Journal of Computer and Communications, 2021, 9, 29-56
https://www.scirp.org/journal/jcc

ISSN Online: 2327-5227

ISSN Print: 2327-5219

/
o2o Resmits
0.00 Publishing

Performance Analysis of Accelerator
Architectures and Programming Models for
Parareal Algorithm Solutions of Ordinary
Differential Equations

Sumathi Lakshmiranganatha, Suresh S. Muknahallipatna®

Department of Electrical and Computer Engineering, University of Wyoming, Laramie, USA

Email: slakshmi@uwyo.edu, *sureshm@uwyo.edu

How to cite this paper: Lakshmirangana-
tha, S. and Muknahallipatna, S.S. (2021)
Performance Analysis of Accelerator Ar-
chitectures and Programming Models for
Parareal Algorithm Solutions of Ordinary
Differential Equations. Journal of Comput-
er and Communications, 9, 29-56.
https://doi.org/10.4236/jcc.2021.92003

Received: January 2, 2021
Accepted: February 20, 2021
Published: February 23, 2021

Copyright © 2021 by author(s) and
Scientific Research Publishing Inc.

This work is licensed under the Creative
Commons Attribution International
License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/

Abstract

Increasing needs for the study of complex dynamical systems require com-
puting solutions of a large number of ordinary and partial differential time-
dependent equations in near real-time. Numerical integration algorithms,
which are computationally expensive and inherently sequential, are typically
used to compute solutions of ordinary and partial differential time- depen-
dent equations. This presents challenges to study complex dynamical systems
in near real-time. This paper examines the challenges of computing solutions
of ordinary differential time-dependent equations using the Parareal algo-
rithm belonging to the class of parallel-in-time algorithms on various high-
performance computing accelerator-based architectures and associated pro-
gramming models. The paper presents the code refactoring steps and perfor-
mance analysis of the Parareal algorithm on two accelerator computing ar-
chitectures: the Intel Xeon Phi CPU and Graphics Processing Unit many-
core architectures, and with OpenMP, OpenACC, and CUDA programming
models. The speedup and scaling performance analysis are used to demon-
strate the suitability of the Parareal to compute the solutions of a single ordi-
nary differential time-dependent equation and a family of interdependent or-
dinary differential time-dependent. The speedup, weak and strong scaling
results demonstrate the suitability of Graphical Processing Units with the
CUDA programming model as the most efficient accelerator for computing
solutions of ordinary differential time-dependent equations using parallel-
in-time algorithms. Considering the time and effort required to refactor the
code for execution on the accelerator architectures, the Graphical Processing
Units with the OpenACC programming model is the most efficient accelerator
for computing solutions of ordinary differential time-dependent equations us-
ing parallel-in-time algorithms.

DOI: 10.4236/jcc.2021.92003

Feb. 23, 2021 29

Journal of Computer and Communications

https://www.scirp.org/journal/jcc
https://doi.org/10.4236/jcc.2021.92003
https://www.scirp.org/
https://doi.org/10.4236/jcc.2021.92003
http://creativecommons.org/licenses/by/4.0/

S. Lakshmiranganatha, S. S. Muknahallipatna

Keywords

Accelerators, Many-Core, Directive-Based, Time-Parallel, Scaling, Speedup

1. Introduction

The study of complex systems to analyze their stability and time evolution in

near real-time due to external forces or disturbances is an emerging field of re-

search. A natural or engineered system is defined as a complex system if it exhi-

bits the following characteristics:

e Consists of a large number of interacting subsystems or components or
agents.

o Exhibit emergence; that is, a self-organizing collective behavior difficult to
determine from the knowledge of components behavior.

o Lack of a central controller controlling the emergent behavior.

Out of the three above characteristics, emergent behavior is considered the
most distinguishing feature of complex systems. The nonlinear dynamics of the
complex system [1] is the main contributor to the emergent behavior of a com-
plex system, hence the term complex dynamical systems. In the study of emer-
gent behavior, the system’s time evolution requires a system model, which is the
mathematical representation of the system [2]. If the system dynamics are non-
linear, the mathematical representation involves nonlinear algebraic or nonli-
near differential equations or both.

The mathematical models of complex dynamical systems consisting of ordi-
nary differential equations (ODEs), partial differential equations (PDEs), and
time independence equations can be found in both natural and engineered sys-
tems. Examples of complex natural system models are the protein folding model,
weather forecasting models, and crowd simulation models, to mention a few.
The models of modern power grid and internet are of two massive, complex en-
gineered systems. These models’ common characteristics consist of equations
modeling both the complex system’s steady-state and dynamic behavior. De-
pending on the application domain of a complex system, the algebraic or grid
equations modeling the steady-state of the complex system are known as the
network equations or dynamic-core (dycore), and the ODEs/PDEs modeling the
dynamic state of the complex system is known as the system dynamics or phys-
ics. For example, the sensor network equations used in weather forecasting con-
stitute the dycore, while the physics consists of the PDEs. In the modern power
grid, the steady-state load flow equations constitute the network equations, and
the ODEs modeling the grid components are the system dynamic equations.

Therefore, the study of complex dynamical systems to analyze their stability
and time evolution involves computing the solutions of a large number of non-
linear algebraic and differential equations, which is computationally expensive.

To date, the research to address the computation burden in the study of com-

DOI: 10.4236/jcc.2021.92003

30 Journal of Computer and Communications

https://doi.org/10.4236/jcc.2021.92003

S. Lakshmiranganatha, S. S. Muknahallipatna

plex dynamic systems is focused on using high-performance computation
(HPC) techniques with traditional supercomputers to parallelize the computa-
tion of network equations or dycore solutions resulting in execution times in
terms of days. In the last few years, with the emergence of supercomputers based
on many-core architectures due to hardware accelerators like graphical
processing units (GPUs) and Intel Xeon Phi, the execution times have been re-
duced from days to hours or a single day. Recently, the computation time of
weather forecasting using the model for prediction across scales (MPAS) was
reduced to less than an hour from 24 hours using GPU high-performance com-
puting techniques [3]. The HPC technique used to parallelize the computation of
the network equations solutions constitutes distributing the computations across
the cores in each socket (CPU) in a supercomputer node. The distribution
among the cores is implemented using spatial domain decomposition [4] [5] [6].
However, the underneath system dynamic equations or the physics solutions are
computed sequentially using traditional numerical integration techniques re-
sulting in only offline studies of complex systems to evaluate stability and time-
evolution.

In recent years, due to the availability of powerful hardware accelerators like
GPUs and Xeon Phi, HPC techniques to parallelize numerical integration me-
thods to compute solutions of ODE/PDE using time-domain decomposition [7]
[8] [9] approaches in being researched. The time-domain decomposition ap-
proaches to parallelize the numerical integration methods are researched to re-
duce the computational time from hours to a few minutes or seconds, depending
on the complexity. This paper investigates the time-domain decomposition ap-
proach to compute the solutions of ODEs.

The idea of developing parallel methods for solving the ODEs dates back to
the 1960s in [10] [11], where the authors present a parallel numerical integration
method to solve the ODEs. In the 1990s, time-parallel multigrid methods were
developed and presented in [12] [13] for the Navier-Stokes equation. Other stu-
dies were performed on parallel multiple shooting methods [14] and parabolic
multigrid-methods [15]. In recent years, several parallel-in-time algorithms are
developed namely: The Parareal algorithm (PRA) [16], parallel in time algorithm
(PITA) [17], parallel full approximation scheme in space and time (PFASST)
[18] [19], revision deferred corrections [20] [21] and space-time multigrid me-
thods [22] [23].

PRA is widely studied and implemented for computing solutions of ODEs and
PDEs in several application domains like finance [24], molecular dynamics [8],
quantum chemistry [25], non-linear parabolic equations [26], plasma physics
[27], and power systems [28] [29] [30]. Several studies are performed to analyze
the stability and convergence properties [9] [31] [32] [33] of the algorithm. The
scalability of the algorithm is studied in [34] [35] using different computing
cores.

The PRA is implemented on heterogeneous and homogeneous computing ar-

chitectures for several applications. The research in [36] demonstrates the im-

DOI: 10.4236/jcc.2021.92003

31 Journal of Computer and Communications

https://doi.org/10.4236/jcc.2021.92003

S. Lakshmiranganatha, S. S. Muknahallipatna

plementation of PRA for unsteady hydrodynamic simulations. The authors focus
on analyzing the stability of the PRA for solving the advanced turbulence models
to solve evolution fluid problems at high Reynolds number. The instability
problem of PRA is addressed by incorporating the windowing technique at a
high Reynolds number. The proposed framework is illustrated with a fully tur-
bulent vortex shedding from a cylinder and a flow from the Grand Passage tidal
zone in the Bay of Fundy. OpenMP is used to achieve temporal parallelism, and
MPI is used to achieve data parallelism introduced by spatial decomposition.
The computationally intensive tasks of the application are accelerated using
CUDA.

In [37], the authors have implemented PRA to parallelize the time dimension
in solving the PDEs modeling neural tissue’s electrical activity. The models are
mathematically represented as PDEs. Parallelization space in GPU using dy-
namic grids, ie., launching multiple streams technique, is used to solve the
mono-domain model. CUDA programming model is used to implement on
GPUs. The GPU results are compared with the simulations obtained from a
multicore processor cluster using the MPI programming model. A speedup of
100 is achieved in computation time between the sequential and parallel execu-
tion on the GPU.

The research in [38] demonstrates PRA’s implementation, coupled with the
Exact Domain Decomposition method (EDD), to solve the Hodgkin-Huxley eq-
uation. PRA is implemented to achieve the outer level parallelism, and the EDD
algorithm with fine decomposition is used for inner-level parallelism. The me-
thod uses dynamic parallelism of CUDA to achieve multi-level parallelism on
GPUs. The maximum speedup achieved is 2.5x for the largest matrix size.

A stencil-based implementation of PRA is presented in [39] called STELLA.
STELLA provides OpenMP and CUDA backend for shared memory paralleliza-
tion on CPUs and GPUs for intranode spatial stencils. The node-wise spatial
parallelism is combined with PRA, and the MPI programming model is used to
parallelize in time across nodes. The performance is analyzed for an advec-
tion-diffusion problem with a time-dependent diffusion coefficient. In this
framework, the spatial dimension of the PDEs is solved on GPUs for fine-
grained parallelism.

In the above literature, the PRA is implemented to solve PDEs, which involves
space and time. The majority of the above implementations incorporate both
spatial and temporal parallelism. For the heterogeneous computing architectures
implementation, only the CUDA programming model is used. In [28], PRA is
implemented to solve the power systems dynamics that involve only temporal
parallelization. However, the research focuses on the stability and suitability of
PRA to solve a system of ODEs. The PRA is implemented on MATLAB, and
ODE:s are solved sequentially on the CPU. The potential speedups that can be
achieved when implemented on multicore processors are presented.

In [40], the use of the time-parallel approach and, in particular, the Parareal
algorithm (PRA) implementation on the Graphical Processor Unit (GPU) was

DOI: 10.4236/jcc.2021.92003

32 Journal of Computer and Communications

https://doi.org/10.4236/jcc.2021.92003

S. Lakshmiranganatha, S. S. Muknahallipatna

investigated. The Compute Unified Device Architecture (CUDA) programming
model was used for solving ODEs representing the electrical components of the
power system. The investigation focused on developing a reliable implementa-
tion of PRA on heterogeneous architecture to solve ODEs in temporal decompo-
sition to reduce computational time and be applied to achieve real-time or faster
than real-time TSA using a large number of GPUs.

In this paper, PRA is implemented using different programming models on
homogeneous and heterogeneous computing architectures. OpenMP [41] pro-
gramming model is used for the PRA implementation for the homogeneous
computing architectures. CUDA [42] and OpenACC [43] programming models
are used for the PRA implementation on heterogeneous computing architec-
tures. PRA’s performance on both computing hardware architectures and three
programming models is analyzed by comparing using the speedup and scaling
achieved. We study the performance of PRA for the system of interdependent
ODE:s. First, the PRA is implemented to solve the system of ODEs on two ho-
mogeneous computing architectures: Intel Xeon and Intel Xeon Phi processors,
and secondly, on the heterogeneous computing architecture: NVidia GPUs. The
programming models for the heterogeneous computing architecture are imple-
mented using the OpenACC, a directive-based programming model, and the
CUDA programming model. In addition to the PRA implementations’ speedup
performance analysis, the PRA’s scaling is also analyzed. The scaling analysis is
performed by increasing the number of fine grids of the PRA, increasing the
number of dependent ODEs of a system, and increasing the hardware resources.

This paper is organized as follows: In Section 2, a detailed explanation of the
Parareal algorithm is presented. A brief overview of multicore Intel Xeon and
Xeon Phi computing hardware architectures are discussed in Section 3. Section 4
discusses implementing the Parareal algorithm on multicore CPUs and NVIDIA
GPUs using the three programming models. In Section 5, the performance anal-
ysis of PRA implementation is presented. Section 6 presents the conclusion and

future work.

2. Parareal Algorithm

The Parareal Algorithm (PRA) is one of the temporal domain decomposition
algorithms developed in 2001 [16]. The PRA involves decomposing the entire
simulation time into small subintervals and solving each subinterval in parallel
with different initial conditions generated by the coarse grid. A computationally
inexpensive numerical integrator provides these initial conditions for the inter-
vals with a less accurate solution. The small sub-intervals are solved indepen-
dently in parallel to obtain a more accurate solution of the differential equation.

The system of nonlinear ODEs to be solved is defined as
L't:f(u,t),te[O,T] (1)

Let the entire simulation time ¢ be decomposed into N sub-intervals as
T, <T, <---<T, with the step size of AT=T,-T,_, VI<n<N asshown in

DOI: 10.4236/jcc.2021.92003

33 Journal of Computer and Communications

https://doi.org/10.4236/jcc.2021.92003

S. Lakshmiranganatha, S. S. Muknahallipatna

Figure 1. The solution of the ODE in Equation (1) is solved using PRA in three
major steps with two numerical operators. The two numerical operators defined
in PRA are 1) Fine Propagator, which is denoted as Fj, and 2) Coarse Propaga-
tor, which is denoted as G, The two numerical operators using initial condition
u (T) =U

- compute the approximate solution of Equation (1) at time 7, but
with different time steps.

n—1
The Fj;, computes the approximate solution of Equation (1) with a small time-
step Ot < AT attime T, as shown in Figure 1. The solution obtained using Fj;,
is computationally expensive but provides a more accurate solution. The solu-
tion computed from the fine propagator is denoted as l/]; . The fine propagator

can be mathematically defined as
(/]\ =k, (TH ’(7\

) 5:),(?0 =’)

n—1>

The G,;computes the approximate solution of Equation (1) at the same time
instance 7, but with a time step A7 The solution obtained using a coarse prop-
agator is less accurate and is computationally inexpensive. The approximate so-
lution computed by the coarse propagator is denoted as (7,, . The coarse propa-

gator is mathematically represented in Equation (3).

n-1°

a;zGAT(T;x—I’f AT)’&gzuO (3)

The two numerical operators defined above are used in three major steps of
the PRA algorithm, as shown in Figure 2.

Figure 2 shows three major steps, with steps 2 and 3 that are iterated until
convergence. The following steps describe the PRA implementation:

Step 1: Initial coarse propagation

This step is used for the initialization of the algorithm. It generates fast but
less accurate initial conditions sequentially using the G, ;used as a starting point.
The approximate solution obtained at 7, is used as the initial conditions for step
2. The first for Joop in the pseudocode is the initial coarse propagation step. The
superscript “0” indicates it is the initial iteration.

Step 2: Fine propagation

In this step, the Fj, which is computationally expensive, is used to propagate
the fine solution in parallel over each sub-interval ¢e[7,_,7,]. This step pro-
vides a more accurate solution at time 7, using smaller time step &t The first
inner for loop in the pseudocode indicates the fine propagation step. The outer

for loop in the pseudocode shows the PRA iterations where & is the iteration

number.
AT
| | |I||||I||III| |
| | |l||||||||||| |
o
T T -l tooT, Ty

Figure 1. Decomposition of time into smaller sub-intervals.

DOI: 10.4236/jcc.2021.92003

34 Journal of Computer and Communications

https://doi.org/10.4236/jcc.2021.92003

S. Lakshmiranganatha, S. S. Muknahallipatna

U — ﬁg) — Y //initial condition for iteration 0

forn=1to N do

l’jf) G UO "
n < Gar(Un-1) Step 1: Initial coarse

Uo — Ug propagation (sequential)

end for

/I PRA iterations

for k=1 to kmax do
U§ < ¥o

for n=1 to N do

Uk = Fy, (Uk~2 Step 2: Fine propagation
(parallel)

end for

for n=1 to N do

Uy — Gar(Un-1) Step 3: Predictor-Corrector
(sequential)

U O + 0% -

end for
if [U¥ — UF¥='| € V n then

BREAK // loop is terminated if converged
end if

end for

Figure 2. Pseudocode of PRA algorithm [33].

Step 3: Predictor-Corrector

In this step, the coarse values are corrected using the fine solutions obtained
from the previous step. The Predictor-Corrector method is used to correct the
solution difference obtained from coarse and fine propagators for the next itera-
tion. The second inner for Jloop in the pseudocode is the predictor-corrector
method. This step of the algorithm is a sequential process. The coarse values
updated using the predictor-corrector method is used as the initial conditions in
step 2 for the next iteration.

The notation U in Figure 2 represents the corrected coarse solution obtained
from the predictor-corrector step. The fine propagator corrects the initial condi-
tions which are given by the coarse propagators in every iteration. At the end of
the 1* iteration, the coarse value at time 7, gets corrected to the fine solution.
Similarly, at the end of the k™ iteration, the coarse value at time 7} gets corrected
to its respective fine solution. Steps 2 and 3 of the algorithm are iterated until the
difference between the two successive coarse values meets the desired tolerance
level. Faster convergence can be obtained by choosing the time step for the
coarse propagator properly as it generates the initial conditions for the fine
propagators. The coarse solutions are generally less accurate but play an essential

role in the convergence of the algorithm [33].

DOI: 10.4236/jcc.2021.92003

35 Journal of Computer and Communications

https://doi.org/10.4236/jcc.2021.92003

S. Lakshmiranganatha, S. S. Muknahallipatna

3. Architecture Overview

PRA is implemented on a multicore homogeneous computing architecture and
heterogeneous computing architecture. In this section, a brief description of
homogeneous computing architectures is provided. The detailed description of

heterogeneous computing architecture is provided in [42].

3.1. Homogeneous Computing Architecture

PRA is implemented on the homogeneous computing architecture using the
OpenMP programming model. PRA’s performance is analyzed on two Intel
processors: Intel Xeon processor code-named Haswell and Intel Xeon Phi pro-
cessor code-named Knights Landing.

3.1.1. Haswell Processor

PRA is implemented on the Haswell (HSW) processor using the OpenMP pro-
gramming model. The HSW processor is the successor of the Ivy Bridge proces-
sor. It is a multicore processor with better vector processing compatibility com-
pared to the Ivy Bridge processor. The hardware block level diagram of the HSW
processor is shown in Figure 3. HSW is a dual-socket processor with 12 physical
cores/socket with 30 MB L3 cache. With hyperthreading enabled, each core
supports two logical threads. Therefore, a total of 48 logical threads can be ex-
ecuted in parallel. The multithreaded execution on the hardware enables us to
compute 48 fine grids of the PRA in parallel, reducing the computational time.

HSW processor supports advanced vector extension (AVX) 2 instruction set
with 256 wide registers, which means it can hold up to 8 single-precision float-
ing-point values or 4 double-precision floating-point values in a register. The
AVX instructions allow us to vectorize the application, ie., perform single in-
struction multiple data (SIMD) operation and add performance improvement
and parallel execution. Data alignment plays a vital role in increasing vectoriza-
tion opportunities since misaligned data access reduces load and store opera-
tions efficiency. Figure 4 shows the possible ways of data alignment. If the data
is aligned, only one clock cycle is needed to perform load/store operations.

In contrast, misaligned data requires multiple CPU clock cycles to perform
the same load/store operations. Therefore, the efficient utilization of the vector
registers requires data alignment. HSW processor is suitable for vector opera-
tions due to 256 bit wide registers and SIMD operations. In PRA, step 2 per-
forms SIMD operation while computing the solution of the fine grids. With
vectorization capabilities, additional performance improvement can be achieved
for PRA execution using the HSW processor.

Solving ODEs involves multiple addition and multiplication operations to
compute the numerical solution using PRA. In PRA, the ODEs are solved twice,
once with the coarse propagator and another with the fine propagator. Modern
Intel architectures like HSW have a feature that enables performing multiplica-
tion and addition in a single clock cycle called fused multiply-add (FMA). The
use of FMA also maximizes vectorization capabilities and improves application

DOI: 10.4236/jcc.2021.92003

36 Journal of Computer and Communications

https://doi.org/10.4236/jcc.2021.92003

S. Lakshmiranganatha, S. S. Muknahallipatna

Physical id=0 Physical id=1
Processor 1d Processor id
0/24 1/25 2/26 3/27 _4/28 5/29 12/36 13/37 14/38 15/39 16/40 17/41
core core core core core core core core core core core core
L2 L2 L2 L2 L2 L2 L2 L2 L2 L2 L2 L2
30 MB L3 Cache | I_ 30 MB L3 Cache |
core core | | core | |core core| | core core core | [core | | core | core| | core
L2 L2 L2 L2 L2 L2 L2 L2 L2 L2 I L2 L2
11/35 10/34 9/33 8/32 7/31 6/30 23/47 22/46 21/45 20/44 19/43 18/42
Processor id Processor id
Memory PCI Express QuickPath QuickPath PCI Express Memory
Controller Interface Interconnect [€ Interconnect Interface Controller
LX) » N
¥ ; Ik 38.4 GB/s $ L AXR]
64 GB connect @9.6 GT/s connect 64 GB
DDR4 Memory to IB to IB DDR4 Memory
68 GB/s 68 GB/s
read/write read/write

Figure 3. Haswell Architecture block diagram [44].

Il I B .

32 48 64 16 32 32 48 64 32 48 64
Aligned Misaligned Misaligned Misaligned

Figure 4. Possible ways of data alignment [45].

performance. The compiler flag -xCORE-AVX2 is required to utilize FMA with
the 256 wide registers present on HSW. This flag enables special instructions like
FMA, which maximizes the utilization of the vector registers and AVX version 2
instruction set. Solving the differential equations using PRA involves performing
a number of multiplication and addition operations in a single equation in both
coarse and fine propagators. Using this flag, the code is optimized by the compi-
ler for the potential FMA operations in both propagators that improves PRA’s

performance.

3.1.2. Knight's Landing Processor

The PRA is implemented on multicore homogeneous computing architectures
called Knights Landing (KNL). KNL is the second generation Intel Xeon Phi ar-
chitecture and successor to the Intel Xeon Phi coprocessor introduced in 2012.
KNL mainly targets high-performance computing by delivering massive thread
parallelism, data parallelism, and memory bandwidth in a CPU for high
throughputs [46]. KNL is also binary compatible with Intel Xeon processors, ie.,
HSW and Broadwell. KNL also has the processor chip capable of supporting the
AVX512 instruction set extension, which doubles the vector registers’ width for
SIMD operations. Unlike the previous generation Xeon Phi coprocessor, KNL is
a standalone system with self-boot capability, eliminating the PCle bottleneck
issue due to the data transfer with a host processor. The KNL is highly suitable

DOI: 10.4236/jcc.2021.92003

37 Journal of Computer and Communications

https://doi.org/10.4236/jcc.2021.92003

S. Lakshmiranganatha, S. S. Muknahallipatna

for PRA implementation due to many salient hardware features. Two salient
features that make KNL more suited for PRA implementation compared to
HWS are the 256 simultaneous multithread execution on 64 computing cores on
a single socket and the associated thirty-two 512 bit wide registers for SIMD or
vector operations.

Figure 5 shows the block diagram of the KNL CPU processor. The architec-
ture description [47] highlights the new features of KNL compared to the
first-generation Knights Corner coprocessors. KNL CPU design introduces the
concept of tile, the basic computational unit which is replicated. Figure 6 depicts
the block diagram of each tile in KNL. Each tile comprises two cores, two vector
processing units (VPU) per core, and a 1 megabyte of level-2 (L2) cache and
Cache/Homing Agent (CHA) shared between two cores. There are 38 tiles out of
which at most 36 tiles are active for computation.

Also, each tile has its own cache 1 MB L2 cache. This feature of KNL is very
beneficial, especially while solving the fine propagator of PRA. In the case of
PRA implementation, there are ~ten variables that are required in each iteration
and are made available using the load/store operations. Each fine propagator is
assigned to a thread on the core. Assuming the fine propagator is iterated 100
times to solve the fine propagator value, each thread will require about 4 KB of
memory to compute the fine solution Ze. 10 floating-point variables iterated for
100 times. Therefore, each core requires ~16 KB of memory since KNL supports
4 threads/core. Hence, the total memory required by the tile is ~32 KB, is much
less than 1 MB of L2 cache that is available on the tile. Since the memory re-
quested by each fine propagator is less than the available L2 cache on the tile, the
frequently used data can be read/stored on the tile’s cache itself for all 8 fine
propagators (threads). The lower memory requirement for each thread reduces
the cache misses for the fine propagators resulting in PRA’s performance im-

provement.

PCle =
Gen 3 E

36 tiles
connected by
2D mesh
interconnect

misc

Figure 5. KNL block diagram [47].

DOI: 10.4236/jcc.2021.92003

38 Journal of Computer and Communications

https://doi.org/10.4236/jcc.2021.92003

S. Lakshmiranganatha, S. S. Muknahallipatna

Figure 6. Block diagram of each tile [47].

KNL has two types of memory: MCDRAM and DDR together provide both
high bandwidth and large capacity for applications. MCDRAM is in-package
high bandwidth memory of size 16 GB to boost the performance. The bandwidth
is 450 GB/s and 380 GB/s for stream and read-only bandwidth. The MCDRAM
can be configured into several modes at boot time. The first mode is called cache
mode, where the MCDRAM is used as a cache for DDR. This mode provides the
application benefits of high bandwidth memory cache. In this mode, the 64 B
cache lines are direct-mapped cache. The second mode is called flat mode, in
which the MCDRAM is treated as a standard memory in the same address space
as DDR. Here, the default memory is DDR. The last mode is the hybrid mode, a
combination of cache and flat modes. Here, a portion of MCDRAM is cache,
and the remaining is flat.

Each core is a two-wide, out-of-order core derived from the Intel Atom pro-
cessor microarchitecture code-named Silvermont [48]. KNL has significant
modifications to the Silvermont microarchitecture to incorporate features to
handle high-performance computing workloads. Some of the features include
support for four threads per core, more L1 cache, higher L1 and L2 bandwidths,
the addition of AVX512 vector instruction set, and many more. KNL has 512-bit
wide vector registers, which can hold sixteen single-precision numbers or eight
double-precision numbers in each register, making effective use of the AVX512
instruction set.

The compiler flag -xMIC-AVX512 can be used to effectively use the AVX 512
instruction set during compilation on KNL. The flag makes sure that both VPUs
are used for computational tasks. Intel AVX512 is a comprehensive instruction
set architecture with higher performance than predecessor AVX and AVX2 in-
struction set architectures. Four functionalities are supported by this compiler
flag for KNL architecture [49], and out of which, Intel AVX-512 foundation in-
structions (AVX-512F) functionality is used for PRA implementation. (AVX-
512F) are the base of Intel AVX-512. They include extensions of the Intel AVX
and Intel AVX2 family of SIMD instructions. The assembly code generated uses
AVX-512TA.

4. Implementation

This section discusses the PRA implementation details using different pro-
gramming models. The PRA is implemented to parallelize the numerical inte-
gration algorithm for solving a system of ODEs. The system of ODEs is the ma-

thematical model of the synchronous generator used to perform the transient

DOI: 10.4236/jcc.2021.92003

39 Journal of Computer and Communications

https://doi.org/10.4236/jcc.2021.92003

S. Lakshmiranganatha, S. S. Muknahallipatna

stability analysis (TSA) of a power grid [40]. The number of ODEs is a function
of the generator model order or level used in the TSA. If the TSA focus does not
include subtransients, the classical model of a generator consisting of two
first-order ODEs is solved at each time step. If the subtransients are taken into
account, the fourth-order model of a generator consisting of four first-order

ODE:s is solved at each time step.

4.1. OpenMP

PRA is implemented using the C++ programming language with OpenMP for
multithreaded execution on the Intel processors. The code snippet of PRA im-
plementation using C++ with OpenMP is shown in Figure 7. In Figure 7, it can
be seen that the fine propagators are parallelized by annotating the C++ code
with OpenMP directives (code in red color).

The executions on the CPU showed in Figure 7 uses the Fork-Join approach
of OpenMP. The executions are:

e The master thread computes the coarse solutions of the ODE sequentially
shown as step 1 in Figure 7.

e The master thread initiates the fork by spawning multiple child threads to
compute the fine solutions in parallel, shown as step 2 in Figure 7. Each child
thread is assigned with one fine propagator. Each fine propagator using the
initial condition at time 7, (coarse solution) computes the fine solution at
time T,

e Each fine propagator computes the solution at 7}, using the time step Jt se-
quentially. If the simulation time is decomposed into N intervals, N fine
propagators are executed in parallel.

e After the fine propagators have computed the fine solutions in step 2, the fine
propagator threads join the master thread, shown as step 3 in Figure 7.

e In step 3, the master thread performs predictor-corrector sequentially to up-
date the solutions.

Figure 7 shows the data are aligned with 64-byte boundary [50] for better
vectorization and performance improvement. The code developed for KNL and
HSW is identical since the optimization techniques are applicable across all
types of Intel processors. Therefore, we have a single optimized PRA codebase
working on different Intel processors. The same codebase is compiled using dif-
ferent compiler flags reflecting the different instruction sets of KNL and HSW

architectures.

4.2. CUDA

NVIDIA GPUs with CUDA programming model is used for accelerating the
parallel step of the PRA algorithm. CUDA provides simple language extensions
to programming languages like C, C++, FORTRAN, and Python to expose the
fine and coarse grain parallelism. The application needs to be refactored using
the CUDA APIs to offload the parallelizable portion of the application on to the
GPUs.

DOI: 10.4236/jcc.2021.92003

40 Journal of Computer and Communications

https://doi.org/10.4236/jcc.2021.92003

S. Lakshmiranganatha, S. S. Muknahallipatna

main()

/I Allocating memory for data alignment on Intel processors
float *a = (float*)_mm_malloc((sizeof(float))*(N),64);
float *b = (float*)_mm_malloc((sizeof(float)) *(N),64);

for(int i=1; i<Nj i++) M

{) - Step 1
compute coarse solution

}

/I PRA iterations

for(int k=1; k<Kpay; kt+)

{
#pragma omp parallel for private(t,.;,t,) shared(varl, var2, var3,...) num_threads(n)
#pragma vector aligned

for(int i=1; i<Nj; i++)
{ = Step 2
compute fine solution

}

N

for(int i=1; i<N; i++)

{
}

Predictor-Corrector Step 3

Update the coarse values
Check for the tolerance

}

/[Freeing the allocated memory
_mm_free(a);
_mm_free(b);

}

Figure 7. Code snippet for PRA implementation using OpenMP.

The C programming language version of CUDA is used in implementing the
PRA for execution on GPUs. From the pseudocode presented in Figure 2, the
PRA algorithm consists of three major steps, out of which steps 1 and 3 can only
be executed sequentially. In contrast, step 2 can be executed in parallel.

e For the GPGPU implementation, the PRA’s sequential steps are executed on
the host (CPU), and the parallel step of the PRA executed on the device or
accelerator (GPU).

e First, the coarse solutions computed on the host are copied from the
host-to-device for use by the fine propagators.

o After the fine solutions are computed on the device, the fine solutions are co-
pied back from the device-to-host for the predictor-corrector step.

e The corrected coarse values again copied to the device for the next iteration
of the fine propagators.

e Therefore, the memory transfers back and forth between host and device in
each iteration increase overall computation time.

In Figure 8, the code snippet of PRA implementation using CUDA is shown.
The code in black color in Figure 8 is associated with the host execution. The
code in red color in Figure 8 is associated with the device (GPU) execution. In
the research [51], the process of developing optimized CUDA based code is dis-

cussed.

4.3. OpenACC

Implementing an algorithm using CUDA for heterogeneous computing involves
a significant amount of time and effort to refactor existing sequential code for
executing on GPUs. Also, the CUDA programming model requires extensive

DOI: 10.4236/jcc.2021.92003

41 Journal of Computer and Communications

https://doi.org/10.4236/jcc.2021.92003

S. Lakshmiranganatha, S. S. Muknahallipatna

memory management, which is a time-consuming process. Therefore, most
HPC researchers do not opt for rewriting the existing application code in CUDA
for heterogeneous computing, even though the best execution time with high
scaling efficiency can be achieved. Also, the CUDA programming model is spe-
cific to NVIDIA GPUs. At the same time, supercomputers employ a variety of
computing architectures. There is a need for having a single codebase that can be
executed on various HPC architectures. In recent years, several programming
models like OpenACC, Kokkos [52], oneAPI [53], and many more are devel-
oped to achieve performance by porting an existing application code targeting
different HPC platforms. The OpenACC programming is a directive-based pro-
gramming model for porting codes targeted for execution on multiple HPC
platforms. Unlike CUDA, OpenACC provides rapid tools to parallelize and port
an existing code for execution on GPUs and other architectures with minimal

code refactoring.

main()

/lallocate the memory on the device for the variables
cudaMalloc((float**)&d_a, N));
cudaMalloc((float**)&d_b, N));

for(int i=1; i<N; i++)
{

compute coarse solution Step 1
}

/I PRA iterations

for(int k=1; k<Kpayx; k++)

{
/I copy the coarse values on the host to the coarse values on the device
cudaMemcpy(d_a, h_a, N, cudaMemcpyHostToDevice);
cudaMemcpy(d_b, h_b, N, cudaMemcpyHostToDevice);

// create grid and block sizes
dim3 block (x, y, z);
dim3 grid (x, y, 2);

/I Launch the kernel to compute fine solutions]
gpuparareal<<<grid, block>>>(argl,arg2,arg3,...); — | Step 2: Kernel launch on the CPU

//copy the solution computed by fine propagators from device to the host
cudaMemcpy(h_a, d_a, N, cudaMemcpyDeviceToHost);
cudaMemcpy(h_b, d_b, N, cudaMemcpyDeviceToHost);

for(int i=1; i<N; i++) :
{ Step 3
Predictor-Corrector

} -
Update the coarse values
Check for the tolerance

// Free the allocated memory on the device
cudaFree(d_a);
cudaFree(d_a);

}
/I GPU kernel function

__global__ void gpuparareal(argl, arg2, arg3, ...) N
{
const int idx = threadIdx.x + (blockIdx.x*blockDim.x);
if(idx>n)
{

}

DifferentialEquations(argl, arg2, arg3,...);

return;
Step 2: Execution on the GPU
}

__device__ void DifferentialEquations(argl, arg2, arg3,...)

Compute the solution for differential equations)

} %

Figure 8. Code snippet for PRA implementation using CUDA.

DOI: 10.4236/jcc.2021.92003

42 Journal of Computer and Communications

https://doi.org/10.4236/jcc.2021.92003

S. Lakshmiranganatha, S. S. Muknahallipatna

PRA is implemented using the OpenACC programming model to execute on
the GPUs. The code is written in the C++ programming language. PGI compiler
is used for compiling the code. The code snippet of PRA implementation using
OpenACC is shown in Figure 9. The code snippet is color-coded to differentiate
the host (CPU) and the device (GPU) code. The code in red executes on the de-
vice, and the code in black color executes on the host. Steps 1 and 3 are executed
on the host while step 2 annotated with OpenACC directives execute in parallel
on the device (GPU).

The code snippet in Figure 9 can be observed to have the code flow similar to
the pseudocode shown in Figure 2. In OpenACC implementation, the Ope-
nACC directives are annotated to advise the compiler which portion of the code
needs to be parallelized. The sequential code can be easily parallelized using
OpenACC directives and clauses and achieve performance on multiple HPC ar-
chitectures. In this paper, we present the OpenACC clauses used for improving
the performance of GPU execution. Since the code is implemented using the
C++ programming language, the keyword pragma is used as the compiler direc-
tive to highlight the parallelization code block. The compiler directive is fol-
lowed by the directive type “acc” for OpenACC directives. Followed by the di-
rective type, the compute directive is inserted. There are two types of “compute’
directives that can be inserted to parallelize the code block. They are kernels and
parallel. Kernel directive provides hints to the compiler to look for parallelism in
a block of code and parallelize.

In contrast, the parallel directive is an assertion to the compiler to parallelize
the code. The parallel directive is used when the developer has prior knowledge
about the code suitability for parallelizing. In PRA porting, the parallel construct
is used to assert the code block of fine propagators that needs to be parallelized.
The syntax #pragma acc parallel directive in Figure 9 identifies the region of the
code that needs to be offloaded onto the GPUs.

The OpenACC directive is augmented with different clauses to assist the
compiler and achieve better performance. The two main clauses used in step 2 in
Figure 9 are:

o The “workers” clause is a clause that distributes the parallelism in three levels
to split the work across different hardware units. The three levels are gang,
worker, and vector.

o Vectoris the finest granularity of a GPU SIMT.

o The gang is the most coarse-grained, which works independently of each
other and may not synchronize.

o Worker defines how work is distributed inside a gang.

Figure 10 gives the comparison of the work distribution clauses in OpenACC
with CUDA. In Figure 10, the vector and worker identify the number of threads
along the x and y dimensions of a block, respectively. This hierarchy is similar to
CUDA. The number of workers and vector length can be specified using the
clauses num_workers, m, and vector_length, n. The compiler automatically gene-

rates the number of gangs based on 13, n, and total simulation time for the PRA.

DOI: 10.4236/jcc.2021.92003

43 Journal of Computer and Communications

https://doi.org/10.4236/jcc.2021.92003

S. Lakshmiranganatha, S. S. Muknahallipatna

// Function executed on GPU
#pragma acc routine

void DifferentialEquations(argl, arg2, arg3,...) Step 2: Solved on the GPU
{

Compute the solution for differential equations

}

main()

for(int i=1; i<N; i++) Step 1
{

}

/I PRA iterations

for(int k=1; k<Kjax; k++)

{ N\
#pragma acc parallel num_workers(m) vector_length(n)
copyin(varl, var2, var3,...) create (varl, var2, var3,...)

copyout(varl, var2, var3,...)
{ Step 2

#pragma acc loop independent gang
for(int i=1; i<N; i++)

compute coarse solution

{
DifferentialEquations(argl, arg2, arg3,...); J/
}
}
int i=1: i<N: 4t
?or(mtl 15 i<N; i++) Step 3
Predictor-Corrector
}

Update the coarse values
Check for the tolerance

Figure 9. Code snippet for PRA implementation using OpenACC.

vector

vor] TG0 sin) . et

Grid
block (0,0) block (0,1) block (0,k)

gang

Figure 10. Organization of worker, vector, and the gang in OpenACC
in comparison to CUDA thread hierarchy [54].

DOI: 10.4236/jcc.2021.92003

a4 Journal of Computer and Communications

https://doi.org/10.4236/jcc.2021.92003

S. Lakshmiranganatha, S. S. Muknahallipatna

e The data clause is used to override the default compiler analysis of specified
variables movement between the host and the device. The data clause con-
trols how and when to copy the data to and from the device. In Figure 9, the
three data clauses used for data movement between the host and the device
are shown.

o The first clause is the copyin clause that allocates memory on the device for
all the variables listed inside the parentheses. This clause initializes the va-
riables by copying data to the device at the beginning of the region. Once the
parallel region completes the execution, memory is released on the device.

o The second data clause used is the create clause, which creates all the listed
variables on the device. The variables created on the device are local to the
device and cannot be copied back to the host. The memory is freed on the
device once the execution is complete.

o The third clause is copyout, where all the computed values stored in the va-
riables listed are copied back to the host from the device at the end of the pa-
rallel region.

For solving the ODEs, first, the state variables of the differential equations are
copied to the device before computation of the fine solution similar to CUDA.
The temporary variables used in CUDA implementation to minimize the global
memory access are created here using the create clause. The variables are created
on the device, and the intermediate solutions are computed using these va-
riables.

The #pragma acc loop construct is used for defining the work distribution of
the for-loop. Augmenting the construct #pragma acc loop with additional claus-
es independent and gang results in the best performance. These two clauses al-
low the execution of each loop independently and partition the loops across
gangs. Similar to the CUDA implementation, a kernel function is launched by
the host to execute on the GPU. The function is identified as the kernel function
by decorating the function with the #pragma acc routine. Similar to CUDA and
OpenMP versions, each thread is associated with one fine propagator. The solu-

tion is computed for 7, with 7, , as the initial condition with time step Jt.

5. Performance Results

The test system described in [40] is used for the time-domain simulations. The
accuracy of the numerical simulations using PRA has been presented in [40].
The focus here is on the computing performance across the different types of
accelerators and programming models. The performance is analyzed using three
performance metrics: parallel runtime, speedup, and scalability of parallelization
referred to as the scaling efficiency. The general definition of parallel runtime or
the execution time is the time that elapses from the instance a parallel computa-
tion starts to the instance the last processor finishes execution. The parallel run-
time metric is dependent on the application and hardware architecture.

For homogeneous computing, PRA is implemented on HSW and KNL pro-

DOI: 10.4236/jcc.2021.92003

45 Journal of Computer and Communications

https://doi.org/10.4236/jcc.2021.92003

S. Lakshmiranganatha, S. S. Muknahallipatna

cessors. HSW processor used for the PRA implementation is the Intel Xeon CPU
E5-2670 v3 @2.30 - 3.10 GHz with 24 physical cores. With hyperthreading
enabled, 48 logical threads are available for computations. KNL [55] processor
used for PRA implementation is Intel Xeon Phi CPU 7210 @1.30 - 1.4 GHz with
64 physical cores and 256 logical cores. The total execution time Tpy, of the PRA
for the OpenMP programming model on multicore core CPU architectures is

given in Equation (4).
TPRA = tC + Zl]\il (tj + tpL‘) (4)

where,

t° is the computation time of the coarse propagator.

¢/ is the computation time for the fine propagator.

¢ is the computation time for predictor-corrector.

Nis the number of PRA iterations.

For heterogeneous computing, PRA is implemented on a server having an Intel
Xeon CPU E5-2670 @2.30 GHz, interfaced through the PCle bus to the NVIDIA
Quadro RTX 6000 GPU hosting 4608 computing cores with 24 GB GPU memory
[56]. The parallel runtime is modified to address the GPU architecture. The 7,,,

is the sum of four components, as shown in Equation (5) [40].
c N .
Topy =t5+ 2 (157 10+ +1]7) (5)

where,

t;, is the computation time of the coarse propagator on the CPU.

ty

t/ is the computation time of the fine propagators in parallel on the CPUs.

H
tG

ti is the computation time of the predictor-corrector on the host.

is the memory transfer latency between the host and the GPU.
is the memory transfer latency between the GPU and the host.

Nis the number of iterations.

The speedup metric is defined as the ratio of the serial or sequential runtime
of the best sequential algorithm for solving a problem to the time taken by the
parallel algorithm to solve the same problem using p processors. The speedup is

given by Equation (6) [40].

T
Speedup = —~ (6)
TPRA
where,
T, 1isthe computation time of the sequential approach.

seq

T,

»r4 1S the execution time of the PRA on parallel computing architectures.

The general definition of the scaling efficiency metric is the ratio of speedup
to the number of processors. Even though the definition of the scaling efficiency
metric involves the number of processors used to parallelize, the number of
processors may not be used directly in measuring the scaling efficiency. In the
PRA performance analysis, the number of threads running in parallel is used in-

stead of the number of processors. Since the hardware architectures considered

DOI: 10.4236/jcc.2021.92003

46 Journal of Computer and Communications

https://doi.org/10.4236/jcc.2021.92003

S. Lakshmiranganatha, S. S. Muknahallipatna

in this research support multiple threads per processor, using the number of
processors will result in a higher scaling. Furthermore, the number of threads
spawned by the PRA is dependent on the number of fine propagators, which
dictates the accuracy of the solution.

The coarse propagator computation time is dependent on the coarse propa-
gator time step 7, and the fixed interval of time 7 for which the ODEs are
solved. For a fixed 7, the coarse propagator computational time will increase
with smaller # .

coarse propagator time step 7, and for a given 7'is

The number of fine propagators N/ corresponding to a

N/ =

(7)
t

step

The scaling efficiency is classified as strong and weak scaling. The strong
scaling indicates that for a fixed problem size, with an increasing number of
processors, the scaling efficiency is linear or superlinear. In contrast, weak scal-
ing indicates the speedup is constant or decreasing with an increasing number of
processors. Therefore, good performance of PRA is indicated by low execution
runtime, large speedup, and at least linear speedup increase (strong scaling) with
an increasing number of fine propagators.

By varying N’ , the number of threads running in parallel is varied, and va-

step

varied. The speedup achieved using the PRA is demonstrated through several

rying the fine propagator time step the computation load of each thread is

simulations with varying 7, or N /', and tx/,'ep for the classical and detailed

model.

5.1. Classical Model

The performance statistics were collected for the classical model using all four
versions of PRA implementation. In Table 1, the execution time for the classical
model with varying N’ for sequential and all four versions of PRA are pro-
vided. In Table 1, it can be observed that the execution time for the PRA im-
plementation is significantly less compared to the traditional sequential ap-
proach.

Figure 11 shows the speedup graph for all four versions of the code executed
on different computing architectures and programming models with varying
N’ . For the OpenMP-HSW version, the speedup increases linearly up to 256
fine propagators, showing strong scaling efficiency for the parallel execution. On
increasing N/ further, the speedup increases nonlinearly. The overhead for
spawning the threads and switching stalled threads contributes to the nonlinear
scaling. A speedup of 16x is achieved for the PRA on the Haswell architecture
with OpenMP. The speedup obtained using OpenMP-KNL is significantly high-
er for the classical model compared to the HSW processor. The PRA algorithm
shows strong scaling with the 36x speedup achieved. The scaling curve is similar
to what is observed with HSW execution but has better performance. The num-

ber of threads spawned on KNL for solving fine propagators is five times that of

DOI: 10.4236/jcc.2021.92003

47 Journal of Computer and Communications

https://doi.org/10.4236/jcc.2021.92003

S. Lakshmiranganatha, S. S. Muknahallipatna

the OpenMP threads on HSW. Therefore, the number of threads stalled for the
execution on KNL is less, which improves the performance. Since the PRA con-
sists of a sequential portion, and due to lower processor clock speed, the perfor-
mance does not scale up linearly with five times the number of processors on
KNL. In the case of CUDA-GPU, the speedup increases linearly with an increase
in N/ exhibiting a strong scaling efficiency The strong scaling efficiency is due
to the ¢/ being significantly large compared to the sum of the other compo-
nents in Equation (5). The maximum speedup achieved was 25x with the

CUDA-GPU version. The CUDA-GPU implementation provides better perfor-
s

mance when the fine propagator computation load is large, ie, smaller 7, .

For OpenACC-GPU, the speedup increases linearly, similar to CUDA, and
shows strong scaling efficiency. The maximum speedup achieved using Ope-
nACC is 19x for larger N’/ . However, the OpenACC-GPU performance is low-
er compared to CUDA-GPU. The performance of OpenACC is ~75% of the
CUDA performance for the classical model. However, the maximum possible
performance is not achieved using GPUs because the number of fine grids run-
ning in parallel is significantly less than the number of computing cores available
on the GPU, resulting in the inefficient use of the GPU.

40

OpenMP-HSW
——OpenMP-KNL -
—OpenACC-GPU

—CUDA-GPU /

35t

30 7
. /
220 -] >
wv
15 /
10 /
5
0
0 100 200 300 400 500 600
Number of Fine Propagators
Figure 11. Speedup with varying N’ for the Classical model.
Table 1. Execution time for Classical model with varying N”.
Execution Time (ms)
L (08) L (uS) N’
Sequential OpenMP-HSW OpenMP-KNL OpenACC-GPU CUDA-GPU
20 200 128 1.778 0.191 0.087 0.267 0.183
10 100 256 3.594 0.245 0.113 0.347 0.242
5 50 512 7.105 0.452 0.196 0.376 0.283
DOI: 10.4236/jcc.2021.92003 48 Journal of Computer and Communications

https://doi.org/10.4236/jcc.2021.92003

S. Lakshmiranganatha, S. S. Muknahallipatna

5.2. Detailed Model

The implementation of the detailed model consists of computing the numerical
solutions of four ODEs at each time step. In Table 2, the execution time for the
detailed model for sequential and all four versions of PRA are provided. It can be
observed in Table 2, the execution time for the PRA implementation, even with
computing the solutions of four ODEs at each time step, is significantly less
compared to the traditional sequential approach.

Figure 12 shows the comparison of speedup for all the four versions of the
code executed on different computing architectures and programming models
with varying N’ for the detailed model.

The speedup increases marginally until N’ equals 12,800 and then decreases
for OpenMP-HSW. However, the algorithm does not scale linearly with an in-
crease in N/ . The maximum speedup achieved is 18.5x. It is important to note
that the number of ODEs solved sequentially in the detailed model is twice the
number of ODEs solved in the classical model. This makes the detailed model
more compute-intensive compared to the classical model. The total simulation
time for the detailed model is significantly more compared to the classical mod-
el. From Equation (7), N’ is directly proportional to 7; which results in more
N’ running in parallel compared to the classical model. Also, there are only 48
threads that are running in parallel due to the number of actual hardware cores
but the N’/ dictates the use of at least 2560 threads which is the minimum
number of fine propagators for the detailed model from the Table 2. All these
factors account for the weak scaling performance of the PRA with the increase in
N’ . The OpenMP-KNL performs slightly better compared to OpenMP-HSW
only for a smaller number of fine propagators. The speedup decreases with an
increase in N’ indicating weak scaling with KNL also. As the N’ increases,
the performance of OpenMP-KNL reduces in comparison to OpenMP-HSW,
and for N’/ greater than 5120, the OpenMP-HSW processor performs better.
The detailed model having more number of equations solved at each time step
sequentially; the lower clock speed of the KNL processor contributes to a larger
execution time. For CUDA-GPU also, it can be seen that the speedup does not
increase linearly and flattens with increasing N’ indicating a weak scaling effi-
ciency. The weak scaling is due to the sum of the coarse propagator computation
time ¢, and the memory transfer latencies (¢, ¢) being larger compared to
the fine propagators’ computation time #.. The f, is mainly due to four
ODE:s solved at each time step sequentially and larger memory transfer latencies
to transfer the larger coarse propagator solutions from host to GPU and vice
versa. The maximum speedup achieved is 31x for CUDA-GPU. The scaling
curve of OpenACC-GPU exhibits weak scaling, similar to CUDA PRA. Even
though the performance of OpenACC is lower compared to the CUDA imple-
mentation, the difference is less when compared to the performance with the
classical model. The kernel launch time has a huge overhead in the case of

OpenACC. Therefore, when the computations on the device are less due to

DOI: 10.4236/jcc.2021.92003

49 Journal of Computer and Communications

https://doi.org/10.4236/jcc.2021.92003

S. Lakshmiranganatha, S. S. Muknahallipatna

Table 2. Execution time for the Detailed model with varying N’ .

Execution Time (ms)

t,, (ms) (D) N’
Sequential OpenMP-HSW OpenMP-KNL OpenACC-GPU CUDA-GPU
10 100 2560 40.786 2.573 2.209 2.233 1.875
5 50 5120 72.57 4.553 4.425 3.04 2.728
2 20 12,800 159.665 8.621 11.052 6.144 5.043
1 10 25,600 289.96 15.972 22.02 13.395 9.714
50
OpenMP-HSW ——OpenMP-KNL ——OpenACC-GPU ——CUDA-GPU
45
40
35
/""—\
30
g. /
= / f———
225 / —
& / '\-‘
20 K
\
15 —
10
5
0
0 5000 10000 15000 20000 25000 30000

Number of fine propagators

Figure 12. Speedup with varying N’ for the Detailed model.

smaller simulation time, the launch time latency negatively impacts the perfor-
mance. To hide the kernel launch time latency, solving a larger number of ODEs
with longer simulation times is more suitable for OpenACC. The best speedup
achieved was 26x. The performance of OpenACC is observed to be approx-
imately 83% of CUDA implementation, with less refactoring of the sequential
code for execution on GPUs.

A list of advantages and disadvantages is presented to summarize the findings
of PRA implementation on different HPC architectures using different pro-
gramming models.

e The CUDA-GPU implementation has the highest speedup for a higher
number of ODEs solved in each time step.

e OpenACC-GPU implementation has a better performance compared to the
OpenMP CPU/KNL implementation for the detailed model. The perfor-
mance on the GPU is better than the OpenMP CPU/KNL implementations
due to a larger number of cores. A large number of cores on the GPU allow a

larger number of parallel execution of fine propagators. The OpenACC com-

DOI: 10.4236/jcc.2021.92003 50 Journal of Computer and Communications

https://doi.org/10.4236/jcc.2021.92003

S. Lakshmiranganatha, S. S. Muknahallipatna

piler using the directives generates a generic CUDA code that is not opti-
mized for a particular application and leads to a performance lower than the
application-specific CUDA implementation.

e The CUDA implementation requires refactoring the code to execute on GPU,
and the refactoring requires significant development time and effort. Fur-
thermore, the refactoring of the code has to be performed repeatedly to
achieve the best performance on newer architectures of GPUs. The CUDA
code portability across different hardware architectures does not exist.

e Both OpenACC and OpenMP codes have the advantage of minimal refac-
toring with portability across different hardware platforms.

e The scaling of all implementations is dependent on the order of dynamic
modeling of the complex system. The number of ODEs solved at each time
step and dependency between the ODEs is a function of the system dynamic
model order. The increase of sequential execution time results in weaker
scaling. For example, the transient stability analysis of the power grid by util-
ities is typically performed using models consisting of twenty-seven ODES.
Solving twenty-seven ODEs in each time step sequentially will weaken the
scaling further.

The weak scaling could be improved by using more hardware resources or
modify the PRA to reduce the effect of the sequential execution part.

6. Conclusion

In this paper, we investigated the performance of PRA to solve the system of
time-dependent ODEs representing using homogeneous and heterogeneous
computing architectures. PRA is implemented on the Intel Xeon processor
code-named HSW and Xeon Phi processor code-named KNL using the OpenMP
programming model. Intel CPU and NVIDIA GPUs are used for heterogeneous
computing with CUDA and OpenACC programming models. The data align-
ment optimization technique is used in the code with readily available optimiza-
tion flags to improve vectorization on multicore Intel Architectures. For the
classical model with two first-order ODEs, the KNL outperformed the GPUs and
HSW processors. For the detailed model with more number of equations, the
performance of GPUs is significantly better than the KNL and HSW processors.
PRA is an iterative algorithm, and a significant amount of time is spent on the
sequential steps of the algorithm in the detailed model since four first-order
ODE:s are solved in each time step. This impacts the overall performance of KNL
making GPUs suitable for more compute-intensive problems. In future work,
methods will be explored to reduce the computation burden caused by the se-
quential part of the algorithm to exploit further the data parallelism and improve

the overall performance.

Acknowledgements

This work was supported in part by the National Science Foundation under
award ECCS-1828066

DOI: 10.4236/jcc.2021.92003

51 Journal of Computer and Communications

https://doi.org/10.4236/jcc.2021.92003

S. Lakshmiranganatha, S. S. Muknahallipatna

Conflicts of Interest

The authors declare no conflicts of interest regarding the publication of this pa-

per.

References

[1] Alligood, K.T., Sauer, T.D. and Yorke, J.A. (1996) Fractals. In: Alligood, K.T, Sauer,
T. and Yorke, J., Eds., Chaos. An Introduction to Dynamical Systems, Springer,
Berlin, 149-191. https://doi.org/10.1007/978-3-642-59281-2_4

[2] Kantz, H. and Schreiber, T. (2004) Nonlinear Time Series Analysis (Vol. 7). Cam-
bridge University Press, Cambridge. https://doi.org/10.1017/CB0O9780511755798

[3] Weather Forecasts.
https://markets.businessinsider.com/news/stocks/ibm-makes-higher-quality-weathe
r-forecasts-available-worldwide-1028689623

[4] Koradi, R., Billeter, M. and Giintert, P. (2000) Point-Centered Domain Decomposi-
tion for Parallel Molecular Dynamics Simulation. Computer Physics Communica-
tions, 124, 139-147. https://doi.org/10.1016/S0010-4655(99)00436-1

[5] Xue, W., Shu, J. and Zheng, W. (2004) Parallel Transient Stability Simulation for the
National Power Grid of China. In: International Symposium on Parallel and Dis-

tributed Processing and Applications, Springer, Berlin, 765-776.
https://doi.org/10.1007/978-3-540-30566-8_89

[6] Esmaeili, S. and Kouhsari, S.M. (2007) A Distributed Simulation Based Approach
for Detailed and Decentralized Power System Transient Stability Analysis. Electric
Power Systems Research, 77, 673-684. https://doi.org/10.1016/j.epsr.2006.06.008

[7] Weiss, RM. and Shragge, J. (2013) Solving 3D Anisotropic Elastic Wave Equations
on Parallel GPU Devices. Geophysics, 78, F7-F15.
https://doi.org/10.1190/ge02012-0063.1

[8] Baffico, L., Bernard, S., Maday, Y., Turinici, G. and Zérah, G. (2002) Paral-
lel-in-Time Molecular-Dynamics Simulations. Physical Review E, 66, Article ID:
057701. https://doi.org/10.1103/PhysRevE.66.057701

[9] Staff, G.A. and Renquist, E.M. (2005) Stability of the Parareal Algorithm. In: Do-
main Decomposition Methods in Science and Engineering, Springer, Berlin,
449-456. https://doi.org/10.1007/3-540-26825-1_46

[10] Newnes. Nievergelt, J. (1964) Parallel Methods for Integrating Ordinary Differential
Equations. Communications of the ACM, 7, 731-733.
https://doi.org/10.1145/355588.365137

[11] Miranker, W.L. and Liniger, W. (1967) Parallel Methods for the Numerical Integra-
tion of Ordinary Differential Equations. Mathematics of Computation, 21, 303-320.
https://doi.org/10.1090/S0025-5718-1967-0223106-8

[12] Burmeister, J. and Horton, G. (1991) Time-Parallel Multigrid Solution of the Navi-
er-Stokes Equations. In: Multigrid Methods III, Birkhéauser, Basel, 155-166.
https://doi.org/10.1007/978-3-0348-5712-3_10

[13] Horton, G. (1992) The Time-Parallel Multigrid Method. Communications in Ap-
plied Numerical Methods, 8, 585-595. https://doi.org/10.1002/cnm.1630080906
[14] Kiehl, M. (1994) Parallel Multiple Shooting for the Solution of Initial Value Prob-

lems. Paralle] Computing, 20, 275-295.
https://doi.org/10.1016/S0167-8191(06)80013-X

[15] Hackbusch, W. (1985) Parabolic Multigrid Methods. Proceedings of the 6th Inter-
national Symposium on Computing Methods in Applied Sciences and Engineering,

DOI: 10.4236/jcc.2021.92003

52 Journal of Computer and Communications

https://doi.org/10.4236/jcc.2021.92003
https://doi.org/10.1007/978-3-642-59281-2_4
https://doi.org/10.1017/CBO9780511755798
https://markets.businessinsider.com/news/stocks/ibm-makes-higher-quality-weather-forecasts-available-worldwide-1028689623
https://markets.businessinsider.com/news/stocks/ibm-makes-higher-quality-weather-forecasts-available-worldwide-1028689623
https://doi.org/10.1016/S0010-4655(99)00436-1
https://doi.org/10.1007/978-3-540-30566-8_89
https://doi.org/10.1016/j.epsr.2006.06.008
https://doi.org/10.1190/geo2012-0063.1
https://doi.org/10.1103/PhysRevE.66.057701
https://doi.org/10.1007/3-540-26825-1_46
https://doi.org/10.1145/355588.365137
https://doi.org/10.1090/S0025-5718-1967-0223106-8
https://doi.org/10.1007/978-3-0348-5712-3_10
https://doi.org/10.1002/cnm.1630080906
https://doi.org/10.1016/S0167-8191(06)80013-X

S. Lakshmiranganatha, S. S. Muknahallipatna

(16]

(17]

(18]

(19]

(20]

(21]

(22]

(23]

[24]

(25]

(26]

(27]

(28]

(29]

(30]

Vol. 6, 189-197.

Lions, J.L., Maday, Y. and Turinici, G. (2001) Résolution d’EDP par un schéma en
temps Tpararéel t Comptes Rendus de [Académie des Sciences-Series
I Mathematics, 332, 661-668. https://doi.org/10.1016/S0764-4442(00)01793-6

Farhat, C. and Chandesris, M. (2003) Time-Decomposed Parallel Time-Integrators:
Theory and Feasibility Studies for Fluid, Structure, and Fluid-Structure Applica-
tions. International Journal for Numerical Methods in Engineering, 58, 1397-1434.
https://doi.org/10.1002/nme.860

Minion, M. (2011) A Hybrid Parareal Spectral Deferred Corrections Method.
Communications in Applied Mathematics and Computational Science, 5, 265-301.
https://doi.org/10.2140/camcos.2010.5.265

Emmett, M. and Minion, M. (2012) Toward an Efficient Parallel in Time Method
for Partial Differential Equations. Communications in Applied Mathematics and
Computational Science, 7, 105-132. https://doi.org/10.2140/camcos.2012.7.105

Christlieb, A.J., Macdonald, C.B. and Ong, B.W. (2010) Parallel] High-Order Inte-
grators. SIAM Journal on Scientific Computing, 32, 818-835.
https://doi.org/10.1137/09075740X

Christlieb, A.J., Haynes, R.D. and Ong, B.W. (2012) A Parallel Space-Time Algo-
rithm. SIAM Journal on Scientific Computing, 34, C233-C248.
https://doi.org/10.1137/110843484

Friedhoff, S., Falgout, R.D., Kolev, T.V., MacLachlan, S. and Schroder, J.B. (2012) A
Multigrid-in-Time Algorithm for Solving Evolution Equations in Parallel. No.
LLNL-CONF-606952, Lawrence Livermore National Lab. (LLNL), Livermore.

Gander, M.J. and Neumiiller, M. (2014) Analysis of a Time Multigrid Algorithm for
DG-Discretizations in Time.

Bal, G. and Maday, Y. (2002) A “Parareal” Time Discretization for Nonlinear PDE’s
with Application to the Pricing of an American Put. In: Recent Developments in
Domain Decomposition Methods, Springer, Berlin, 189-202.
https://doi.org/10.1007/978-3-642-56118-4_12

Maday, Y. and Turinici, G. (2003) Parallel in Time Algorithms for Quantum Con-
trol: Parareal Time Discretization Scheme. International Journal of Quantum Che-
mistry, 93, 223-228. https://doi.org/10.1002/qua.10554

Staff, G. (2003) Convergence and Stability of the Parareal Algorithm: A Numerical
and Theoretical Investigation. No. NTNU-N-2003-2, SIS-2003-312.

Samaddar, D., Newman, D.E. and Sanchez, R. (2010) Parallelization in Time of
Numerical Simulations of Fully-Developed Plasma Turbulence Using the Parareal
Algorithm. Journal of Computational Physics, 229, 6558-6573.
https://doi.org/10.1016/j.jcp.2010.05.012

Gurrala, G., Dimitrovski, A., Pannala, S., Simunovic, S. and Starke, M. (2015) Para-
real in Time for Fast Power System Dynamic Simulations. /EEE Transactions on
Power Systems, 31, 1820-1830. https://doi.org/10.1109/TPWRS.2015.2434833

Duan, N., Dimitrovski, A., Simunovic, S. and Sun, K. (2016) Applying Reduced
Generator Models in the Coarse Solver of Parareal in Time Parallel Power System
Simulation. 2016 /EEE PES Innovative Smart Grid Technologies Conference Europe
(ISGT-Europe), Ljubljana, 9-12 October 2016, 1-5.
https://doi.org/10.1109/ISGTEurope.2016.7856184

Duan, N., Dimitrovski, A., Simunovic, S., Sun, K., Qi, . and Wang, J. (2018) Em-
bedding Spatial Decomposition in Parareal in Time Power System Simulation. 2018

DOI: 10.4236/jcc.2021.92003

53 Journal of Computer and Communications

https://doi.org/10.4236/jcc.2021.92003
https://doi.org/10.1016/S0764-4442(00)01793-6
https://doi.org/10.1002/nme.860
https://doi.org/10.2140/camcos.2010.5.265
https://doi.org/10.2140/camcos.2012.7.105
https://doi.org/10.1137/09075740X
https://doi.org/10.1137/110843484
https://doi.org/10.1007/978-3-642-56118-4_12
https://doi.org/10.1002/qua.10554
https://doi.org/10.1016/j.jcp.2010.05.012
https://doi.org/10.1109/TPWRS.2015.2434833
https://doi.org/10.1109/ISGTEurope.2016.7856184

S. Lakshmiranganatha, S. S. Muknahallipatna

(31]

(32]

(33]

(34]

(35]

(36]

(37]

(38]

(39]

(40]

[41]

[42]

(43]

[44]

(45]

[46]

IEEE Power & Energy Society Innovative Smart Grid Technologies Conference,
Washington DC, 19-22 February 2018, 1-6.
https://doi.org/10.1109/ISGT.2018.8403389

Bal, G. (2005) On the Convergence and the Stability of the Parareal Algorithm to
Solve Partial Differential Equations. In: Domain Decomposition Methods in Science
and Engineering, Springer, Berlin, 425-432.
https://doi.org/10.1007/3-540-26825-1_43

Gander, M.J. and Hairer, E. (2008) Nonlinear Convergence Analysis for the Parareal
Algorithm. In: Domain Decomposition Methods in Science and Engineering XVII,
Springer, Berlin, 45-56. https://doi.org/10.1007/978-3-540-75199-1_4

Nielsen, A.S. (2012) Feasibility Study of the Parareal Algorithm. Doctoral Disserta-
tion, MSc Thesis, Technical University of Denmark, Denmark.

Harden, C.R. (2008) Real Time Computing with the Parareal Algorithm. Doctoral
Dissertation, Florida State University, Tallahassee.

Ruprecht, D. and Krause, R. (2012) Explicit Parallel-in-Time Integration of a Linear
Acoustic-Advection System. Computers & Fluids, 59, 72-83.
https://doi.org/10.1016/j.compfluid.2012.02.015

Eghbal, A., Gerber, A.G. and Aubanel, E. (2017) Acceleration of Unsteady Hydro-
dynamic Simulations Using the Parareal Algorithm. Journal of Computational
Science, 19, 57-76. https://doi.org/10.1016/j.jocs.2016.12.006

Bedez, M., Belhachmi, Z., Haeberlé, O., Greget, R., Moussaoui, S., Bouteiller, J.M.
and Bischoff, S. (2016) A Fully Parallel in Time and Space Algorithm for Simulating
the Electrical Activity of a Neural Tissue. Journal of Neuroscience Methods, 257,
17-25. https://doi.org/10.1016/j.jneumeth.2015.09.017

Subramaniam, A.S. and Upadrasta, R. (2018) Optimization and Parallelization of
Tensor and ODE/PDE Computations on GPU. Doctoral Dissertation, Indian Insti-
tute of Technology Hyderabad, Sangareddy District.

Arteaga, A., Ruprecht, D. and Krause, R. (2015) A Stencil-Based Implementation of
Parareal in the C++ Domain-Specific Embedded Language STELLA. Applied Ma-
thematics and Computation, 267, 727-741.
https://doi.org/10.1016/j.amc.2014.12.055

Lakshmiranganatha, S. and Muknahallipatna, S.S. (2020) Graphical Processing Unit
Based Time-Parallel Numerical Method for Ordinary Differential Equations. Jour-
nal of Computer and Communications, 8, 39-63.
https://doi.org/10.4236/jcc.2020.82004

Chapman, B., Jost, G. and Van Der Pas, R. (2007) Using OpenMP. Portable Shared
Memory Parallel Programming.

Cheng, J., Grossman, M. and McKercher, T. (2014) Professional CUDA c¢ Pro-
gramming. John Wiley & Sons, Hoboken.

Farber, R. (2016) Parallel Programming with OpenACC. Elsevier, Amsterdam.
https://doi.org/10.1016/B978-0-12-410397-9.00001-9

Intel Haswell Processor.
https://www.nas.nasa.gov/hecc/support/kb/haswell-processors_492.html

Chen, N. and Johnson, R. (2010) Patterns for Cache Optimizations on Mul-
ti-Processor Machines. Proceedings of the 2010 Workshop on Parallel Program-
ming Patterns, March 2010, 1-10. https://doi.org/10.1145/1953611.1953613

Jeffers, J., Reinders, J. and Sodani, A. (2016) Intel Xeon Phi Processor High Perfor-
mance Programming: Knights Landing Edition. Morgan Kaufmann, Burlington.
https://doi.org/10.1016/B978-0-12-809194-4.00002-8

DOI: 10.4236/jcc.2021.92003

54 Journal of Computer and Communications

https://doi.org/10.4236/jcc.2021.92003
https://doi.org/10.1109/ISGT.2018.8403389
https://doi.org/10.1007/3-540-26825-1_43
https://doi.org/10.1007/978-3-540-75199-1_4
https://doi.org/10.1016/j.compfluid.2012.02.015
https://doi.org/10.1016/j.jocs.2016.12.006
https://doi.org/10.1016/j.jneumeth.2015.09.017
https://doi.org/10.1016/j.amc.2014.12.055
https://doi.org/10.4236/jcc.2020.82004
https://doi.org/10.1016/B978-0-12-410397-9.00001-9
https://www.nas.nasa.gov/hecc/support/kb/haswell-processors_492.html
https://doi.org/10.1145/1953611.1953613
https://doi.org/10.1016/B978-0-12-809194-4.00002-8

S. Lakshmiranganatha, S. S. Muknahallipatna

(47]

(48]
(49]

(50]

(51]

(52]

(53]
(54]

(55]

[56]

Sodani, A., Gramunt, R., Corbal, J., Kim, H.S., Vinod, K., Chinthamani, S., Hutsell,
S., Agarwal, R. and Liu, Y.C. (2016) Knights Landing: Second-Generation Intel
Xeon Phi Product. IEEE Micro, 36, 34-46. https://doi.org/10.1109/MM.2016.25

Kuttana, B. (2013) Technology Insight: Intel Silvermont.

AVX512 ISA.
https://software.intel.com/en-us/articles/compiling-for-the-intel-xeon-phi-processo

r-and-the-intel-avx-512-isa

Data Alignment to Assist Vectorization.
https://software.intel.com/en-us/articles/data-alignment-to-assist-vectorization

Kumar, R., Muknahallipatna, S. and McInroy, J. (2016) An Approach to Paralleliza-
tion of SIFT Algorithm on GPUs for Real-Time Applications. Journal of Computer
and Communications, 4, 18-50. https://doi.org/10.4236/jcc.2016.417002

Edwards, H.C., Trott, C.R. and Sunderland, D. (2014) Kokkos: Enabling Many-Core
Performance Portability through Polymorphic Memory Access Patterns. Journal of
Parallel and Distributed Computing, 74, 3202-3216.
https://doi.org/10.1016/j.jpdc.2014.07.003

oneAPI. https://www.oneapi.com

Gang, Worker, and Vector with OpenACC.
https://www.microway.com/hpc-tech-tips/accelerating-code-with-openacc-and-nvi

dia-visual-profiler/gang_worker_vector

Intel Xeon Phi.
https://ark.intel.com/content/www/us/en/ark/products/94033/intel-xeon-phi-proce
ssor-7210-16gb-1-30-ghz-64-core.html

Quadro RTX 6000 GPU.
https://www.nvidia.com/en-us/design-visualization/quadro/rtx-6000

DOI: 10.4236/jcc.2021.92003

55 Journal of Computer and Communications

https://doi.org/10.4236/jcc.2021.92003
https://doi.org/10.1109/MM.2016.25
https://software.intel.com/en-us/articles/compiling-for-the-intel-xeon-phi-processor-and-the-intel-avx-512-isa
https://software.intel.com/en-us/articles/compiling-for-the-intel-xeon-phi-processor-and-the-intel-avx-512-isa
https://software.intel.com/en-us/articles/data-alignment-to-assist-vectorization
https://doi.org/10.4236/jcc.2016.417002
https://doi.org/10.1016/j.jpdc.2014.07.003
https://www.oneapi.com/
https://www.microway.com/hpc-tech-tips/accelerating-code-with-openacc-and-nvidia-visual-profiler/gang_worker_vector
https://www.microway.com/hpc-tech-tips/accelerating-code-with-openacc-and-nvidia-visual-profiler/gang_worker_vector
https://ark.intel.com/content/www/us/en/ark/products/94033/intel-xeon-phi-processor-7210-16gb-1-30-ghz-64-core.html
https://ark.intel.com/content/www/us/en/ark/products/94033/intel-xeon-phi-processor-7210-16gb-1-30-ghz-64-core.html
https://www.nvidia.com/en-us/design-visualization/quadro/rtx-6000

S. Lakshmiranganatha, S. S. Muknahallipatna

List of Abbreviations

AVX
CHA
CPU
CUDA
EDD
FMA
GPU
HPC
HSW
KNL
MPAS
ODE
PDE
PFASST
PITA
PRA
SIMD
TSA

VPU

Advanced Vector Extension
Cache/Homing Agent
Central Processing Unit
Compute Unified Device Architecture
Exact Domain Decomposition
Fused Multiply-Add
Graphical Processing Unit
High-Performance Computation
Haswell
Knights Landing
Model for Prediction Across Scales
Ordinary Differential equation

Partial Differential Equations

Parallel Full Approximation Scheme in Space and Time

Parallel In Time Algorithm
Parareal Algorithm
Single Instruction Multiple Data
Transient Stability Analysis

Vector Processing Unit

DOI: 10.4236/jcc.2021.92003

56

Journal of Computer and Communications

https://doi.org/10.4236/jcc.2021.92003

	Performance Analysis of Accelerator Architectures and Programming Models for Parareal Algorithm Solutions of Ordinary Differential Equations
	Abstract
	Keywords
	1. Introduction
	2. Parareal Algorithm
	3. Architecture Overview
	3.1. Homogeneous Computing Architecture
	3.1.1. Haswell Processor
	3.1.2. Knight’s Landing Processor

	4. Implementation
	4.1. OpenMP
	4.2. CUDA
	4.3. OpenACC

	5. Performance Results
	5.1. Classical Model
	5.2. Detailed Model

	6. Conclusion
	Acknowledgements
	Conflicts of Interest
	References
	List of Abbreviations

