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Abstract—This paper revisits the k-mismatch shortest unique substring finding problem and demonstrates that a technique recently

presented in the context of solving the k-mismatch average common substring problem can be adapted and combined with parts of the

existing solution, resulting in a new algorithm which has expected time complexity of Oðn logk nÞ, while maintaining a practical space

complexity at OðknÞ, where n is the string length. When k > 0, which is the hard case, our new proposal significantly improves the any-

case Oðn2Þ time complexity of the prior best method for k-mismatch shortest unique substring finding. Experimental study shows that

our new algorithm is practical to implement and demonstrates significant improvements in processing time compared to the prior best

solution’s implementation when k is small relative to n. For example, our method processes a 200 KB sample DNA sequence with k ¼ 1

in just 0.18 seconds compared to 174.37 seconds with the prior best solution. Further, it is observed that significant portions of the

adapted technique can be executed in parallel, using two different simple concurrency models, resulting in further significant practical

performance improvement. As an example, when using 8 cores, the parallel implementations both achieved processing times that are

less than 1=4 of the serial implementation’s time cost, when processing a 10 MB sample DNA sequence with k ¼ 2. In an age where

instances with thousands of gigabytes of RAM are readily available for use through Cloud infrastructure providers, it is likely that the

trade-off of additional memory usage for significantly improved processing times will be desirable and needed by many users. For

example, the best prior solution may spend years to finish a DNA sample of 200MB for any k > 0, while this new proposal, using 24

cores, can finish processing a sample of this size with k ¼ 1 in 206.376 seconds with a peak memory usage of 46 GB, which is both

easily available and affordable on Cloud. It is expected that this new efficient and practical algorithm for k-mismatch shortest unique

substring finding will prove useful to those using the measure on long sequences in fields such as computational biology. We also give

a theoretical bound that the k-mismatch shortest unique substring finding problem can be solved using Oðn logk nÞ time and OðnÞ
space, asymptotically much better than the one we implemented, serving as a new discovery of interest.

Index Terms—String, shortest unique substring, mismatch, hamming distance, parallel computing
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1 INTRODUCTION

THE computer science subfield known as string processing
focuses on the design and analysis of algorithms which

process sequences of characters, commonly referred to as
strings. The algorithms from this subfield find applications
in many problem spaces. Use cases range from powering
fast searches for a word or phrase in electronic documents
on personal computing devices or the Web, to efficiently
processing a body of text in a text editor or word processor
application in order to provide spell-checking and syntax
highlighting functionality, to finding faint patterns in DNA
and protein sequences [1]. String processing has been said
to form the heart of the field of computational molecular
biology, where biological constructs such as DNA and
proteins are abstracted to sequences of characters which can
be studied independently from their complex biological
environments [1].

In 2005, Haubold et al. demonstrated that the shortest
unique substring (SUS) is a useful construct for alignment
free genome comparison [2]. A SUS as presented by the
authors is described as a substring which only occurs once
in a sequence such that any reduction of its length would
result in the loss of its uniqueness property. These authors
presented a string processing algorithm which relies upon
generalized suffix trees to detect shortest unique substrings
across a set of sequences, but did not analyze the perfor-
mance of the presented algorithm rigorously.

Nearly a decade later in 2013, the SUS finding problem
was revisited by Pei et al. where the authors noted addi-
tional applications for the construct including intelligent
snippet selection in document search, polymerase chain
reaction primer design in molecular biology, identification
of unique DNA signatures of closely related organisms,
and context extraction in event analysis [3]. Here the
authors present algorithms which process an input string
of length n and can answer SUS queries, that is, they
return a single SUS which spans over a given index of the
input string. One algorithm presented uses a suffix tree
and can answer a query in OðnÞ time. Another algorithm is
presented which can find a SUS for every index in the
string in Oðn2Þ time and subsequently can answer each
query with a precomputed SUS value in Oð1Þ time. Both
strategies require OðnÞ space.
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The following year, Tsuruta et al. presented an algorithm
which calculated a SUS for every index of an input string in
OðnÞ time and space using suffix arrays [4]. The same year,
another independent OðnÞ time OðnÞ space SUS finding
algorithm was presented by _Ileri et al. in [5] which was dem-
onstrated through empirical data to be significantly more
space efficient in practice than the solution by Tsuruta et al.
while the processing times of the two algorithms were
nearly the same. Another notable work in 2014 by Hu et al.
proposed use of an OðnÞ space indexing structure which
can be constructed in OðnÞ time and can subsequently be
used to answer queries for a SUS which contains a given
substring of the input in Oð1Þ time [6].

In 2016, Mieno et al. [7] studied the SUS finding problem
over a compressed string. In particular, they proposed a
method of Oðm logmÞ time and OðmÞ for SUS finding from
a run-length encoded string, where m is the size of the
string in its compressed version. This same group showed a
lower bound on the numer of SUSes of a given string [8].

In 2017, Hon, Thankachan, and Xu (HTX) presented a
time and space optimal SUS finding solution in [9]. The
solution has OðnÞ time complexity for finding a SUS for
each index in an input string, and works in the space of the
two length n output arrays which in the end hold the begin-
ning and end indices of the SUS found for each correspond-
ing index in the input string. Presented experimental data
indicates that the solution has significantly better time and
space performance in practice than comparable existing
SUS finding solutions.

An additional contribution of [9] was the proposal of an
approximate version of the SUS finding problem where the
uniqueness constraint is more strict than in the exact version
of the problem. The proposed approximate version requires
that the substrings be unique even allowing for up to k mis-
matches, which is expected to be useful for applications in
subfields such as computational biology where factors like
genetic mutation and experimental error make approximate
string matching necessary. This concept of approximate
matching has proven useful with other constructs, for exam-
ple in [10] experimental results showed that increasing a
similar k-mismatch parameter applied to average common
substring finding lead to better results when estimating the
evolutionary distance between pairs of primate genomes.

After proposing the k-mismatch SUS finding problem,
the authors of [9] proceed to present an algorithm which
solves the problem when k > 0, which is the hard case, for
an input string of length n in Oðn2Þ time and OðnÞ space by
performing a series of calculations and transformations in-
place on two length n arrays. Notably, only one step in the
series requires greater than OðnÞ time. Schultz and Xu [11]
proposed parallel methods for k-mismatch SUS finding uti-
lizing the massive multi-threading architecture of modern
graphics processing units (GPU).

Our Contribution.

1) Our primary contribution is to demonstrate how
strategies presented by Thankachan et al. in [10] in the
context of solving the k-mismatch average common
substring problem can be adapted and applied to
solve the aforementioned time-expensive step from

the HTX k-mismatch SUS finding algorithm. The
adaptation leads to a new algorithm with overall
expected time complexity of Oðn logk nÞ and OðnkÞ
space complexity, a significant improvement on the
performance of the best prior work for approximate
SUS finding.

2) An additional contribution of this work comes in the
area of practical performance improvement, where it
is shown that the most time-expensive step in the
new algorithm can be effectively parallelized to take
advantage of modern multi-core CPUs. Further, it is
observed that the concurrency models applied to the
new algorithm are also applicable to the k-mismatch
average common substring finding algorithm pre-
sented in [10].

3) The newly proposed algorithm for k-mismatch SUS
finding has been fully implemented and is ready for
use. The implementation is demonstrated to have
achieved significantly improved processing times for
approximate SUS finding, compared to the imple-
mentation of the HTX solution, when k is small rela-
tive to n, which is typically true in genomic sequence
research due to the fact that the error rate of DNA
sequencing instruments keeps coming down. For
example, the serial implementation of the new algo-
rithm processes a 200 KB sample DNA sequence with
k ¼ 1 in just 0.18 seconds, compared to 174.37 seconds
required by theHTX implementation. As an example,
when using 8 cores, the parallel implementation gets
a further speedup by a factor of over 4, when process-
ing a 10MB sample DNA sequencewith k ¼ 2.

4) While the new proposal has a higher space complex-
ity than the HTX solution, and does indeed use con-
siderably more memory in practice, this is likely to
be an acceptable and needed trade-off for the
improved processing times in many cases at the age
of affordable Cloud infrastructure. For example, pro-
jecting out based on observed run times of the HTX
solution, it can be expected that the solution may
take more than 7 years to process a 200 MB sample
DNA input (for any k > 0), which is too long for a
user to wait. In contrast, the new proposal, using 24
cores, finished processing a sample of this size with
k ¼ 1 in 206.376 seconds with a peak memory usage
of 46 GB which is both easily available and afford-
able from Cloud. It is expected that this new tool for
k-mismatch SUS finding will prove useful to those
using the measure on long sequences in fields such
as computational biology.

5) We also showed a theoretical bound that the k-mis-
match SUS finding problem can be solved using
Oðn logk nÞ time and OðnÞ memory space. This result
is asymptotically much better than the pratical algo-
rithm, the main topic of this paper, in both time and
space costs, serving as a new discovery of interest.

2 PROBLEM FORMULATION AND PREPARATION

Consider a string S of n characters each drawn from an
alphabet. S½1� references the first character in S, S½n� referen-
ces the last character, and S½i� references the ith character in
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the string. A substring of S spanning from S½i� to S½j� (inclu-
sive, i � j) is represented as S½i::j�. An index m of S is cov-
ered by a substring S½i::j� iff i � m � j. The length of a
substring S½i::j� is denoted jS½i::j�j. The suffix of S which
begins at index i is represented by Si.

The Hamming distance between two equal length strings
is defined as the number of indices at which characters dif-
fer between the two strings. A substring S½i::j� is said to be
k-mismatch unique if there exists no other substring of
equal length S½i0::j0�, i0 6¼ i, such that the Hamming distance
between the two substrings is � k. A substring that is not
k-mismatch unique is a k-mismatch repeat.

Definition 1. Of a given string S, a k-mismatch shortest
unique substring covering index m, denoted as SUSk

m, is a
k-mismatch unique substring covering index m, such that no
other k-mismatch unique substring covering m with a shorter
length exists.

We say that a k-mismatch SUS is an exact SUSwhen k ¼ 0,
and an approximate SUSwhen k > 0. For any k andm, SUSk

m

must exist, because at least the string S can be SUSk
m, if none

of its proper substrings is SUSk
m. On the other hand, there

might be multiple choices for SUSk
m. For example, if

S ¼ abcbb, SUS0
2 can be either S½1; 2� ¼ ab or S½2; 3� ¼ bc, and

SUS1
2 can be eitherS½1::3� ¼ abc or S½2::4� ¼ bcb.

Problem (k-mismatch SUS finding). For a string S of length
n and a value k, 1 � k � n� 1, output two length n arrays A
and B such that, for every index i in S, S½A½i�::B½i�� is the right-
most1SUSk

i , using expectedOðn logk nÞ time andOðnkÞ space.
In this work, we focus on the hard case where 1 � k �

n� 1, because: (1) an optimal and practical solution with
OðnÞ time and space complexities already exists for the
exact SUS case (k ¼ 0) [9]. (2) The solution for the case
where k � n is trivial, as SUSn

m � S for any indexm.

Definition 2. The k-mismatch longest common prefix of two
suffixes Sp and Sq, denoted as LCPkðSp; SqÞ, represents the
k-mismatch longest common prefix to suffixes Sp and Sq, that
is, the longest prefix which has Hamming distance � k between
the two suffixes.

The notation of LCP 0ðSp; SqÞ is often simplified as
LCP ðSp; SqÞwhen it is clear from the context.

Definition 3. The k-mismatch left-bounded longest repeat
starting at index i, denoted as LLRk

i , is a k-mismatch repeat
S½i::j� such that j ¼ n or S½i::jþ 1� is k-mismatch unique.

Clearly, jLLRk
i j ¼ maxfjLCPkðSi; SjÞj; j 6¼ ig, for every i.

Definition 4 (k-mismatch LSUS). The k-mismatch left-
bounded shortest unique substring that starts at index i,
denoted as LSUSk

i , is a k-mismatch unique substring S½i::j�,
such that i ¼ j or otherwise every proper prefix of S½i::j� is a
k-mismatch repeat.

Observe that for any k, LSUSk
1 ¼ SUSk

1 always exists,
because thewhole stringS is unique andLSUSk

1 is the shortest

prefix of S that is unique. However, for any k � 0 and i � 2,
LSUSk

i may not exist. For example, if S ¼ dabcabc, none of

LSUS0
i and LSUS1

j exists, for all i � 5, j � 4. It follows that
some string positions may not be covered by any k-mismatch
LSUS. For example, for the same string S ¼ dabcabc, posi-
tions 6 and 7 are not covered by any exact or 1-mismatch

LSUS. On the other hand, if any LSUSk
i does exist, there must

be only one choice for LSUSk
i , because LSUSk

i has its start
position fixed on i and need to be as short as possible.

Fact 1 (Fact 4.2 from [9]).

LSUSk
i ¼ does not exist; if iþ jLLRk

i j > n
S½i::iþ jLLRk

i j�; otherwise

�
:

Idea of the Solution. Given an array of length n which at
every index i holds the value jLLRk

i j, algorithms presented
in [9] can be directly applied to calculate SUSk

i for every
index i in S in OðnÞ time and OðnÞ space. Their idea is first
to compute every LSUSk

i using Fact 1. Once the LSUS array
is calculated, it is used to find, for every position i, the short-
est LSUS that covers position i. The rightmost one is chosen
if multiple choices are available. Results from this step is
then used to ultimately find the SUS array through an effi-
cient procedure using the observation that: Each SUSk

i is the
shorter one between the shortest LSUS covering position i
and the one-character right extension of SUSk

i�1. Ties are
resolved by choosing the substring whose starting index is
larger. Every step costs OðnÞ time and space.

Calculating all LLRk
i values for the string S is the one

algorithm presented in [9] that has Oðn2Þ time complexity
when k > 0. The dynamic programming-based strategy
used in their work involves comparing every pair of distinct
suffixes of S which clearly takes Oðn2Þ time. In [10], an algo-
rithm for finding the k-mismatch average common sub-
string of two input strings X and Y is presented. A step of
the algorithm involves calculating, for every index i in X,

maxjfjLCPkðXi; YjÞjg in expected Oðm logkmÞ time, where
m is the combined length of X and Y . This is clearly similar
to the calculation of jLLRk

i j values for each index in S. In
the next section, it will be demonstrated that, with modifica-
tions, the same strategy from [10] can indeed be applied to
calculate all jLLRk

i j values in expected Oðn logknÞ time.

3 A PRACTICAL AND EFFICIENT ALGORITHM

This section presents an adaptation and modification of the
algorithm and associated analysis from [10], to make it oper-
ate on the single input string S and to calculate jLLRk

i j for
every index i in S.

Definition 5 (Order-h Partition). An order-h partition Ch,
where h is an integer 1 � h � k, is a collection fP1; P2; . . .g of
subsets of the set of all suffixes of S, such that for each
ðSi; SjÞ; i 6¼ j pair of suffixes of S, there exists a subset P in Ch

where

jLCPh�1ðSi; SjÞj ¼ min
�jLCPh�1ðs; s0Þj j s; s0 2 P

�
:

The weight of Ch, WðChÞ, is the sum of sizes of all P 2 Ch.
LetCh�1ðP Þ ¼ minfjLCPh�1ðs; s0Þj j s; s0 2 Pg.

1. Each SUS may have multiple choices. We choose to find the right-
most one so that results become consistent to [9]. However, similar
to [9], our method can also be trivially modified to find the leftmost
choice of each SUS.
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The following subsections will demonstrate how an
order-k partition with expected weight Oðn logk nÞ can be
constructed, and that an order-k partition can be used to
populate an array holding every jLLRk

i j value in linear time
with respect to the partition’s weight.

3.1 Constructing an Order-k Partition

The approach presented here to construct an order-k parti-
tion is iterative. First, an order-1 partition is constructed
using the suffix tree of S, then an order-2 partition is con-
structed using the order-1 partition, and so on until finally
an order-k partition is constructed.

For the purposes of this algorithm, two properties of
compact tries over sets of suffixes (for which no suffix is a
prefix of any other suffix) are important:

1) Each non-leaf node is the lowest common ancestor of
at least 2 suffixes since each non-leaf node has at
least 2 non-empty sub-trees descending from it.

2) Every pair of suffixes contained in such a trie will
have 1 lowest common ancestor non-leaf node.

In order to ensure that no suffix is a k-mismatch prefix of
another, each suffix of S has a sequence $1$2 . . . $kþ1 of kþ 1
special characters which do not appear in S appended to its
end. Now, as an initial step, a suffix tree (a compact trie over
all suffixes) of S is constructed which will be maintained
throughout the LLRk finding algorithm. The suffix tree
requiresOðnÞ space and construction takesOðnÞ time [12].

To generate C1, iterate over each non-leaf node u of the
suffix tree of S, and at each such node, collect a subset
P 2 C1 which consists of all of the suffixes corresponding to
leaves which are descendants of u. For correctness, observe
that each pair ðSi; SjÞ; i 6¼ j of suffixes will be included in
the subset P , collected at the non-leaf node that is their low-
est common ancestor in the tree, and that both jLCP 0ðSi;
SjÞj and C0ðP Þ are equal to the string-depth of this node.
Additionally, since each suffix of S belongs to at most 1
non-leaf node at each level of the suffix tree, it can immedi-
ately be seen that WðC1Þ � nH, where H is the height of the
suffix tree. Another way to think about each subset P col-
lected is that, each contains at least 2 suffixes that have dif-
ferent characters at index Ch�1ðP Þ + 1, while all of the
included suffixes have length Ch�1ðP Þ prefixes that are
within Hamming distance h� 1 of each other; this is clearly
the case in the outlined h ¼ 1 case, and will be maintained
as an invariant across each iteration to generate subsequent
higher order partitions.

Now it will be demonstrated generally how a partition Ch

can be generated from a partition Ch�1. For each P in Ch�1,
create a new set P 0 which consists of the suffixes from P with
each having had its first Ch�2ðP Þ þ 1 characters deleted, and
create a compact trie D over the suffixes in P 0. Then, iterate
over each non-leaf node w in D, and at each such node collect
a subset P 00 2 Ch which has one entry for each suffix corre-
sponding to a leaf node in the trie which is a descendant of w.
Rather than adding the suffix for each descendant leaf node
directly to P 00, instead the original suffix which had a prefix
deleted to create the corresponding entry in P 0 is used. This
can be equivalently expressed as, for eachP inCh�1

P 0 ¼ fSiþCh�2ðP Þþ1 jSi 2 Pg;

and, where Z is the set of suffixes corresponding to the
descendant leaves of w

P 00 ¼ fSi jSiþCh�2ðP Þþ1 2 Zg:

Conceptually, the Ch�2ðP Þ þ 1 length prefix deletion when
generating each P 0 can be thought of as accepting and mov-

ing past the mismatch occurring at index Ch�2ðP Þ þ 1 in at

least 2 of the suffixes in P . The subsequent processing of P 0

follows the same logic used when processing the set of all
suffixes of S in the h ¼ 1 case, once again a compact trie
structure is used to identify indices where next mismatches
occur between suffixes with length Ch�1ðP 00Þ prefixes that
are within Hamming distance h� 1 of each other. Note that
the height of D is � H, this is clear because the compact trie
is created over a subset of the suffixes over which the suffix
tree of S was created. It follows that WðChÞ � H �WðCh�1Þ
since WðCh�1Þ is the total number of suffixes across all P 0,
and each suffix in a particular P 0 corresponds to a leaf node

which is the descendant of just 1 non-leaf node per level in

the corresponding D. Combining this observation with the

known bound onWðC1Þ, it is seen thatWðCkÞ ¼ OðnHkÞ.

3.1.1 Correctness

Under the assumption that Ch�1 is an order-ðh� 1Þ partition,
it will now be formally proven that the collection Ch, gener-
ated as specified previously, is an order-h partition. By our
assumption, it is the case that for any ðSi; SjÞ; i 6¼ j pair there

exists a P 2 Ch�1 such that jLCPh�2ðSi; SjÞj ¼ Ch�2ðP Þ. Con-
siderD to be the trie constructedwhile processing P . Based on
the definition of P 0 over which Dwas created, and previously
noted trie properties, it is known that a node w exists in D
which is the lowest common ancestor of the leaves corre-
sponding to suffixes SiþCh�2ðP Þþ1 and SjþCh�2ðP Þþ1 and the

string-depth of w in D is equal to jLCP ðSiþCh�2ðP Þþ1;
SjþCh�2ðP Þþ1Þj. It follows then, based on its definition, that the

new setP 00 2 Ch constructed atw contains both Si andSj. Fur-
ther, it is clear thatCh�1ðP 00Þ ¼ jLCPh�1ðSi; SjÞj since exactly
one additional mismatch between Si and Sj was bypassed
when processing P . This completes the proof.

3.1.2 Time and Space Complexity

When processing each P 2 Ch�1, the set P 0 can be collected
in OðjP jÞ time. Construction of the corresponding compact
trie D can be completed in overall OðjP 0jlog jP 0jÞ time by lex-
icographically sorting the suffixes in P 0, computing the lon-
gest common prefix lengths between all pairs of suffixes
which are consecutive in the sorted order in OðjP 0jÞ time,
and then using a standard linear time suffix tree construc-
tion technique [10], [13]. Combining for all P 2 Ch�1 the
total time spent constructing the compact tries while gener-
ating Ch from Ch�1 is OðWðCh�1ÞlognÞ. Producing the P 00

sets from the generated tries takes, in total, time propor-
tional to the sum of sizes across all of the sets that are gener-
ated, which is known to be OðWðChÞÞ ¼ OðWðCh�1ÞHÞ.
Adding the time for trie creation with the time spend gener-
ating P 00 sets results in the total time spent generating Ch

from Ch�1: OðW ðCh�1ÞðlognþHÞÞ. The total time for
creating Ck is then ðlognþHÞPk�1

h¼1 WðChÞ ¼ OðnHk�1

ðH þ lognÞÞ.
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On the topic of space complexity, observe that when cre-
ating a P 00 2 Ch only a single P 2 Ch�1 is needed. Based on
this observation, it is clearly possible to generate the mem-
bers of Ck in a depth-first manner in which there is only
ever one member in existence at a time for each Ch for
1 � h < k. Using this strategy, OðnkÞ space complexity can
be achieved, because the space usage of one member from
Ch, 1 � h < k, is OðnÞ. Also note that we do not store all the
members of Ck in memory. Rather, once a member of Ck is
generated in the depth-first manner, it will be processed
and then discarded (see details in Section 3.2).

Lemma 1. Members of an order-k partition Ck of total weight
OðnHkÞ can be generated in sequence using OðnkÞ working
space in OðnHk�1ðH þ lognÞÞ time.

3.2 Processing Members of an Order-k Partition

An array B of length n is initialized such that all elements
are 0. As each member P 2 Ck is generated (Section 3.1), it
is processed right away on the fly, possibly resulting in
updates to elements in B, and then it is discarded. When
processing of all members P 2 Ck is complete, B will hold
at each index i the value jLLRk

i j. Processing of each member
P consists of the following steps:

1) For each suffix s 2 P , find the lexicographic rank in S
of the suffix s0 which is obtained by deleting the length
ðCk�1ðP Þ þ 1Þ prefix from s, and place this rank in a pair
with s0. Conceptually, the s0 suffixes are the remainder of
the suffixes in P after deleting prefixes up to and including
the character at the index of the first kth mismatch occur-
rence across all of the suffixes in P . Note then, that the first
mismatch occurring between any two s0 suffixes will be no
greater than the ðkþ 1Þth mismatch between the corre-
sponding two members of P . Since s0 is obtained by deleting
a prefix of the suffix s, s0 is also a suffix in the suffix tree.
Now, if we know s0 (i.e., its starting index), its lexicographic
rank can be obtained by a simple Oð1Þ-time operation of the
inverse suffix array that is associated with the generalized
suffix tree of S [10].

2) Sort all pairs from the previous step in an array V by
their s0 rank. Note that this sorting step moves pairs which
have the longest common prefixes between their s0 suffixes
closer together.

3) Let d ¼ ðCk�1ðP Þ þ 1Þ and lcaStringDepthðSx; SyÞ be a
function that returns the string-depth of the lowest common
ancestor node of the two leaf nodes in the suffix tree of S
which correspond to the distinct suffix arguments Sx and
Sy. Iterate over the indices into the array V of sorted pairs
from index p ¼ 1 to p ¼ jV j. At each index, let i be the index
in S at which the suffix s starts, where s is the suffix in P
from which V ½p�:s0 was created, and calculate two candidate
values based on adjacent pairs:

a ¼ dþ lcaStringDepthðV ½p�:s0; V ½p� 1�:s0Þ; if p > 1
0; otherwise

�
;

and

b ¼ dþ lcaStringDepthðV ½p�:s0; V ½pþ 1�:s0Þ; if p < jV j
0; otherwise

�
;

then update:

B½i�  maxfB½i�; a; bg:

Note that lcaStringDepthðSx; SyÞ can be computed in
Oð1Þ time using the suffix tree of S [14].

3.2.1 Correctness

Observe that the candidate values used to update an ele-
ment at index i in B are always either less than or equal to
jLCPkðSi; SoÞj where So is the other suffix s corresponding
to the s0 from the relevant adjacent pair in V . This is clear
because it is known that all members of P had at most kmis-
matches up to and including index ðCk�1ðP Þ þ 1Þ, and by
adding the string-depth of the lowest common ancestor of
the two s0 suffixes to this index, the index just prior to the
next mismatch between Si and So was calculated. From this
observation, and the fact that no suffix Si appears multiple
times in the same P 2 Ck, it follows that the final value at
index i in B after processing all members of Ck is no greater

than maxj6¼ijLCPkðSi; SjÞj. Let j ¼ m be the index where
jLCPkðSi; SjÞj is maximized for any given i. By definition,
Ck must include a member P such that Si; Sm 2 P and
Ck�1ðP Þ ¼ jLCPk�1ðSi; SmÞj. During processing of this P ,
the sorting in step 2 will arrange the pairs corresponding to
Si and Sm to be adjacent and B½i� will be updated to the
value jLCPkðSi; SmÞj. This concludes the proof that after
processing all members of Ch, the array B will have been
correctly updated to hold at each index i the value jLLRk

i j.

3.2.2 Time Complexity

The processing of Ck consists of sorting and iterating over
sets which altogether have a total size of OðnHkÞ, so a time
complexity bound of OðnHkðlognÞÞ is obvious. However, as
described in Section 2.2 of [10] the logn factor can be elimi-
nated by observing that all of the sorting required is over
integers in the range from 1 to n and thus can be accom-
plished using linear-time sorting algorithms like count sort.
This optimization leaves a time complexity of OðnHkÞ.
Lemma 2. An array B of length n containing at each index i the

value jLLRk
i j can be computed by processingCk inOðnHkÞ time.

Combining Lemmas 1 and 2 yields the following theorem.

Theorem 1. Given a string S of length n, and an integer k � 1,
an array B of length n can be computed such that for every
index 1 � i � n the value at B½i� is equal to jLLRk

i j in
OðnHk�1ðH þ lognÞÞ time using OðnkÞ space.
Since the expected height of a suffix tree for a string of

length n is OðlognÞ [10], [15], we can have:

Corollary 1. Given a string S of length n, and an integer k � 1,
an array B of length n can be computed such that for every
index 1 � i � n the value at B½i� is equal to jLLRk

i j in
Oðn logk nÞ time using OðnkÞ space.

3.3 Parallel Order-k Partition Construction and
Processing

It has been demonstrated in the prior subsections that each
member of an order-k partition can be constructed through
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independent processing of each non-leaf node of the suffix
tree of S. Further, it has been shown that each member of an
order-k partition can be processed independently to gener-
ate candidate values for each index i of the jLLRkj array,
and that the maximal candidate value generated in this
way for any index i will be equal to jLLRk

i j. A contribution
of this paper is the observation that this independence
means that multiple members of Ck can be computed and
processed concurrently, each independently on separate
computing threads with some form of synchronization
only required when comparing candidate values, for the
same index of the jLLRkj array, which were generated by
different threads. While this parallelism can provide signif-
icant practical improvement to processing times on mod-
ern multi-core machines, these gains clearly come at the
cost of an additional factor t, the number of concurrent
threads, on the space complexity of the solution, because
there are t independent instances of the depth-first search
like procedure for the construction and processing of the
members of Ck. However, it is shown in Section 4 that
with a good choice of concurrency model, the additional
space usage observed in practice is often fairly minimal
and that significant processing time improvements can be
achieved even with a relatively low t value. It is worth not-
ing that this strategy for parallelism can be similarly
applied to the k-mismatch average common substring find-
ing proposal from [10].

3.4 Computing SUS Values

Prior to passing the array B as input into the standalone
algorithms presented in [9], it is necessary to make a final
transformation such that the array holds, at every index i,
the ending index of LSUSk

i , or NIL if no such LSUSk
i exists.

Fact 1 can be used to update B, holding all jLLRk
i j values,

such that at each index i it instead holds the ending index of
LSUSk

i , if it exists, andNIL otherwise, in one OðnÞ-time iter-
ation as follows.

B½i� ¼ NIL; if B½i� ¼ n� iþ 1
iþB½i�; otherwise

�
:

Definition 6. For a particular string position i in S and an inte-
ger k, 0 � k � n� 1, we use SLSk

i to denote the rightmost
shortest k-mismatch LSUS covering position i.

Note that a string position may not be covered by any
LSUS at all. That means, for a particular string position i,
SLSk

i may or may not exist. Given the LSUS information
coded in array B, Algorithms 3 from [9] is to find SLSk

i for
every i and save the starting index of each SLSk

i in A½i�, i.e.,
each SLSk

i ¼ S½A½i�::B½A½i���, if SLSk
i exists; otherwise, an

NIL is recorded in A½i�.
We then feed the resulting arrays A and B from Algo-

rithm 3 of [9] as input to Algorithm 4 from [9] to find SUSk
i

for every i, using the following observation: Each SUSk
i is

the shorter one between SLSk
i (if existing) and one-character

right extension of SUSk
i�1. Ties are resolved by choosing the

rightmost choice.
Algorithms 3 and then 4 from [9] each require OðnÞ time

and Oð1Þ additional working space. Clearly, the time and
space spent creating and processing the order-k partition Ck

dominates, and thus the overall expected time complexity
of this k-mismatch SUS finding algorithm is Oðn logknÞ
while the space complexity is OðknÞ.
Theorem 2. Given a string S of size n and an integer k, one can

find SUSk
i of S for every index i using Oðn logknÞ expected

time and OðknÞ space.

4 EXPERIMENTAL STUDY

Note that our proposal and implementation can also be
applied to the exact SUS finding problem (k ¼ 0). However,
the experimental results are uninteresting and thus have
been omitted, since the optimal OðnÞ time and space in-
place solution for exact SUS finding presented in [9] is
clearly superior. This is consistent with what we claimed
earlier in the paper that the main contribution of this work
lies in the approximate SUS finding (k > 0), which is the
harder case, and for which the best prior work has an any-
case Oðn2Þ time complexity and thus does not scale well to
long strings.

Setup. Experiments were run on a dedicated c5.9xlarge
EC2 instance hosted by Amazon Web Services,2 featuring
3.0 GHz Intel Xeon Platinum processors with 36 cores, and
72 GB RAM, running the Amazon Linux 2 operating sys-
tem. In each experiment, the input string S of length n was
drawn from the first n characters of the largest DNA file
available from the Pizza&Chili corpus.3 The peak memory
usage data presented in this section was collected using the
GNU time executable. The presented timing data was
elapsed time collected by adding code to the implementa-
tions which records the start and end time of processing.
This internal timing strategy was used in order to focus on
processing times of the implementations without including
time spent on disk I/O operations required to read input
and write output.

Implementation. In order to explore the practical perfor-
mance of the algorithm presented in this paper, the C++

implementation from [10] was modified to use the pre-
sented algorithm to calculate SUSk

i values for every index i
of an input string.4 The adapted implementation maintains
the same strategy for simulating operations on the suffix
tree, using a suffix array (SA), inverse suffix array (ISA),
LCP array, and range minimum query (RMQ) tables. All
the Oð1Þ-time suffix tree operations we need (suffix array
query, inverse suffix array query, node’s string depth query
which can be reduced to an access to LCP array via RMQ)
are all still Oð1Þ-time [1], [16], and thus the theoretical
bounds in Theorem 1 hold. SA construction makes use of
the libdivsufsortlibrary [17]. The ISA, LCP array, and
RMQ tables are built using the SDSL library [18]. As [10],
our implementation did not use supported compression
techniques on the structures produced by the SDSL library
in order to optimize for time performance. The executable
used for collecting experimental results was compiled using
version 7.2.1 of the GCC C++ compiler with the -O3 optimi-
zation option applied.

2. https://aws.amazon.com/
3. http://pizzachili.dcc.uchile.cl/texts.html
4. Our C++ implementation is available at: https://github.com/

dra4/k_mismatch_sus_finding
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4.1 Two Parallel Strategies

It was noted in Section 3.3 that construction and processing
of relevant order-k partitions can be completed in parallel
across t threads. In order to demonstrate the practicality
and effectiveness of this parallelization, two parallel strate-
gies, each using a different concurrency model, were imple-
mented and evaluated in addition to the serial algorithm.

� The first strategy uses a simple non-shared approach
wherein each thread has its own independent length
n array in which to store candidate values for the
final B array holding jLLRk

i j values. Then, after all
members have been constructed and processed,
passes are made in serial over each of the t arrays to
populate the final B array with the overall maximum
value occurring at each index.

� The second strategy uses a shared approach where a
single length n array B is shared across all t threads.
This implementation uses lock-free atomic opera-
tions when accessing or updating a value stored at a
particular index in the shared B array to control data
races and ensure correctness.

In both of the parallel strategies, non-leaf nodes of the suf-
fix tree of S (fromwhich members of the order-k partition are
generated) are initially divided evenly among the t threads.
The non-shared implementation distributes the nodes such
that nodes with a lower string-depth in the suffix tree will be
processed first, in an effort to ensure that the most expensive,
with regards to the amount of work necessary to construct
them, members of the order-k partition are constructed early,
and in an attempt to roughly balance the number of expensive
members initially assigned to each thread. The shared imple-
mentation shuffles the non-leaf nodes and distributes them
randomly to the threads, in an effort to avoid collisions
between updates to the value at the same index of the shared
B array, while maintaining an expected rough balance of
expensivemembers across threads. Each thread of both paral-
lel implementations uses a simple work-stealing strategy to
dynamically rebalance remaining work any time an individ-
ual thread finishes its assigned work, until no work remains
across all threads. The non-shared approach has the advan-
tage of being quite simple and not needing to worry about

possible performance degradation due to update collisions,
but this clearly comes at the cost of additional memory use.

4.2 Results

A note regarding the experimental results on peak memory
usage presented in this section is that, a brief initial spike in
memory usage was generally observed during the RMQ table
construction. As a result, expected slopes in peak memory
usage plots (as explained later in this section by varying t or k
values) do not emerge until these values are sufficiently high,
as to cause memory use during partition construction to sur-
pass the initial RMQ construction spike. This factor should be
kept in mind when interpreting the peak memory usage
graphs presented in the rest of this section.

Performance Affected by the Values of k.

� Time: (1) In the processing time graph included in
Fig. 1, it can be seen that all three implementations of
this paper’s proposed algorithm perform signifi-
cantly better than the existing HTX solution from [9],
when k values are small, which is typically true due
to the error rate of DNA sequencing instruments
decreasing over time. (2) Also seen is the expected
exponential growth in processing time as k increases.
It is clear that after k grows beyond a certain point,
relative to the input string length, the HTX solution
(which has a processing time independent of k)
offers superior time performance. (3) The non-shared
and shared parallel implementations consistently
outperform the serial implementation of this paper’s
proposal. Time performance between the two paral-
lel implementations is quite similar, with the non-
shared approach achieving slightly faster times.

� Space: (1) The graph in Fig. 1 showing peak memory
usage shows that, as expected, all implementations of
this paper’s proposal use more memory than the in-
placeHTX algorithm. (2) This graph also illustrates the
expected linear relationship between the k value and
peak memory usage by this paper’s implementations
while t and n values are held constant. (3) As antici-
pated, among this paper’s implementations, the serial

Fig. 1. Processing time and peak memory usage measurements across implementations, given a 200KB input string and varying k values. HTX
from [9], along with the serial and two parallel implementations of this paper’s proposed algorithm.
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version of the algorithm uses the smallest amount of
memory, while the non-shared parallel strategy uses
themost.

Performance Improvement via Parallelism. Graphs in
Fig. 2 depict the impact of the thread count, t, on processing
time and peakmemory usage required by the parallel imple-
mentations of our proposal. Note that the advantage of our
proposal against the HTX solution has been demonstrated in
Fig. 1, and thus in this figure we focus on the comparison of
the serial and parallel implementations of our proposal.

� Time: (1) The processing time plots show that the first
additional threads result in the largest step improve-
ments to processing time with returns diminishing
and eventually leveling out and subsequently even
starting to degrade. (2) Notably, the level point occurs
later for the larger input string. This pattern is fairly
intuitive, as there must be enough work available for
assignment to each thread to offset the costs associated
with allocating that thread and dividing and/or com-
bining work across additional threads. This trend was
observed to continue in an additional experiment with
the shared parallel implementation which processed a
200 MB input string when k ¼ 2 in 1,367.22 seconds
with t set to 12, and processed the same input in
1,249.94 seconds with t set at 24. (3) The processing
time results in these graphs show thatwith sufficiently

high values of t in these scenarios both parallel imple-
mentations were able to achieve speeds more than 4
times faster than the serial implementation, with the
non-shared implementation again slightly faster than
the shared implementation.

� Space: While the peak memory usage of both parallel
implementations diverges from the reference point
set by the serial implementation as t grows large, as
expected, growth is much steeper for the non-shared
implementation.

Scalability. The graphs of Fig. 3 present the scalability of
our proposal when the input string size n gets larger. Again,
here we focus on the comparison of the serial and parallel
implementations of our proposal, as their advantage against
the HTX solution has been well demonstrated by Fig. 1.

� Time: (1) When k is relatively small, our proposal
scales well when the string size grows, showing its
nearly linear time complexity, in its both serial and
parallel implementations. (2) Comparing the process-
ing time graphs for k ¼ 1 and k ¼ 2, it can be observed
that the factor, by which parallelism increases process-
ing speed, is consistently larger in the k ¼ 2 case,
where there is overall a greater amount of work to be
done in the partition generation and processing stage.
(3) In both cases, the parallel implementations show
consistent significant improvements in processing

Fig. 2. Processing time and peak memory usage measurements across implementations, given 10 MB and 20 MB input strings and varying t (thread
count) values. Measurements from the two parallel implementations of this paper’s proposed algorithm are included along with measurements from
the serial implementation using 1 thread as a reference point.
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time, when compared to the serial implementation. (4)
Once again, processing times differ only slightly
between the two parallel implementations, with the
non-shared implementation showing a relatively
small speed advantage when compared to the shared
implementation.

� Space: (1) The peak memory usage graphs show that
in the k ¼ 1 cases, neither parallel implementation
needs more space than the serial implementation,
because all implementations do not need enough extra
memory to overcome the initial memory peak seen
during RMQ table construction. (2) However, in the
k ¼ 2 cases, the non-shared implementation does sur-
pass that point and starts diverging upwards as n
increases, as expected.

4.3 Performance Summary

Asdemonstrated by the experimental results presented in this
section, the primary advantage of the newly proposed algo-
rithm over the prior best solution from [9] is significantly
lower processing times when k is small relative to n. The
improved processing times clearly come at the cost of addi-
tional memory usage. In an age where instances with thou-
sands of gigabytes of RAM are readily available for use
through Cloud infrastructure providers, this is expected to be
an acceptable trade-off in many cases where the improved

processing times make processing much longer input strings
feasible. The results from the parallel implementations dem-
onstrate that further significant practical improvement to
processing times can be achieved through parallelism when
multipleCPU cores are available. It is expected that the shared
parallel implementation will be preferable as it has been
observed to consistently perform nearly as well as the non-
shared parallel implementation while using considerably less
memory with high n and t values. When multiple CPU cores
are available, choosing an initial t value which is equal to the
number of available coresmay be sensible since little degrada-
tion of processing timewas observed for having “too high” of
a t value. If memory is constrained, choosing a lower t value
may be preferable and still provide significant practical per-
formance improvement since the first few additional threads
were observed to provide the largest incremental processing
time improvements.

5 BETTER THEORETICAL BOUNDS

We can indeed have algorithmic bounds for k-mismatch
SUS finding that are asymptotically more efficient than the
practical algorithm presented in Section 3. The better
bounds utilize a recent theoretical breakthrough from [19],
[20] for a faster and more space-efficient computation for all

LLRk
i that spends Oðn logk nÞ time and OðnÞ space in the

worst case. Plugging this faster LLR computation into the

Fig. 3. Processing time and peak memory usage measurements across implementations, given input strings of varying sizes and k values of 1 and 2.
Measurements from the serial and two parallel implementations of this paper’s proposed algorithm are included.
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rest of the SUS computation framework (Section 3.4), we get
an asymptotically faster and more space-efficient k-mis-
match SUS computation, using a total of Oðn logk nÞ time
and OðnÞ space in the worst case. Although there is yet an
implementation for [19], [20], thus neither do our better
bounds for k-mismatch SUS computation, the better bounds
serve as a new discovery of interest in understanding the
difficulty of the k-mismatch SUS finding problem.

6 CONCLUSION

This paper revisited the k-mismatch shortest unique substring
finding problem proposed by [9] and demonstrated that tech-
niques presented in [10] could be adapted to help solve the
problem in improved expected time complexity of Oðn logk nÞ
while maintaining a practical space complexity of OðknÞ. Fur-
ther, itwas observed that the techniques from [10] could be exe-
cuted in parallel both in this problem’s context as well as in the
context of the k-mismatch average common substring problem
which was worked on in the referenced paper. Experimental
study showed that the new algorithm is practical to implement
and demonstrated significantly improved processing times for
small k values relative to nwhen compared to the implementa-
tion of the best prior solution from [9]. Experimental results
were also presented which showed further practical perfor-
mance improvement achieved through parallelism using two
simple concurrency models. It is expected that this new effi-
cient and practical algorithm for k-mismatch shortest unique
substring finding will prove useful to those using the measure
on long sequences in fields such as computational biology. We
also showed theoretical bounds that the k-mismatch SUS find-
ing problem can be solved using Oðn logk nÞ time and OðnÞ
memory space in the worst case. This result is asymptotically
much better than the pratical algorithm, both time and space
wise, serving as a new discovery of interest for understanding
the complexity the approximate SUS finding problem.

Future Work. 1. By utilizing the most recent results
from [21], it is possible to get an efficient algorithm for
approximate SUS finding algorithms using the more diffi-
cult edit distance, whereas Hamming distance is used in this
paper. 2. From the practitioners’ point of view, it will be
interesting to conduct some analysis on real data from the
field that would not have been practical with past solutions.
3. It is also possible to explore more memory efficient imple-
mentation, such as using the more compressed/compact
option of using the RMQ table based techniques at the cost
of some constant factor on the look-up speed. 4. Adapt our
parallel strategy and implementation to prove out a multi-
node distributed processing approach. This may involve a
significant amount of engineering work but can make the
method even more scalable to better handle massive
sequence data such as those from computational biology.
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