μ

)2
.

The following proposition shows that κ̂μ is a consistent estimator for κμ.

Proposition 3.3. Consider the model given in equation (3.1). Under assumptions (C1)–(C3), κ̂μ
P→ κμ.

Therefore, an asymptotic (1 − α) confidence interval for σ 2
μ is given by

(
σ̂ 2

μ − zα/2

√
κ̂μ + 4σ̂ 2

ε σ̂ 2
μ

n
, σ̂ 2

μ + zα/2

√
κ̂μ + 4σ̂ 2

ε σ̂ 2
μ

n

)
. (3.3)
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3.2. Inference for σ 2
ε

In this section, we are interested in constructing confidence intervals for σ 2
ε . In the low-dimensional

setting with Gaussian errors, an estimator for σ 2
ε is given by maximum likelihood, which may be

written as

σ̂ 2
ε,ML = 1

n
‖Y − PSγ Y‖2.

From classical parametric theory, σ̂ 2
ε,ML is an efficient estimator for σ 2

ε that achieves the information
bound. A natural extension in the high-dimensional setting is to view PSγ Y as the predicted value and
consider the estimator

σ̂ 2
ε,I �

1

n
‖Y − μ̂‖2,

where μ̂ is defined in Section 3.1. Recalling that Var(Y1) = σ 2
μ + σ 2

ε , we may consider two more
estimators of σ 2

ε in light of the results of Section 3.1, which are

1.

σ̂ 2
ε,II �

1

n
‖Y‖2 − σ̂ 2

μ,II.

2.

σ̂ 2
ε,III �

1

n
‖Y‖2 − σ̂ 2

μ,I.

Again, by Jensen’s inequality, it is immediate that σ̂ 2
ε,I ≤ σ̂ 2

ε,II ≤ σ̂ 2
ε,III. Similar to before, these three

estimators are asymptotically equivalent at the
√

n-rate and the following theorem provides the asymp-
totic distribution for all three.

Theorem 3.4. Consider the model given in (3.1) with σ 2
μ > 0. Under assumptions (C1)–(C3),

√
n(σ̂ 2

ε −
σ 2

ε )
L→ N (0, κε), where σ̂ 2

ε is one of σ̂ 2
ε,I, σ̂ 2

ε,II, or σ̂ 2
ε,III.

This gives us an immediate corollary to estimating d̄ from Section 2.2, which requires the following
assumption:

(C2∗) The vector ε ∼Nn(0,�ε) is independent of Z with ‖�ε‖ = O(1) and tr(�ε)/n → d̄ > 0.

Corollary 3.5. Consider the model given in equation (3.1). Under assumptions (C1), (C2∗), and (C3),

σ̂ 2
ε,I

P→ d̄ .

Remark 3.1. Currently, in this section, we have assumed that q = 0 but the theory for all three esti-
mators of σ 2

ε are still valid when q > 0. In this setting, Xβ +μ is weakly sparse relative to (X,Z) with
sparsity sγ at rate

√
n. Therefore, by using exponential weighting with the design (X,Z), the above

theorem implies that all three estimators are consistent for σ 2
ε .

Remark 3.2. In practice, one may consider a version of the three estimators dividing by n−uγ instead
of n, consistent with the low-dimensional unbiased mean squared error estimator. Asymptotically, since
uγ = o(

√
n), they will have the same asymptotic distribution but seem to have better performance

empirically in finite sample.
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Again, since σ̂ 2
ε,I, σ̂ 2

ε,II, and σ̂ 2
ε,III are asymptotically equivalent, we will write σ̂ 2

ε to denote a generi-

cally any of the three estimators. To construct confidence intervals for σ 2
ε , we will need to estimate κε .

The estimator that we propose is similar to κ̂μ, namely we will defined κ̂ε as

κ̂ε �
1

n

n∑
j=1

(
(yj − μ̂j )

2 − σ̂ 2
ε

)2
.

Analogous to Proposition 3.3, the following provides the consistency of κ̂ε .

Proposition 3.6. Consider the model given in equation (3.1). Under assumptions (C1)–(C3), κ̂ε
P→ κε .

Therefore, an asymptotic (1 − α) confidence interval for σ 2
ε is given by

(
σ̂ 2

ε − zα/2

√
κ̂ε

n
, σ̂ 2

ε + zα/2

√
κ̂ε

n

)
. (3.4)

4. Implementation

In this section, we describe a method to approximate all of the proposed estimators. Since all of our
estimators are based on exponential weighting, we will only detail the task of estimating θ̂EW, with
the others being analogous. Then, the goal of approximating θ̂EW can be split into the following two
tasks:

1. Determining the values of the tuning parameters αY and uθ .
2. Aggregating over

(
p
uθ

)
models.

We will start with the second task. Suppose temporarily that values of αY and uθ have been selected.
To aggregate the models, we will follow the Metropolis Hastings scheme of Rigollet and Tsybakov
[23]. Our approach slightly differs from theirs since we restrict our attention to uθ -sparse models
whereas they consider models of varying sizes.

Conditional on the data, the values of θ̂EW and θ̂m for each m ∈ Muθ are fixed. We may view Muθ

as the vertices of the Johnson graph J (p,uθ , uθ − 1) (cf. Godsil and Royle [11]). Then, for each
m ∈ Muθ , by assigning weight wm,Y to vertex m, the target θ̂EW may be viewed as the expectation of
the fixed estimators θ̂m over the graph J (p,uθ , uθ − 1), conditional on the observed data. Hence, by
taking a random walk over J (p,uθ , uθ − 1), we may approximate θ̂EW.

Before describing the algorithm, we need to introduce a bit of notation. For any model m ∈ Muθ ,
we will let Km denote the neighbors of m, which is given by

Km �
{
k ∈ Muθ : |k ∩ m| = uθ − 1

}
.

Moreover, we will write RSSm � ‖P ⊥
m Y‖2, the residual sum of squares. Furthermore, recall that if

ZT
mZm is rank deficient, then (ZT

mZm)−1 will denote any generalized inverse. Finally, let T0 denote
some burn-in time for the Markov chain and T denote the number of samples from the Markov chain.
This will yield Algorithm1, which closely parallels Rigollet and Tsybakov [23].
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Algorithm 1: Exponential weighting

Result: Approximates θ̂EW
Initialize a random point m0 ∈Muθ and compute RSSm0 ;
for t = 0, . . . , T do

Uniformly select k ∈ Kmt and compute RSSk ;
Generate a random variable mt+1 by

mt+1 =

⎧⎪⎪⎨
⎪⎪⎩

mt with probability exp

(
− 1

αY

(RSSk − RSSmt )

)
;

k with probability 1 − exp

(
− 1

αY

(RSSk − RSSmt )

)
;

if t > T0 then
Compute θ̂t+1 ← (ZT

mt+1
Zmt+1)

−1ZT
mt+1

Y , embedded as a vector in R
p;

end
end
return

1

T

T0+T∑
t=T0+1

θ̂t+1;

Then, analogous to Theorem 7.1 of Rigollet and Tsybakov [23], it will follow that

lim
T →∞

1

T

T0+T∑
t=T0+1

θ̂t+1 = θ̂EW, P almost surely.

Now, for the first task, we may construct a grid of parameter points and use cross-validation to jointly
tune the parameters using the above algorithm. Since both αY and uθ do not need to be known exactly,
but need to be tuned to be larger than a threshold, the grid can be quite coarse to ease the computational
burden.

Computation in the ultrahigh-dimension is inherently difficult. In view of Zhang, Wainwright and
Jordan [29], there is no polynomial time algorithm that achieves the minimax rate for prediction without
the restricted eigenvalue condition. However, we do not know any algorithm that verifies the restricted
eigenvalue condition in polynomial time (cf. Raskutti, Wainwright and Yu [21]). In this paper, we
completely avoid assuming a condition like the restricted eigenvalue condition and therefore we cannot
guarantee polynomial time convergence. Yet, the algorithm behaves well in practice, as can be seen
from the simulations in the following section.

5. Simulations

We divide this section into two parts, corresponding to simulations for β and simulations for variance
components σ 2

μ and σ 2
ε . Additional simulation tables are included in the Supplement.
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5.1. Simulations for β

For ease of comparison, our simulations will be similar to those given in van de Geer et al. [27]. For
the linear models

Y = Xβ + μ + ε,

Xj = Nj + Hj ,

we will consider the setting where n = 100 and p = 500. There are a few parameters with which we
will experiment: q , β , the distribution of the design and errors, the sparsities, and the signal to noise
ratio. For each parameter pairing, we run 500 simulations. All confidence intervals will be constructed
at the nominal 95% level.

Since the number of parameters of interest is fixed and low-dimensional, we will consider the settings
where q ∈ {1,3}. To assess both the coverage and the power, we will let β be a vector in R

q with values
in {0,1}. To experiment with the robustness to the sub-Gaussianity assumption, we will use Gaussian,
double exponential, and t (3) distributions for the errors, all scaled to have mean zero and unit variance.
We will denote these distributions by z, e, and t, respectively. Therefore, σ 2

ε = 1 throughout this section.
The design will have the same distribution as the error, but with an equi-correlation covariance matrix.
That is, we consider the covariance matrix, �(Z) to be

�(Z)i,j =
{

1 if i = j,

ρ if i �= j

for ρ ∈ {0,0.8}. When q = 3, the covariance matrix for H(1), denoted by �(H), will also be equi-
correlation,

�(H) =
{

σ 2
η if i = j,

0.5σ 2
η if i �= j,

where σ 2
η is chosen so that Var(X1) = 1.

Similar to van de Geer et al. [27], we will let the sparsity sγ ∈ {3,15}, and, for simplicity, set sδ = sγ .
We will set the signal to noise ratio of μ to ε, which is given by σ 2

μ/σ 2
ε , to be 2. Since large values

of the signal to noise ratio (SNR) of Nj to Hj correspond to highly correlated designs, we will also
consider SNRX � σ 2

ν /σ 2
η ∈ {2,1000}.

For our simulations, we will say μ is weakly sparse relative to Z with sparsity sγ at rate
√

n if there
exists an sγ -sparse set S and vector γS such that Var(μ1 − (ZSγS)1) ≤ n−1/2. In particular, we will
consider vectors γ of the form

γj ∝ π(j)−κ , j = 1, . . . , p

for some value κ > 0 and permutation π : {1, . . . , p} → {1, . . . , p}. A similar approach is applied
for �.

We will compare our estimators with a few other procedures:

1. (LS) Oracle least-squares that knows the true weakly sparse set Sγ .
2. (DLA) De-biased lasso from Dezeure et al. [7] as implemented in the R package hdi. We only

apply this when q = 1.
3. (SILM) Simultaneous inference for high-dimensional linear models of Zhang and Cheng [28] as

implemented in the R package SILM.
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4. (DML) Double/de-biased machine learning of Chernozhukov et al. [6] with 4 folds using the
scaled lasso of Sun and Zhang [24] as the estimation procedure as implemented in the R package
scalreg. We only apply this when q = 1.

5. (EWI), (EWII), (EWIII) Exponential weights using σ̂ 2
ε,I, σ̂ 2

ε,II, and σ̂ 2
ε,III respectively. We tune the

parameters using cross-validation with T0 = 3000 and T = 7000.

To evaluate the procedures, we use the following two measures

1. (AvgCov) Average coverage: The percentage of time the true value of β falls inside the confidence
region.

2. (AvgLen) Average length: The average length of the confidence interval (only when q = 1).

The results are given in Table 1 and Tables S1–S11 from the Supplement. In the q = 1 setting with
SNRX = 2, the coverage is comparable amongst all of the estimators. However, the de-biased lasso and
the SILM procedure are slightly preferable in this regime since the length of the intervals are slightly
shorter. When β = 0, SNRX = 1000, and ρ = 0.8, the coverage of the de-biased lasso is quite poor,
with less than a 25% coverage against a nominal rate of 95%. The result should not be surprising
since this corresponds to a setting of high correlation in the design, which weakens the compatibility
condition. The double/de-biased machine learning approach has strong nominal coverage in this regime
(about 100%), but the length of the intervals are significantly longer than the other procedures (about
four to five times longer than exponential weighting). When β = 1, SNRX = 1000, and ρ = 0.8, we
note that the SILM procedure no longer maintains nominal coverage. At first glance, it may seem odd
that the oracle procedure based on least-squares does not always achieve the nominal coverage, but
this is a consequence of weak sparsity. Since there is non-negligible bias in the model approximation
in finite sample, this affects the empirical coverage of the oracle procedure. The results remain the same
when we consider q = 3 and different distributions for the design and the errors. These results suggest
that the compatibility assumption is crucial to the success of the lasso based procedures, and in the
absence of such an assumption, the procedures based on exponential weighting maintain competitive
coverage and length.

Table 1. Simulations for β with Gaussian design and errors when q = 1 and β = 0

snrX 2 2 2 2 1000 1000 1000 1000
ρ 0 0 0.8 0.8 0 0 0.8 0.8

sδ , sγ 3 15 3 15 3 15 3 15

LS 0.946 0.880 0.946 0.958 0.942 0.908 0.938 0.930
DLA 0.958 0.884 0.976 0.978 0.954 0.870 0.218 0.170
SILM 0.970 0.872 0.962 0.970 0.958 0.812 0.900 0.902

AvgCov DML 0.966 0.850 0.956 0.946 0.982 0.844 1.000 1.000
EWI 0.956 0.868 0.956 0.962 0.960 0.828 0.954 0.968
EWII 0.978 0.912 0.976 0.980 0.972 0.898 0.966 0.984
EWIII 0.984 0.938 0.984 0.994 0.980 0.936 0.980 0.994

LS 0.427 0.462 0.589 0.684 0.430 0.467 0.919 1.440
DLA 0.493 0.532 0.689 0.700 0.530 0.547 0.544 0.501
SILM 0.529 0.559 0.670 0.697 0.623 0.609 0.666 0.646

AvgLen DML 0.650 0.634 0.694 0.692 1.510 0.881 10.600 11.100
EWI 0.623 0.636 0.700 0.716 1.060 0.774 1.910 1.830
EWII 0.690 0.710 0.768 0.797 1.170 0.868 2.100 2.040
EWIII 0.749 0.776 0.830 0.871 1.280 0.951 2.270 2.240
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5.2. Simulations for σ 2
μ and σ 2

ε

In this section, we set q = 0 and only consider the setting of strong sparsity (ie. μ = Zγ for some
vector γ ∈ R

p satisfying ‖γ ‖0 = sγ ). This reduces the linear model to Y = Zγ + ε. We still consider
the setting where n = 100 and p = 500. The value of σ 2

μ = 2 and σ 2
ε = 1 throughout these simulations.

The parameters with which we will experiment are the distributions of the design and errors and the
sparsity.

Again, we will consider Gaussian, double exponential, and t (3) distributions for the design and the
errors. The design will have an equi-correlation structure with ρ ∈ {0,0.8} and the sparsity will satisfy
sγ ∈ {3,15}.

The vector of coefficients, γ , will have sγ components generated from uniform(−1,1) and p − sγ
components that are zero. The values will then be scaled such that σ 2

μ = γ T�Zγ = 2.
For estimation of σ 2

μ, we will compare our results with an oracular estimator based on low-
dimensional least-squares and the recent proposal of CHIVE.

1. (LS) Oracle least-squares that knows the true strongly sparse set Sγ using equation (3.3).
2. (CHIVE) The calibrated inference for high-dimensional variance explained of Cai and Guo [5].

We follow Algorithm 1 of the paper with τ 2
0 ∈ {0,2,4,6}.

3. (EWI), (EWII), (EWIII) Exponential weighting using σ̂ 2
μ,I, σ̂ 2

μ,II, and σ̂ 2
μ,III respectively. We tune

the parameters using cross-validation with T0 = 3000 and T = 7000.

The results are presented in Table 2 and Table S12 from the Supplement. We note that the coverage
of the least-squares procedure is close to the nominal 95% rate when sγ = 3 and the errors are either
Gaussian or double exponential. The coverage is significantly worse for the t (3) design, which should
not be surprising since the fourth moment is not defined for this distribution. However, when sγ =
15, the coverage of least-squares falls, which establishes a reference for the problem difficulty, since
Proposition 3.1 establishes the efficiency of least-squares in this problem.

Table 2. Simulations for σ 2
μ with sγ = 3

Distribution z z e e t t
ρ 0 0.8 0 0.8 0 0.8

LS 0.922 0.948 0.914 0.934 0.808 0.802
CHIVE0 0.698 0.532 0.690 0.604 0.554 0.526
CHIVE2 0.818 0.668 0.792 0.702 0.712 0.634

AvgCov CHIVE4 0.888 0.748 0.848 0.762 0.770 0.704
CHIVE6 0.890 0.772 0.898 0.790 0.860 0.746

EWI 0.852 0.850 0.854 0.862 0.780 0.778
EWII 0.804 0.772 0.820 0.838 0.812 0.828
EWIII 0.708 0.644 0.744 0.762 0.820 0.866

LS 1.520 1.510 1.800 1.950 2.430 2.950
CHIVE0 0.998 0.937 1.160 1.190 1.670 2.130
CHIVE2 1.520 1.560 1.650 1.740 2.150 2.640

AvgLen CHIVE4 1.890 1.970 2.010 2.120 2.500 2.980
CHIVE6 2.210 2.300 2.310 2.440 2.780 3.270

EWI 1.470 1.440 1.750 1.850 2.390 2.840
EWII 1.420 1.390 1.710 1.810 2.370 2.810
EWIII 1.370 1.320 1.670 1.760 2.340 2.780
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Amongst the exponential weighting estimators, when sγ = 3 and the errors are Gaussian or double
exponential, the procedure based on σ̂ 2

μ,I has the best performance and σ̂ 2
μ,III has the coverage when

the errors are t distributed. For higher sparsity, no one estimators dominates the others; depending
on our assumptions, any of the three estimators may be preferable. Compared with CHIVE, the best
exponential weighting procedure seems to be able to achieve comparable coverage with significantly
shorter intervals, which can be seen across all of our simulation settings.

For the estimation of σ 2
ε , we will consider the oracular least-squares, the scaled lasso estimator, and

the refitted cross-validation with Sure Independence Screening, along with our proposed procedures
based on exponential weighting.

1. (LS) Oracle least-squares that knows the true strongly sparse set Sγ using equation (3.4).
2. (SL) Scaled lasso as implemented in the R package scalreg with a confidence interval con-

structed using Theorem 2 of Sun and Zhang [24].
3. (RCV-SIS) Refitted cross-validation of Fan, Guo and Hao [9] using the Sure Independence

Screening of Fan and Lv [10] as implemented in the R package SIS in the first stage. The
confidence interval is constructed using Theorem 2 of Fan, Guo and Hao [9], with Eε4 estimated
by Proposition 3.6 of the present paper.

4. (EWI), (EWII), (EWIII) Exponential weighting using σ̂ 2
ε,I, σ̂ 2

ε,II, and σ̂ 2
ε,III respectively. We tune

the parameters using cross-validation with T0 = 3000 and T = 7000.

The results are given in Table 3 and Table S13 from the Supplement. When the signal is very sparse,
sγ = 3, and there is no correlation in the design, scaled lasso has better coverage than exponential
weighting. However, as the correlation increases to ρ = 0.8, the confidence intervals constructed using
σ̂ 2

ε,II outperforms scaled lasso both in terms of coverage and average length. When the model is less

sparse, σ̂ 2
ε,I has comparable or better performance than scaled lasso. The poor performance of refitted

cross-validation with Sure Independence Screening in the sγ = 15 case should not come as a surprise
since the signal to noise ratio is kept constant. The task of sure screening 15 active covariates out of
500 with low signal strength from 50 observations is very difficult.

Table 3. Simulations for σ 2
ε with sγ = 3

Distribution z z e e t t
ρ 0 0.8 0 0.8 0 0.8

LS 0.938 0.912 0.952 0.940 0.918 0.912
SL 1.000 0.730 0.998 0.730 0.994 0.756

AvgCov RCV-SIS 0.684 0.646 0.688 0.644 0.638 0.606
EWI 0.616 0.608 0.678 0.674 0.650 0.690
EWII 0.862 0.828 0.872 0.846 0.852 0.814
EWIII 0.672 0.458 0.660 0.488 0.636 0.430

LS 0.532 0.529 0.545 0.528 0.534 0.534
SL 0.599 0.670 0.602 0.665 0.602 0.659

AvgLen RCV-SIS 0.485 0.509 0.508 0.514 0.554 0.539
EWI 0.430 0.427 0.442 0.438 0.435 0.447
EWII 0.441 0.444 0.453 0.453 0.446 0.463
EWIII 0.462 0.475 0.473 0.480 0.466 0.492
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6. Proofs

6.1. Proofs for Section 2.1

Before proving our main results, we will state a simplified version of Theorem 2.1 of Hsu, Kakade and
Zhang [13] will be useful in the subsequent proofs.

Lemma 6.1 (Theorem 2.1 of Hsu, Kakade and Zhang [13]). Let P ∈ R
n×n be a rank u projection

matrix. Let ξ ∈R
n be a mean zero sub-Gaussian vector with parameter Kξ . Then, for all t > 0,

P
(‖Pξ‖2 > K2

ξ (u + 2
√

ut + 2t)
) ≤ exp(−t).

For ease of reference in later proofs, we will prove Proposition 2.1 as two lemmata.

Lemma 6.2. Let {wm : wm ≥ 0,
∑

m∈Mu
wm = 1,m ∈ Mu} be weights, possibly random, and ξ be a

sub-Gaussian vector with parameter Kξ , independent of Z. If u = o(nτ / log(p)), then

E

( ∑
m∈Mu

wm‖Pmξ‖2
)

= o
(
nτ

)
.

Proof. Fix t > 0 arbitrarily. Define the event Tt as

Tt �
⋂

m∈Mu

{‖Pmξ‖2 ≤ K2
ξ

(
u + 2

√
utnτ + 2tnτ

)}
.

For any fixed m ∈ Mu, it follows from Lemma 6.1 that

P
(‖Pmξ‖2 > K2

ξ

(
u + 2

√
utnτ + 2tnτ

)) ≤ exp
(−tnτ

)
.

Therefore,

P
(
T c

t

) ≤ exp
(−tnτ + log

(|Mu|
))

. (6.1)

We observe that the above tends to zero from the assumption that u log(p) = o(nτ ) and the standard
bound on binomial coefficients |Mu| =

(
p
u

) ≤ (ep/u)u. Now, note that

E

( ∑
m∈Mu

wm‖Pmξ‖2
)

= E

( ∑
m∈Mu

wm‖Pmξ‖21Tt

)
+E

( ∑
m∈Mu

wm‖Pmξ‖21T c
t

)
.

For the first term, by the definition of Tt ,

lim sup
n→∞

n−τ
E

( ∑
m∈Mu

wm‖Pmξ‖21Tt

)
≤ 2tK2

ξ .

For the second term, by Cauchy–Schwarz and equation (6.1), it follows that

lim sup
n→∞

n−τ
E

( ∑
m∈Mu

wm‖Pmξ‖21T c
t

)
≤ lim sup

n→∞
n−τ

E
(‖ξ‖21T c

t

)



Inference without compatibility 1487

≤ lim sup
n→∞

n−τ
E

(‖ξ‖4)1/2
P
(
T c

t

)1/2

= 0.

Therefore,

lim sup
n→∞

n−τ
E

( ∑
m∈Mu

wm‖Pmξ‖2
)

≤ 2tK2
ξ .

Since t > 0 was arbitrary, this finishes the proof. �

Lemma 6.3. Under the assumptions and setup of Proposition 2.1, for any sub-Gaussian vector ζ with
parameter Kζ independent of Z,

1.

E

( ∑
m∈Mu

wm

∥∥P ⊥
m μ

∥∥2
)

= o
(
nτ

)
.

2.

E

( ∑
m∈Mu

wmμTP ⊥
m ζ

)
= o

(
nτ

)
.

Note that ζ is not necessarily independent of ξ .

Proof. For m ∈ Mu, let

rm �
∥∥P ⊥

m μ
∥∥2

.

Fixing t > 0 arbitrarily, define the set

At �
{
m ∈Mu : rm ≤ tnτ

}
.

Now,

E

( ∑
m∈Mu

wmrm

)
= E

( ∑
m∈At

wmrm

)
+E

( ∑
m∈Ac

t

wmrm

)
.

By the definition of At ,

lim sup
n→∞

n−τ
E

( ∑
m∈At

wmrm

)
≤ t.

For Ac
t , fix a value of a > 0, which will be determined later, and define the set Ta as

Ta �
⋂

m∈Mu

{‖Pmξ‖2 ≤ K2
ξ

(
u + 2

√
uanτ + 2anτ

)}
.
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By the calculations from equation (6.1), it follows that

P
(
T c

a

) ≤ exp
(−anτ + log

(|Mu|
))

. (6.2)

Moreover, note that, by assumption,

lim sup
n→∞

sup
m∈Mu

n−1rm ≤ lim sup
n→∞

n−1‖μ‖2 ≤ C,

for some constant C > 0. Then, for n sufficiently large,

n−τ
E

( ∑
m∈Ac

t

wmrm

)
≤ 2Cn1−τ

∑
m∈Ac

t

E(wm) ≤ 2Cn1−τ
∑

m∈Ac
t

(
E(wm1Ta

) + P
(
T c

a

))
. (6.3)

Fix m ∈Ac
t temporarily and let S be any weakly sparse set for μ. Then, we have that

wm1Ta
≤ exp

(
− 1

α

(∥∥P ⊥
m Y

∥∥2 − ∥∥P ⊥
S Y

∥∥2))1Ta

≤ exp

(
− 1

α

(
rm − rS + 2μTP ⊥

m ξ − 2μTP ⊥
S ξ − K2

ξ

(
u + 2

√
uanτ + 2anτ

)))
.

By Cauchy–Schwarz,

E(wm1Ta
) ≤ exp

(
− 1

α

(
rm − rS − K2

ξ

(
u + 2

√
uanτ + 2anτ

)))

×
(
E exp

(
− 4

α
μTP ⊥

m ξ

))1/2(
E exp

(
4

α
μTP ⊥

S ξ

))1/2

.

Computing each of the Laplace transforms directly, it follows that

E exp

(
− 4

α
μTP ⊥

m ξ

)
≤ exp

(8K2
ξ

α2
rm

)
.

Here, we have used Definition 1.2. Similarly,

E exp

(
4

α
μTP ⊥

S ξ

)
≤ exp

(8K2
ξ

α2
rS

)
.

Hence,

E(wm1Ta
) ≤ exp

(
− 1

α

((
1 − 4K2

ξ

α

)
rm −

(
1 + 4K2

ξ

α

)
rS − K2

ξ

(
u + 2

√
uanτ + 2anτ

)))

≤ exp

(
− 1

α

((
1 − 4K2

ξ

α

)
tnτ −

(
1 + 4K2

ξ

α

)
rS − K2

ξ

(
u + 2

√
uanτ + 2anτ

)))
.

The second inequality follows from the fact that m ∈ Ac
t . Since u = o(nτ / log(p)), setting a < (1 −

4K2
ξ /α)t/2 yields

E(wm1Ta
) ≤ exp

(
− 1

α

((
1 − 4K2

ξ

α

)
t − 2a

)
nτ + o

(
nτ

))
. (6.4)
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Combining equations (6.2), (6.3), and (6.4), it follows that

lim sup
n→∞

n−τ
E

( ∑
m∈Ac

t

wmrm

)
= 0.

Therefore,

lim sup
n→∞

n−τ
E

( ∑
m∈Mu

wmrm

)
≤ t.

Since t > 0 was arbitrary, the first claim follows. For the second half, let the set Ft be

Ft �
⋂

m∈At

{∣∣μTP ⊥
m ζ

∣∣ ≤ tnτ
}
.

For a fixed m ∈At , it will follow by a Chernoff bound that, for some constant c > 0,

P
(∣∣μTP ⊥

m ζ
∣∣ > tnτ

) ≤ 2 exp

(
−ct2n2τ

K2
ζ rm

)
≤ 2 exp

(
−ctnτ

K2
ζ

)
.

Therefore, an upper bound for P(F c
t ) is given by

P
(
F c

t

) ≤ 2 exp

(
−ctnτ

K2
ζ

+ log
(|At |

))
. (6.5)

Now,

E

( ∑
m∈At

wm

∣∣μTP ⊥
m ζ

∣∣) = E

( ∑
m∈At

wm

∣∣μTP ⊥
m ζ

∣∣1Ft

)
+E

( ∑
m∈At

wm

∣∣μTP ⊥
m ζ

∣∣1F c
t

)
.

By the definition of Ft , it follows that

E

( ∑
m∈At

wm

∣∣μTP ⊥
m ζ

∣∣1Ft

)
≤ tnτ .

On F c
t , two applications of Cauchy–Schwarz and equation (6.5) yields

lim sup
n→∞

n−τ
E

( ∑
m∈At

wm

∣∣μTP ⊥
m ζ

∣∣1F c
t

)

≤ lim sup
n→∞

n−τ‖μ‖E(‖ζ‖1F c
t

)
≤ lim sup

n→∞
n−τ‖μ‖(E‖ζ‖2)1/2(

P
(
F c

t

))1/2

= 0.
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Furthermore, on Ac
t , by another two applications of Cauchy–Schwarz,

lim sup
n→∞

n−τ
E

( ∑
m∈Ac

t

wm

∣∣μTP ⊥
m ζ

∣∣)

≤ lim sup
n→∞

n−τ‖μ‖
∑

m∈Ac
t

E
(
wm‖ζ‖)

≤ lim sup
n→∞

n−τ‖μ‖
∑

m∈Ac
t

(
Ew2

m

)1/2(
E‖ζ‖2)1/2

≤ lim sup
n→∞

n−τ‖μ‖(E‖ζ‖2)1/2 ∑
m∈Ac

t

(Ewm)1/2

≤ lim sup
n→∞

n−τ‖μ‖(E‖ζ‖2)1/2 ∑
m∈Ac

t

(
E(wm1Ta

) + P
(
T c

a

))1/2

= 0,

where the limit follows by equations (6.2) and (6.4). Since t > 0 was arbitrary, this proves the second
claim and finishes the proof. �

Immediately, we have the following corollary for random designs when the mean vector is assumed
to be weakly sparse in probability.

Corollary 6.4. Consider the setup of Lemma 6.3. If μ is weakly sparse relative to Z in probability and
‖μ‖2 =OP(nτ ), then

1. ( ∑
m∈Mu

wm

∥∥P ⊥
m μ

∥∥2
)

= oP
(
nτ

)
.

2. ( ∑
m∈Mu

wmμTP ⊥
m ζ

)
= oP

(
nτ

)
.

With these lemmata, we can now prove Proposition 2.1.

Proof of Proposition 2.1. Indeed, by convexity of the norm, it follows that

∥∥∥∥ ∑
m∈Mu

wmZγ̂m − μ

∥∥∥∥
2

≤
∑

m∈Mu

wm

∥∥P ⊥
m μ

∥∥2 +
∑

m∈Mu

wm‖Pmξ‖2.

Applying Lemmata 6.2 and 6.3 finishes the proof. �
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Instead of directly proving Theorem 2.3, we will decompose the estimator and prove each part
separately. Indeed, we note that

β̂EW = (ν − Zδ̂EW + η)T(μ − Zθ̂EW + ηβ + ε)

‖X − Zδ̂EW‖2
.

Then,

√
nβ̂EW = (

(ν − Zδ̂EW)T(μ − Zθ̂EW + ηβ + ε) + ηT(μ − Zθ̂EW)

+ ηTηβ + ηTε
) × 1√

nσ 2
η

× nσ 2
η

‖X − Zδ̂EW‖2
.

We will start by proving that the first line, which corresponds to the bias from inexact orthogonalization,
converges to zero.

Lemma 6.5. Consider the models given in equations (2.1) and (2.2). Under assumptions (A1)–(A3),

(ν − Zδ̂EW)T(μ − Zθ̂EW + ηβ + ε) + ηT(μ − Zθ̂EW) = oP(
√

n).

Proof. Without the loss of generality, we will assume that u� uθ = uδ . Expanding, we have

(ν − Zδ̂EW)T(μ − Zθ̂EW) + (ν − Zδ̂EW)T(ηβ + ε) + ηT(μ − Zθ̂EW).

We will consider each of the three terms separately. By Cauchy–Schwarz and Corollary 2.2, it follows
that

∣∣(ν − Zδ̂EW)T(μ − Zθ̂EW)
∣∣ ≤ ‖ν − Zδ̂EW‖‖μ − Zθ̂EW‖ = oP(

√
n).

For the second term, we may further expand to obtain

(ν − Zδ̂EW)T(ηβ + ε) =
∑

m∈Mu

wm,X

(
P ⊥

m ν − Pmη
)T

(ηβ + ε)

=
∑

m∈Mu

wm,XνTP ⊥
m (ηβ + ε) + 1

2

∑
m∈Mu

wm,X‖Pmε‖2

− 1

2

∑
m∈Mu

wm,X

∥∥Pm(η + ε)
∥∥2

−
(

β − 1

2

) ∑
m∈Mu

wm,X‖Pmη‖2.

In the model X = ν + η, applying Lemma 6.2 with ξ = ε, ξ = η + ε, and ξ = η and Corollary 6.4 with
ζ = ηβ + ε will imply that

(ν − Zδ̂EW)T(ηβ + ε) = oP(
√

n).
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Finally,

ηT(μ − Zθ̂EW) =
∑

m∈Mu

wm,Y ηT(P ⊥
m μ − Pm(ηβ + ε)

)

=
∑

m∈Mu

wm,Y ηTP ⊥
m μ − 1

2

∑
m∈Mu

wm,Y

∥∥Pm

(
η(β + 1) + ε

)∥∥2

+ 1

2

∑
m∈Mu

wm,Y

∥∥Pm(ηβ + ε)
∥∥2 + 1

2

∑
m∈Mu

wm,Y ‖Pmη‖2.

To finish the proof, we similarly apply Lemma 6.2 and Corollary 6.4 in the model Y = μ + ηβ + ε. It
follows that

ηT(μ − Zθ̂EW) = oP(
√

n). �

Lemma 6.6. Consider the models given in (2.1) and (2.2). Under assumptions (A1)–(A3),

1.

√
n

(
ηTηβ

‖X − Zδ̂EW‖2
− β

)
P→ 0.

2.

n−1/2 ηTε

σ 2
η

L→ N
(

0,
σ 2

ε

σ 2
η

)
.

3.

nσ 2
η

‖X − Zδ̂EW‖2

P→ 1.

Proof. Indeed, expanding the denominator, we see that

‖X − Zδ̂EW‖2 = ‖ν − Zδ̂EW‖2 + 2ηT(ν − Zδ̂EW) + ‖η‖2.

By Corollary 2.2 and Lemma 6.5, it follows that

‖X − Zδ̂EW‖2 = oP(
√

n) + ‖η‖2.

Then, by the Law of Large Numbers, n−1‖X − Zδ̂EW‖2 P→ σ 2
η . This proves the third claim. Now, by

direct substitution, we have that

√
n

(
(‖X − Zδ̂EW‖2 + oP(

√
n))β

‖X − Zδ̂EW‖2
− β

)
= n

‖X − Zδ̂EW‖2

oP(
√

n)√
n

= oP(1),

which proves the first claim. The second claim follows by the Central Limit Theorem, which finishes
the proof. �

Proof of Theorem 2.3. The proof follows by combining Lemmata 6.5 and 6.6. �
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Proof of Corollary 2.4. By possibly enlarging K , we note that K can be written as

K = {(
β,σ 2

η , σ 2
ε ,Kη,Kε

) : |β| ≤ βU ,σ 2
η ∈ [

σ 2
η,L, σ 2

η,U

]
, σ 2

ε ∈ [
σ 2

ε,L, σ 2
ε,U

]
,

Kη ∈ [Kη,L,Kη,U ],Kε ∈ [Kε,L,Kε,U ]}
for fixed positive constants βU , σ 2

η,L, σ 2
η,U , σ 2

ε,L, σ 2
ε,U , Kη,L, Kη,U , Kε,L, and Kε,U . Observe that the

vectors η, ηβ , and ε are uniformly sub-Gaussian with parameters Kη,U βUKη,U , and Kε,U for ϑ ∈ K
respectively. Thus, applications of Lemmata 6.2 and 6.3 are uniform. Therefore, Lemmata 6.5 and 6.6
will also hold uniformly for ϑ ∈ K , which will prove the claim. �

6.2. Proofs for Section 2.4

Proof of Theorem 2.8. Suppose that sδ = o(
√

n/ log(p)). We will consider a sequence of ϑ ∈
�(sγ , sδ) such that Sγ ∩ Sδ = ∅ and δ ≥ 0 componentwise. We will construct �Z,Z implicitly. For
j ∈ Sc

δ , let

Zj
i.i.d.∼ Nn(0n, In).

Before defining Zj for j ∈ Sδ , we will need to define another Gaussian matrix � ∈ R
n×p . For j ∈ Sc

δ ,
set �j = 0n. Then, for j ∈ Sδ ,

�j
i.i.d.∼ Nn

(
0n, τ

2
n In

)
,

independent of Zk for all k ∈ Sc
δ ; the value τ 2

n > 0 will be determined later. Now, for j ∈ Sδ , we will
let Zj = Zγ + �j . Therefore, it follows that Zδ = Zγ ‖δ‖1 + �δ. By a direct calculation,

Cov
(
(Zδ)1, (Zγ )1

) = Cov
(
(Zγ )1‖δ‖1 + (�δ)1, (Zγ )1

) = Var
(
(Zγ )1

)‖δ‖1.

Moreover,

Var
(
(Zδ)1

) = Var
(
(Zγ )1‖δ‖1 + (�δ)1

) = Var
(
(Zγ )1

)‖δ‖2
1 + τ 2

n‖δ‖2
2.

Choosing τ 2
n → 0 sufficiently fast, it will follow that

Var
(
(Zδ)1

) = Var
(
(Zγ )1

)‖δ‖2
1 + o

(
n−1/2).

Hence, this implies that

Cov
(
(Zδ)1, (Zγ )1

) =
√

Var
(
(Zδ)1

)
Var

(
(Zγ )1

) + o
(
n−1/2).

Now, note that

Cov
(
(Zδ)1, (Zγ )1

) = Cov(X1, Y1) − β Var(X1).

Let β̂ be any
√

n-consistent estimator for β . Then, n−1(XTY − β̂XTX) is a
√

n-consistent estimator for
Cov((Zδ)1, (Zγ )1). Consider an oracle that has access to the set Sδ , knows Sδ ∩ Sγ = ∅, and knows
the covariance structure of the design. Then, since sδ = o(

√
n/ log(p)), a

√
n-consistent estimator

for Var((Zδ)1) is given by Theorem 3.2. This implies that there exists a
√

n-consistent estimator for
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Var((Zγ )1). By the minimax lower bounds established by Cai and Guo [5], it follows that, in order
to have a

√
n-consistent estimator for Var((Zγ )1), it must be the case that sγ = O(

√
n/ log(p)). This

proves half of the claim. The other half follows by symmetry, which finishes the proof. �
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