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ABSTRACT ARTICLE HISTORY
Proper data transformation is an essential part of analysis. Choosing appropriate transformations for vari- Received May 2019
ables can enhance visualization, improve efficacy of analytical methods, and increase data interpretability. Revised October 2019
However, determining appropriate transformations of variables from high-content imaging data poses new KEYWORDS

challenges. Imaging data produce hundreds of covariates from each of thousands of images in a corpus.
Each of these covariates will have a different distribution and needs a potentially different transformation. As
such imaging data produce hundreds of covariates, determining an appropriate transformation for each of
them is infeasible by hand. In this article, we explore simple, robust, and automatic transformations of high-
content image data. A central application of our work is to microenvironment microarray bio-imaging data
from the NIH LINCS program. We show that our robust transformations enhance visualization and improve
the discovery of substantively relevant latent effects. These transformations enhance analysis of image
features individually and also improve data integration approaches when combining together multiple
features. We anticipate that the advantages of this work will likely also be realized in the analysis of data from
other high-content and highly multiplexed technologies like Cell Painting or Cyclic Immunofluorescence.
Software and further analysis can be found at gjhunt.github.io/rr. Supplementary materials for this article
are available online.

Automatic transformation;
Data integration; Imaging;
Latent variables; PCA;
Visualization

data consist of hundreds of features extracted from thousands
of images using automatic feature detection software. While
classically there is only one data matrix to transform, for high-
content image data there will be hundreds of matrices to con-
sider: one for each image feature. An appropriate transformation
will need to be chosen for each of these feature matrices. In
this article, we consider simple and robust ways of adaptively
doing this. We show that transforming data can improve visu-
alization and discovery of substantive latent effects in features
individually and when integrating together multiple features.
Consequently, we explore the interaction of transformation with
integrating multiple features to extract a common set of latent
variables. As part of all these analyses we employ methods to
estimate principal components (PCs) from data with missing
values.

1. Introduction

Transformation of data is an essential component in many areas
of analysis. Consider principal components analysis (PCA),
one of the primary statistical techniques for visualization and
recovery of latent variables. PCA is well-known to be sensitive
to skewed distributions and outliers (Hubert, Rousseeuw, and
Verdonck 2009; Maadooliat, Huang, and Hu 2015). Using PCA
in such cases can lead to results that are unduly influenced by
arbitrary data scales and often describe only a few particular
outlying points. Thus, an active area of research is methods
for making PCA robust to such problems (Locantore et al.
1999; Hubert, Rousseeuw, and Verboven 2002; Higuchi and
Jp 2004; Croux and Ruiz-Gazen 2005; Maronna 2005). One
approach to dealing with data scale and outliers is data trans-
formation (Hu, Wright, and Zou 2006; Huang, Shen, and Buja
2008; Zimmerman and Nunez-Anton 2010; Maadooliat, Huang,
and Hu 2015). However, choosing the correct transformation

o S ; i ) X 2. Motivating Application: MEMAs
is highly application specific and typically entails substantial

domain-specific knowledge (Maadooliat, Huang, and Hu 2015).
While recommended transformations are established in some
fields, determining an appropriate transformation is often itself
a substantial question to answer. In this article, we tackle this
problem by exploring automatic transformation and integration
of features as part of a PCA data analysis pipeline. One impor-
tant area in which automatic transformation of data is neces-
sary is high-content imaging data (Caicedo et al. 2017). Such

The motivating application of this work is data from the high-
content bio-technology called the microenvironment microar-
ray (MEMA; Labarge, Parvin, and Lorens 2014; Lin et al. 2017;
Watson et al. 2018; Smith et al. 2019). MEMAs aid exploration
of cellular microenvironment: the cells’ immediate physical and
bio-chemical surroundings. This microenvironment is impor-
tant as it is implicated in many cell and tissue level processes,
diseases, and dysfunctions (Lin, Lee, and LaBarge 2012; LaBarge
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Figure 1. MEMAs: a plastic substrate partitioned into wells. Each well is an array of hundreds of ~400 pum printed “spots.” Added cells randomly bind to spots and interact
with: (1) an extra-cellular matrix protein (ECMp) specific to the spot and (2) a ligand specific to a well. After growing, cells are immunofluorescently stained, imaged, and

quantified cellular features extracted.

2013; Januschke and Nithke 2014; Pelissier et al. 2014; Maman
and Witz 2018). Better understanding of the microenvironment
benefits basic research and furthers an understanding of the
interaction between therapeutic agents and regulatory behav-
ior (Teti 1992; Bissell and Labarge 2005; LaBarge, Petersen,
and Bissell 2007). Understanding cellular microenvironments
has been a long-term research aim of the NIH and conse-
quently is a major component of the Library of Integrated
Network-Based Cellular Signatures (LINCS) NIH Common
Fund program.

MEMAs facilitate the study of combinations of microenvi-
ronmental factors on molecular and biological endpoints via
high-throughput image-based profiling of cells. After growing
the cells on the MEMA substrate under various conditions, the
cells are stained and imaged with microscopy (Figure 1). The
images are then analyzed with software to extract quantitative
cellular features. There is one feature matrix for each cellular
feature. For example, there will be a feature matrix recording
cell size for several hundred MEMA plates (the observations,
rows) across several hundred microenvironmental conditions
(the variables, columns). The features (and feature matrices)
cover a wide range of cellular aspects. There are morphological
features like cell area, compactness, eccentricity, perimeter, or
solidity. The MEMAs also produce stain intensity features and
features capturing the cell cycle state, cell lineage, cell count,
texture, and many others. Typically, this amounts to several hun-
dred features however the features are not only diverse but may
vary from one experiment to the next depending on research
interests, software utilized, and underlying biology.

While this plethora of feature data presents new opportu-
nities for discovery, it also necessitates an adaptive approach
that can handle a disparate and changing landscape of fea-
tures. Determining a good transformation for MEMA data is
more complicated than traditional -omics experiments due to
the number, flexibility, and disparate nature of the features.
Consider a nuclei orientation feature (approximately normally
distributed) and a DAPI intensity feature (highly right-skewed
and always positive, see Supplementary Figures 1 and 2). The
appropriate transformation for these two features will likely not
be the same since they have very different distributions. We
might want to log-transform the intensity feature while leaving
orientation feature alone. With this in mind, this article studies
methods for automatically and adaptively choosing appropriate
data transformations for any image feature produced by a high-
throughput image-analysis platform like a MEMA. Our success-
ful application on MEMAs points to promising applications of

this methodology to other image-based cell-profiling technolo-
gies like Cyclic Immunofluorescence and Cell Painting (Bray
et al. 2016; Lin et al. 2016; Tsujikawa et al. 2017).

3. Methods

In this section, we discuss our transformation approach (Sec-
tion 3.1) and how it helps visualization and discovery of substan-
tive latent effects (Section 3.2). We will also outline calculating
the SVD in the presence of missing data (Section 3.3), and how
we recover latent effects through data integration (Section 3.4).

3.1. Robust Rescaling

To process the image-feature matrices we follow three sequential
transformation steps:

Procedure 1 Three-step robust rescaling (RR)

Step 1: (G) robustly “Gaussianize” the data,
Step 2: (Z) convert the data to robust z-scores,
Step 3: (O) remove outliers.

These three steps are applied to each of the feature matrices
individually.

3.1.1. The Gaussianizing Step (G)

The (G), or “Gaussianizing,” step transforms the data using
a robust Box-Cox-like procedure (Box and Cox 1964). The
traditional Box—Cox procedure for finding an optimal transfor-
mation is not well suited for this data because it is not robust.
Indeed, central to the Box-Cox estimator is a rescaled sample
variance. As the breakdown point of the sample variance is
exactly zero, we expect the breakdown point of the Box-Cox
estimator to also be near zero (Cook and Wang 1983; Atkinson
1986; He, Simpson, and Portnoy 1990; Marazzi and Yohai 2004).
A breakdown point near zero indicates that even one outlier can
lead to a drastically over-fit Box-Cox transformation. To over-
come this, the (G) step uses an interpretable and robust “divide-
and-summarize” approach to improve stability and avoid over-
fitting. The procedure first divides the data column-wise and
estimates a Gaussianizing (Box-Cox) transformation for each
column of the feature matrix. To avoid over-fitting, the proce-
dure then robustly summarizes the transformation parameters,
choosing the median among the column-wise estimates. This
median transformation is then used to transform the origi-



nal feature matrix. This model-averaging approach is similar
to attribute bagging seen in supervised learning applications
(Bryll, Gutierrez-Osuna, and Quek 2003). However, because all
attributes (columns) are used in (G), as opposed to a random
subspace procedure, the estimates we calculate are interpretable.
If we consider a model like that of Carroll (1980) where a certain
percentage of the data is arbitrarily corrupted, then by using
the consensus median estimate of the transformation param-
eter, up to 50% of the columns of the data can be arbitrarily
corrupted without arbitrarily corrupting the estimate of the
transformation.

Consider MEMA data where each column is a different
microenvironment being studied. Our final transformation is
a transformation that works well for the typical (median)
microenvironment and ignores any aberrant microenviron-
ments. This allows (G) to avoid undue influence of technical
problems. We will see in Section 4 that this avoids techni-
cal problems of the NID and ELN microenvironments. Fur-
thermore, the extreme transformations proposed by these two
microenvironments allows us to flag them for further quality-
control scrutiny.

Let Y € RM*N be a specific feature matrix and let 75, . . ., Tq
be a collection of Q parameterized transformation families so

Q the family 7, = {Tiq) | A € A@)

consists of differentiable, monotonic, transformations T)(Lq)

S — Ronsome S € R. The goal is to optimize over the union
of these families and choose the transformation that makes the
data close to being normal (without over-fitting).

In our application (Section 4), we will choose Q = 2
families over which to search: a power family 71 = Tpower =
{(sign(y)|y|* — 1)/A, A € R} and an arc-hyperbolic-sine family
To = Tans = {asinh(Ay)/A, A > 0}. We choose these two
families because they cover a range of power and sigmoidal
shapes. While the family of power transformation is versatile,
it cannot deal elegantly with negative values in the data. Thus,
we have included the arc-hyperbolic-since family because it
is a well-studied family of transformations that can deal with
negative values (Nowicka et al. 2019). Many reasonable choices
of parameterized families can be made and nothing in our
discussion depends on the specific choices. We include other
options of families in our software.

Before we describe the procedure for optimizing over many
families, we will first consider the simpler case when Q = 1 and
discuss how to choose an optimal transformation over a single
family generically denoted 7 = {T; | A € A}. Define Y,; be the
jth column of Y, and for any A € A let Yy;(X) = T)\ (Y*J) be Y;
under the transform Tj.. The goal is to choose a 2 so that Yy O
is approximately normally distributed foreachj = 1,...,N. The
(G) approach follows two steps:

that foranyg = 1,...,

Procedure 2 (G) Transformation estimation for one family
Q=1
Step 1: (divide, estimate) determine the optimal 3:]- for each
column Yy; so that Yy; @) is as normal as possible,
Step 2: (summarize) set A = medianj');-
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For the first step, estimate /): using the traditional Box- Cox

approach on Y,;. Assume there is some 1; so that Y,](A)

N(M],a ) for uj € Rand o; > 0. Then let A be the MLE
of A;. Thls is obtained by profiling the hkehhood over (j and
a? and then maximizing the profile likelihood over ;. If L; is

J
the profile likelihood of A; profiling over u; and O’ then ’): def

argmaxy e Lj(4)).

After estimating Xj for each column, the second step is to
summarize the collection of /):j’s into a single . This is done
with the median. Define A as the element-wise median A =
medianj)’\;.

Concisely, the procedure when Q = 1 is to first divide
and optimize within each column and then median-summarize
across the column-wise estimates. When Q > 1 we add an addi-
tional step to first determine which family among 71, ..., 7q is
best. The procedure is described in Procedure 3.

Procedure 3 (G) Transformation estimation for multiple fami-
lies (Q > 1)
Step 1: determine which family is the best over-all, call it q
Step 2: estimate A using just the optimal family 77 (following
the previous procedure of Procedure 2 for Q = 1).

This procedure first determines the best family individually
for each column and then uses the family that is best among
a plurality of columns. More specifically, let L;j(gj, A;) be the
likelihood of the jth column after transformation using the
gjth family and transformation parameter A;. Optimize L;(g;, ;)
jointly over ; and g; and let (g, Ij) = argmaxg;—1,..,Q Lj(gj, A})

1jeA@
and q = mode; g so that g is the family that is the best among a
plurality of the columns. Once we have determined this optimal
family’q we then estimate x following the procedure when Q =1
using the family 73. Finally, define the Gaussianized version of

YasG(y) & (‘”(Y)

3.1.2. The z-Score Step (2)

The second step in the (RR) procedure is the (Z) step, a robust
z-score transformation. Let Y be a vectorized version of Y and
Y(q) be the g-winsorized version of Y. In this article, we will use
q = 0.001 replacing everything below the gth quantile of Y by
the gth quantile and replacing everything above the (1 — q)th
quantile of Y by the (1 — g)th quantlle Given this, the robust z-

score version of Y is defined as Z(Y) def (Y —t)/o where [t and
o are mean and SD estimates of Y 4. Notice that the final values
Z(Y) have not been winsorized themselves, the winsorization
has only been used in the calculation of & and 6.

3.1.3. The Outlier Removal Step (O)

The final of the three (RR) steps is outlier removal. The out-
lier removal procedure simply thresholds z-scores and marks
as missing anything beyond four standard deviations. First let
Z(Y) be the robust z-scored version of Y. We then define
O(Y);j = Y;; if |Z(Y)jj| < 2z, and O(Y);; = “NA, otherwise.
Here, “NA” denotes a missing value. To be conservative in this
article, we use z = 4 although this is somewhat arbitrary. With
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z = 4 if the data are truly normal this removes only about 3e—3
percent of the data from each tail.

3.1.4. The Three-Step (RR) Procedure

Given these definitions, the three step (RR) transformation is to
apply the (G), (Z), and then (O) transformations. If Y is a feature
matrix then we define RR(Y) as RR(Y) = O(Z(G(Y))).

3.2. Transformations and Latent Effects

A central component in data analysis is the identification of
important latent effects both visually and quantitatively. For
MEMAs, we divide latent effects into two categories: (1) biologi-
cal effects and (2) technical effects. Biological effects include, for
example, differences in biological endpoints due to ECMps or
ligands. Technical effects are unwanted and we are interested in
identifying them so that we may remove them. Examples include
batch across plates or spatial effects within wells. Discovery of
latent effects is typically done through visual inspection of plots
or quantitative analysis like PCA. Unfortunately, methods like
PCA are often misled by prominent aspects of the data are
unrelated to substantive latent effects. As an example, consider
how PCA can be misled when used to identify groups in skewed
data. Let uD, 4@, v(V 1@ < RN have elements that are iid
from a standard log-normal distribution. For a small § € R
and noise € € R?V*N define a block data matrix Y as Y =

g:| + e where A = uWvW and B = § + u@v@’ 5o that

the first N rows of the data matrix and the last N rows of the
data matrix constitute two groups with a mean difference of é.
The left side of Figure 2 displays a histogram of the elements
of Y for a simulation using § = 1/2 and € distributed iid
standard normal. Visually, it is difficult to distinguish between
the two groups in the left-hand panel of Figure 2 because the
group difference is over-shadowed by the data’s long tails. Con-
sequently, PCA identifies the variance due to tail skewness, not
the group difference, as the most prominent variation in the
data. While the first two PCs capture more than 99% of the
total variance in this example, they only capture about 50% of
the group difference (Supplementary Figure 3). The right side
of Figure 2 shows that a log transformation makes the groups
more prominent through visual inspection. The transformation
also helps quantitative analyses. The transformation un-skews
the data thereby attenuating the effect of the tails on PCA. In

Density of Untransformed and log-Transformed Data

Untransformed

this case, while the first two PCs only capture about 80% of the
total variation, they capture about 94% of the variation due to
group difference (Supplementary Figure 3).

Motivated by the previous example, we want to attenuate
the influence of prominent, yet uninformative, variation when
visualizing data and when applying quantitative methods. The
(RR) transformation does this by ameliorating the effects of two
commonly encountered, and potentially misleading, aspects of
data: (1) skewness in measurement scales and (2) anomalous
outliers. By anomalous outliers we mean extremely unusual
data points that are not informative of much beyond their own
uniqueness. For example, cells may have difficulty growing on
a spot, or software might produce image-analysis artifacts like
segmentation anomalies.

To guard against nonsubstantive variation (RR) applies three
robust rescaling steps. (G) robustly prevents a feature’s naturally
long-tailed measurement scale from dominating analysis by de-
skewing each feature’s distribution. While the traditional Box-
Cox procedure is likely to over-fit in the presence of genuine out-
liers, (G) will not. Indeed, traditional Box-Cox will propose an
extreme transformation to rectify even a single outlier. (G) only
transforms the data to un-skew fundamentally skewed data, not
simply to reign in a few points. Instead, outliers are handled
more parsimoniously by a procedure that specifically targets
them. To remove outliers (RR) first converts the data to robust
z-scores using (Z) and then removes any entry of the feature
matrix bigger in magnitude than four with (O).

3.3. Complete Singular Vectors

A common statistical tool used to recover latent effects is the
singular value decomposition (SVD). For a data matrix Y with a
singular value decomposition (SVD) of Y = UZ V' we call the
columns of the U left singular vectors and the columns of V' the
right singular vectors. If one were to mean-center the columns
of Y, these singular vectors define the PCs. We avoid this term
because we do not mean-center.

When calculating the SVD for image-based data we often
need to account for missing data. Missing values arise for
domain-specific reasons (e.g., cells failed to grow on a MEMA),
image-analysis reasons (e.g., the software could not detect any
features), and because (RR) introduces missing values as part of
(O). As the SVD is undefined for matrices with missing values,

i=F
o

0.34

024

T Y Y T

Density

group

Group 1
!::E! Group 2

e e

0.004

30 40 50 25
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0.0 5.0

Figure 2. Skewed data (left) before a transformation and (right) after a log-transformation. The transformation makes the group difference more prominent.



we use ‘complete” singular vectors calculated from rescaled
pairwise-complete gram matrices. This is similar to pairwise-
complete covariance matrices (e.g., cor in R).

Let Y € RM*N be a feature matrix with missing values.
Define Yy as Y with missing values replaced by zeros and Y7
so that (Y7); = 1{Yj is not missing}. We define the rescaled
pairwise-complete left Gram matrix Y - Y’ so that

N _N¢
(V- V)= =3 (Vo) Voje
¥ k=1

where n; = (Y1Y}); is the number of pairwise-complete
entries between row i and j of Y.

Y - Y’ is a matrix of rescaled inner products of the rows of Y
accounting for the number of nonmissing pairs between rows.
We similarly define the right gram matrix Y’ - Y replacing Y
for Y’ above. We call the eigenvectors of Y - Y and Y’ - Y the
complete left/right singular vectors. WLOG they are ordered
decreasing by eigenvalue and we keep only those with posi-
tive eigenvalues. For brevity we henceforth omit the adjective
“complete,” referring to these simply as the “singular vectors.”
If there are no missing values they are identical. While other
methods exist for calculating the SVD on matrices with missing
values (e.g., Hastie et al. 2015), because the total number of
missing values is small for MEMA data, our simple procedure
will allow quick and intuitive calculations of singular vectors
that are highly commensurate existing approaches.

3.4. Average Singular Vectors

In addition to recovering important latent effects in individual
features, we are interested in latent effects common to multiple
features. To extract a common set of latent effects from a collec-
tion of P features Y, . .., Y(P) we use the eigenvectors from the
average of their rescaled pairwise-complete left and right gram
matrices, respectively,

P P
ll) SY® . y® and 113 Sy ey,
p=1 p=1

We call these eigenvectors the left and right average singular
vectors (ASVs).

4. Application to MEMA Data
4.1. Structure of MEMA Data

We work with MEMA data from the MEP-LINCS Center at the
Oregon Health and Science University. The data are accessible
through Synapse with identifiers syn10155286, syn10155289,
and syn10155292 (Gray, Heiser, and Korkola 2014) available
at http://www.synapse.org/MEP_LINCS. In total, we analyze 24
MEMAs of human epithelial mammary tissue (MCF10A). The
24 MEMAs come in three batches of eight plates. Each MEMA
plate is divided evenly into eight wells. Each well contains 700
spots in a 20 by 35 grid. Cells are added to the wells and bind to
the spots. Subsequently, a buffer solution containing a specific
ligand is added to each well. Thus, the cells can grow out in the
presence of different ECM proteins and ligands. The pattern of
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ECMps is identical across all wells (see Supplementary Figure
4) however a (potentially) different ligand is added to each well
(see Supplementary Figure 5). After incubating the cells for 72 hr
they are fluorescently stained, imaged, and cell-level features are
extracted with image analysis software. For the analysis in this
article, we work with spot-level features (median summarized
cell-level features). For each image feature, we have a data matrix
of 192 wells (3 batches x 8 plates x 8 wells) by 694 spots
(we remove 6 alignment spots with no cells from the 700). In
total, we will work with 103 image features (Supplementary
Table 1).

4.2. Features and Transformations Considered

The MEMA plates we analyze are grown, stained, and imaged in
three separate processing batches. A different set of stains is used
in each batch. Those sets are (1) “SS1” (containing stains DAPI,
Actin, CellMask and MitoTracker), (2) “SS2noH3” (containing
stains DAPI, Fibrillarin and EdU), and (3) “SS3” (containing
stains DAPI, KRT5, KRT19, and CellMask). Because each of
these batches use a different staining set we refer to them as
the “staining batches” While these batches are separate exper-
iments, aside from the staining set the experimental conditions
were made as identical as possible.

In total, there are 103 different image features extracted
from the MEMAs. A different set of features is extracted in
each staining batch with some being common across multiple
batches. There are 50 features extracted in at least two of the
staining batches and 18 features that are extracted from all three.
We focus on four features in this article: (1) cell area (notated on
synapse as “Cells_CP_AreaShape_Area”), (2) cell compactness
(“Cells_CP_AreaShape_Compactness”), (3) spot cell count
(“Spot_PA_SpotCellCount”), and (4) total cytoplasm DAPI
intensity (“Cytoplasm_CP_Intensity_IntegratedIntensity_
Dapi”). We choose these features because they represent several
different feature types. The first two are morphological traits of
cells, the third is the cell count, and the last is an intensity. We
have deposited the full results for all features at gjhunt.github.io/
rr. To explore the effects of (G), (Z), and (O), we consider five
transformations of the features: (1) no transformation (NT),
(2) the (G) step only, (3) the (Z) step only, (4) the (O) step only,
and (5) the three-step (RR) transformation.

4.3. Visualization

4.3.1. Feature Distributions

A typical first step in exploratory analysis is data visualization.
Simple data visualizations can succinctly summarize the major
features of the data and inform qualitative analyses. In Figure 3,
we plot the distribution of cell area for the five transformations.
The densities correspond to staining batches. The bold line is the
density of all data combined. Notice in Figure 3 that the density
of (NT) largely reflects the data’s long tail. The same can be said
for (Z). Conversely, the other transformations reveal the staining
batches. Both (O) and (G) de-emphasize the data’s long tail in
favor of the group difference. Furthermore, in (RR) these groups
are approximately Gaussian. Supplementary Figures 6-9 show
the similar plots for other features and effects.
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Figure 3. Density of elements of cell area feature matrix. Bold density is all elements combined. Other densities are the densities for the two staining batches. Subplots

are for five processing transformations.
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G

Figure 4. Heat map of cell area for two wells (a) and (b) across the five transformations (NT), (G), (Z), (0), (RR). Subplots of Supplementary Figure 10. Color scaled is
determined globally over all spots, wells, and plates in the dataset to reflect the fact that the transformation is similarly calculated over this data. Thus, we see no blue in
this (NT) subplot as we see almost no blue in Supplementary Figure 10. This plot is a representative microcosm of the larger plot. Green indicates missing data.

4.3.2. Heat-Maps

Another way to visualize the MEMA data is through heat-
map pseudo-images. These pseudo-images are heat-maps of
the value of a feature for each spot plotted following the same
physical layout as the MEMA. These pseudo-images can be
useful for discovering spatial effects and assessing the quality
of data. As an example, we visualize cell area this way in Sup-
plementary Figure 10. In Figure 4(a), we display a single well
from Supplementary Figure 10 across the five transformations.
The colors are more blue if they are close to the minimum cell
area, red if they are close to the maximum, and white if they

are half-way between. Dark gray spots are omitted according to
the MEMA design. Note that the color scale is determined glob-
ally over all wells and all plates in the dataset (Supplementary
Figure 10).

This figure is not very informative for (NT) or (Z). The
skewness and outliers assign the bulk of data to a tiny range
of colors meaning the plots are essentially a single color. Con-
versely, for (G) and (O) we see a spatial effect between the right
and edges and the rest of the well. We also see a nonspatial
effect where certain spots are much different than their sur-
roundings. We circle these spots in orange in Supplementary
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Figure 5. Heat map of eight wells across the five transformations (NT), (G), (Z), (O), (RR). Top row of each subplot is from first staining batch. Bottom row is from second
staining batch. Colors are more blue if they are close to the minimum, red if they are close to the maximum, and white if they are close to half-way between. Green spots

are missing. Dark gray spots are omitted according to the MEMA design.

Figure 11. In Section 4.6, we show that this is an effect of the
ECMps NID1 and ELN. We can see from these plots that (RR)
strongly highlights the spatial effects as well as the NID/ELN
effect.

In Figure 4(b), we focus on a different well of Supplementary
Figure 10. Here, the green spots indicate missing data. These
spots are missing either due to experimental error or because
they have been removed as part of analysis. We see similar
behavior where (G) and (O) reveal spatial differences between
the upper right and the rest of the well. This spatial effect is also
seen in (RR) however the number of points removed is much
different in (RR) compared to (O). This highlights the difference
between (O) thresholding outliers without transformation and
(RR) thresholding outliers after (G). We believe thresholding
based on a z-score makes most sense on a Gaussianized scale (as
in (RR)). Note also that outliers are defined in a global context of
the entire data, so while many values are marked as outliers by
(RR) in this particular well it is a small percentage of the entire
data.

In addition to highlighting spatial effects, these transforma-
tions also reveal batch effects between plates, wells, and staining
batches. In Figure 5, we display the heat-map pseudo-image of
cell area for eight wells across (NT), (G), (O) and (RR). ((Z)
is identical to (NT).) The top four wells in each subplot are
from the first staining batch, the bottom four wells are from the
second. Nonetheless, we see little indication of batch in (NT).
However, batch is visible in (G), (O), and (RR). The bottom of
(G) is lighter blue than the top, and the top of (O) is lighter red
than the bottom. In (RR), we have solid-blue in the top and
mostly red in the bottom. Being better able to identify batch
effects hopefully will aid down-stream procedures to account for
such effects.

4.4. Recovering Technical Effects Across Wells

Batch effects are a common and well-studied problem in high-
throughput biological experiments like MEMAs (Leek et al.
2010). Often, such batch effects obscure biological variation of
interest. To deal with this problem, unwanted variation, like
batch, is typically identified using the SVD and projected out
of the data. In this section, we explore how (RR) helps iden-
tify unwanted variation like batch using the SVD. We focus
on the large staining batch effect as it was visible by eye in
Figure 5.

We assess the transformations by measuring the percentage
of the batch captured by the first k singular vectors of the
transformed feature matrix. Let U = [uy,...,uy] € RM*N
be the (complete) left singular vectors of a feature matrix and
B € RM*D be the batch indicator matrix so that Bjj = 1 if well
iis in batch j for j = 1,...,D. Here we have D = 3 for the
three staining batches. Fork = 1,...,Nand t = 1...min(k, D)

define C,(f) to be the tth canonical correlation between the first
k left singular vectors Ux = [u,. .., ux] and the batch B. Then

) 2
let Ci = Il) ?;Hf(k’D) (C,(:)) to be the average of these squared

canonical correlations. We can interpret C,% as the percentage of
the batch B that is captured by these first k singular vectors. In
Figure 6(a), we plot C; on the y-axis and vary k across the x-axis
from k = 1 to 192. From this figure, we see that the transforma-
tions enhance identification of the staining batch. Consider the
cell area and total DAPI intensity features. As compared with no
transformation (NT), these plots show that (G), (O), and (RR)
increase how much of the staining batch is captured by the first
several singular vectors. These transformations attenuate the
non-informative tails of the distributions and focus the singular
vectors on the differences across the staining batches.
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Figure 6. (a) Mean of the squared canonical correlations between the first k left singular vectors and the staining batch dummy variables. (b) Grand mean of the squared
canonical correlations across number of components. Features ordered left to right decreasing by the difference in the AUC between (RR) and (NT). Thus, those on the left

(RR) perform relatively better than (NT).

We summarize batch recovery for all features in Fig-
ure 6(b). Here, we calculate the area under the CC curves
(AUC) for each feature as AUC = 22 Cz. Broadly,
we see the same behavior in Figure 6(b) as displayed in
Figure 6(a). (RR) seems to generally improve recovery of
the staining batch. Sometimes we see a substantial improve-
ment (e.g., Cell Compactness) and rarely do we see that
(RR) is detrimental. In Supplementary Figures 15-20, we dis-
play similar plots for the recovery of plate, well, and ligand

effects.

4.5. Data Integration for Discovering Between-Well Effects

Given the close relationship among many of the MEMA image
features, latent effects that appear in one feature may show up
in other features. Shared effects give insight into biological and
technical aspects that are important across many features. To
extract these common effects we integrate information across
MEMA features using the left average singular vectors (ASVs)
as described in Section 2.

In the left panel of Figure 7, we plot the mean squared canon-
ical correlations (C,%) between the first k left ASVs and the stain-
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Figure 7. Mean of the squared canonical correlations between the first k average left singular vectors and the staining batch dummy variables. The average left singular
vectors come from integration of (left) the 18 features that are measured across all MEMASs, and, (right) the five with the highest leverage points (among those 18).
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Figure 8. (a) Scatterplot of elements of first four right singular vectors against each other for the total cytoplasmic DAPI intensity feature. Shape and color indicate ECMp
of the spot corresponding to the elements of the singular vector. (b) Heat map of elements of top 10 right singular vectors for the total cytoplasmic DAPI intensity feature.
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ing batch. We calculate the ASVs using the 18 features measured
in every plate. From this figure, we can see that (Z) and (RR)
quickly and strongly recover the staining batch. The AUC for
these curves is in excess of 0.95, meaning it recovers batch better
than the majority of individual features. The ASV's “average-out”
feature-specific effects and amplify common effects like staining
batch.

It is notable that the (Z) and (RR) recover batch signifi-
cantly better than (O), (G), and (NT). This happens because
the ASVs element-wise average Gram matrices across features.
If these Gram matrices are on vastly different scales their average
is biased toward the largest features. This arbitrarily weights
features’ by their scales. To equitably integrate information all
features should have values in a similar range as in (Z) and (RR).
Thus, they recover batch better.

Finally, it is notable how well (Z) does alone. This hap-
pens because the averaging used to compute the ASVs con-
veys some of the same benefits as (G) and (O). This is true
so long as we do not have a small number of features or
systematic skewness or outliers across features. In the right
panel of Figure 7, we calculate the ASVs using only five fea-
tures with several high-leverage points. Here, we see a sepa-
ration between (Z) and (RR) since the average is over a small
number of highly skewed features. In any case, including (G)
and (O) steps does not seem to hurt the analysis and thus
we still recommend the full three-step (RR) transformation
for integrating features in this manner. Similar, but attenuated
results for plate, well and ligand are shown in Supplementary
Figures 21-23.

4.6. Discovering Biological and Spatial Effects Within
Wells

The left singular vectors of the feature matrices reveal latent
effects across the wells, plates, and staining batches. Similarly,

RSV 1, 2: Compactness

the right singular vectors (RSVs) reveal effects across the spots.
In Figure 8(a), we display a scatterplot of the first four RSVs of
total cytoplasmic DAPI intensity for (NT) and (RR).

A prominent feature of Figure 8(a) is the separation between
the ECMps ELN, NID1, and the rest. Upon further investiga-
tion of the underlying MEMA images we find that this effect
manifests because the cells have difficulty adhering to the ELN
and NID1 ECMp substrates. Notice the cell count heat-map
in Supplementary Figure 13 shows that the cell count in the
ELN and NIDI spots are significantly lower than other spots.
While this ELN-NIDI1 effect is present in the untransformed
data, it is more prominent in (RR). The first RSV from the un-
transformed data does capture the effect; however, the second
through fourth RSVs are focused on explaining several outliers.
Moreover, (RR) separates NID1 and ELN from the other ECMps
and from each other.

In Figure 8(b), we plot pseudo-image heat-maps of the first
ten RSVs for cytoplasmic DAPI intensity arranging elements
of the RSVs according to the MEMA plate spatial layout. In
addition to the ELN/NID effect, these plots reveal common
spatial patterns across wells. These patterns are more visi-
ble for (RR) than (NT) as the RSVs of (NT) mostly capture
outliers. It is important to identify such unwanted effects so
that we can properly account for them downstream. In Sup-
plementary Figures 25-29, we display similar scatterplots and
heat-maps for the other example features. They tell similar
stories.

To see what biological effects can be found if we a pri-
ori remove the dominating ELN-NID effect, we reanalyze the
MEMA data after removing these spots. Now we find an
effect separating THBS from the other ECMps. This is par-
ticularly prominent in morphological features. As an exam-
ple, in Figure 9 we plot a scatterplot of the top four RSVs
for cell compactness. (RR) reveals a difference between THBS
and the other ECMps. This effect shows up in many of the
morphological features but not cell count. Thus, this THBS
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Figure 9. Scatterplot (after removing ELN and NID from analysis) of elements of top four right singular vectors against each other for the cell compactness feature. Shape
and color indicate ECMp of the spot corresponding to the elements of the singular vector. The clusters seen in the NT panels are from missing spots on an outlier plate (see

Supplementary Figure 31).



effect does not appear to be of similar origin to the ELN-
NID effect. Instead, it appears to be a biological effect on cell
morphology.

4.7. Data Integration for Discovering Within-Well Effects

In Section 4.5, we saw that data integration helped make salient
important between-well effects. In a similar fashion, the average
right singular vectors (ASVs) help bring out within-well effects.
In Figure 10(a), we plot the first two right ASV's against each
other. Again, (RR) equitably integrates information from all
features and helps highlight the NID/ELN effect. Finally, we
display heat-maps pseudo-images for the first ten right ASVs in
Figure 10(b). The right ASV's for (NT) seem to be mostly picking
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up a couple of outliers. On the other hand, (RR) strongly picks
up several interesting spatial effects.

5. Discussion

In this article, we have explored the effects of several trans-
formations as part of a preprocessing pipeline of high-content
image data, in particular, data from MEMAs. The goal of these
transformations is to emphasize important latent effects in the
data and attenuate common and misleading aspects.
Untransformed feature data is often encumbered by skewed
measurement scales, outliers, or both. These aspects can hinder
discovery of substantive latent effects. To de-emphasize such
misleading aspects of the data (O), (G), and their combination
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Figure 10. (a) Scatterplot of elements of top four right ASVs calculated over 18 features measured on all MEMAs. Shape and color indicate ECMp of the spot corresponding
to the elements of the singular vector. (b) Heat-map of top 10 right ASVs calculated over 18 features measured on all MEMAs.



940 (&) G.J.HUNTETAL.

in (RR) were helpful. (O) removed outliers using a conservative
threshold and (G) reduced skewness by Gaussianizing the data.
Additionally, (RR) included a (Z) step that converted values to
robust z-scores. (Z) and (RR) allowed features to be straight-
forwardly integrated with a simple arithmetic average of Gram
matrices. In the analysis of MEMA data, we showed that a
combination of a Gaussianizing transformation (G), z-score
transformation (Z), and removal of outliers (O) can improve
visualization and discovery of biological and technical latent
effects in both features individually and when combining fea-
tures together. Finally, as (RR) automatically chose transfor-
mations for each feature this allowed adaptive application of
(RR) to a data containing many different features. This adaptive
ability makes (RR) a promising candidate for data generated
by other image-based technologies like Cyclic Immunofluo-
rescence (CycIF) or Cell Painting (Bray et al. 2016; Lin et al.
2016; Tsujikawa et al. 2017). For example, CycIF, through a
series of imaging and washing steps, allows up to 30-channel
immunofluorescent imaging and thus extraction of potentially
several hundred features. Like MEMAs, each of these features
will need a transformation to be adaptively chosen. Exploring
the application of (RR) to other high-content and highly multi-
plexed technologies is a direction we hope to explore in future
work.

Supplementary Materials

The supplementary materials contain figures for a wider range of features
and conditions.

Funding

The authors gratefully acknowledge support from the National Science
Foundation (grant no. DMS-1646108) and the National Institutes of Health
(NIH grant nos. U54HG008100 and 1U54CA209988).

References

Atkinson, A. C. (1986), “Diagnostic Tests for Transformations,” Technomet-
rics, 28, 29-37. [930]

Bissell, M. J., and Labarge, M. A. (2005), “Context, Tissue Plasticity, and
Cancer: Are Tumor Stem Cells Also Regulated by the Microenviron-
ment?,” Cancer Cell, 7, 17-23. [930]

Box, G. E. P, and Cox, D. R. (1964), “An Analysis of Transformations,”
Journal of the Royal Statistical Society, Series B, 26, 211-252. [930]

Bray, M.-A,, Singh, S., Han, H., Davis, C. T, Borgeson, B., Hartland, C,,
Kost-Alimova, M., Gustafsdottir, S. M., Gibson, C. C., and Carpenter,
A. E. (2016), “Cell Painting, a High-Content Image-Based Assay for
Morphological Profiling Using Multiplexed Fluorescent Dyes,” Nature
Protocols, 11, 1757-1774. [930,940]

Bryll, R., Gutierrez-Osuna, R., and Quek, F. (2003), “Attribute Bagging:
Improving Accuracy of Classifier Ensembles by Using Random Feature
Subsets,” Pattern Recognition, 36, 1291-1302. [931]

Caicedo, J. C., Cooper, S., Heigwer, E, Warchal, S., Qiu, P, Molnar, C,,
Vasilevich, A. S., Barry, J. D, Bansal, H. S., Kraus, O., Wawer, M.,
Paavolainen, L., Herrmann, M. D., Rohban, M., Hung, J., Hennig, H.,,
Concannon, J., Smith, I, Clemons, P. A, Singh, S., Rees, P.,, Horvath, P,
Linington, R. G., and Carpenter, A. E. (2017), “Data-Analysis Strategies
for Image-Based Cell Profiling,” Nature Methods, 14, 849-863. [929]

Carroll, R. (1980), “A Robust Method for Testing Transformations to
Achieve Approximate Normality,” Journal of the Royal Statistical Society,
Series B, 42, 71-78. [931]

Cook, R. D.,and Wang, P. C. (1983), “Transformations and Influential Cases
in Regression,” Technometrics, 25, 337-343. [930]

Croux, C., and Ruiz-Gazen, A. (2005), “High Breakdown Estimators for
Principal Components: The Projection-Pursuit Approach Revisited,”
Journal of Multivariate Analysis, 95, 206-226. [929]

Gray, J., Heiser, L., and Korkola, J. (2014), “Microenvironment Perturbagen
(MEP) LINCS, Sage Bionetworks” www.synapse.org/#! [933]

Hastie, T., Mazumder, R., Lee, J. D., and Zadeh, R. (2015), “Matrix Comple-
tion and Low-Rank SVD via Fast Alternating Least Squares,” Journal of
Machine Learning Research, 16, 3367-3402. [933]

He, X., Simpson, D. G., and Portnoy, S. L. (1990), “Breakdown Robustness
of Tests,” Journal of the American Statistical Association, 85, 446. [930]

Higuchi, I, and Jp, E. A. (2004), “Robust Principal Component Analysis
With Adaptive Selection for Tuning Parameters Shinto Eguchi,” Techni-
cal Report. [929]

Hu, J., Wright, F. A., and Zou, E (2006), “Estimation of Expression Indexes
for Oligonucleotide Arrays Using the Singular Value Decomposition,”
Journal of the American Statistical Association, 101, 41-50. [929]

Huang, J. Z., Shen, H., and Buja, A. (2008), “Functional Principal Com-
ponents Analysis via Penalized Rank One Approximation,” Electronic
Journal of Statistics, 2, 678-695. [929]

Hubert, M., Rousseeuw, P. J., and Verboven, S. (2002), “A Fast Method
for Robust Principal Components With Applications to Chemometrics,”
Chemometrics and Intelligent Laboratory Systems, 60, 101-111. [929]

Hubert, M., Rousseeuw, P.,, and Verdonck, T. (2009), “Robust PCA for
Skewed Data and its Outlier Map,” Technical Report. [929]

Januschke, J., and Nithke, 1. (2014), “Stem Cell Decisions: A Twist of Fate
or a Niche Market?,” Seminars in Cell & Developmental Biology, 34, 116—-
123. [930]

LaBarge, M. (2013), “Breaking the Canon: Indirect Regulation of Wnt
Signaling in Mammary Stem Cells by MMP3,” Cell Stem Cell, 13, 259-
260. [930]

LaBarge, M. A, Parvin, B., and Lorens, J. B. (2014), “Molecular Deconstruc-
tion, Detection, and Computational Prediction of Microenvironment-
Modulated Cellular Responses to Cancer Therapeutics,” Advanced Drug
Delivery Reviews, 69-70, 123-131. [929]

LaBarge, M. A., Petersen, O. W., and Bissell, M. J. (2007), “Of Microenviron-
ments and Mammary Stem Cells,” Stemn Cell Reviews, 3, 137-146. [930]

Leek, J. T., Scharpf, R. B., Bravo, H. C,, Simcha, D., Langmead, B., Johnson,
W. E., Geman, D., Baggerly, K., and Irizarry, R. A. (2010), “Tackling the
Widespread and Critical Impact of Batch Effects in High-Throughput
Data,” Nature Reviews Genetics, 11, 733-739. [935]

Lin, C.-H., Jokela, T., Gray, J., and LaBarge, M. A. (2017), “Combinatorial
Microenvironments Impose a Continuum of Cellular Responses to a
Single Pathway-Targeted Anti-Cancer Compound,” Cell Reports, 21,
533-545. [929]

Lin, C.-H,, Lee, J. K, and LaBarge, M. A. (2012), “Fabrication and Use
of MicroEnvironment microArrays (MEArrays),” Journal of Visualized
Experiments, 68, 1-7. [929]

Lin, J.-R., Fallahi-Sichani, M., Chen, J.-Y., and Sorger, P. K. (2016),
“Cyclic Immunofluorescence (CycIF), a Highly Multiplexed Method for
Single-cell Imaging;” Current Protocols in Chemical Biology, 8, 251-264.
[930,940]

Locantore, N., Marron, J. S., Simpson, D. G., Tripoli, N., Zhang, J. T., Cohen,
K. L., Boente, G., Fraiman, R., Brumback, B., Croux, C., Fan, J., Kneip,
A., Marden, J. L, Pefia, D., Prieto, J., Ramsay, J. O., Valderrama, M. J.,
Aguilera, A. M., Locantore, N., Marron, J. S., Simpson, D. G., Tripoli,
N., Zhang, J. T,, and Cohen, K. L. (1999), “Robust Principal Component
Analysis for Functional Data,” Test, 8, 1-73. [929]

Maadooliat, M., Huang, J. Z., and Hu, J. (2015), “Integrating Data Trans-
formation in Principal Components Analysis,” Journal of Computational
and Graphical Statistics, 24, 84-103. [929]

Maman, S., and Witz, I. P. (2018), “A History of Exploring Cancer in
Context,” Nature Reviews Cancer, 18, 359-376. [930]

Marazzi, A., and Yohai, V. J. (2004), “Robust Box-Cox Transformations
for Simple Regression,” in Theory and Applications of Recent Robust
Methods, eds. A. Struyf, S. Van Aelst, & M. Hubert, Basel: Birkhduser
Basel, pp. 173-182. [930]

Maronna, R. (2005), “Principal Components and Orthogonal Regression
Based on Robust Scales,” Technometrics, 47, 264-273. [929]

Nowicka, M., Krieg, C., Crowell, H. L., Weber, L. M., Hartmann, F. ],
Guglietta, S., Becher, B., Levesque, M. P, and Robinson, M. D. (2019),


https://www.synapse.org/#!

“CyTOF Workflow: Differential Discovery in High-Throughput High-
Dimensional Cytometry Datasets,” F1000Research, 6, 748. [931]

Pelissier, F. A., Garbe, ]. C., Ananthanarayanan, B., Miyano, M., Lin,
C. H., Jokela, T., Kumar, S., Stampfer, M. R., Lorens, J. B., and
LaBarge, M. A. (2014), “Age-Related Dysfunction in Mechanotransduc-
tion Impairs Differentiation of Human Mammary Epithelial Progeni-
tors,” Cell Reports, 7, 1926-1939. [930]

Smith, R., Devlin, K., Kilburn, D., Gross, S., Sudar, D., Bucher, E., Nederlof,
M., Dane, M., Gray, . W, Heiser, L., and Korkola, J. E. (2019), “Using
Microarrays to Interrogate Microenvironmental Impact on Cellular
Phenotypes in Cancer,” Journal of Visualized Experiments, 147, e58957.
[929]

Teti, A. (1992), “Regulation of Cellular Functions by Extracellular Matrix,”
Technical Report. [930]

JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS . 941

Tsujikawa, T., Kumar, S., Borkar, R. N., Azimi, V., Thibault, G., Chang,
Y. H., Balter, A., Kawashima, R., Choe, G., Sauer, D., El Rassi, E.,
Clayburgh, D. R., Kulesz-Martin, M. E, Lutz, E. R,, Zheng, L., Jaffee,
E. M., Leyshock, P, Margolin, A. A., Mori, M., Gray, J. W.,, Flint,
P. W, and Coussens, L. M. (2017), “Quantitative Multiplex Immuno-
histochemistry Reveals Myeloid-Inflamed Tumor-Immune Complex-
ity Associated With Poor Prognosis,” Cell Reports, 19, 203-217.
[930,940]

Watson, S. S., Dane, M., Chin, K, Jonas, O., Gray, ]. W,, and Korkola,
J. E. (2018), “Microenvironment-Mediated Mechanisms of Resistance to
HER?2 Inhibitors Differ Between HER2+ Breast Cancer Subtypes,” Cell
Systems, 6, 329-342.e6. [929]

Zimmerman, D. L.,and Nunez-Anton, V. A. (2010), Antedependence Models
for Longitudinal Data, Boca Raton, FL: Chapman & Hall/CRC. [929]



Count

Histogram of Nuclei_CP_AreaShape_QOrientation

200004

Count

10000 -

T T T
-100 -50

0 50
Value

Figure 1: Histogram of nuclei orientation across all wells and spots.
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Figure 2: Histogram of total nuclei DAPI intensity across all wells and spots
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un-transformed data and log-transformed data. (B) The mean squared canonical correlations between the
grouping factor and the first k£ principal components.

For clarity, we reproduce the explanation of (B) from main text.

We assess the transformations by measuring the percentage of the batch (group difference) captured by the
first k singular vectors of the transformed feature matrix. Let U = [uy, ..., uy] € RM*N be the (complete)
left singular vectors of a feature matrix and B € RM*P be the batch indicator matrix so that B;; = 1
if well 4 is in batch j for j = 1,...,D. Here we have D = 2 for the two groups. For £k = 1,..., N and
t = 1...min(k, D) define C’,it) to be the t" canonical correlation between the first k left singular vectors
U = [u1,...,u;) and the batch B. Then let

min(k,D)

-5 % et

to be the average of these squared canonical correlations. We can interpret C7 as the percentage of the batch
B that is captured by these first k singular vectors.
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Cells_CP_AreaShape_Area
Cells_CP_AreaShape_Compactness

Cells_CP _AreaShape_Eccentricity
Cells_CP_AreaShape_Extent
Cells_CP_AreaShape_FormFactor
Cells_CP_AreaShape_MajorAxisLength
Cells_CP_AreaShape_MaxFeretDiameter
Cells_CP_AreaShape_MaximumRadius
Cells_CP_AreaShape_MeanRadius
Cells_CP_AreaShape_MedianRadius
Cells_CP_AreaShape_MinFeretDiameter
Cells_CP_AreaShape_MinorAxisLength
Cells_CP_AreaShape_Perimeter
Cells_CP_AreaShape_Solidity
Cytoplasm_CP_AreaShape_Area
Cytoplasm_CP _AreaShape_Compactness
Cytoplasm_CP_AreaShape_Eccentricity
Cytoplasm_CP_AreaShape_Extent
Cytoplasm_CP_AreaShape_FormFactor
Cytoplasm_CP_AreaShape_MajorAxisLength
Cytoplasm_CP_AreaShape_MaxFeretDiameter
Cytoplasm_CP _AreaShape_MaximumRadius
Cytoplasm_CP_AreaShape_MeanRadius
Cytoplasm_CP_AreaShape_MedianRadius
Cytoplasm_CP_AreaShape_MinFeretDiameter
Cytoplasm_CP_AreaShape_MinorAxisLength
Cytoplasm_CP _AreaShape_Perimeter
Cytoplasm_CP_AreaShape_Solidity
Nuclei_CP_AreaShape_Area
Nuclei_CP_AreaShape_Compactness
Nuclei_CP_AreaShape_Eccentricity
Nuclei_CP_AreaShape_Extent
Nuclei_CP_AreaShape_FormFactor
Nuclei_CP_AreaShape_MajorAxisLength
Nuclei_CP_AreaShape_MaxFeretDiameter
Nuclei_CP_AreaShape_MaximumRadius
Nuclei_CP_AreaShape_MeanRadius
Nuclei_CP_AreaShape_MedianRadius
Nuclei_CP_AreaShape_MinFeretDiameter
Nuclei_CP_AreaShape_MinorAxisLength
Nuclei_CP_AreaShape_Orientation
Nuclei_CP_AreaShape_Perimeter
Nuclei_CP_AreaShape_Solidity

Cells_CP _Intensity_IntegratedIntensity _CellMask
Cells_CP _Intensity_IntegratedIntensity KRT19
Cells_CP _Intensity_IntegratedIntensity KRT5
Cells_CP _Intensity_MedianIntensity_CellMask
Cells_CP _Intensity_MedianIntensity KRT19
Cells_CP _Intensity _MedianIntensity_KRT5

Cytoplasm_CP _Intensity_IntegratedIntensity _CellMask
Cytoplasm_CP _Intensity _IntegratedIntensity_Dapi
Cytoplasm_CP _Intensity _IntegratedIntensity KRT19
Cytoplasm_CP _Intensity IntegratedIntensity_ KRT5
Cytoplasm_CP _Intensity_MedianIntensity _CellMask
Cytoplasm_CP _Intensity_MedianIntensity _Dapi
Cytoplasm_CP _Intensity_MedianIntensity KRT'19
Cytoplasm_CP_Intensity_MedianIntensity KRT5
Nuclei_CP _Intensity IntegratedIntensity _Dapi
Nuclei_CP _Intensity _IntegratedIntensity KRT19
Nuclei_CP _Intensity _IntegratedIntensity KRT5
Nuclei_CP _Intensity -MedianIntensity_Dapi

Nuclei_CP _Intensity _MedianIntensity KRT19
Nuclei_CP _Intensity _MedianIntensity KRT5
Cytoplasm_PA _Intensity_LineageRatio
Spot_PA_SpotCellCount

Cells_CP _Intensity_IntegratedIntensity _Actin

Cells_CP _Intensity_IntegratedIntensity _MitoTracker
Cells_CP Intensity_MedianIntensity_Actin

Cells_CP _Intensity_MedianIntensity _MitoTracker
Cytoplasm_CP _Intensity _IntegratedIntensity_Actin
Cytoplasm_CP Intensity_IntegratedIntensity _MitoTracker
Cytoplasm_CP _Intensity_MedianIntensity _Actin
Cytoplasm_CP _Intensity_MedianIntensity _MitoTracker
Nuclei_CP_Texture_AngularSecondMoment_Fibrillarin_3_0
Nuclei_CP _Texture_AngularSecondMoment_Fibrillarin_3_90
Nuclei_CP_Texture_Contrast_Fibrillarin_3_0
Nuclei_CP_Texture_Contrast_Fibrillarin_3_90
Nuclei_CP_Texture_Correlation_Fibrillarin_3_0
Nuclei_CP_Texture_Correlation_Fibrillarin_3_90
Nuclei_CP _Texture_DifferenceEntropy_Fibrillarin_3_0
Nuclei_CP _Texture_DifferenceEntropy_Fibrillarin_3_90
Nuclei_CP_Texture_DifferenceVariance_Fibrillarin_3_0
Nuclei_CP _Texture_Difference Variance_Fibrillarin_3-90
Nuclei_CP_Texture_Entropy_Fibrillarin_3_0

Nuclei_CP _Texture_Entropy_Fibrillarin_3_90
Nuclei_CP_Texture_InfoMeasl_Fibrillarin_3_0
Nuclei_CP _Texture_InfoMeasl_Fibrillarin_3_90
Nuclei_CP_Texture_InfoMeas2_Fibrillarin_3_0
Nuclei_CP _Texture_InfoMeas2_Fibrillarin_3_90
Nuclei_CP_Texture_InverseDifferenceMoment_Fibrillarin_3_0
Nuclei_CP_Texture_InverseDifferenceMoment_Fibrillarin_3_90
Nuclei_CP _Texture_SumAverage_Fibrillarin_3_0
Nuclei_CP _Texture_SumAverage_Fibrillarin_3_90
Nuclei_CP_Texture_SumEntropy _Fibrillarin_3_0
Nuclei_CP_Texture_SumEntropy_Fibrillarin_3_90
Nuclei_CP_Texture_Sum Variance_Fibrillarin_3_0
Nuclei_CP_Texture_SumVariance_Fibrillarin_3_90
Nuclei_CP_Texture_Variance_Fibrillarin_3_0
Nuclei_CP_Texture_Variance_Fibrillarin_3-90
Nuclei_CP _Intensity _IntegratedIntensity EAdU
Nuclei_CP _Intensity IntegratedIntensity Fibrillarin
Nuclei_CP _Intensity _MedianIntensity _EdU

Nuclei_CP _Intensity _MedianIntensity_Fibrillarin

Table 1: List of all features extracted from at least one MEMA plate.
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Figure 6: Density of elements of feature matrices. Black density is all elements combined. Colored densities
are the densities denote staining batch. Subplots are for five processing transformations of this matrix: (NT)

no transformation, (G) Gaussianization, (Z) z-score, (O) outlier removal, (RR) the three-step (G), (Z), and
(O), robust re-scaling.



e_Area

p

Cells_CP_AreaSha

L. 000

L 000€

L 000¢

L 000}

(014

L0E

0C

ol

LO

gev'l

L

Log

L0C

Lol

LGy

LOLY'L

pactness

L 0000

NT

L 0000

L 0000€

L. 0000C

L 00001

T
o

e_Com

p

Cells_CP_AreaSha

NT

L

Spot_PA_SpotCellCount

L 002

o
N

0

T
o

o)

T
o

NT

L dd. 4. A

T
o
o
©

o
=3
©

o
o
<

T
o
o
N

T
o

Cytoplasm_CP_Intensity_Integratedintensity_Dapi

00+20
80+°0°}

L0+9G°L

L0+90°G

L0+9G°¢

00+20°0

no1 [l a3 [l Bor [ 03
noz2 [ nos [ Bo2 [] 804

Well

Figure 7: Similar to Figure 6 except colors indicate well.



Cells_CP_AreaShape_Area

NT

a

T
o

10000
200007
1.4107
1.4157

300007
40000

Cells_

(@)

P

>

reaShape_Compactness

1000 7
2000
30007
4000
5000

NT

u

<

0.000 7

Spot_PA_SpotCellCount

1.07
1.27
1.47
1.6

-

T T
o 0

T T T T
o o o o o
o o o =4

Cytoplasm_CP_Intensity_Integratedintensity_Dapi

0
2007

NT

i

o ~ N~ ~ 0 O © ©
o o o o o o o o
T I I T I F I I
Jol [} [9) [} [) [ [} [0)
g 8 & & 838 2 &
o o w ~ ~—
[ wsxoos1o [I] wisxoosts [ Lisxoos21
[[] visxoos11 [ Lisxooste [ Lisxoos22
Plate [ ] viexoos12 [l Lisxoos17 [ Lisxoos2s
[ uexoos1s [l uexooste [T Lisxoos2e
[ wsxoos1a [ uexoos2o [T Liexoos2s

[ wisxoos2s [T Lisxoosaz
[ visxoos2s [ visxoos3s
[[] usxoos2e [T Lisxoosas
[ wsxoosso [ Lisxoosss
[[] wisxoosas

Figure 8: Similar to Figure 6 except colors indicate plate.



Cells_CP_AreaShape_Area

NT

O-Ft

10000
0000 7
300007
000 7

o
N <

Cells_CP_AreaShape_Compactness

T
=)
<

NT G

l
L

0.000 7

Spot_PA_SpotCellCount

T
o
™

NT

T
o o
=
T
o o
T
o

Z
Z
Z

o
N

Cytoplasm_CP_Intensity_Integratedintensity_Dapi

T
<

NT G

Z

o

3

B e
] cxcuay
el

0.0e+00
2.5e+07
5.0e+07
7.5e+07

] ancpraps
Lgna [ 1"
] nrotis
] wrves
] mPont
[ sc2iong

] svrs
B Fursip
] oxeus
B ous
B Herin
] wntsals
] crern

L

[[] rersiiicterminus ] mFrsF118 ] PocFelt

o o o ©

3 g 8 8
B Fore [ oy
0 ] nrotpt

. TGFB1||LAP . KNG1|HMW . VEGFA|VEGF206

[ R ] e

[ cxcLiziapna [T cxcLizieta

[ wrsitssasaa [T nre1110

©
o
¥

06

s 8
D
[] rora2ia

] wnrioa
[ ep
[]em ] ™
] swes

] swrs ] wnraays
[ mrsri1i1 [T Pocras
] csr2 ] Aree

Figure 9: Similar to Figure 6 except colors indicate ligand.
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NT

Figure 10: The next series of plots are heat-maps of MEMA plates across the five transformations (NT),
(G), (Z), (O), (RR). Rows of each plot are the staining three batches. Colors are more blue if they are close
to the minimum, red if they are close to the maximum, and white if they are close to half-way between.
Green spots are missing. Dark grey spots are omitted according to the MEMA design.

10



Figure 11: Heat map of a single well across the five transformations (NT), (G), (Z), (O), (RR). This is a
sub-plot of Supplementary Figure 10. Color scaled is determined globally over all spots, wells, and plates in
the dataset to reflect the fact that the transformation is similarly calculated over this data. Thus we see no
blue in this (NT) sub-plot as we see almost no blue in Supplementary Figure 10. This plot is a representative
microcosm of the larger plot. Orange circles highlight the ELN and NID1 spots.
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Figure 12: Similar to Figure 10 but for compactness.
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Figure 13: Similar to Figure 10 but for cell count.
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Cytoplasm_CP_Intensity_Integratedintensity_Dapi
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Figure 14: Similar to Figure 10 for for DAPI intensity.
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Figure 16: Grand mean of the squared canonical correlations across number of components (k). Canonical

correlation is calculated between the first k& principal components and the plate indicator variables.
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Figure 18: Similar to Figure 16 except correlation with well batch indicators.
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Figure 20: Similar to Figure 16 except correlation with well batch indicators.



ASVD: Mean of Squared Can. Cors. between Batch and First k PCs

Transformation
Nt

0.50

Mean of Squared Canonical Cors.

Figure 21: Mean of the squared canonical correlations between the first &k principal components and the
plate indicator variables. Principal components come from integration of the 21 features that are measured
across all MEMAs.
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Mean of Squared Canonical Cors.

ASVD: Mean of Squared Can. Cors. between Batch and First k PCs
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Figure 22: Similar to Figure 21 but calculating correlation with well indicators.
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Mean of Squared Canonical Cors.

ASVD: Mean of Squared Can. Cors. between Batch and First k PCs

0.50

Figure 23: Similar to Figure 21 but calculating correlation with ligand indicators.
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Figure 24: Heat map of elements of top 3 right singular vectors for the cell area feature.
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NT: Cells_CP_AreaShape_Compactness RR: Cells_CP_AreaShape_Compactness
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Figure 25: Similar to Figure 24 but for cell compactness feature.
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Figure 26: Similar to Figure 24 but for cell count feature.
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Figure 27: Scatter plot of elements of top two right singular vectors against each other for the cell area
feature. Shape and color indicate ECMp of the spot corresponding to the elements of the singular vector.
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Figure 28: Similar to Figure 27 but for cell compactness feature.
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Figure 29: Similar to Figure 27 but for cell count feature.
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Figure 30: Heat-map of top 3 right ASVs calculated over 21 features measured on all MEMAs.
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Figure 31: Missing values for well A03 on outlier plate LISX00515. This plate is an outlier because it was
processed using a different version of imaging processing software. Missing spots are indicated in green.
Other colors indicate cell compactness feature. Notice that the missing values for (NT) are nearly identical
to the the dark red spots in the second right singular vector in Supplementary Figure 25. This is what forms
the group structure in Figure 11 as these missing spots are picked up on the outlying plate.
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Pct of Variance Captured by Singular Vectors
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Figure 32: Pct. of variance captured by successive singular vectors for our four example features.
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