
Chockalingam et al.

RESEARCH

An Alignment-free Heuristic for Fast Sequence
Comparisons with Applications to Phylogeny
Reconstruction
Sriram P. Chockalingam2*, Jodh Pannu1, Sahar Hooshmand1, Sharma V. Thankachan1 and Srinivas

Aluru2,3

*Correspondence:

srirampc@gatech.edu
1Dept. of Computer Science,

University of Central Florida, 4000

Central Florida Blvd, Orlando,

USA

Full list of author information is

available at the end of the article
†Equal contributor

Abstract

Background: Alignment-free methods for sequence comparisons have become
popular in many bioinformatics applications, specifically in the estimation of
sequence similarity measures to construct phylogenetic trees. Recently, the
average common substring measure, ACS, and its k-mismatch counterpart,
ACSk, have been shown to produce results as effective as multiple-sequence
alignment based methods for reconstruction of phylogeny trees. Since computing
ACSk takes O(n logk n) time and hence impractical for large datasets, multiple
heuristics that can approximate ACSk have been introduced.

Results: In this paper, we present a novel linear-time heuristic to approximate
ACSk, which is faster than computing the exact ACSk while being closer to the
exact ACSk values compared to previously published linear-time greedy heuristics.
Using four real datasets, containing both DNA and protein sequences, we
evaluate our algorithm in terms of accuracy, runtime and demonstrate its
applicability for phylogeny reconstruction. Our algorithm provides better accuracy
than previously published heuristic methods, while being comparable in its
applications to phylogeny reconstruction.

Conclusions: Our method produces a better approximation for ACSk and is
applicable for the alignment-free comparison of biological sequences at highly
competitive speed. The algorithm is implemented in Rust programming language
and the source code is available at https://github.com/srirampc/adyar-rs.

Keywords: Alignment-free methods; Sequence comparison; Phylogeny
reconstruction

Background
Over the past two decades, many similarity measures based on alignment-free meth-

ods have been proposed for sequence comparison for a diverse range of bioinfor-

matics applications. With the increasing availability of sequence data from multi-

ple sources and as alignment algorithms are reaching their limits, many of these

alignment-free methods have become popular in applications such as phylogeny

reconstruction, sequence clustering, transcript quantification and detection of hor-

izontal gene transfers [1, 2].

For phylogeny reconstruction, alignment-free methods are used to construct the

pairwise distance matrix, a symmetric matrix of sequence similarity measures com-

puted for every pair in the given set of sequences. With the distance matrix as their

mailto:srirampc@gatech.edu
https://github.com/srirampc/adyar-rs

Chockalingam et al. Page 2 of 10

input, algorithms such as unweighted pair group method with arithmetic mean

(UPGMA) [3] or neighbor-joining (NJ) [4] construct the desired tree.

Alignment-free methods for computation of similarity measures can be classified

based on whether the seeds are exact or approximate and whether the seeds are

of fixed- or variable-length. The most popular among the fixed-length exact seed

methods are kmer-based techniques, which proceed by first constructing the sets

of all the kmers (kmers are fixed-length exact seeds of length k) of a pair of se-

quences, followed by the estimation of a similarity measure either based on the

kmer frequency profile (Eg. Euclidean distance, CVTree [5],FFP [6]) or based on

the intersection/differences of the kmer sets (Eg. Jaccard coefficient). [7] presents

a comprehensive review of about 28 different such measures typically used in the

construction of phylogeny trees. Methods using approximate fixed-length such as

spaced-seeds approaches [8] allow the use of kmers with mismatches at specific

locations and make use of multiple patterns to improve accuracy.

Among the variable-length seeding methods, one of the measures shown to be

effective in phylogeny applications is the average common substring, ACS, which is

computed for a pair of sequences as the mean of the lengths of the longest common

prefixes [9]. After computing the ACS, the sequence similarity of two sequences X

and Y is computed as follows:

d(X,Y) =
1

2

(
log |Y|

ACS(X,Y)
+

log |X|
ACS(Y,X)

)
−
(

log |X|
|X|

+
log |Y|
|Y|

)
(1)

By introducing k mismatches into the average common substring metric (abbrevi-

ated as ACSk), Leimeister and Morgenstern [10] demonstrated improved accuracy

for phylogeny applications. However, their approach, called kmacs, uses a greedy

heuristic as an approximation of ACSk since computing exact ACSk is computation-

ally expensive and was shown to take O(n logk n) for a pair of sequences of total

length n [11]. In a later work, Thankachan et. al. [12] also proved that the run-

time bounds remain O(n logk n) even when insertions and deletions allowed along

with mismatches. Based on [11], [13] presented another greedy heuristic to approx-

imate ACSk .

In this work, we present a novel linear-time heuristic that is a more accurate

approximation of ACSk than kmacs’ approach. While kmacs constructs an ACSk

approximation by means of a forward extension of the longest common prefixes, our

algorithm performs both forward and backward extensions to identify a k-mismatch

common substring of longer length, and hence, producing a closer approximation to

the exact ACSk. Using three real datasets, we evaluate the runtime, accuracy and

the effectiveness of our proposed approach. We also demonstrate its applicability

for phylogeny tree construction.

Methods
Notations and Preliminaries

Let X and Y be two sequences drawn from the alphabet set Σ. We denote the length

of X by |X|, the suffix of X starting at the position i as Xi. Also, we use
←−
X and

←−
Y

to denote the reverse of the strings X and Y respectively.

Chockalingam et al. Page 3 of 10

Let |X| + |Y| = n. We define LCP(Xi,Yj) to be the longest common prefix of Xi

that matches with Yj and LCPk(Xi,Yj) its k-mismatch counterpart i.e., a longest

common prefix that allows k mismatches, k ≥ 0 (also termed as the longest k-

mismatch substring starting at Xi). We denote maxj |LCPk(Xi,Yj)| by λk(i) and

the position in Y corresponding to the λk(i)-length match as µk(i) i.e.,

µk(i) = arg max
j
|LCPk(Xi, Yj)|, k ≥ 0.

For the sake of brevity, we abbreviate λ0(i) and µ0(i) as λ(i) and µ(i) respectively.

The average common substring, ACS of X w.r.t. Y is defined as

ACS(X,Y) =
1

|X|

|X|∑
i=1

max
j
|LCP(Xi,Yj)|. (2)

ACSk(X,Y), k ≥ 0 of X w.r.t. Y is defined similarly with LCPk instead of LCP in the

above equation. Note that ACSk(X,Y) 6= ACSk(Y,X).

We use GSTf and GSTr to denote the generalized suffix tree constructed for the

concatenated strings T = X$1Y$2 and
←−
T =

←−
X $1
←−
Y $2 respectively, where $1, $2 6∈ Σ.

For our algorithm, GSTf and GSTr serve as an indexing data structures that enable

us to perform longest common prefix queries for X and Y in constant time. Both

GSTf and GSTr can be constructed in O(n) time with O(n) space.

Previous Greedy Heuristics

Using the notations described above, ACSk(X,Y) is computed as ACSk(X,Y) =∑
i=1 λk(i)/|X|. The key difficulty in computing ACSk is the estimation of the array

λk(i), i = 1, . . . , |X|. Before we present our linear-time approximate algorithm for

computing λk, we briefly discuss the previously established heuristic methods for

approximating λk .

In kmacs [10], the previously published greedy approach, λk(i) is approximated by

extending the longest common prefixes. kmacs uses the longest common substring

of suffixes Xi and Yq, q = arg maxj |LCP(Xi,Yj)| as the initial anchor segment,

then performs a forward extension to identify the common substring with k − 1

mismatches and approximates the total length as λk(i). For example, if X and Y

are the strings CATTGCATACGA and ATGGATCCAATAG respectively, then to compute

an approximation to λ2(4), kmacs would first identify the LCP match of X4 at Y2

and then approximate λ2(4) as 6 by matching the segments TGCATA and TGGATC.

Formally, kmacs computes the following measure as an approximation of λk(i):

λ(i) + 1 + |LCPk−1(Xi+λ(i)+1,Yµ(i)+λ(i)+1)|.

Using a generalized suffix tree constructed for X and Y, the above measure can

be calculated in O(k) time via k consecutive LCP queries starting with Xi and

Yµ(i). Therefore, the similarity metric based on the above heuristic measure can be

computed in O(nk) time.

ALFRED-G [13] follows a similar logic except that it includes an extra mismatch

in the initial anchor segment. Formally, ALFRED-G approximates λk(i) with the

Chockalingam et al. Page 4 of 10

following measure:

λ1(i) + 1 + |LCPk−2(Xi+λ1(i)+1,Yµ1(i)+λ1(i)+1)|.

Proposed Algorithm

In our algorithm, we make use of the following observation: a k-mismatch common

substring of two suffixes Xi and Yj includes k − 1 common substrings separated

by k mismatch characters. This observation leads to the following key intuition

behind our algorithm – the anchor segment can be any one of the k − 1 segments

that constitute a k-mismatch common string. As mentioned above, both kmacs

and ALFRED-G consider the first segment as the anchor segment. Our heuristic,

denoted by λ′k(i), is computed by extending all k − 1 matching substrings that

overlap the position i, as anchors.

We illustrate our approach with the following example. Consider the three suffixes

Xp = AATCGGT..., Yq = AATGGGA... and Yr = AACCGGT..., and let µ(p) = q;µ(p+3) =

r + 3. A greedy heuristic based algorithm such as kmacs, which uses the LCP to

find anchor segments, will select Yq as the anchor point and approximate λ1(p) as

5, even though there is a better match at Yr. Extending the segments backward

overcomes this limitation in this example because a backward extension from the

Yr+3 = CGG... segment from Xp+3 can identify Yr to be the better match for Xp.

Algorithm 1 presents the pseudo-code for our proposed heuristic. It takes as input

strings X and Y, and outputs an array λ′k of length |X|, whose ith entry contains

the approximation for λk(i).

After constructing the two generalized suffix trees GSTf and GSTr and initializing

the λ′k(i) entries (Lines 1– 3), the algorithm proceeds in two phases. In the first

phase, we compute the forward and backward extensions of the longest common

substring for each position in X (Lines 4– 25). Here, we make use of two arrays

Lf and Lr, each of length k + 1, which contain the lengths of the 0, 1, 2 . . . , k-

mismatch substrings starting and ending at position i respectively. Lf and Lr can be

computed via k LCP queries on GSTf and GSTr respectively (Lines 13 and 21). After

computing the Lf and Lr arrays, we update λ′k arrays for the k+1 possible positions

corresponding to all the possible forward and backward extensions(Lines 22– 25).

In some cases, the approximation computed at position i in the first phase can be

improved by examining the λ′k(i− 1) entry, if the ithe position doesn’t correspond

to a mismatch character of the preceding entry. In the second phase, we update

those entries for whom a better approximation is one less than the preceding entry

in λ′k (Lines 26– 29).

Since LCP queries take constant time using GSTs, the first phase can be accom-

plished in O(nk) time and O(n+ k) space. Since the second phase is just a left to

right pass over the λ′k array and since the construction of the suffix trees also take

O(n) time and space, our algorithm takes linear time.

Implementation Details

We implemented our algorithm in the Rust progamming language [14] and used the

libdivsufsort library [15] to construct the suffix array data structures.

Our algorithm requires only the computation of LCP queries, which can be done

only using generalized suffix arrays along with the longest-common-prefix (LCP)

Chockalingam et al. Page 5 of 10

Algorithm 1: Compute λ′k
Input: X,Y, k
Output: λ′k(i), i = 1, . . . , |X|

1 Construct GSTf , generalized suffix tree of X and Y

2 Construct GSTr, generalized suffix tree of
←−
X and

←−
Y

3 Let λ′k(i)← 0, i = 1, . . . , |X|
// Phase I :: Forward and Backward Extensions

4 for i = 1 to |X| do
5 Let Lf (j)← 0, j = 1, . . . , k + 1 // Forward Segment Lengths
6 Let Lr(j)← 0, j = 1, . . . , k + 1 // Backward Segment Lengths

// Forward Extension
7 Lf (1)← λ(i)
8 p← i
9 q ← µ(i)

10 for j = 1 to k do
11 r ← p+ L(j) + j
12 s← q + L(j) + j
13 Lf (j + 1)← Lf (j) + LCP(Xr,Ys)

14 Lf (k + 1)← Lf (k)
// Backward Extension

15 Lr(1)← 0
16 p← |X| − i
17 q ← |Y| − µ(i)
18 for j = 1 to k do
19 r ← p+ L(j) + j
20 s← q + L(j) + j

21 Lr(j + 1)← Lr(j) + LCP(
←−
Xr,
←−
Ys)

// Update λ′k for k + 1 possible segments

22 for j = 1 to k + 1 do
23 p← i− Lr(j)
24 if λ′k(p) < Lr(j) + Lf (k + 1− j) + k then
25 λ′k(p)← Lr(j) + Lf (k + 1− j) + k

// Phase II :: Update Entries improved by Preceding Entries
26 for i = 2, . . . , |X| do
27 if λ′k(i− 1)− 1 > λ′k(i) then
28 if i is not a mismatch position w.r.t. λ′k(i− 1) then
29 λ′k(i)← λ′k(i− 1)− 1

Chockalingam et al. Page 6 of 10

arrays and range minimum query (RMQ) data structures. The use of suffix and

LCP arrays instead of the suffix trees significantly reduces the memory footprint

for our implementation.

Whenever there are multiple options to extend the LCP match (i.e., there are

multiple locations in which a common substring can be equal in length and be

the longest), we apply the heuristic discussed earlier in this section to all possible

locations and select the longest among them. In the worst case this can make the

implementation to take O(n2k) time but in practice, it takes O(nkz) time, where z

is the average number of maximal matches to a substring in Y starting at a position

i in X.

The core computation of the algorithm demands multiple LCP queries. However,

we observed that in most cases, the time taken to walk through the text to identify

is faster compared to evaluating the LCP query. This is because of two reasons (a)

modern CPU architectures include multiple hierarchies of caches, that enable faster

access to data elements that are located with in relatively close storage locations

and (b) most practical datasets have a distribution of relatively short LCP lengths.

Therefore, in all our experiments reported in the next section, except for the case

when LCP is 0, we walk the text to identify the longest common prefixes. When

the LCP is 0 i.e., the case when there is no suffix match in Y for a suffix Xi or

vice-versa, we estimate the k-mismatch LCP by the approximation computed for

the suffix Xi+1.

Results and Discussion
All the experiments were run on a system having two 2.4 GHz 14-Core Intel E5-

2680 V4 processors and 256 GB of main memory, and running RedHat Enterprise

Linux (RHEL) 7.0 operating system. Along with our implementation, we also ran

kmacs [10] and ALFRED-G [13] for comparison. kmacs and ALFRED-G were com-

piled using gcc compiler version 8.3.0. Our implementation was compiled using rust

compiler version 1.3.6.

To evaluate the runtime, the relative accuracy and the effectiveness of our pro-

posed algorithm, we used four real datasets – Primates, Roseobacter , BAliBASE

and E. coli , all of which have been previously used to evaluate alignment-free tech-

niques to estimate sequence similarity [10, 13, 16].

Primates is a DNA sequence dataset collected from prokaryotic organisms and

has 27 primate mitochondrial genomes with a total length of ≈ 450 kilobases. The

reference phylogeny tree for this dataset was constructed based on multiple sequence

alignment the 27 sequences.

Roseobacter dataset is a set of eukaryotic DNA sequences with a total length of

≈ 875 kilobases, collected from the coding regions of 32 Roseobacter genomes as

described in [13]. BAliBASE dataset is a collection of 218 protien sequence datasets

of total length ≈ 2.5 megabases, gathered from the BAliBASE V3.0 [17], a popular

benchmark for evaluating multiple sequence alignment algorithms.

E. coli dataset is a collection of 29 whole genomes of E. coli/Shigella strains,

originally compiled by [16]. This dataset has a total length of 138 megabases in

which the size of the seqeunces range from 4.3 megabases to 5.4 megabases.

For the Roseobacter dataset, we used the phylogenetic tree presented in [18] as

the reference tree. In case of BAliBASE datasets, the reference trees are constructed

Chockalingam et al. Page 7 of 10

from the corresponding reference alignments using the proml program available in

PHYLIP [19], which implements the Maxmimum Likelihood method. For the E.

coli datasets, we used the phylogenetic tree presented in [16] as the reference tree.

We conducted experiments on all the software to evaluate (i) the accuracy of the

estimated ACSk, (ii) runtime characteristics, and (iii) applicability of our algorithm

to phylogeny reconstruction.

To estimate the accuracy of the ACSk estimated using our heuristic, we approx-

imate ACSk, for every pair of input sequence in the Primates and Roseobacter

datasets, using our proposed heuristic with k = 1, . . . , 5. We, then, used the AL-

FRED software published by [20] to find the true value of ACSk, computed the error

percentage of estimated ACSk compared to the true values, and finally plotted the

average error percentages against increasing values of k. Figures 1(a) and 1(b) illus-

trate the average deviation of the approximate values computed by the respective

software from the exact value of ACSk for Primates and Roseobacter datasets re-

spectively.

Figures 1(a) and 1(b) show that the error percentage for our proposed method

is less than that of kmacs in all the cases. Specifically, in case of kmacs, the error

percentages can be as high as 80% with k = 4 for the Primates datasets, where as

our method shows a deviation of less than 40%. Even though the error percentages

increases as k increases for both kmacs and our algorithm, compared to kmacs, the

error rate grows relatively slower with increasing k for our method.

It can also be observed in figures 1(a) and 1(b) that compared to both kmacs and

our method, ALFRED-G has a much lower error percentage. However, in terms of

runtime, our method runs 1.5–2.5X faster than that of ALFRED-G as illustrated

by the runtime plots in figures 2(a), (b) and (c). As expected, the runtime grows ap-

proximately linearly as k increases. In constrast, the timings for the exact methods

grows exponentially for both the Primates ranging from 8.7 seconds for k = 1 to

2202.83 seconds for k = 5. Similar behavior is observed for the Roseobacter dataset

ranging from 15.04 seconds for k = 1 to 800.11 seconds for k = 5 (Figure 3).

For the Primates dataset, we also ran the software MissMax , a heuristic

alignment-free method for sequence comparisons developed in [21]. While the

method produced an error rate of at most 0.52% with respect to exact values,

its runtime is ≈145 – 185X slower than that of ALFRED-G .

For the E. coli full genomes dataset, the timings are shown in Figure 2(d). Note

that the runtime is shown in hours as compared to seconds for the other datasets

and only for kmacs and our method since ALFRED-G failed to complete its run in

the allotted time of 72 hours.

To test the effectiveness of our approach for phylogeny construction in compari-

son to kmacs and ALFRED-G , we also constructed the phylogeny trees using our

method as follows:

1 For every pair of input sequence in a dataset, compute λ′k(·) both for X w.r.t.

Y and for Y w.r.t. X.

2 Using approximate ACSk(X,Y) and ACSk(Y,X) estimated from λ′k(·), compute

the sequence similarity measure defined by equation 1.

3 Construct the symmetric distance matrix with entries filled with sequence

similarity measures computed in the previous step. This matrix is of size

Chockalingam et al. Page 8 of 10

27× 27, 32× 32 and 29× 29 for Primates, Roseobacter , and E. coli datasets

respectively.

4 Reconstruct phylogenetic tree using the neighbor program in the PHYLIP

software suite [19] with the distance matrix as its input. The neighbor pro-

gram constructs the phylogeny tree with Neighbor Joining methodology.

5 Compute the Robinson–Foulds distance (R-F) distance w.r.t the reference tree

using the treedist program in the PHYLIP [19] software suite. Note that

lower the R-F distance, better the matching of topology between two trees. If

RF distance is zero, then there is an exact match between the two trees.

6 Repeat the above steps with k = 1, . . . , 10 for Primates, Roseobacter and

BAliBASE datasets, and with k = 1, . . . , 7 for the E. coli dataset.

For the Primates dataset, the Robinson–Foulds (RF) distance of the reconstructed

tree with respect to the reference tree is 0 for k = 5, 2–4 for other values of k

(Figure 4). For the same dataset kmacs reported an RF distance of 2–8, whereas

ALFRED-G reported an RF distance of 0–2 [13]. Similar to ALFRED-G , our

method was able to recover the expected phylogenetic tree for Primates. For the

Roseobacter dataset, the RF distance of our algorithm are in the range of 20–8,

and as the value of k is increases from 1 to 10, the RF distance tends to decline.

kmacs and ALFRED-G reported RF distances, for the Roseobacter dataset, in the

range of 18–10 and 18–8 respectively [13]. For BAliBASE datasets, all the three

methods reported an average RF distances in the same range of 31–26. For E. coli

dataset, both kmacs and our method reported RF distances in the same range of

24–26, while ALFRED-G was not able to complete within the alloted time limit of

24 hours per pair. Both kmacs and our method were able to complete their runs in

less than 11 hours for k = 5.

Finally, to evaluate the scalability of our algorithm in its ability to process genome-

length sequences, we ran both kmacs and our method on the full genome sequences

of 14 plant species. This dataset was originally compiled by [22] and is of total

size 4.5 gigabases with the sequence lengths ranging from 111 megabases to 746

megabases. For the 50 pairs of sequences that both kmacs and our method were

able to process in the allotted time limit of 72 hours per pair, our method was able

to complete the runs in a average of 1.56 hours per pair, where as kmacs took an

average of 4.67 hours per pair. This discrepancy in time is due to the difference

in how kmacs and our method process the suffixes whose LCP is 0, which happens

more often in longer genomes. Neither ALFRED-G nor the exact method is capable

of processing smallest of the sequences of this dataset.

To summarize, our proposed method provides results more accurate than kmacs

for the Primates and Roseobacter datasets, while being competitive in runtime

compared to kmacs and much faster than ALFRED-G . In case of the Primates

dataset, our method was able to recover the reference tree for k = 5. For BAliBASE

and E. coli datasets, the results are comparable to that of kmacs. With repsect

to scalability, our method shows considerably improvement over that of kmacs for

longer full genomes that are few hundred megabases long.

Conclusions
In this paper, we presented a novel linear-time heuristic to compute the alignment-

free measure of sequence similarity ACSk. We evaluate the accuracy of the ACSk

Chockalingam et al. Page 9 of 10

estimated from the proposed heuristic and demonstrated its applicability in con-

struction of phylogeny trees.

We plan to extend this heuristic in the future in two different ways. Currently,

all the published heuristics, including the one introduced in this work, can handle

only mismatches and not insertions or deletions. We plan to adapt the proposed

algorithm such that it allows insertions and deletions, where the key challenge is to

manage is varying lengths of matched segments. Another way we plan to develop

this heuristic is to enable forward and backward extensions on a 1-mismatch anchor

segment.

Abbreviations
ACS : Average Common Substring; ACSk : Average Common Substring with k mis-

matches; UPGMA : Unweighted Pair Group Method for Phylogeny reconstruction;

NJ : Neighbor-joining Method for Phylogeny reconstruction; LCP : Longest Com-

mon Prefix; LCPk: Longest Common Prefix while allowing k mismatches; GST :

Generalized Suffix Tree; RMQ : Range miniumn query.

Declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Availability of data and material

Datasets are available at http://alurulab.cc.gatech.edu/phylo and http://afproject.org/app/ and the code

is available at https://github.com/srirampc/adyar-rs

Competing interests

The authors declare that they have no competing interests.

Funding

The funding for publication of the article was by the U.S. National Science Foundation grants CCF-1704552 and

CCF-1703489.

Author’s contributions

SC wrote the manuscript, worked on improving the performance of the implemenatation and performed the

experiments; JP wore the initial implementation and performed some of the experiments; SH performed some of the

experiments; ST conceived the algorithm; SA conceptualized the study. All authors have read and approved the final

manuscript.

Acknowledgements

We thank the reviewers of the preliminary version of this article for their helpful comments.

Author details
1Dept. of Computer Science, University of Central Florida, 4000 Central Florida Blvd, Orlando, USA. 2Institute for

Data Engineering and Science, Georiga Institute of Technology, 756 West Peachtree Street, Atlanta, USA.
3Department of Computational Science and Engg., Georiga Institute of Technology, 756 West Peachtree Street,

Atlanta, USA.

References
1. Vinga, S., Almeida, J.: Alignment-free sequence comparison—a review. Bioinformatics 19(4), 513–523 (2003)

2. Zielezinski, A., Vinga, S., Almeida, J., Karlowski, W.M.: Alignment-free sequence comparison: benefits,

applications, and tools. Genome biology 18(1), 186 (2017)

3. Sokal, R.R.: A statistical method for evaluating systematic relationship. University of Kansas science bulletin

28, 1409–1438 (1958)

4. Saitou, N., Nei, M.: The neighbor-joining method: a new method for reconstructing phylogenetic trees.

Molecular biology and evolution 4(4), 406–425 (1987)

5. Qi, J., Wang, B., Hao, B.-I.: Whole proteome prokaryote phylogeny without sequence alignment: a k-string

composition approach. Journal of molecular evolution 58(1), 1–11 (2004)

6. Sims, G.E., Jun, S.-R., Wu, G.A., Kim, S.-H.: Alignment-free genome comparison with feature frequency profiles

(ffp) and optimal resolutions. Proceedings of the National Academy of Sciences 106(8), 2677–2682 (2009)

http://alurulab.cc.gatech.edu/phylo
http://afproject.org/app/
https://github.com/srirampc/adyar-rs

Chockalingam et al. Page 10 of 10

7. Lu, Y.Y., Tang, K., Ren, J., Fuhrman, J.A., Waterman, M.S., Sun, F.: CAFE: aCcelerated Alignment-FrEe

sequence analysis. Nucleic acids research 45(W1), 554–559 (2017)

8. Horwege, S., Lindner, S., Boden, M., Hatje, K., Kollmar, M., Leimeister, C.-A., Morgenstern, B.: Spaced words

and kmacs: fast alignment-free sequence comparison based on inexact word matches. Nucleic acids research

42(W1), 7–11 (2014)

9. Ulitsky, I., Burstein, D., Tuller, T., Chor, B.: The average common substring approach to phylogenomic

reconstruction. Journal of Computational Biology 13(2), 336–350 (2006)

10. Leimeister, C.-A., Morgenstern, B.: Kmacs: the k-mismatch average common substring approach to

alignment-free sequence comparison. Bioinformatics 30(14), 2000–2008 (2014)

11. Aluru, S., Apostolico, A., Thankachan, S.V.: Efficient alignment free sequence comparison with bounded

mismatches. In: International Conference on Research in Computational Molecular Biology, pp. 1–12 (2015).

Springer

12. Thankachan, S.V., Aluru, C., Chockalingam, S.P., Aluru, S.: Algorithmic framework for approximate matching

under bounded edits with applications to sequence analysis. In: International Conference on Research in

Computational Molecular Biology, pp. 211–224 (2018). Springer

13. Thankachan, S.V., Chockalingam, S.P., Liu, Y., Krishnan, A., Aluru, S.: A greedy alignment-free distance

estimator for phylogenetic inference. BMC bioinformatics 18(8), 238 (2017)

14. Matsakis, N.D., Klock II, F.S.: The rust language. In: ACM SIGAda Ada Letters, vol. 34, pp. 103–104 (2014).

ACM

15. Mori, Y.: DivSufSort. https://github.com/y-256/libdivsufsort, last accessed on May-26-2020 (2006)

16. Yi, H., Jin, L.: Co-phylog: an assembly-free phylogenomic approach for closely related organisms. Nucleic acids

research 41(7), 75–75 (2013)

17. Thompson, J.D., Koehl, P., Ripp, R., Poch, O.: Balibase 3.0: latest developments of the multiple sequence

alignment benchmark. Proteins: Structure, Function, and Bioinformatics 61(1), 127–136 (2005)

18. Newton, R.J., Griffin, L.E., Bowles, K.M., Meile, C., Gifford, S., Givens, C.E., Howard, E.C., King, E., Oakley,

C.A., Reisch, C.R., et al.: Genome characteristics of a generalist marine bacterial lineage. The ISME journal

4(6), 784 (2010)

19. Felsenstein, J.: PHYLIP (phylogeny Inference Package), Version 3.5 C. Joseph Felsenstein., ??? (1993)

20. Thankachan, S.V., Chockalingam, S.P., Liu, Y., Apostolico, A., Aluru, S.: Alfred: a practical method for

alignment-free distance computation. Journal of Computational Biology 23(6), 452–460 (2016)

21. Pizzi, C.: Missmax: alignment-free sequence comparison with mismatches through filtering and heuristics.

Algorithms for Molecular Biology 11(1), 6 (2016)

22. Hatje, K., Kollmar, M.: A phylogenetic analysis of the brassicales clade based on an alignment-free sequence

comparison method. Frontiers in plant science 3, 192 (2012)

Figures

Figure 1: Avg. error percentage of estimated ACSk w.r.t. exact ACSk.

Figure 2: Total runtime of all pairwise comparisons.

Figure 3: Run time to compute exact ACSk.

Figure 4: Robinson–Foulds distance with respect to the reference trees.

https://github. com/y-256/libdivsufsort

	Abstract

