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Toward a Local Characterization of Crystals
for the Quantum Queer Superalgebra
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Abstract. We define operators on semistandard shifted tableaux and use
Stembridge’s local characterization for regular graphs to prove they de-
fine a crystal structure. This gives a new proof that Schur P -polynomials
are Schur positive. We define queer crystal operators (also called odd
Kashiwara operators) to construct a connected queer crystal on semis-
tandard shifted tableaux of a given shape. Using the tensor rule for queer
crystals, this provides a new proof that products of Schur P -polynomials
are Schur P -positive. Finally, to facilitate applications of queer crystals
in the context of Schur P -positivity, we give local axioms for queer regu-
lar graphs, generalizing Stembridge’s axioms, that partially characterize
queer crystals.
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1. Introduction

Kashiwara [18,19] introduced crystal bases to study representations of quan-
tized universal enveloping Lie algebras. Canonical bases, developed indepen-
dently by Lusztig [24], study the same problem from a geometric viewpoint. A
crystal graph is a directed, colored graph with vertex set given by the crystal
basis and directed edges given by deformations of the Chevalley generators.
Crystal graphs encode important information for the corresponding represen-
tations. For example, the character of the crystal coincides with the character
of the representation, and branching rules and tensor decompositions can be
computed combinatorially on the crystals. The crystal basis for the general
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linear group is naturally indexed by semistandard Young tableaux, and there
is an explicit combinatorial construction of the crystal graph on tableaux de-
veloped independently by Kashiwara and Nakashima [20] and Littelmann [23].
Furthermore, Stembridge [36] gave a local characterization of the crystal graph
for the general linear group (and, more generally, for any simply laced Lie type)
that allows one to determine whether a given crystal arises as a crystal for a
highest weight representation.

The characters of connected highest weight crystals for the general linear
group are given by Schur polynomials [16,30]: the generating polynomials for
semistandard Young tableaux. Schur polynomials are ubiquitous throughout
mathematics, arising as irreducible characters for polynomial representations
of the general linear group, Frobenius characters for irreducible representations
of the symmetric group, and polynomial representatives for the cohomology
classes of Schubert cycles in Grassmannians. Given the representation theoretic
and geometric context, a quintessential question that arises is whether a given
polynomial is Schur positive, meaning that it can be realized as a character for
a representation of the general linear group. One approach for such problems
that simultaneously sheds light on the underlying representation theory is to
define a crystal structure on the objects that generate the given polynomial,
and then use Stembridge’s local characterization to prove Schur positivity.

To illustrate this approach and to motivate our generalization of this the-
ory, we consider Schur’s P -polynomials [31]. Schur P -polynomials arise as char-
acters of tensor representations of the queer Lie superalgebra [32], characters
of projective representations of the symmetric group [35], and representatives
for cohomology classes dual to Schubert cycles in isotropic Grassmannians
[26]. They enjoy many properties parallel to Schur polynomials. Stanley con-
jectured that Schur P -polynomials are Schur positive, and this follows from
Sagan’s shifted insertion [28] independently developed by Worley [37]. Assaf
[3] gave another proof using the machinery of dual equivalence graphs [2]. In
this paper, we present a new crystal-theoretic proof of the Schur positivity of
Schur P -polynomials.

Hawkes, Paramonov, and Schilling [14] constructed a crystal on semi-
standard shifted tableaux, the generating objects for Schur P -polynomials.
They use Haiman’s mixed insertion [12] to associate with each shifted tableau
a Young tableau and, using this correspondence, transport the usual crys-
tal structure on Young tableaux to the shifted setting. Therefore, while this
construction gives a desirable crystal-theoretic interpretation of the Schur pos-
itivity of Schur P -polynomials, it does not give a new proof of positivity in
the sense that it relies on the positivity that follows from shifted insertion
[28,37]. In this work, we present a direct approach using Stembridge’s local
characterization that can also be seen as giving a new, direct proof that the
crystal on shifted tableaux commutes with shifted insertion.

As noted above, Schur P -polynomials arise as characters of tensor repre-
sentations of the queer Lie superalgebra. Lie superalgebras are algebras with
a Z/2Z grading, allowing for two families of variables (one commuting and
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one not) to interact. Originally arising from mathematical physics in connec-
tion with supersymmetry, Lie superalgebras were formalized mathematically
and classified by Kac [17]. One well-studied superalgebra generalization of the
general linear Lie algebra is the queer superalgebra. Quantized universal en-
veloping algebras were developed for the queer superalgebra by Sergeev [32],
with the corresponding crystal theory developed by Grantcharov, Jung, Kang,
Kashiwara, and Kim [9,11].

Grantcharov, Jung, Kang, Kashiwara, and Kim [9] gave an explicit con-
struction of the queer crystal on semistandard decomposition tableaux [33], an
alternative combinatorial model for Schur P -polynomials developed by Ser-
rano. They raised the question of whether the set of shifted semistandard
Young tableaux of a fixed shape has a natural crystal structure. To answer
this in the affirmative, we extend our crystal operators to include queer op-
erators, also called odd Kashiwara operators, that augment the crystal with
additional edges in such a way that the graph on semistandard shifted tableaux
of fixed shape is connected, with a unique highest weight corresponding to the
highest weight tensor representation.

Many polynomials that arise in representation theoretic or geometric
contexts can be expressed as a non-negative sum of Schur P -polynomials.
For example, Hiroshima [15] recently gave a queer crystal for type C Stan-
ley symmetric functions, a generalization of Stanley symmetric functions [34]
introduced for types B and C by Billey and Haiman [4], Marberg recently de-
veloped a queer crystal for involution Stanley symmetric functions introduced
by Hamaker, Marberg, and Pawlowski [13]. To give a universal approach to
proving Schur P -positivity of these and other functions, parallel to the ax-
iomatization of shifted dual equivalence graphs [3,5], we present local axioms
for queer regular graphs. We prove that our explicit construction on semistan-
dard shifted tableaux, and, hence, all normal queer crystals are queer regular,
and we show that in many cases, the converse holds as well. In particular, we
believe that our axioms can be tightened give a local characterization for nor-
mal queer crystals, thus providing a powerful new tool in symmetric function
theory.

Our paper is organized as follows. In Sect. 2, we review the crystal the-
ory for the general linear group from the combinatorial perspective. We review
crystals and normal crystals that arise for highest weight representation, we
review the explicit crystal on semistandard Young tableaux, and we present
Stembridge’s local characterization for such crystals. In Sect. 3, we apply Stem-
bridge’s axioms to prove that our explicit operators on semistandard shifted
tableaux define a normal crystal. We begin by reviewing the combinatorics of
shifted tableaux, then define our operators on shifted tableaux, and prove that
Stembridge’s axioms are satisfied. We also present corollaries demonstrating
the utility of the resulting Schur expansion for Schur P -polynomials, including
a short proof that a Schur P -polynomial is a single Schur polynomial if and
only if the indexing shape is a staircase. In Sect. 4, we extend our construction
on shifted tableaux to the queer setting. We review queer crystals and normal
queer crystals that arise for tensor representations of queer Lie superalgebras,
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we define an explicit normal queer crystal on shifted tableaux, and we present
our local axioms that are necessary for such crystals and sufficient in small
cases.

Our results and constructions were first announced in [1], where we con-
jectured that our axioms were sufficient to characterize normal queer crystals.
Gillespie, Hawkes, Poh, and Schilling [8] recently gave an explicit counter-
example, demonstrating a regular queer graph that is not normal. They also
state additional axioms satisfied by normal queer crystals that are not implied
by ours. Their main result for normal queer crystals requires checking the iso-
morphism class of a derived graph, and as such is not local nor in the spirit
of Stembridge’s axioms. However, building on the work presenting here along
with the new ideas of [8] may lead to a complete local characterization.

2. Crystals for the Quantum General Linear Lie Algebra

Kashiwara [18,19] introduced crystal bases in his study of the representation
theory of quantized universal enveloping algebra Uq(g) for a Lie algebra g. In
this section, we review the theory of crystal bases and crystal graphs, focusing
solely on the case of Uq(gl(r)) to simplify the exposition and keep it self-
contained. In Sect. 2.1, we review crystal bases in the language of root systems,
restricting to type Ar+1. In Sect. 2.2, we review tableaux combinatorics and
present the explicit combinatorial realization of crystal graphs on tableaux due
to Kashiwara and Nakashima [20] and Littelmann [23]. In Sect. 2.3, we review
an alternative local axiomatization of tableaux crystals due to Stembridge [36]
that will be central to our proofs.

2.1. Crystal Bases and Crystal Graphs

We use the language of root systems to define crystal bases of type Ar+1,
though the exposition is self-contained and no familiarity with Lie theory is
assumed; see [6] for further details of crystals from this combinatorial perspec-
tive.

Let e1, e2, . . . , er+1 be the standard basis for V = R
r+1 with the usual

inner product. Consider the root system Φ = {ei − ej | i �= j}. We refer to
the positive roots as the subset Φ+ = {ei − ej | i < j}. Let αi = ei − ei+1 for
i = 1, . . . , r denote the simple roots. The weight lattice is Λ = Z

r+1, and the
dominant weights Λ+ ⊂ Λ are those λ ∈ Λ, such that λ1 ≥ λ2 ≥ · · · ≥ λr+1 ≥
0.

Definition 2.1 [18,19]. A crystal of dimension r + 1 is a nonempty set B not
containing 0 together with crystal operators ei, fi : B → B ∪ {0} for i =
1, 2, . . . , r and a weight map wt : B → Λ satisfying the conditions:
(1) for b, b′ ∈ B, ei(b) = b′ if and only if fi(b′) = b, and in this case, we have

wt(b′) = wt(b) + αi;
(2) for b ∈ B and i = 1, . . . , r, we have ϕi(b) = (wt(b)i − wt(b)i+1) + εi(b),

where εi, ϕi : B → Z are:

εi(b) = max{k ∈ Z≥0 | ek
i (b) �= 0}, (2.1)
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1 2 3 · · · n
1 2 3 n−1

Figure 1. The standard crystal B(n) for Uq(gl(n))

ϕi(b) = max{k ∈ Z≥0 | fk
i (b) �= 0}. (2.2)

We call εi(b), ϕi(b) the string lengths through b, with εi(b) the i-tail and ϕi(b)
the i-head.

Note that it is enough to define the fis and the weight map, and, abusing
notation, we denote the crystal (B, {ei, fi}1≤i≤r,wt) simply by B.

As a first example, the standard crystal B(n), for n ∈ Z>0, has basis{
i | i = 1, . . . , n

}
, crystal operators fj that act by incrementing the entry if

i = j, and taking it to 0 otherwise. The weight map is: wt
(

i
)

= ei.
The character of a crystal B is the polynomial:

ch(B) =
∑
b∈B

x
wt(b)1
1 x

wt(b)2
2 · · · xwt(b)r+1

r+1 . (2.3)

For example, the character of the standard crystal B(n) is ch(B(n)) =
x1 + x2 + · · · + xn. Condition (1) of Definition 2.1 ensures that the characters
of connected crystals are homogeneous of a given degree.

A crystal graph is a directed, colored graph with vertex set given by the
crystal basis B and directed edges given by the crystal operators ei and fi,
where if b′ = ei(b) (resp. b′′ = fi(b)), then we write b

i←−b′ (resp. b
i−→b′′) and

all edges to 0 are omitted. The i-string through b is the maximal path:

eεi
i x

i−→ · · · i−→eix
i−→x

i−→fix
i−→· · · i−→fϕi

i x.

For example, the standard crystal graph B(n) is shown in Fig. 1.

Definition 2.2 [18,19]. Given two crystals B1 and B2, the tensor product B1⊗B2

is the set B1 ⊗ B2 together with crystal operators ei, fi defined on the tensor
product B1 ⊗ B2 by:

fi(b1 ⊗ b2) =
{

fi(b1) ⊗ b2 if εi(b2) < ϕi(b1),
b1 ⊗ fi(b2) if εi(b2) ≥ ϕi(b1),

(2.4)

and weight function wt(b1 ⊗ b2) = wt(b1) + wt(b2), where addition is taken
coordinate-wise.

We use the combinatorial structure of a crystals to encode essential infor-
mation for studying the corresponding representations of the quantum group,
with the crystal operators corresponding to deformations of the Chevalley
generators. To do so, we must restrict our attention to normal crystals. This
is studied under different names in [18,19], though this terminology is now
standard [6].

Definition 2.3 [18,19]. A connected normal crystal of dimension r + 1 and
degree k is any connected component of B(r + 1)⊗k, the k-fold tensor product
of the standard crystal B(r + 1).



8 S. Assaf and E. K. Oguz

Figure 2. The tensor product of two standard crystals B(3)
for Uq(gl(3))

For example, Fig. 2 constructs the two normal crystals of dimension 3
and degree 2, namely B((2, 0, 0)) and B(1, 1, 0), from the tensor product of two
copies of the standard crystal B(3) = B((1, 0, 0)).

Connected normal crystals are in one-to-one correspondence with domi-
nant weights, which in turn index irreducible representations. Given a domi-
nant weight λ ∈ Λ+, let B(λ) denote the connected normal crystal with highest
weight λ. Then, ch(B(λ)) is precisely the character of the irreducible repre-
sentation indexed by λ, which corresponds to the Schur polynomial sλ(x1, . . . ,
xr+1) defined in Sect. 2.2.

Given two normal crystals B1 and B2, the tensor product B1 ⊗ B2 is
again a normal crystal. Even more compelling is the remarkable fact that the
tensor product of normal crystals corresponds to the tensor product of the
corresponding representations. For example, Fig. 2 computes that the tensor
product of two copies of the standard crystal B(3) = B((1, 0, 0)) is given by
B((2, 0, 0)) and B((1, 1, 0)).

An element b ∈ B of a crystal is a highest weight element if ei(b) = 0
for all i = 1, 2, . . . , r. For example, the highest weight element of B(n) is 1 ,
which has weight e1 ∈ Λ+. Highest weights give an efficient way to categorize
normal crystals.

Proposition 2.4 [20,23]. A connected, normal crystal B has a unique highest
weight b, and we call wt(b) ∈ Λ+ the highest weight of B. Moreover, two
connected normal crystals are isomorphic as colored directed graphs if and
only if they have the same highest weight.

A consequence of this proposition is that normal crystals are determined
completely by the underlying graph structure, and we do not need to be con-
cerned with the weight maps. Even so, it is not a straightforward process to
understand which crystals are normal, but as we shall see, there is a local
characterization of that will prove quite useful. Before presenting this, we give
an explicit combinatorial realization of normal crystals using tableaux.
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Figure 3. The semistandard Young tableaux of shape (3, 1)
with entries {1, 2, 3}

2.2. Crystals on Young Tableaux

To study crystals via their characters, we introduce classical terminology from
symmetric function theory. For a beautiful treatment in more detail, see [25].

A partition λ is a weakly decreasing sequence of positive integers, λ =
(λ1, λ2, . . . , λ�), where λ1 ≥ λ2 ≥ · · · ≥ λ� > 0. By extending λ with trailing
0s until it has length r + 1, we may identify partitions with dominant weights
Λ+. The size of a partition is the sum of its parts, i.e., λ1 + λ2 + · · · + λ�. We
identify a partition λ with its Young diagram drawn in French (coordinate)
notation, i.e., the collection of left-justified cells with λi cells in row i indexed
from the bottom.

A semistandard Young tableau of shape λ is a filling of the shifted Young
diagram for λ with positive integers, such that entries weakly increase along
rows and columns and each column has at most one entry i for each i. For
example, see Fig. 3.

Definition 2.5 [25, (I.5)]. The Schur polynomial indexed by the partition λ is
given by:

sλ(x1, . . . , xn) =
∑

T∈SSYTn(λ)

x
wt(T )1
1 · · · xwt(T )n

n , (2.5)

where SSYTn(λ) denotes the set of all semistandard Young tableaux of shape
λ with largest entry at most n, and wt(T ) is the composition whose ith part
is the multiplicity with which i occurs in T .

For example, from Fig. 3, we compute:

s(3,1)(x1, x2, x3) = x3
1x2 + x3

1x3 + x2
1x

2
2 + 2x2

1x2x3 + x2
1x

2
3 + x1x

3
2 + 2x1x

2
2x3

+ 2x1x2x
2
3 + x1x

3
3 + x3

2x3 + x2
2x

2
3 + x2x

3
3.

Schur polynomials are the irreducible characters for polynomial represen-
tations of the general linear group. Moreover, semistandard Young tableaux
naturally index a basis for the irreducible representations. Therefore, it is natu-
ral to seek a crystal structure with semistandard Young tableaux as the under-
lying basis. This was done by Kashiwara and Nakashima [20] and Littelmann
[23], though our presentation is again simplified to the case of the general
linear group.

For a word w of length k, a positive integer r � k, and a positive integer
i, define:

mi(w, r) = wt(w1w2 · · · wr)i − wt(w1w2 · · · wr)i+1, (2.6)
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Figure 4. A complete 4-string on semistandard Young
tableaux of shape (4, 3, 1, 1), with the row reading word in-
dicated below and 4-blocked pairs bracketed

where wt(w) is the weak composition whose jth part is the number of j’s in
w. Set mi(w) = maxr(mi(w, r), 0). Observe that if mi(w) > 0 and wp is the
leftmost occurrence of this maximum, then wp = i, and if q is the rightmost
occurrence of this maximum, then either q = k or wq+1 = i + 1.

For T a Young tableau, the row reading word of T , denoted by w(T ), is
the word obtained by reading the entries of T left to right along rows, from
the top row down.

Definition 2.6 [20,23]. Given a positive integer i, define lowering operators,
denoted by fi, on semistandard Young tableaux as follows: if mi(w(T )) = 0,
then fi(T ) = 0; otherwise, let p be the smallest index, such that mi(w(T ), p) =
mi(w(T )), and set fi(T ) to change the entry in T corresponding to wp to i+1.

Another way to state Definition 2.6 is in terms of blocked and free entries
in the row reading word of T . For this, we say that a pair of letters wa, wb

are i-paired if wa = i + 1, wb = i, and a < b, such that for any a < c < b,
either wc �= i, i + 1 or wc is i-paired with some wd between wa and wb. The
entries that are i-paired are called i-blocked, and any letter i or i + 1 that is
not i-blocked is called i-free. With this terminology, fi changes the rightmost
i-free entry i to become i + 1.

For example, Fig. 4 shows the lowering operators applied to the left and
middle tableaux, where the changed cells are indicated with a circle. This is,
in fact, the complete 4-string through these tableaux.

Definition 2.7 [20,23]. Given a positive integer i, define raising operators, de-
noted by ei, on semistandard Young tableaux as follows: let q be the largest
index, such that mi(w(T ), q) = maxr(mi(w(T ), r)). If q = k, then ei(T ) = 0;
otherwise, set ei(T ) to change the entry in T corresponding to wq+1 to i.

Note that mi(T ) is precisely the string length ϕi(T ), which also coincides
with the number of i-free entries equal to i. The string length εi(T ) is given
by:

max{r | wt(wrwr+1 · · · wn)i+1 − wt(wrwr+1 · · · wn)i}, (2.7)

which also coincides with the number of i-free entries equal to i+1. Moreover,
the largest index to attain the maximum in (2.7), if positive, is the entry on
which ei acts, which is the leftmost i-free entry i + 1.
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Figure 5. The crystal structures on semistandard Young
tableaux of shapes (3, 1), (2, 2), (2, 1, 1) with entries {1, 2, 3},
which are isomorphic to B((3, 1, 0)), B((2, 2, 0)), B((2, 1, 1))

Theorem 2.8 [20,23]. The raising and lowering operators ei, fi for i = 1, . . . ,
n−1 are well-defined maps from SSYTn(λ) to SSYTn(λ)∪{0} that determine
a normal crystal (SSYTn(λ), {ei, fi}1≤i<n,wt) that is isomorphic to B(λ).

For example, Fig. 5 depicts the crystal structures on semistandard Young
tableaux of shapes (3, 1), (2, 2), and (2, 1, 1) with entries {1, 2, 3}. These crys-
tals are isomorphic to B((3, 1, 0)), B((2, 2, 0)), and B((2, 1, 1)), respectively.

In particular, on the level of polynomials, we have:

sλ(x1, . . . , xn) = ch(B(λ)).

Using crystal theory, this means that whenever we have a normal crystal struc-
ture on a set of objects, the objects are in weight-preserving bijection with
highest weight crystals B(λ); therefore, the generating polynomial is Schur
positive. Specifically, we have the following.
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Corollary 2.9. For a normal crystal B, we have:

ch(B) =
∑
b∈B

ei(b)=0∀i

swt(b). (2.8)

In particular, the character of B is symmetric and Schur positive.

2.3. Local Characterization of Crystals

Establishing that a given directed graph structure on a combinatorial set is
a normal crystal is difficult. To simplify this greatly, Stembridge [36] gave a
local characterization of crystals that arise from representations for simply
laced types.

To define Stembridge’s axioms for type Ar+1, we first introduce notation
associated with a directed, colored graph. A graph of dimension r + 1 will
mean a directed, colored graph X with directed edges ei(x) i−→x

i−→fi(x) for
i = 1, 2, . . . , r. Extending the string lengths εi, ϕi to this case, we also have
the following differences whenever ei, fi is defined at x:

Δiεj(x) = εj(x) − εj(ei(x)), ∇iεj(x) = εj(fi(x)) − εj(x),
Δiϕj(x) = ϕj(eix) − ϕj(x), ∇iϕj(x) = ϕj(x) − ϕj(fix).

Definition 2.10 [36]. A directed, colored graph X is regular if the following
hold:
(A1) all monochromatic directed paths have finite length;
(A2) for every vertex x, there is at most one edge x

i←−y and at most one
edge x

i−→z;

(A3) assuming eix is defined, Δiεj(x) + Δiϕj(x) =

⎧
⎨
⎩

2 if j = i
−1 if j = i ± 1

0 if |i − j| ≥ 2
;

(A4) assuming eix is defined, Δiεj(x),Δiϕj(x) ≤ 0 for j �= i;
(A5) Δiεj(x) = 0 ⇒ eiejx = ejeix = y and ∇jϕi(y) = 0; ∇iϕj(x) = 0 ⇒

fifjx = fjfix = y and Δjεi(y) = 0;
(A6) Δiεj(x) = Δjεi(x) = −1 ⇒ EiE

2
j Eix = EjE

2
i Ejx = y and ∇iϕj(y) =

∇jϕi(y) = −1; ∇iϕj(x) = ∇jϕi(x) = −1 ⇒ FiF
2
j Fix = FjF

2
i Fjx = y

and Δiεj(y) = Δjεi(y) = −1.

Axiom A1 ensures that the crystal operators have finite order when ap-
plied to a given basis element, though it does not force the graph itself to
be finite. Axiom A2 ensures that the edges of the graph correspond to well-
defined operators, which we assume map a basis element to 0 in the absence
of an edge.

Axioms A3 and A4 dictate how the length of a j-string differs between
x and eix; see Fig. 6. When |i − j| ≥ 2, there is no change (left case), but
when j = i ± 1, the length changes by 1, either by decreasing the tail when
Δiε(x, j) = −1 (middle case) or by increasing the head when Δiϕ(x, j) = −1
(right case).

Axioms A5 and A6 give information about how edges with different labels
interact locally; see Fig. 7. When |i − j| ≥ 2, the conditions of A5 will always
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Figure 6. An illustration of axioms A3 and A4, where fj↙, fi↘

Figure 7. An illustration of axioms A5 and A6, where fj↙, fi↘

be satisfied, though when j = i ± 1, either A5 or A6 could hold, the former
when Δiε(x, j) = 0 and the latter when Δiε(x, j) = Δjε(x, i) = −1.

The following theorem shows that regular graphs correspond precisely to
the crystal graphs of representations for the general linear group. This result
allows us to combinatorialize the problem of studying representations of the
general linear group by instead studying regular graphs of degree n.

Theorem 2.11 [36]. Every normal crystal is a regular graph and every regular
graph is a normal crystal.

The theorem is proved by showing that Littelmann’s path operators [22]
generate regular graphs, since the Path Model is known to generate B(λ). This
then gives a straightforward machinery for proving that a given structure is a
crystal graph by showing that the graph is regular.

3. A Crystal for Shifted Tableaux

Schur P -polynomials arise as characters of tensor representations of the queer
Lie superalgebra [32], characters of projective representations of the symmetric
group [35], and representatives for cohomology classes dual to Schubert cycles
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Figure 8. The semistandard shifted tableaux of shape (3, 1)
with entries {1, 1, 2, 2, 3, 3} and no marks on the main diagonal

in isotropic Grassmannians [26]. Stanley conjectured that Schur P -polynomials
are Schur positive, and this follows from Sagan’s shifted insertion [28] inde-
pendently developed by Worley [37]. Assaf [3] gave another proof using the
machinery of dual equivalence graphs [2]. In this section, we present a new
proof using the machinery of crystal graphs. In Sect. 3.1, we review the com-
binatorial definition of Schur P -polynomials as the generating polynomials
for semistandard shifted tableaux. In Sect. 3.2, we define crystal operators
on semistandard shifted tableaux analogous to those for semistandard Young
tableaux. In Sect. 3.3, we use Stembridge’s axioms to prove that our crystal is
normal, thus giving a new proof of the Schur positivity of Schur P -polynomials.

3.1. Shifted Tableaux

A partition γ is strict if γ1 > γ2 > · · · > γ� > 0. We identify a strict partition
γ with its shifted Young diagram, the collection of cells with γi cells in row i
shifted �(γ) − i cells to the left.

A semistandard shifted tableau of shape γ is a filling of the shifted Young
diagram for γ with marked or unmarked positive integers, such that entries
weakly increase along rows and columns according to the ordering 1 < 1 < 2 <
2 < · · · , each row at has most one marked entry i for each i, each column has
at most one unmarked entry i for each i, and the diagonal has no markings.
For example, see Fig. 8.

Schur P -polynomials enjoy nice properties parallel to Schur polynomials.

Definition 3.1 [25, (III.8)]. The Schur P -polynomial indexed by the strict par-
tition γ is given by:

Pγ(x1, . . . , xn) =
∑

S∈SSHTn(γ)

x
wt(S)1
1 · · · xwt(S)n

n , (3.1)

where SSHTn(γ) denotes the set of all semistandard shifted tableaux of shifted
shape γ with largest entry at most n, and wt(S) is composition whose ith part
is the total multiplicity with which i and i occur in S.

For example, from Fig. 8, we compute:

P(3,1)(x1, x2, x3) = x3
1x2 + x3

1x3 + 2x2
1x

2
2 + 4x2

1x2x3 + 2x2
1x

2
3 + x1x

3
2

+4x1x
2
2x3 + 4x1x2x

2
3 + x1x

3
3 + x3

2x3 + 2x2
2x

2
3 + x2x

3
3.
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Stanley conjectured that Schur P polynomials expand positively into the
Schur basis, and this follows as a corollary to Sagan’s shifted insertion [28]
independently developed by Worley [37]. Another combinatorial proof appears
in [3] using the machinery of combinatorial graphs.

Theorem 3.2 [28,37]. For γ a strict partition, the coefficients gγ,λ defined by:

Pγ(x1, . . . , xn) =
∑

λ

gγ,λsλ(x1, . . . , xn) (3.2)

are non-negative integers. That is, Schur P -polynomials are Schur positive.

For example, our previous computation can be written as:

P(3,1)(x1, x2, x3) = s(3,1)(x1, x2, x3) + s(2,2)(x1, x2, x3) + s(2,1,1)(x1, x2, x3).

Stembridge [35] expanded on the idea of shifted insertion in his study of
projective representations of the symmetric group, and ultimately established
that the product of Schur P -polynomials expands positively in the Schur P
basis. More recently, Cho [7] built on work of Serrano [33] to give another
proof of positivity, and Assaf [3] gave another proof using the machinery of
combinatorial graphs.

Theorem 3.3 [35]. For γ, δ strict partitions, the coefficients f ε
γ,δ defined by:

Pγ(x1, . . . , xn)Pδ(x1, . . . , xn) =
∑

ε

f ε
γ,δPε(x1, . . . , xn), (3.3)

are non-negative integers. That is, products of Schur P -polynomials are Schur
P positive.

In the present paper, we give new combinatorial proofs of Theorems 3.2
and 3.3 using crystal graphs, both of which give rise to new combinatorial
formulas for the expansions.

3.2. Crystals on Shifted Tableaux

We give a new proof of the Schur positivity of Schur P -polynomials by con-
structing a crystal graph on semistandard shifted tableaux. We note that
Hawkes, Paramonov, and Schilling [14] recently constructed a crystal on semi-
standard shifted tableaux in the context of type B/C Stanley symmetric func-
tions. Their construction uses Haiman’s mixed insertion [12] to associate a
reduced word for a signed permutation with a pair of shifted tableaux, the
left semistandard and the right standard. Using shifted insertion developed
independently by Worley [37] and Sagan [28] to associate the left semistan-
dard shifted tableau with a semistandard Young tableau, they are able to
put the usual crystal structure reviewed in Sect. 2.2 on the semistandard
Young tableaux. Therefore, while the Hawkes–Paramonov–Schilling construc-
tion gives a desirable crystal interpretation of the Schur positivity of Schur
P -polynomials, it does not give a new proof of positivity in the sense that it
relies on the positivity that follows from shifted insertion [28,37].

We developed our crystal independently, unaware of [14], and our presen-
tation below is direct and differs from the derived description in [14]. However,



16 S. Assaf and E. K. Oguz

in Proposition 3.19 below, we prove that the two constructions are indeed
equivalent. Nevertheless, we proceed with our direct description below and
give a direct proof, using Stembridge’s axioms, that this defines a normal crys-
tal, thus giving a new proof of the Schur positivity of Schur P -polynomials
independent of shifted insertion.

To begin, we define a reading word for shifted tableaux as follows.

Definition 3.4. For T a shifted tableau, the hook reading word of T , denoted
by w(T ), is the word obtained by reading the marked entries of T up the ith
column, then the unmarked entries of T along the ith row, left to right, for i
from max(γ1, �(γ)) to 1.

For example, the hook reading words for the three tableaux in Fig. 11
are listed below the tableaux. By disregarding the marks, we can calculate
mi(w(T )) just as in the unshifted case. Note that our reading word is not the
reading word used to define crystal operators in [14].

The row and column conditions for shifted tableaux ensure that the cells
with entries i, i must form a ribbon, i.e., contain no 2×2 block. This observation
helps to make the following well defined.

Definition 3.5. The shifted lowering operators, denoted by f i, act on semistan-
dard shifted tableaux by: f i(T ) = 0 if mi(w(T )) � 0; otherwise, letting p be
the smallest index, such that mi(w(T ), p) = mi(w(T )), letting x denote the
entry of T corresponding to wp, and letting y be the entry north of x and z
the entry east of x, we have:
(L1) (a) if x = i and z = i + 1, then f i changes x to i + 1 and changes z to

i + 1;
(b) else if x = i and y does not exist or y > i + 1, then f i changes x to

i + 1;
(c) else if x = i and the northeastern-most cell on the (i+1)-ribbon con-

taining y has a marking, then f i removes that marking and changes
x to i + 1;

(d) else if x = i, then f i changes x to i + 1;
(L2) (a) if x = i and y = i, then f i changes x to i and changes y to i + 1;

(b) else if x = i and z does not exist or z > i + 1, then f i changes x to
i + 1;

(c) else if x = i, then f i changes x to i and changes the first entry i
southwest along the i-ribbon containing x that is not followed by i
or i + 1 to i + 1.

The rules for the shifted lowering operators are illustrated case by case
in Figs. 9 and 10. Figure 11 shows the lowering operators applied to the left
and middle tableaux, where the changed cells are indicated with a circle. This
is, in fact, the complete 4-string through these tableaux. A complete example
on SSHT3((3, 1, 0)) is shown in Fig. 12.

Note that the total number of marked cells stays the same except for
Case (1)(d), where it increases by one. From the definition, it is not obvious
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2 z

Figure 9. An illustration of the shifted lowering operators
with x = i = 1

1
1 z

L2(a) 2
1 z

y

1 z

L2(b) y

2 z

y

1 1 1 2
1 1

L2(c) y

1 1 1 2
1 2

Figure 10. An illustration of the shifted lowering operators
with x = i = 1

4 5
2 4 5

1 1 4 4

5 5
2 4 5

1 1 4 4

5 5
2 4 5

1 1 4 5

5 4 4 4 5 2 1 1 4 5 4 4 5 5 2 1 1 4 5 5 4 5 5 2 4 1 1

4 4

Figure 11. A complete 4-string on semistandard shifted
tableaux of shape (4, 3, 2), with the hook reading word in-
dicated below

that these operators are well defined nor that the result is again a semistan-
dard shifted tableau. However, both are indeed the case, as will be shown in
Theorem 3.8.

To analyze how the shifted crystal operators change the lengths of mono-
chromatic paths, we introduce the notion of blocked entries of a semistandard
shifted tableau T , determined via the hook reading word w(T ). Blocking will
depend upon a parameter i, for 1 ≤ i < n, and for i-blocking, only entries
i, i, i + 1, i + 1 will be considered.

Definition 3.6. Let i ≥ 1 be an index and T a semistandard shifted tableau. A
pair of entries y, x of T , with y ∈ {i + 1, i + 1} and x ∈ {i, i} are i-paired if y
occurs before x in the hook reading word of T and every entry i, i, i + 1, i + 1
that lies between them in the hook reading word is i-blocked. The i-paired
entries become i-blocked, and we continue the operation recursively till there
are no more possible i-pairs. An entry i, i, i + 1, i + 1 of T is i-free if it is not
part of an i-pair.

Figure 13 shows the 4-blocked entries of the hook reading word paired
with under brackets and the 4-free entries are indicated in red. Notice that for
each tableau, there are exactly two 4-free entries.

We show below that the i-free entries of T occur with all entries i, i
preceding all entries i + 1, i + 1 in the hook reading word w(T ). This implies
the following alternative characterization for the entry of T on which f i acts.

Lemma 3.7. For T a semistandard shifted tableau and i ≥ 1 an index, mi(w(T ))
is number of i-free entries i, i of T , and if mi(w(T )) > 0, then the smallest
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Figure 12. The crystal structure on semistandard shifted
tableaux of shape (3, 1) with entries {1, 1, 2, 2, 3, 3} and no
marks on the main diagonal
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Figure 13. A 4-string on SSHT6(5, 4, 2, 1), with 4-blocked
entries bracketed and 4-free entries indicated in red

index p for which mi(w(T ), p) = mi(w(T )) occurs at the rightmost i-free entry
i, i.

Proof. We claim all i-free entries i, i precede all i-free entries i + 1, i + 1 in
the hook reading word w(T ). To see this, note that i-paired entries are nested,
and no i-free entry may occur between an i-pair. Therefore, if y, x are i-free
entries with y ∈ {i + 1, i + 1}, x ∈ {i, i} and y preceding x in w(T ), such that



Local Properties of Queer Crystals 19

no intermediate entries are i-free, then all intermediate entries i, i, i + 1, i + 1
are paired with another entry between y and x; therefore, y and x have the
same number of entries equal to i + 1, i + 1 as equal to i, i between them in
w(T ), contradicting that y, x are free. Thus, no i-free entry i + 1, i + 1 may
precede an i-free entry i, i in w(T ), establishing the claim.

Recall that mi(w(T )) = maxr(mi(w(T ), r)) is positive if and only if
f i(T ) �= 0, and in this case, the smallest index p for which mi(w(T ), p) =
mi(w(T )) occurs at an entry i or i. By the previous claim, if r < s are the
indices in w(T ) of an i-blocked pair, then mi(w(T ), r − 1) = mi(w(T ), s).
Therefore, the smallest index p for which mi(w(T ), p) = mi(w(T )) must occur
at the rightmost i-free entry i or i. Furthermore, since w(T )p cannot lie be-
tween any i-blocked pair, we have mi(w(T ), p) is the number of i-free entries
i or i weakly preceding w(T )p, which, by the previous claim, is simply the
number of i-free entries i or i of T . �

Using blocked and free entries, we now prove the shifted lowering op-
erators are well defined. The proof is a case-by-case analysis that acting as
prescribed in Definition 3.5 results in a semistandard shifted tableau.

Theorem 3.8. For any strict partition γ, the shifted lowering operators
{f i}1≤i<n are well-defined maps f i : SSHTn(γ) → SSHTn(γ) ∪ {0}.
Proof. Let T be a semistandard shifted tableaux and assume mi(w(T )) > 0
so that f i acts non-trivially on T . Let x, y, z be as in Definition 3.5, and let
their indices in the hook reading word be px, py, pz, respectively. By definition,
px is the smallest number satisfying mi(w(T ), p) = mi(w(T )). By Lemma 3.7,
every cell labeled i + 1 or i + 1 that precedes x in w(T ) is i-paired with some
cell labeled i/i that lies between itself and x. Similarly, every cell labeled i/i
that follows x in w(T ) is i-paired with some cell labeled i + 1/i + 1 that lies
between x and itself. In particular, if x has label i, then z cannot also have
label i, since it follows immediately after x in w(T ), and if x has label i, then
y cannot have label i for exactly the same reason.

Case L1(a) We must verify two things to show that the shifted tableaux
rules are not violated: x is not on a main diagonal, and the cell above z is
not i + 1/i + 1. We first show that x cannot be on the main diagonal. As
z = i + 1, it needs to be i-paired with a cell labeled i/i after it and before
x in the reading word, which can only happen in the column of x (Fig. 14,
left). Assume that there are t cells labeled i in the column of x. The cells left
adjacent to those can only be labeled i or i + 1 as columns and rows weakly
increase. Furthermore, every i + 1 in the column of z needs to be paired with
a i between x and itself, so at most t−1 of these can be i + 1, and the bottom
one most must be labeled i. Let us call this cell x′ (Fig. 14, middle). As x′ = i,
it must be i-paired with some i+1 between x and x′ in the reading word (i + 1
never comes after i). By the tableaux rules, such a cell must be on the row
above. If there are t′ such cells labeled i, they are i-paired with t′ cells labeled
i+1 on the row above, which means that the leftmost i (say x′′) is followed by
an i + 1. To i-pair this i + 1, the cell under x′′ must be labeled i, which takes
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Figure 14. Case L1(a), showing x cannot be on the main
diagonal

?
x z

i+1

?
ii

i

i+1
i x z

i+1 i+1

Figure 15. Case L1(a), showing the cell above z cannot be
i + 1 or i + 1

us back to our starting point (see Fig. 14, right). Since our shape finite, this
case cannot happen.

The second step is to show that the cell above z cannot be labeled
i + 1/i + 1. We can eliminate the i + 1 case easily, as x is not on the main
diagonal, there is a cell above x and there is no valid way to fill it (Fig. 15,
left). Assume that the cell above z is labeled i + 1. As it is not on the main
diagonal, any i comes after it in the reading word, its i-pair is an entry i be-
tween x and itself, so there needs to be another cell labeled i to the left of x.
If i is not on the main diagonal, then it has a cell above it that is labeled at
least i + 1, so the cell above x also must be i+1, and we need another i to pair
it. This continues till we hit the main diagonal, and the i + 1 on the diagonal
still need an i-pair. As there is no more place left for an i, its i-pair must be
an entry i after it on the reading word, which can only happen in the column
to the left. This leads to a contradiction as there is no way to fill the cell to
the right of i (see Fig. 15, right).

Case L1(b) In this case, we assume z ≥ i + 1 [since we are not in case
L1(a)] and either y does not exist or y > i + 1, so there are no possible row or
column violations that can arise from changing x from i to i + 1.

Cases L1(c) and L1(d): For these cases, we assume z ≥ i + 1 [since we
are not in case L1(a)] and y = i + 1/i + 1 [since we are not in case L1(b)];
therefore, there are no possible row or column violations that can arise from
changing x from i to i + 1. Let u denote the entry at the head of the (i + 1)-
ribbon containing y. If u = i+1 (case L1(d)), then no change occurs here, and
if u = i + 1 (case L1(c)), then since the (i+1)-ribbon terminates at u, the cell
above u is larger than i+1, so removing the marking on u cannot create a row
or column violation either.

Case L2(a) As there can be at most one i on a row, changing x from i to
i does not create a row or column violation; therefore, we only need to check
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Figure 16. Case L2: x = i

that no violations arise in changing y from i to i + 1. Note that y cannot be
on the main diagonal, since otherwise x would immediately precede y, giving
mi(w(T ), py) > mi(w(T ), px). Therefore, the only potential is when the cell
right adjacent to y is labeled i + 1. Assume that it is. Then, it must be i-
paired with a cell labeled i that comes before x in w(T ). However, this can
only happen in the column of x, so the cell below x must be i. Assume that
there are k cells labeled i below x. Then, we can have at most k cells labeled
i + 1 in the next column, so the bottom two is need to have is left adjacent to
them, which cannot happen by our column rules (Fig. 16, left).

Case L2(b) We must have y ≥ i + 1 (since we are not in case L2(a)) and
either z does not exist or z > i + 1, so there are no possible row or column
violations that can arise from changing x from i to i + 1.

Case L2(c) Since y ≥ i + 1 [since we are not in case L2(a)], no row or
column violation can arise in changing x from i to i. Therefore, we only need to
verify that, in the i-ribbon containing x, there is an entry i that is not followed
by i or i + 1 as described, and that turning it into i + 1 creates no violations.
We have two cases based on the possible values of z as i or i + 1 (since we
are not in case L2(b)). We first consider the case z = i. If the rightmost i
in this row is not followed by i + 1, we are done. If it is, then it needs to be
i-paired with a cell marked i between x and itself in the reading word, which
can only happen in the column of the rightmost i. Assume that this column
contains k cells labeled i. Then, there can be at most k cells labeled i + 1 in
the next column, so the bottom-most one needs to be followed by an i. If the
rightmost i is not followed by i + 1, we are done. If it is, we can repeat the
same argument till we find such an i (Fig. 16, middle). The case z = i + 1 is
similar, as z needs to be i-paired with a cell labeled i that comes after x in
the reading word, and that can only happen in the column of x. As above, the
bottom i in the column must be followed by an i, and we can continue until
we find an i not followed by i + 1 (Fig. 16, right). �

To prove that the shifted lowering operators are invertible when the image
is non-zero, we offer the following explicit rule for their partial inverses.

Definition 3.9. The shifted raising operators, denoted by ei, act on semistan-
dard shifted tableaux by: ei(T ) = 0 if mi(w(T ), k) = mi(w(T )); otherwise,
letting q be the largest index, such that mi(w(T ), q) = mi(w(T )), letting x
denote the entry of T corresponding to wq, and letting y be the entry south
of x and z be the entry west of x, we have:
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Figure 17. An illustration of the shifted raising operators
with x = i = 1
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Figure 18. An illustration of the shifted raising operators
with x = i = 1

(R1) (a) if x = i + 1 and z = i + 1, then ei changes x to i + 1 and changes z
to i;

(b) else if x = i+1 and y does not exist or y < i, then ei changes x to i
(c) else if x = i + 1, then ei changes x to i + 1 and changes the first

entry i + 1 southwest along the i+1-ribbon containing x that is not
above an i or i + 1 to i;

(R2) (a) if x = i + 1 and y = i, then ei changes x to i and changes y to i;
(b) else if x = i + 1 and z does not exist or z < i, then ei changes x to

i;
(c) else if x = i + 1, and the northeastern-most cell on the (i)-ribbon

containing z is not on the main diagonal, then ei adds a marking to
that cell and changes x to i;

(d) else if x = i + 1, then ei changes x to i (Figs. 17, 18).

The proof that the shifted raising operators are well defined is completely
analogous to that for the shifted lowering operators. Similarly, if ei(T ) �= 0,
then the largest index q for which mi(w(T ), q − 1) = mi(w(T )) occurs at the
leftmost i-free entry i + 1 or i+1, parallel to Lemma 3.7. Details of both proofs
are omitted.

3.3. Verification of Local Axioms

To prove that our operators define a normal crystal, we begin by showing that
they satisfy the conditions required to be a crystal.

Theorem 3.10. For any strict partition γ, the shifted raising and lowering op-
erators ei, f i for i = 1, 2, . . . , r together with the usual weight map define a
crystal on SSHTr+1(γ).

Proof. From the definitions of the shifted operators, we have wt(f i(T )) =
wt(T ) + αi and wt(ei(T )) = wt(T ) − αi. Therefore, there are two statements
to prove based on Definition 2.1: that ei(T ) = T ′ if and only if f i(T ′) = T ,
and that ϕi(T )−εi(T ) = (wt(T )i −wt(T )i+1). Note that the second statement
follows once we show εi(T ) is the number of i-free entries i + 1, i + 1 in T and
ϕi(T ) is the number of i-free entries i, i of T , since all other entries appear in
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Figure 19. Example of i-blocked/free entries when f i acts
by case L1(a)
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Figure 20. Example of i-blocked/free entries when f i acts
by case L2(a)

pairs whose weights cancel. We prove both statements together in cases based
on Definition 3.5 for the shifted lowering operators.

Case L1(a) We assume that x = 1 and z = i + 1 in T ; therefore, f i(T )
has x = i + 1 and z = i + 1. For an example of this case, see Fig. 19. In
the hook reading words, the position of x in w(T ) is precisely the position
of z in w(f i(T )). However, the position of z in w(T ) is weakly left of the
position of x in w(f i(T )), with the offset equal to the number of marked
entries strictly above z or strictly below x in T (and in f(T )). However, since
f i(T ) is semistandard, there cannot be an entry i + 1 above z, so we only need
to be concerned about any entries i below x. Note that if u = i is below x and
v is the cell immediately to its right, then i + 1 < v, and since v is below z,
we also have v ≤ i + 1. Therefore, v = i + 1; therefore, in this way, we pair
off each i below x with an i + 1 below z. In particular, since marked entries in
the column of z are read immediately before marked entries in the column of
x, every i below x is i-paired with an i + 1 weakly below z in both w(T ) and
in w(f i(T )). Therefore, the number of i-blocked pairs is unchanged in passing
from w(T ) to w(f i(T )). Furthermore, the result is that the rightmost i-free
entry i becomes the leftmost i-free entry i+1, landing us in case R1(a) for the
shifted raising operator, which will precisely undo the action.

Case L2(a) We assume that x = i and y = i in T ; therefore, f i(T ) has
x = i and y = i + 1. For an example of this case, see Fig. 20. The position of
x = i in w(T ) is precisely the position of y = i + 1 in w(f i(T )). However, the
position of y = i in w(T ) is weakly right of the position of x = i in w(f i(T )),
with the offset equal to the total number of unmarked entries strictly right of
y or strictly left of x in T (and in f(T )). We claim every cell v with entry i+1
in this range is i-blocked. Indeed, in this case, v must be right of y; therefore,
the cell immediately below v, say u, must have entry i < u < i + 1. However,
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Figure 21. Example of i-blocked/free entries when f i acts
by case L1(c)

the entry cannot be i + 1, since this forces a downward column of entries i + 1
equal in length to the downward column of entries i from x; therefore, x would
be i-blocked. Therefore, u must have entry i, so there are at least as many
entries i right of x as entries i + 1 right of y, proving that all of the latter are
indeed i-blocked. Thus, the number of i-blocked pairs is unchanged in passing
from w(T ) to w(f i(T )). Furthermore, the result is that the rightmost i-free
entry i becomes the leftmost i-free entry i + 1, landing us in case R2(a) for
the shifted raising operator, which will precisely undo the action.

Case L1(b) We have x = i in T become x = i + 1 in f i(T ), and by
Lemma 3.7, this happens at the rightmost i-free entry, so the number of i-
blocked pairs is again unchanged and the rightmost i-free entry i becomes the
leftmost i-free entry i+1 landing in case R1(b) of the shifted raising operator,
which precisely toggles back to case L1(b) under ei.

Case L2(b) We have x = i in T becomes x = i + 1 in f i(T ), and by
Lemma 3.7, this happens at the rightmost i-free entry, so the number of i-
blocked pairs is unchanged and the rightmost i-free entry i becomes the left-
most i-free entry i + 1 landing in case R2(b) of the shifted raising operator,
which precisely toggles back to case L2(b) under ei.

Case L1(c) We assume that x = i, y = i + 1 or i + 1, and z > i + 1
in T , and, letting u denote the northeastern-most cell of the (i + 1)-ribbon
containing y, u = i + 1. Then, f i(T ) has x = i + 1 and u = i + 1. For an
example of this case, see Fig. 21. The situation here is similar to case L1(a),
though now both x and u move when passing from w(T ) to w(f i(T )), so we
consider each in turn. First, comparing the position of x = i in w(T ) with
that of u = i + 1 in w(f i(T )), x moves left past any unmarked entries that
lie in a row strictly between that of u and x. We claim that any such entries
i are i-blocked. Since no two entries i + 1 may occur in the same row, the
number of entries i + 1 along the (i + 1)-ribbon is one fewer than the number
of columns spanned by the ribbon (since the northwestern-most entry is i + 1).
Further, since i < i + 1 with no intermediate values, any i in a row between u
and x must be immediately below the (i + 1)-ribbon; therefore, the maximum
number of such entries is again the number of columns spanned minus one for
the column of x. Since the (i + 1)-ribbon lies above the is, all of the is will be
i-paired with one of those i+1s, thus proving the claim. Second, comparing the
position of u = i + 1 in w(T ) with that of x = i + 1 in w(f i(T )), u moves left
past any marked entries that lie weakly between u and x in the column reading
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Figure 22. Example of i-blocked/free entries when f i acts
by case L2(c)

word (bottom to top along columns, from right to left). By the same analysis
of ribbons, where now we count columns instead of rows, any such entries i are
i-blocked. Therefore, the number of i-blocked pairs is once again unchanged.
Furthermore, the head of the (i + 1)-ribbon will become the leftmost i-free
entry i + 1 and satisfy the conditions of case R2(c) for the shifted raising
operators, whose action will precisely undo that of the shifted raising operator
for this case.

Case L2(c) We assume that x = i, y > i, and z = i or i + 1 in T , and let
u = i denote the southwestern-most entry i of the i-ribbon containing x not
followed by i or i + 1. Then, f i(T ) has x = i and u = i + 1. For an example
of this case, see Fig. 22. As with case L1(c), both x and u move when passing
from w(T ) to w(f i(T )). Comparing the position of x = i in w(T ) with that of
u = i + 1 in w(f i(T )), x moves left past any marked entries that lie in a column
strictly between that of x and u. We claim that any such entries i are already
i-blocked in T . Starting from x, the first time, the ribbon descends that there
must be an entry i + 1 at the end of that row, else the last i in that row would
have been u; therefore, all entries immediately right of the descending portion
must be i + 1 except for the right turn of the i-ribbon, which must have an i,
and the argument repeats. Therefore, each step down of the i-ribbon has an
i, and in the column immediately to the right there are equally many i + 1s
offset one row higher, so all entries i are i-blocked as claimed. Comparing the
position of u = i in w(T ) with that of x = i in w(f i(T )), u moves left past
any unmarked entries that lie in a row between that of x and u. We claim
that any such entries i + 1 are already i-blocked in T and not by pairing with
u. The number of is in this range is the number of columns spanned by the
i-ribbon below the top row. Since the (i + 1)-ribbon(s) in this range must lie
immediately on top of the i-ribbon, the number of i + 1s is bounded by the
number of columns spanned by the i-ribbon excluding the top row minus one
for the entry i + 1 that must end the top row; therefore, there are strictly more
is including u. Therefore, all entries i + 1 remain i-blocked in f i(T ).

Case L1(d) We assume that x = i, y = i + 1 or i + 1, and z > i + 1
in T , and, letting u denote the northeastern-most cell of the (i + 1)-ribbon
containing y. Note that u = i+1 lies on the main diagonal, since each column
between u and x contains at least one i+1, and as all are i-paired with entries
to the left of x in the reading word, the column strictly to the left of u must
contain an i. Then, f i(T ) has x = i + 1. Since u lies on the main diagonal, it
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occurs in w(T ) and in w(f i(T )) after all marked entries i, i + 1 and before all
unmarked entries i, i + 1 on the two relevant ribbons; therefore, the analysis
of case L1(c) resolves this case as well, with inverse given by case R1(d). �

From the proof of Theorem 3.10, we have the following characterization
of the lengths of the heads and tails of i-strings in terms of the number of i-free
entries, and this is equivalent to applying (2.7) and (2.6) to the hook reading
word.

Corollary 3.11. For T a semistandard shifted tableau and i ≥ 1 an index, εi(T )
is the number of i-free entries i + 1, i + 1 in T , and ϕi(T ) is the number of
i-free entries i, i of T , and we have:

εi(T ) = max{r | wt(wrwr+1 · · · wn)i+1 − wt(wrwr+1 · · · wn)i}, (3.4)
ϕi(T ) = max{r | wt(w1w2 · · · wr)i − wt(w1w2 · · · wr)i+1}. (3.5)

We use Stembridge’s characterization of regular graphs [36] to establish
directly that the shifted lowering operators determine a normal crystal on
shifted tableaux. To begin with, we show that the notation used in Defini-
tion 2.10 is well defined for the graph on semistandard shifted tableaux with
edges given by the shifted crystal operators.

Lemma 3.12. The graph on SSHTn(γ) with edges x
i←−y whenever ei(x) = y

and x
i−→z whenever f i(x) = z is a directed, colored graph satisfying Stem-

bridge axioms A1 and A2.

Proof. For axiom A1, all monochromatic directed paths have finite length,
since f i changes the weight of a semistandard shifted tableau by wt(f i(T )) =
wt(T ) + αi, where αi is the simple root ei − ei+1, and the weight of a semi-
standard shifted tableau has non-negative parts. Axiom A2, stating for every
vertex x, there is at most one edge x

i←−y and at most one edge x
i−→z, follows

from f i being well defined, proved in Theorem 3.8, and from f i and ei being
inverses to one another, proved in Theorem 3.10. �

Given the local nature of the shifted operators, meaning that f i looks
only at the positions of entries i, i, i + 1, i+1, axioms A3–A6 for |i− j| ≥ 2 are
easy to establish. Corollary 3.11 helps to establish axioms A3 and A4 in the
case j = i (and axioms A5 and A6 are vacuous in this case). For the remaining
cases, j = i ± 1, axioms A3–A6 are resolved with the help of the following
lemma.

Lemma 3.13. Let T be a semistandard shifted tableau. Then, for i > 1, f i(T )
either has one more (i−1)-free entry i − 1, i−1 or one fewer (i−1)-free entry
i, i and not both, and for i ≥ 1, f i(T ) either has one more (i + 1)-free entry
i + 1, i + 1 or one fewer (i + 1)-free entry i + 2, i + 2 and not both.

Proof. The net effect of f i on the weight is to remove an entry i or i and
create an entry i + 1 or i + 1. If the removed entry i, i was i − 1-blocked, then
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some entry i − 1, i− 1 that was i− 1-blocked becomes i− 1-free; otherwise the
removed entry i, i was i−1-free. Similarly, If the created entry i + 1, i+1 pairs
with an otherwise i + 1-free entry i + 2, i + 2, then both entries become i + 1-
blocked; otherwise, the created entry i + 1, i+1 is i+1-free. Therefore, we need
only show that the traveling entries in the cases of L1(a),(c),(d) and L2(a),(c)
of Definition 3.5 do not otherwise change the number of i±1-free entries. This
is a case-by-case analysis similar to that in the proof of Theorem 3.10. �

Theorem 3.14. The shifted raising and lowering operators ei, f i for i = 1, 2,
. . . , r define a normal crystal on SSHTr+1(γ).

Proof. We show directly that the graph on SSHTn(γ) with edges given by
the shifted crystal operators is regular (Definition 2.10). Lemma 3.12 proves
axioms A1 and A2.

For axioms A3 and A4, we have three cases based on j. For j = i, axiom
A4 is vacuous, and the characterization of εi and ϕi in Corollary 3.11 combined
with Lemma 3.7 shows that εi(ei(T )) = εi(T ) − 1 and ϕi(ei(T )) = ϕi(T ) + 1,
which implies that:

Δiεi(T ) = εi(T ) − εi(ei(T )) = 1 = ϕi(ei(T )) − ϕi(T ) = Δiϕi(T ),

thereby proving axiom A3 for j = i. For |i − j| ≥ 2, εj(ei(T )) = εj(T ) and
ϕj(ei(T )) = ϕj(T ); therefore, Δiεj(T ) = 0 = Δiϕj(T ), establishing axioms A3
and A4. For |i − j| = 1, Lemma 3.13 ensures that either εi(ei(T )) = εi(T ) + 1
or ϕi(ei(T )) = ϕi(T ) − 1 but not both, again establishing axioms A3 and A4.

For axioms A5 and A6, we have the same three cases based on j. For
i = j, both axioms are vacuous. For |i − j| ≥ 2, axiom A6 is vacuous. For
axiom A5, note that |i − j| ≥ 2 implies {i, i + 1} ∩ {j, j + 1} = ∅; therefore,
ei, f i do not alter the relative positions of j, j+1, and neither do ej , f j alter the
relative positions of i, i + 1. Therefore, i-operators and j-operators commute
as required. Finally, consider the case |i − j| = 1.

For axiom A5, note that by Lemma 3.13, we have:

∇iϕj(T ) = 0 ⇒ ϕj(f i(T )) = ϕj(T )

⇒
{

f i removes a j-free entry i if j = i − 1,

f i creates a j-blocked entry i + 1 if j = i + 1.

Therefore, f i removes an (i − 1)-free entry i; therefore, the rightmost (i − 1)-
free entry i − 1 is the same in T and in f i(T ). Similarly, f i−1 will create an
i-blocked entry i, ensuring that the leftmost i-free entry i is the same for T and
f i−1(T ). Combining these, we see that f i−1f i(T ) = f i(T )f i−1(T ) as desired.
The case j = i + 1 is identical, and the analysis for Δiεj(T ) = 0 is analogous.

Finally, for axiom A6, by Lemma 3.13, we have:

∇iϕj(T ) = −1 ⇒ ϕj(f i(T )) = ϕj(T ) + 1

⇒
{

f i removes a j-blocked entry i if j = i − 1,

f i creates a j-free entry i + 1 if j = i + 1.
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Figure 23. The Yamanouchi shifted tableaux of strict shape (4, 3, 1)

Therefore, f i removes an (i − 1)-blocked entry i, allowing another (i − 1)-free
entry i − 1 to manifest. Applying f

2

i−1 changes the newly created (i − 1)-
free entry i − 1 of f i(T ) and the original rightmost (i − 1)-free entry i − 1
of T to i, so that a final application of f i changes the latter to i + 1. In the
other direction, f i−1 creates an i-free entry i. Applying f

2

i changes the newly
created i-free entry i of f i−1(T ) and the original rightmost i-free entry i of T

to i+1, so that a final application of f i−1 yields the same result, and we have

f if
2

i−1f i(T ) = f i−1f
2

i (T )f i−1(T ) as desired. The case j = i + 1 is identical,
and the analysis for Δiεj(T ) = −1 is analogous. �

Using Theorem 3.14, we give a new proof of Theorem 3.2. Note that
this characterization of the Schur coefficients of a Schur P -polynomial is more
explicit than Sagan’s and Worley’s shifted insertion rule [28,37] or Assaf’s dual
equivalence characterization [3].

Definition 3.15. For γ a strict partition, the set of Yamanouchi shifted tableaux
of shape γ, denoted by Yam(γ), is the set of semistandard shifted tableaux T
of shape γ, such that εi(T ) = 0 for all i.

For example, the Yamanouchi shifted tableaux of shape (4, 3, 1) are shown
in Fig. 23. The Yamanouchi shifted tableaux are precisely the highest weights
of the normal crystal (SSHTn(γ), {ei, f i}1≤i<n,wt). By Corollary 2.9, this
gives an explicit characterization of the Schur expansion of a Schur P -polynomial.

Corollary 3.16. For γ a strict partition, we have:

Pγ(x1, . . . , xn) =
∑

T∈Yam(γ)

swt(T )(x1, . . . , xn). (3.6)

In particular, the Schur P -polynomial is Schur positive with coefficients gγ,λ =
#{T ∈ Yam(γ) | wt(T ) = λ}.

For example, from Fig. 23, we compute:

P(4,3,1)(x1, x2, x3, x4) = s(4,3,1)(x1, x2, x3, x4)
+ s(4,2,2)(x1, x2, x3, x4) + s(3,3,2)(x1, x2, x3, x4)
+ s(4,2,1,1)(x1, x2, x3, x4) + s(3,3,1,1)(x1, x2, x3, x4)
+ s(3,2,2,1)(x1, x2, x3, x4).

To ease computations of the Schur expansion of a Schur P -polynomial
using Corollary 3.16, we have the following necessary condition for a semis-
tandard shifted tableau to be Yamanouchi.
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Lemma 3.17. If T is a Yamanouchi shifted tableaux, then any unmarked entry
on row i is equal to i. In particular the leftmost box in row i is labeled i.

Proof. This is true for the first row, as the unmarked cells on the first row
come last in the reading word and any i + 1 > 1 cannot be i-paired, violating
the Yamanouchi condition. Now, assume that row k has a box labeled k + i,
i > 0 and no row below has an unmarked entry larger than the row index. As
there is no cell labeled k + i − 1 on a row strictly below, this k + i needs to be
(k + i − 1)-paired with k + i − 1, which can only happen if the leftmost box of
the row below is labeled k − 1 + i, violating our assumption. �

To demonstrate the utility of our formula and the description in Lemma
3.17, for k > 1 and integer, consider δk = (k − 1, k − 2, . . . , 1), the staircase
partition, which is, in particular, strict. Then, we have the following result for
the coincidence of Schur polynomials and Schur P -polynomials for staircase
shapes.

Corollary 3.18. For k > 1, we have Pδk(x1, . . . , xn) = sδk(x1, . . . , xn). More-
over, if γ is a strict partition, such that γ �= δk for any k, then Pδk(x1, . . . , xn)
has more than one term in its Schur expansion.

Proof. Let T ∈ Yam(δn). Note that by Lemma 3.17 the highest row of T
contains n, so all the entries on T are bounded by n. Also, as the leftmost
entry is equal to the row index, any marked number k is on a row of index less
than or equal to k. Therefore, if T contains a marked entry, T has a row i, such
that row i contains an entry greater than i, and row i + 1 only contains i + 1.
By column rules, this row has is except for the rightmost cell which contains
i + 1, as seen in Fig. 24, left. It needs to be i-paired with some i, which can
only be below the rightmost i on row i. Consider the bottom-most i on that
column. The cell right adjacent to it cannot be equal to i by Lemma 3.17. It
cannot be i + 1 either, as there is no way to i-pair that i + 1. There are no
other options by row and column rules, so such a tableaux does not exist.

Now, assume γ is not a staircase. Then, there exists some i, such that
γi ≥ γi+1 +2. The shifted tableaux that contains only ks on each row k except

?

ii
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i i i+1

i

i

i+1

i+1 i+1
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1
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Figure 24. There is no shifted Yamanouchi tableaux of stair-
case shape that contains a marked entry(left), but such a
tableaux can be found for any other shape(right)
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for the rightmost cell of row i which is labeled i + 1 is a Yamanouchi shifted
tableaux (Fig. 24, right), so there are at least two elements of Yam(γ). �

Finally, we conclude this section with the following proof that our shifted
crystal operators, while seemingly different, in fact coincide with the crystal
operators defined recently by Hawkes, Paramonov, and Schilling [14]. Hawkes,
Paramonov, and Schilling [14] define their operators, which we hereafter term
the HPS operators, directly in terms of shifted insertion. Sagan defined the
shifted insertion algorithm [28], also developed independently by Worley [37],
to generalize the Robinson–Schensted insertion algorithm developed by Schen-
sted [29] based on work of Robinson [27] and later generalized by Knuth [21].
Haiman [12] generalized shifted insertion to mixed insertion to prove a conjec-
ture of Shor that rectification commutes with shifted insertion, thus resolving a
question of Sagan [28]. Hawkes, Paramonov, and Schilling use Haiman’s mixed
insertion to define crystal operators on shifted tableaux by letting the raising
and lowering operators act on the recording tableau under the mixed insertion
correspondence. Rather than recalling details of these algorithms, we refer
the interested reader to the papers [12,28] for details on shifted and mixed
insertion, and to [14] for the explicit definition of the HPS operators.

Proposition 3.19. The shifted crystal operators agree with the HPS operators.

Proof. Hawkes, Paramonov, and Schilling [14] define their operators, which we
hereafter term the HPS operators, directly in terms of shifted insertion. In the
discussion to follow, we alter the presentation in [14] only in switching their
notation from English to French to coincide with ours.

The HPS reading word [14](p.13) is different from our hook reading word
(Definition 3.4). The HPS reading word of a semistandard shifted tableau first
reads all marked entries up columns from right to left, then reads all unmarked
entries right to left along rows from top to bottom. They then use a bracketing
rule equivalent to Definition 3.6 and select the rightmost i-free entry i or i on
which to act. While our reading words differ, the choice of entry of the tableau
on which to act is the same, since any primed entry i or i + 1 must occur in
the hook reading word before any unmarked entry i or i + 1.

The HPS crystal operators act by first transposing the shape and pro-
moting entries one step along the total order 1 < 1 < 2 < 2 < · · · if the
selected entry on which to act is primed, then transposing and demoting after
the action. With this caveat in mind, there are four cases, numbered 1, 2(a),
2(b), and 2(c), for the HPS operators. We provide a dictionary between their
cases and ours in Definition 3.5 and provide details only in the one nontrivial
case. The correspondence is:

HPS 1 ↔ L1(a)/L2(a)
HPS 2(a) ↔ L1(b)/L2(b)
HPS 2(b) ↔ L1(d)
HPS 2(c) ↔ L1(c)/L2(c),

where we match with L1 when an unmarked entry is selected and with L2 when
a primed entry is selected [note that HPS 2(b) is vacuous in this case]. The
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Figure 25. The standard queer crystal

cases are direct translations of one another with the exception of case HPS 2(c)
when i is selected. For this case, HPS operators first transpose and promote
entries, then follow the i + 1, i+1-ribbon. Back in the original tableau, this does
not correspond to the i, i-ribbon that we follow in case L2(c) of Definition 3.5.
However, the terminal points for those ribbons, different in the two cases, in
fact correspond. Therefore, the operators agree in their resulting actions. �

4. Crystals for the Quantum Queer Lie Superalgebra

Recently, Grantcharov, Jung, Kang, Kashiwara, and Kim [10] developed crys-
tal bases for the quantum queer superalgebra. In this section, we review the
queer crystal theory arising from Uq(q(n)) from the combinatorial viewpoint.
In Sect. 4.1, we review queer crystal bases and define normal queer crystals as
those arising from tensor products of the standard queer crystal. In Sect. 4.2,
we augment our crystal operators on semistandard shifted tableaux with an ad-
ditional operator that results in a connected, normal queer crystal. In Sect. 4.3,
we formulate an alternative local axioms for normal queer crystals, analogous
to that of Stembridge [36], toward a means to prove that a given queer crystal
structure is normal.

4.1. Queer Crystals

Using notation and terminology from Sect. 2.1, the dominant weights Γ+ ⊂ Λ
are those λ ∈ Λ, such that λ1 ≥ λ2 ≥ · · · ≥ λr+1 ≥ 0 and λi = λi+1 implies
λi = · · · = λr+1 = 0. In other words, Λ+ is to partitions as Γ+ is to strict
partitions. We have the following combinatorial definition for queer crystals,
augmenting Definition 2.1.

Definition 4.1. [10] A queer crystal of dimension r + 1 is crystal of dimension
r + 1 together with additional queer crystal operators e0, f0 : B → B ∪ {0}
satisfying the conditions:
(1) for b, b′ ∈ B, e0(b) = b′ if and only if f0(b′) = b, and in this case, we have

wt(b′) = wt(b) + α1;
(2) for i = 3, 4, . . . , r, the operators e0 and f0 commute with ei and fi, and

if e0(b) �= 0, then ϕi(e0(b)) = ϕi(b) and εi(e0(b)) = εi(b).

For example, the standard queer crystal Q(n), for n ∈ Z>0, is the stan-
dard crystal B(n) together with queer crystal operator f0 that acts on i by
incrementing the entry if i = 1 or 0 otherwise. The standard queer crystal is
represented diagrammatically in Fig. 25 by its queer crystal graph.

The notion of highest weight elements is still vital to classifying queer
crystals, though now the concept is not as straightforward. Given a queer
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crystal Q of dimension r + 1, we define automorphisms Si, for i = 1, 2, . . . , r
by:

Si =

{
f
wt(b)i−wt(b)i+1
i (b) if wt(b)i ≥ wt(b)i+1,

e
wt(b)i+1−wt(b)i
i (b) if wt(b)i+1 ≥ wt(b)i.

Kashiwara [18] showed that these operators satisfy the braid relations for
the symmetric group, therefore, to any permutation w we may define Sw by
Si1Si2 · · · Sik whenever w = si1si2 · · · sik is a reduced expression for w. For
i = 1, 2, . . . , r, define the odd crystal operators ei, fi by:

e1 = e0 f1 = f0 ei = Sw−1
i

e0Swi
fi = Sw−1

i
f0Swi

for i > 1, (4.1)

where wi = s2 · · · sis1 · · · si−1 is the shortest (in Coxeter length) permutation,
such that wi · αi = α1.

An element b ∈ Q of a queer crystal is a highest weight element if ei(b) =
0 = ei(b) for all i = 1, 2, . . . , r. Notice this definition requires consideration of
all of the odd crystal operators, and not simply the queer operator e0.

Again, one of the motivating goals of crystal theory is to use these com-
binatorial objects to study tensor representations of the queer superalgebra;
therefore, again, we must restrict our attention to normal queer crystals. Con-
nected normal queer crystals are in one-to-one correspondence with dominant
weights Γ+, which in turn index irreducible representations for the queer su-
peralgebra. Given a dominant weight γ ∈ Γ+, let Q(γ) denote the connected
normal crystal with highest weight γ. Then, ch(Q(γ)) is precisely the charac-
ter of the irreducible representation indexed by γ, which corresponds to the
Schur-P polynomial Pγ(x1, . . . , xr+1). As in the classical case, we have the
remarkable fact that the following combinatorial procedure on queer crystals
corresponds to the tensor product of the corresponding representations.

Definition 4.2 [10]. Given two queer crystals Q1 and Q2, the tensor product
Q1 ⊗ Q2 is the set Q1 ⊗ Q2 together with crystal operators ei, fi are defined
on the tensor product Q1 ⊗ Q2 by Definition 2.2 for i = 1, 2, . . . , r, and for
i = 0, we have the additional rule:

f0(b1 ⊗ b2) =
{

f0(b1) ⊗ b2 if wt(b2)1 = wt(b2)2 = 0,
b1 ⊗ f0(b2) otherwise. (4.2)

For example, Fig. 26 computes the tensor product of two copies of the
standard queer crystal Q(3).

As the crystal operators ei and fi for i > 1 are defined as a combination
of other operators, they can alter both sides of the tensor. For example, we
have:

f2

((
1 ⊗ 3

)
⊗ 2

)
=

(
3 ⊗ 3

)
⊗ 1 .

Nevertheless, we consider the following analog of Definition 2.3.

Definition 4.3. A connected normal queer crystal of dimension r+1 and degree
k is a connected component in Q(r + 1)⊗k, the k-fold tensor product of the
standard crystal Q(r + 1).
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Figure 26. The tensor product of two standard queer crys-
tals for Uq(q(3))

For example, Fig. 26 constructs the unique normal queer crystal of di-
mension 3 and degree 2, namely Q((2, 0, 0)), from the tensor product of two
copies of the standard queer crystal Q(3) = Q((1, 0, 0)).

4.2. Queer Crystals for Shifted Tableaux

Sergeev [32] established that the characters of irreducible tensor representa-
tions for the queer superalgebra are Schur P -functions. Grantcharov, Jung,
Kang, Kashiwara, and Kim [10] developed crystal bases for the quantum queer
superalgebra and gave an explicit construction of the queer crystal on semis-
tandard decomposition tableaux, the latter being another combinatorial model
for Schur P -polynomials introduced by Serrano [33]. Grantcharov, Jung, Kang,
Kashiwara, and Kim raised the question of whether an explicit queer crystal
could be defined directly on semistandard shifted tableaux. To answer this
affirmatively, we have the following construction building on the crystal graph
defined in Sect. 3.2.

Note that in a semistandard shifted tableau, both 1 and 2 can only be used
in the first row, and any cell on the second row is at least 2. This observation
ensures the shifted queer lowering operator below is well defined and acts only
in the first row.

Definition 4.4. The queer lowering operator, denoted by f0, acts on semistan-
dard shifted tableaux by: if T has no cell labeled 1 or if T has a cell labeled 2,
then f0(T ) = 0; otherwise f0(T ) changes the rightmost 1 in the first row of T
to 2 if it is on the main diagonal and to 2 otherwise.

For examples of the queer lowering operator on semistandard shifted
tableaux, see Figs. 27 and 28.

The f0 edges may be identified from the normal crystal by connecting
T1 → T2 if T1 and T2 differ in only one, which is labeled 1 in T1 and 2 in T2 if
the cell is not on the main diagonal, 2 if it is.
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Figure 27. The queer crystal structures on semistan-
dard shifted tableaux of shape (2, 1) and (3) with entries
{1, 1, 2, 2, 3, 3} and no marks on the main diagonal

Definition 4.5. The queer raising operator, denoted by e0, acts on semistan-
dard shifted tableaux by: if T has no cell labeled 2 and the leftmost entry of
the first row is not 2, then e0(T ) = 0; otherwise, e0(T ) changes the leftmost 2
in the first row of T , if it exists, or the leftmost entry in the first row, otherwise,
to 1.

As required for a queer crystal, the queer raising and lowering operators
are inverse to one another.

Proposition 4.6. The queer raising and lowering operators satisfy e0(T ) = T ′

if and only if f0(T ′) = T .

Proof. Suppose e0(T ) = T ′. Since T is a semistandard shifted tableau, it has
at most one 2 in its first row. There are two disjoint cases: either (i) T has a 2
in its first row, or, since e0(T ) �= 0, (ii) the leftmost entry in the first row is 2.
For case (i), e0 changes the 2 in T to become the rightmost 1 in T ′; therefore,
f0 will act non-trivially on T ′ by changing this entry back to 2. For case (ii),
e0 changes the leftmost entry in the first row to a 1 in T ′; therefore, f0 will
act non-trivially on T ′ by changing this entry back to 2. Thus, f0(T ′) = T .

Suppose f0(T ′) = T . Since f0(T ′) �= 0, T ′ must have a 1 and no 2 in the
first row. Again, we have two disjoint cases: either (i) T has a unique 1 in its
first row on the main diagonal, or (ii) the rightmost 1 in the first row of T is
not on the main diagonal. For case (i), f0 changes the unique 1 to a 2 in T ;
therefore, e0 will act non-trivially on T by changing this entry back to 1. For
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Figure 28. The queer crystal structure on semistandard
shifted tableaux of shape (3, 1) with entries {1, 1, 2, 2, 3, 3}
and no marks on the main diagonal

case (ii), f0 changes the rightmost 1 in T ′ to a 2 in T ; therefore, e0 will act
non-trivially on T by changing this entry back to 1. Thus, e0(T ) = T ′. �

As we saw in the example for γ = (3, 1) in Fig. 8, the normal crys-
tal (SSHTn(γ), {ei, f i}1≤i<n,wt) is not always connected. However, the queer
crystal obtained by augmenting this with the queer raising and lowering oper-
ators is connected. For example, see Fig. 28.

Lemma 4.7. For a strict partition γ, let T ∈ Yam(γ) have the smallest primed
entry given by k + 1 for some k ≥ 2. Then, Swk

(T ) has a coordinate labeled 2.

Proof. Let (a1, a2, . . . , an) denote the weight of T . Consider boxes on T with
labels ≤ k. As T ∈ Yam(γ), we have mi(T ) = 0 for all i; therefore, these
boxes form a sub-diagram θ of size (a1, a2, . . . , ak) with all the boxes on row
i are labeled i, as illustrated in the left tableau of Fig. 29. Note that we have
a1 > a2 > · · · > ak ≥ ak+1.

Let T ′ denote Sk−1Sk−1 · · · S1(T ). Then, T ′ has weight (ak, a1, a2, . . .
ak−1, ak+1, ak+2, . . . an) and outside θ it matches T exactly. On θ, the ith
row has ak cells labeled i, one cell labeled i + 1 and ai − ak − 1 cells labeled
i + 1 for all i < k, and the kth row contains ak cells labeled k. In particular,
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Figure 29. An example for Lemma 4.7, with the outside of
θ shown in gray

the k + 1st southwest to northeast diagonal is formed by the primed entries
2, 3, . . . , k. The operation SiSi+1 . . . Sk(T ′) preserves the cell labeled i on the
said diagonal, as well as all entries with labels less than i. This implies that
Swk

(T ) = S2S3 . . . Sk(T ′) contains an entry marked 2. �

Theorem 4.8. For γ a strict partition, the shifted and queer raising and low-
ering operators ei, f i for i = 1, 2, . . . , r and e0, f0 define a connected, normal
queer crystal on SSHTr+1(γ).

Proof. Note that without the shifted raising and lowering operators, we have
a collection of crystals connected to highest weights T ∈ A(γ). We will show
that with the added shifted operators, the shifted tableaux T with weight γ is
the unique highest weight element, implying that the crystal is connected. Let
T ∈ A(γ) be a Yamanouchi shifted tableau with wt(T ) �= γ. By Lemma 3.17,
any unmarked entry in row i must equal i, so T must contain a marked entry. If
T contains a cell labeled 2, e1(T ) �= 0 is an element of higher weight. Otherwise,
let k > 2 denote the smallest primed entry in T . By Lemma 4.7, Swk

(T )
has a coordinate labeled 2, so e0Swk

(T ) �= 0 and consequentially ek(T ) �= 0.
Therefore, the graph is connected.

Definition 4.1 holds for the shifted raising and lowering operators by The-
orem 3.10 and for the queer raising and lowering operators by Proposition 4.6.
To see that the queer crystal is normal, by Proposition 3.19, we know that
applying Sagan’s shifted insertion to the word bn . . . b2b1 results in a shifted
tableau that can be identified with the type A crystal basis b1 ⊗ b2 ⊗ · · · ⊗ bn.
We show by induction that our queer operator defined directly on shifted
tableaux agrees with Definition 4.2, noting that the base case follows immedi-
ately from the standard queer crystal. Consider, then, a shifted tableau T of
degree n − 1 ≥ 1. By Definition 4.2, we have:

f0
(
i ⊗ T

)
=

⎧⎪⎪⎨
⎪⎪⎩

2 ⊗ T if i = 1 and wt(T )1 = wt(T )2 = 0,
0 if i ≥ 2 and wt(T )1 = wt(T )2 = 0,
0 if f0(T ) = 0 and either wt(T )1 > 0 or wt(T )2 > 0,

i ⊗ f0(T ) if f0(T ) �= 0.

(4.3)

Consider the shifted insertion of i into T , denoted by T ← i. If wt(T )1 =
wt(T )2 = 0, then inserting 1 into T has the same bumping path as inserting 2
into T , since all letters of T are larger than both 1 and 2. Therefore, T ← 2 is
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precisely T ← 1 with the 1 changed to a 2. In particular:

f0(T ← 1) = T ← 2 whenever wt(T )1 = wt(T )2 = 0.

Similarly, if wt(T )1 = wt(T )2 = 0, then T ← i has no entry equal to 1 for
i ≥ 2, and so:

f0(T ← i) = 0 whenever wt(T )1 = wt(T )2 = 0 and i ≥ 2.

If f0(T ) = 0 and either wt(T )1 > 0 or wt(T )2 > 0, then either T has an entry
2 in the first row, or T has only entries weakly greater than 2 in the first row.
In these cases, T ← i will have the same property for i ≥ 2. For T ← 1, the 1
will either bump the 2, if it exists, or will bump a 2 in the first row, if it does
not, with the result that T ← 1 will have a 2 in the first row. Therefore, in all
cases:

f0(T ← i) = 0 whenever f0(T ) = 0 and either wt(T )1 > 0 or wt(T )2 > 0.

Finally, if f0(T ) �= 0 and either wt(T )1 > 0 or wt(T )2 > 0, then we must
in fact have a 1 in the first row and no 2 in T . In this case, T ← i will not
affect any entries 1, 2, or 2 in T for i ≥ 3, and for i ≥ 2 will at most insert an
additional 2. In these cases, the rightmost 1 of T changing to 2 does not alter
the insertion path, so f0(T ← i) = f0(T ) ← i. For the case T ← 1, the inserted
1 might bump a 2, but in so doing pushes it to a higher row, since the 2 cannot
be on the diagonal in the first row (since T has a 1). Similarly, the insertion
f0(T ) ← 1 will have the 1 bump the newly created 2 which will then follow
the bumping path of T ← 1. Thus, again, we have f0(T ← 1) = f0(T ) ← 1,
and so:

f0(T ← i) = f0(T ) ← i whenever f0(T ) �= 0.

Therefore, we have shown the following:

f0 (T ← i) =

⎧
⎪⎪⎨
⎪⎪⎩

T ← 2 if i = 1 and wt(T )1 = wt(T )2 = 0,
0 if i ≥ 2 and wt(T )1 = wt(T )2 = 0,
0 if f0(T ) = 0 and wt(T )1 > 0 or wt(T )2 > 0,
f0(T ) ← i if f0(T ) �= 0.

(4.4)

The result follows by comparison of cases between (4.3) and (4.4) and induction
on n. �

Using the odd crystal operators ei, we may characterize our normal queer
crystals on semistandard shifted tableaux by their highest weights. For exam-
ple, removing the f0 edges and inserting edges f1 = f0 and f1 = S1S2f0S2S1

for the queer crystal for SSHT3(3, 1) result in the crystal shown in Fig. 30,
which clearly have a unique highest weight.

Immediate from Definition 4.3, the tensor product of two normal queer
crystals is again a normal queer crystal. This gives an explicit formula for the
Schur P -expansion of a product of Schur P -polynomials.
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Figure 30. The queer crystal (SSHT3(3, 1), {f1, f1, f2, f2},wt)

Corollary 4.9. For γ, δ strict partitions, we have:

Pγ(x1, . . . , xn)Pδ(x1, . . . , xn) =
∑

(S,T )∈SSHT(γ)×SSHT(δ)
ei(S⊗T )=0=ei(S⊗T )∀i

Pwt(S)+wt(T )(x1, . . . , xn),

(4.5)

where the sum of weights is coordinate-wise. In particular, the product of Schur
P -polynomials is Schur P -positive with coefficients given by:

f ε
γ,δ = #{(S, T ) ∈ SSHT(γ) × SSHT(δ) | wt(S) + wt(T )

= ε, ei(S ⊗ T ) = 0 = ei(S ⊗ T )∀i}. (4.6)

4.3. Local Characterization for Queer Crystals

Following Stembridge [36], we desire a local characterization of normal queer
crystals to aide in proving that a given queer crystal is, in fact, normal.

To this end, a queer graph of dimension r+1 will mean a directed, colored
graph Y with directed edges ei(x) i−→x

i−→fi(x) for i = 0, 1, 2, . . . , r, and we
adopt notation from Sect. 2.3. Every queer crystal gives us a queer graph.

Definition 4.10. A queer crystals graph Y is a queer regular graph if the fol-
lowing hold:
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(B0) The subgraph Y+ generated by edges with non-zero labels is a regular
graph.

(B1) all 0 paths have length 1, and ε0(x) + ϕ0(x) = 1 if and only if wt1(x) +
wt2(x) > 0;

(B2) for every vertex x, there is at most one edge x
0←−y and at most one

edge x
0−→z;

(B3) assuming that e0x is defined, Δ0εi(x) + Δ0ϕi(x) =

⎧
⎨
⎩

2 if i ≤ 1
−1 if i = 2

0 if i ≥ 3
;

(B4) assuming e0x is defined,
Δ0εi(x) ≥ 0,Δ0ϕi(x) > 0 if i = 1
Δ0εi(x) ≤ 0,Δ0ϕi(x) ≤ 0 if i = 2
Δ0εi(x) = 0,Δ0ϕi(x) = 0 if i ≥ 3;

(B5) for i ≥ 2 eix = e0y = z ⇒ fif0z = f0fiz;
For i = 1 or i ≥ 3 fix = f0y = z, x �= y ⇒ eie0z = e0eiz;

(B6) assuming that e0x is defined,
Δ0ε1(x) = 1 ⇒ ϕ1(x) = 0 and e1x = e0x
Δ0ϕ2(x) = 0 ⇔ ϕ2(x) = 0 .

Axiom B0 relies on Stembridge’s characterization of regular graphs (Def-
inition 2.10). The other six axioms in Definition 4.10 give the analog of the
corresponding axioms in Definition 2.10 for the queer raising and lowering
operators. To begin to justify our definition, we have the following result.

Theorem 4.11. Every normal queer crystal is a regular queer graph.

Proof. Axioms B0 and B2 follow directly from the definition of queer crystals.
Also, for any i ≥ 3, the operators ei and f i only affect cells labeled i, i, i + 1
or i + 1, so they are fully independent of the queer operators e0 and f0. This
is enough to establish the statements for i ≥ 3; therefore, we need only look
at how 0 moves interact with 1 and 2 paths.

For axiom B1, assume that f0(x) = y. Then, either y contains a 2 or the
leftmost box on its first row is labeled 2. In either case we have f0y = 0, so all
0 strings have length 1, and ε0(x) + ϕ0(x) ≤ 1. For the second part, assume
ε0(x) + ϕ0(x) = 0. Then, e0(x) = 0, so x contains no 2, and f0(x) = 0 implies
x contains no 1. Also the leftmost box of the first row of x cannot be 2 as
e0(x) = 0, so x contains no 2 either.

For axioms B3, B4, and B6, recall ϕi(T ) = mi(T ) and εi(T ) is equal to
the difference between the number of i + 1s and the number of is to the right
of wq, where q is the largest index, such that mi(w(T ), q) = mi(w(T )) > 0 ( if
mi(w(T )) ≤ 0, εi(T ) is the difference between the total number of i + 1s and
the total number of is). First, consider how e0 affects the 1-string. Assume
e0(x) = y. Then, y contains no 2, and at least one 1. If it contains a single
1, it is on the main diagonal, and f0 changes to a 2, so that we have e1(x) =
e0(x) = y, and (B1) implies Δ0ε1(x) = Δ0ϕ1(x) = 1. Note that in this case
m1(w(x)) = ϕ1(x) = 0. If y contains k > 1 cells labeled 1, e0 acts by changing
the rightmost 1 to a 2′. The length of the ε1 string is given by the number of
2s on the first row and remains unchanged. The m1 value is decreased by 2 as
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the rightmost 1 is deleted, and replaced with a 2 that comes to the left of all
other 1s in the reading word. In this case, we have Δ0ε1(x) = 2, Δ0ϕ1(x) = 0.

Now, let us look at the possibilities for Δ0ϕ2(x) and Δ0ε2(x). Assume
that e0(x) = y. Note that the difference between the reading words of x and y
is that we have one less 2 and an extra 1. If f2(x) = 0, then f2(y) = 0 as well,
and the difference between the total number of 3s and 2s is increased by one,
which means that Δ0ϕ2(x) = 0 and Δ0ε2(x) = −1. This deals with the case
ϕ2(x) = 0. Let us now assume ϕ2(x) = k > 0. Assume that q is the largest
index where m2 is achieved. If x has a 2′, that comes before all the other 2
in the reading word. Otherwise, x has no cells labeled 1, so the second row
contains no 2, and the leftmost 2 on the first row comes before all other 2 on
the reading word. In both cases, the 2 that turns in to 1 with the e0 move has
an index ≤ q, so the e0 move increases m2 by 1, and does not change ε2. We
have Δ0ϕ2(x) = −1 and Δ0ε2(x) = 0.

Finally, for axiom B5, let us first assume that we have e2(x) = e0(y) = z.
The action f0 on z creates a new 2 or 2 that comes before all the other 2
on the reading word, so f2(y) is defined, and the algorithm selects the same
cell labeled 2 as in f2(z). Furthermore, as the moves (L1) are independent
of the changes happening strictly to the left and weakly below the selected
cell, it commutes with the action of (f0): f0(f2(z)) = f2(f0(z)). Now, let us
assume f1(x) = f0(y) = z with x �= y. As there can be no cells labeled 2 on
the second row, and no cells labeled 1 anywhere on a shifted tableaux, f1 acts
on x by (L1) a,b or d of Definition 3.5. We can further eliminate (L1) b and
(L1) d, as x �= y. Therefore, the first row of z contains a 2 adjacent to a 2.
e1(e0(z)) = e0(e1(z)) gives the tableaux where both these entries are replaced
with 1. �

Similar to Fig. 7 giving a graphical illustration of the local connected
component of a regular crystal when considering only two string colors, the
following two lemmas give graphical illustrations of the local structure of a
regular queer crystal for two color components involving 0 edges.

Lemma 4.12. Connected components of the subgraph generated by f0 and f1 of
a regular queer graph are of the form shown in Fig. 31.

Proof. By (B3), every connected component will have at least one 1 edge.
Consider a maximal 1 string of length k ≥ 1 on a connected component. Let
x be the on this string with ϕ1(x) = 0.

If f0x = y for some y, then as ϕ1(y) cannot be less than 0, Δ0ϕ1(x) = 0
by (B4). This cannot happen as Δ0ε1(x) = 2 would imply y is on a longer
1 string. Therefore, f0x = 0, and by (B1), there exists y, such that e0x = y.
If e1x �= y, by (B5), there exists z that z = e0e1x = e1(e0(x)). This cannot
happen either, as in this case, we would have ϕ1(e0(x)) �= 0,Δ0ε1(e0(x)) = 2
implying that ϕ1(x) ≥ 1.

Therefore, we must have e0(x) = e1(x). If k = 1, we are done. If k > 1,
consider z = e1(e1(x)). By (B1), either e0(z) or f0(z) exists. If e0(z) existed,
by (B6), we would have Δ0ε1(e0(x)) = 2, Δ0ϕ1(e0(x)) = 0, contradicting the
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Figure 31. Possible connected components for f0 and f1 in
a regular queer graph

maximality of the 1 string. Then, f0(z) exists and is not equal to f1(x) as 0
strings have length 1. f0(z) satisfies ϕ1(f0(x)) = k − 2 and ε1(f0(z)) = 0, so
it is on a 1 string of size k − 2, and the strings are connected as shown in the
diagram by (B5). �

Lemma 4.13. Connected components of the subgraph generated by f0 and f2 of
a regular queer graph are of the form shown in Fig. 32, with optional f0 edge
presented by dashed lines.

Proof. For a connected component, let x be on a maximal 2 string with ε2(x) =
0, ϕ2(x) = k > 0. By (B1), either f0(x) or e0(x) is non-zero. The first is not
possible, as z = f0(x) and ϕ2(z) ≤ k imply Δ0ε2(z) = ε2(z) = −1, which is
impossible. Therefore, we must have some z = e0(x). By (B6), Δ0ϕ2(x) = −1,
so that ϕ2(y) = k − 1. (B4) implies that all the edges on the 2 string of y will
commute with 0 edges.

As any 0 string is of length 1, if w := fk
2 (x) is not connected to any 0

edges, we are done. There cannot be an edge e0(w) by maximality of k. If there
is a vertex f0(w), then by maximality of k, ε2(f0(w)) = k−1. As f0(f0(w)) = 0,
if k > 1, the 2 string of f0(w) needs to be connected to a k − 2 string by 0
edges that commute with 2 edges, completing the connected component. �

Combining Lemmas 4.12 and 4.13, we have the following simple charac-
terization of regular queer graphs.

Corollary 4.14. A regular crystal with 0 strings of length 1 is a regular queer
graph if and only if connected 0−1 components are characterized as in Fig. 31,
connected 0−2 components are characterized as in Fig. 32 and 0 edges commute
with i strings for i > 2.
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Figure 32. Possible connected components for f0 and f2 in
a regular queer graph

Finally, the converse of Theorem 4.11 holds in some small cases, as well.

Proposition 4.15. Every regular queer graph of degree 3 is a normal queer crys-
tal.

Proof. Let v be a highest weight vertex (a priori not necessarily unique) of a
connected, regular queer graph of degree 3. By axiom (B5), all edges fi for
i ≥ 3 commute with f0, so it is enough to consider dimension 3, as well. In
this case, v has two possible weights, (2, 1, 0) or (3, 0, 0).

Consider first the case of wt(v) = (2, 1, 0). As every regular queer graph
is a regular graph when f0 is ignored, we must have f1 and f2 as shown in the
left side of Fig. 33. Note that e0(v) = 0 as it is a highest weight, and ϕ1(v) = 1,
so we must be in case k = 1 of Fig. 31. Therefore, f0(v) = f1(v). Similarly, as
an e0 move from a vertex of weight (1, 0, 2) is not possible, that vertex also has
an f0 edge that commutes with the f1 edge, as shown in the center of Fig. 33.
By axiom (B5) of Definition 4.10, the vertex with weight (2, 0, 1) has an f0
edge satisfying f0(f2(v)) = f2(f0(v)). As this f0 edge decreases the 1-head by
2, we must be in case k = 2 of Fig. 31 which gives us the final f0 edge as
shown in the right side of Fig. 33. Note that as all 0-strings are of length 1,
no more edges are possible. Therefore, the graph is exactly the normal queer
crystal with highest weight (2, 1, 0) seen in Fig. 27.

Consider last the case of wt(v) = (3, 0, 0). Again, since every regular
queer graph is a regular graph when f0 is ignored, we must have f1 and f2
as shown in the left side of Fig. 34. Since e0(v) = 0 and ϕ1(v) = 3, we
must be in case k = 3 of Fig. 31. Therefore, we must have another vertex,
say w, not on this component, of weight (2, 1, 0), such that f0(v) = w and
e1(w) = 0. Since w is on a regular crystal, it must be a highest weight, and
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Figure 33. Constructing the unique regular queer graph
with highest weight (2, 1, 0), where the weights of the vertices
are indicated

Figure 34. Constructing the unique regular queer graph
with highest weight (3, 0, 0), where the weights of the vertices
are indicated

so we have the vertices depicted on the right of Fig. 34. Applying Fig. 31,
we have f0(f1(v)) = f1(f0(v)) = f1(w) and f0f

3
1 (v) = f1f0f

2
1 (v). Applying

Fig. 32 to force f0f2 = f2f0 whenever both are defined at a vertex results in
the situation depicted in the right side of Fig. 34.

By axiom (B5), we must have e0(f2(w)) = 0. Since ϕ1(f2(w)) = 2, we
must be in case k = 2 of Fig. 31, and so we must have another vertex, say x, not
yet in the picture, of weight (1, 1, 1), such that f0(f2(w)) = x and e1(x) = 0.
By Fig. 32, we must also have e2(x) = 0. Therefore, since x is on a regular
crystal of dimension 3, it is a highest weight, and so f1(x) = f2(x) = 0. This
completes the picture, and we have a graph isomorphic to the normal queer
crystal with highest weight (3, 0, 0) seen in Fig. 27. �

As noted in the introduction, our original announcement of our construc-
tions and results [1] conjectured that every queer regular graph is a normal
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queer crystal. However, this is not the case, as shown by Gillespie, Hawkes,
Poh, and Schilling [8] (Fig. 3).

The primary difference between our characterization and that of Stem-
bridge [36], is that we do not give explicit conditions for when the potential
0-edge (dashed in Fig. 32) is present or not for the f0, f2 components of the
queer crystal. Moreover, we do not directly state conditions for the other odd
queer operators. We believe that doing so will lead to a full characterization
of normal queer crystals. As demonstrated in our use of Stembridge’s axioms
to prove our shifted crystal operators form a crystal, such a characterization
will provide a powerful tool in the study of Schur P -positive polynomials.

Publisher’s Note Springer Nature remains neutral with regard to jurisdic-
tional claims in published maps and institutional affiliations.
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