European Journal of Combinatorics 86 (2020) 103085

Contents lists available at ScienceDirect European Journal

of Combinatorics

European Journal of Combinatorics

journal homepage: www.elsevier.com/locate/ejc

Flagged (P, p)-partitions™ N

Check for
updates

Sami Assaf*!, Nantel Bergeron "
2 Department of Mathematics, University of Southern California, 3620 S. Vermont Ave,
Los Angeles, CA 90089-2532, USA

b Department of Mathematics and Statistics, York University, 4700 Keele St, Toronto,
Ontario M3] 1P3, Canada

ARTICLE INFO ABSTRACT

Article history: We introduce the theory of (P, p)-partitions, depending on a
Received 3 June 2019 poset P and a map p from P to positive integers. The generating
Accepted 18 January 2020 function §p, of (P, p)-partitions is a polynomial that, when

Available online 5 February 2020 the images of p tend to infinity, tends to Stanley’s generating

function of 7-partitions. Analogous to Stanley’s fundamental
theorem for P-partitions, we show the set of (P, p)-partitions
decomposes as a disjoint union of (£, p)-partitions where £ runs
over the set of linear extensions of 7. In this more general
context, the set of all F. , for linear orders £ over determines
a basis of polynomials. We thus introduce the notion of flagged
(P, p)-partitions, and we prove the set of all §. , for flagged
(£, p)-partitions for linear orders £ is precisely the fundamental
slide basis of the polynomial ring, introduced by the first au-
thor and Searles. Our main theorem shows that any generating
function §p , of flagged (P, p)-partitions is a positive integer
linear combination g slide polynomials. As applications, we give
a new proof of positivity of the slide product and, motivating our
nomenclature, we also prove flagged Schur functions are slide
positive.

© 2020 Elsevier Ltd. All rights reserved.

* Both authors contributed equally in all aspects.
E-mail addresses: shassaf@usc.edu (S. Assaf), bergeron@yorku.ca (N. Bergeron).
1 sA. supported in part by National Science Foundation, USA DMS-1763336.
2 NB. supported in part by York Research Chair in Applied Algebra, Canada and NSERC, Canada.

https://doi.org/10.1016/j.ejc.2020.103085
0195-6698/© 2020 Elsevier Ltd. All rights reserved.


https://doi.org/10.1016/j.ejc.2020.103085
http://www.elsevier.com/locate/ejc
http://www.elsevier.com/locate/ejc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ejc.2020.103085&domain=pdf
mailto:shassaf@usc.edu
mailto:bergeron@yorku.ca
https://doi.org/10.1016/j.ejc.2020.103085

2 S. Assaf and N. Bergeron / European Journal of Combinatorics 86 (2020) 103085
1. Introduction

The theory of P-partitions has its origins with MacMahon [6] and was developed in depth by
Stanley [8]. There have been several applications of this theory. Notably, the theory of quasisymmet-
ric functions developed by Gessel [3] originated from the study of P-partitions. Symmetric functions
are a special case of quasisymmetric functions as can be seen by realizing Schur functions as certain
‘P-partition generating functions.

Recently, Assaf and Searles [1] (Definition 3.6) introduced Fundamental slide polynomials to
study Schubert polynomials [5]. The Fundamental slide polynomials have several interesting prop-
erties related to Schubert polynomials and certain limits related to quasisymmetric functions.
Fundamental slide polynomials, indexed by weak compositions, form a basis for the full polynomial
ring [1] (Theorem 3.9). Moreover, Assaf and Searles show the product of Fundamental slide
polynomials expands positively in terms of Fundamental slide polynomials. We see in our present
work that Fundamental slide polynomials arise naturally in a restricted version of P-partitions,
and, moreover, the positivity of the slide product naturally follows. Here, we will say only slide
polynomials as we do not use the other polynomials defined in [1].

A poset P of order p is a partial order on the set [p] = {1, 2, ..., p}. We have several orders
that come into play: < denotes the partial order on P, < denotes a cover relation in P, and <
denotes the natural order of the integers. Given p:[p] — Z any map, a function f:? — N is a
(P, p)-partition if

(1) if i < j, then f(i) < f(j),
(2) ifi <jandi > j, then f(i) < f(j), and
(3) f(@) < p(d).

Here the first two conditions alone characterize classical P-partitions [8].
The generating function §» , of (P, p)-partitions is the polynomial

Spp = Z X - Xf(p)»

fedtp(P)

where «,(P) denotes the set of all (P, p)-partitions. In Section 3.2 we show we have a decompo-
sition

P = || ). (1.1)

LeZL(P)

where the disjoint union is over the set .#(P) of linear extensions of P. This implies 5 , is a positive
linear combination of §. , where £ are linear orders. Unfortunately, the set {§. ,} as £ runs over
all linear orders on [p] and p is any restriction does not form a basis of polynomials. This leads us
to restrict further the restriction maps p that we use.

We say a restriction map p is a P-flag if p(i) > 0 for all i € [p], and

(i) ifi < jand i < j, then p(i) = p(j), and
(ii) if i < j and i > j, then p(i) < p(j).

When p is a P-flag, we say «/,(P) is the set of flagged (P, p)-partitions. In Section 3.1, we show the
set {§.,,} as £ runs over all linear orders on [p] and p over all £-flags is exactly the set of slide
polynomials as defined in [1]. In particular this set is a basis for polynomials. The main theorem of
this paper, proved in Section 4.1, states:

Theorem 1.1. For any P on [p] and P-flag p, the polynomials Fp , expand positively in the basis of
slide polynomials.

We note if p is not a P-flag, then theorem above is false. Even for linear orders £, if p is not an
£-flag, then F. , will in general have negative coefficients.

There are several consequences of our main theorem; we mention two. First, an immediate
application of the theorem is a new proof that the product of two slide polynomials is a positive
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Fig. 1. An example of a labelled poset of order 7, with edges decorated by the conditions on a map to be a 7-partition.

linear combination of slide polynomials. Second, the theorem shows the flagged Schur functions
of Lascoux and Schiitzenberger [5,9] expand positively in terms of slides polynomials. The latter
motivates for the term flag used for the subset of (P, p) partitions we study.

2. Stanley’s theory of P-partitions

Before delving into the details of this new theory of (P, p)-partitions, we begin with a brief
review of Stanley’s theory of P-partitions and its consequences. For a comprehensive survey of
‘P-partitions, see [4].

Definition 2.1. Given a poset P on [p], a P-partition is a map f: P — N such that for alli,j € P
we have

(1) if i <j, then f(i) < f(j), and
(2) ifi <jand i > j, then f(i) < f(j).

If Y, f(i) = n, then f is a P-partition of n.

For example, the poset with Hasse diagram shown in Fig. 1 has edges indicating relations
between f(i) and f(j) that any P-partition f must satisfy.

Let «7(P) denote the set of P-partitions. Then we may define the generating function of a poset
P by

Fp= Y XX (2.1)
fedt (P)

2.1. Linear P-partitions

As we will see below in the Fundamental Theorem of P-partitions, linear orders are of particular
interest.

Given a linear order £, we say i < j is a descent whenever i > j. A strong composition is a finite
sequence of positive integers, and we use «, 8, y for strong compositions. We record descents of £
with the descent composition as follows.

Definition 2.2. For £ a linear order on [p], the descent composition of £, denoted by Des(£), is
formed by removing the edge in the Hasse diagram between i and j whenever a cover i < j is
such that i > j, calling the resulting chains Cy, ..., C; taken in ascending order in £, and setting
Des(£)s = |Cs|. We have Des(£) is a strong composition of p.
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Example 2.3. Let £ be the linear order 2 <5 <1 <4 <6 <7 < 3 < 8 < 9. Then the chains
after removing edges for descents become

C] C2 C3
—— — ——
2<5 1<4<6<7 3<8<9.
Therefore Des(£) = (|C4], |G|, |C3]) = (2, 4, 3).

Gessel [3] observed for £ a linear order, the function F. depends only on Des(£). This led him to
introduce the fundamental quasisymmetric functions [3], indexed by strong compositions, that form
an important basis for quasisymmetric functions.

Given strong compositions «, 8, we say B refines « if for all 1 < j < k, where k is the length of
o, there exist indices i; < --- < i, such that

51+"‘+/3ij=(¥1+"'+05j-

For example, (1, 2, 2) refines (3, 2) since 1+ 2 =3 and 1+ 2 + 2 = 3 + 2. However, (1, 2, 2) does
not refine (2,3) since 1 <2and 142 > 2.

A weak composition is a finite sequence of non-negative integers, and we use a, b, ¢ for weak
compositions. The flattening of a weak composition is the strong composition obtained by removing
the zeros. For example, flat(0, 3,0,2) = (3,2). We will also use the dominance order on weak
compositions defined by b > a if and only if by + --- + by > a; + - - - + a for all k. Note this is a
partial order, and the linear order given by reverse lexicographic order extends dominance order.

Definition 2.4 ([3]). For « a strong composition, the fundamental quasisymmetric function F, is given
by

F(X)= ) X2 (2.2)

flat(b) refines o

where the sum is over weak compositions b whose flattening refines «.
For example, restricting to three variables to make the expansion finite, we have

302 1 3352 1 33,2 4 43 2.2 4,2 2
F3.2)(X1, X2, X3) = X3X5 + X7X5 4 X7X5 + X7X2X3 + X1X5X5 + X{X0X5.

Proposition 2.5 ([3], p291). For L a linear order on [p], we have
Fr = FDes(L:)y (23)

where F, denotes the fundamental basis for quasisymmetric functions.
2.2. Fundamental theorem for P-partitions

Given a poset P, a linear extension of P is a linear order on [p] that extends P. For example, the
linear order 7 < 1 < 3 <5 <4 < 6 < 2 is a linear extension of the poset in Fig. 1.

Stanley proved the following result that has myriad consequences for P-partitions and their
generating functions.

Theorem 2.6 (Fundamental Theorem of P-partitions [8]). Given a poset P on [p], we have
aP)= || «0), (2.4)
LeL(P)
where the disjoint union is over the set Z(P) of linear extensions of P.
In particular, this gives a simple decomposition of the generating function of a poset as the sum

of generating functions of all linear extensions of the poset, the latter of which are elements of
Gessel’s fundamental basis.
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Corollary 2.7. Given a poset P on [p], we have

Z Fﬁ— Z Fpes(c)- (2.5)

LeZL (P LeZL(P)
For example, there are 18 linear extensions of the poset in Fig. 1, and so the corresponding
generating function is a sum of 18 terms of the fundamental basis.

An immediate and powerful consequence of Theorem 2.6 is a formula for the fundamental
expansion of a product of elements of the fundamental basis.

Corollary 2.8. Let «, 8 be two strong compositions. Choose two linear orders A and B such that
o = Des(A) and S = Des(B). Then

FyFg = FaFp = Fagp = Z Fpes(z), (2.6)
Le2L(A®B)

where A ® B denotes the partial order given by the disjoint union of A and B and where no element of
A is comparable to an element of B. The set .#(A @ B) corresponds to the shuffle product of A and B.

Example 29. leto = (2)and 8 = (2),and set A = (1 < 2)and B = (3 < 4). We do have
Des(A) = « and Des(B) = B. Since A and B are linear orders, let us represent them using words.
That is A = 12 and B = 34. Then

Aw B = {1234, 1324, 1342, 3124, 3142, 3412},

and the words we get are exactly the linear extensions of .Z#(A® B). They are distinct but could have
the same descent composition. For example Des(1324) = Des(3412) = (2, 2), hence the coefficient
of Fp 7y in the product is 2. We have

Fo)F2) = Fags = Fay) + 2F22) + F3.1) + F,3) + Fa 2,1y

Remark 2.10. At this point, it is important to notice if we order the monomials lexicographically,
then the leading term of F, is x]'x5% - - - x,* for any strong composition o = (a1, oy, . . ., ). Hence
the leading terms for the F, are all distinct as « runs over all strong compositions. This shows the
set {Fa} is linearly independent. Corollary 2.8 shows this set spans all possible products of F,’s.
Hence the set {Fa} is a basis of the algebra it generates.

For another compelling example, consider the labelled poset P, associated to a partition A,
as illustrated in Fig. 2. The generating function for P, precisely enumerates semistandard Young
tableaux, and so

1:73)L = S;, (2.7)

is the Schur function corresponding to A. Linear extensions of P, are in bijection with standard
Young tableaux, and if £ corresponds to T, then Des(£) = Des(T). Therefore the Fundamental
Theorem gives the following alternative expansion for Schur functions in terms of standard Young
tableaux first shown in [3].

Corollary 2.11. For A a partition, we have

Z FDes (28)

TeSYT(A)

where STY(A) is the set of all Standard Young Tableaux of shape .
3. (P, p)-partitions

We introduce a new generalization of P-partitions by restricting the values of the images of the
‘P-partition with an integer-valued map p on P.
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Fig. 3. An example of a poset P together with a restriction map p with restrictions indicated at each node.

Definition 3.1. Given a poset P on [p], and a map p: [p] — Z, a (P, p)-partition is a P-partition
such that f(i) < p(i) for all i € P. We denote by «/,(P) the set of all (P, p)-partitions.

Note if p(i) < 0 for some i € [p], then #,(P) = @, and so some restriction maps p are too
restrictive. Nevertheless, these are still useful to consider.

For a fixed poset P on [p], some restriction maps p are redundant. For example, if we consider
the labelled poset in Fig. 3 and a restriction map p such that p(3) = 3 and p(6) = 2, then since any
P-partition f must satisfy f(3) < f(6), the restriction on 3 can never be attained. Such redundancy
happens if for two elements i,j € P we have i < j and p(i) > p(j).

Furthermore, looking at Fig. 3, we see if we impose the restriction p(2) = 2, then a (P, p)-
partition for that 7 would need to satisfy

1<f(7)<f(4)<f(6) <f(2) = p(2)=2
which is not possible. The set «,(P) is empty unless p(i) is larger than the size of any decreasing
chain in P ending at i. To make this more general, we introduce the following definitions.
For i <jin P, define the maximum descent distance §(i, j) by
5(i,j) = max[k ’ i=ig~<ij < <ip=jand k= |{j:§> ij+1}|}. (3.1)

For example, in Fig. 3 we have §(7, 2) = 2 from the chain 7 < 4 < 6 < 2 with two descents 7 > 4
and 6 > 2.

Using this terminology, given a restriction map p for a poset P, we may define a canonical
P-weakly increasing restriction map as follows.

Definition 3.2. Given a poset 7 on [p] and a map p: [p] — Z, the maximal (P, p)-partition p” is
p” (i) = min{p(x) — 8(i, x) | i < x}. (3.2)
This is largest possible value that f(i) can take for any (P, p)-partition f.
Example 3.3. Let P be the poset in Fig. 3, and let p = (4, 6, 2, 3, 2, 3, 3) taken in the natural order.
(

2
Then since 2 and 5 are maximal elements, we have 57 (2) = p(2) = 6 and p”(5) = p(5) = 2. The
most interesting computation happens for the minimal element 7, where we have

p”(7) = min{p(x) — 8(7,x) | x=7,4,1,6,5,2} = 1
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achieved by taking x = 5. The complete example has 5” = (2, 6, 2, 3, 2, 3, 1), which is the maximal
(P, p)-partition.

Given a poset P and any map f: P — N, let comp(f) be the weak composition whose rth part
is given by ¢, = #{i € P | f(i) = r}. Then for f € «/,(P), comp(f) > comp(p”) in dominance order.
We have the following.

Proposition 3.4. Given any restriction p: [p] — N, we have «,(P) # @ if and only if o (i) > 1 for
all i € P. Furthermore, in this case, «/,(P) = o/z7(P).

Proof. By definition p” (i) is the largest possible value that f(i) can take for any (P, p)-partition
f,so if p” (i) < 0 for some i, then there are no (P, p)-partitions. Conversely, if p” (i) > 1 for all i,
then p7 (i) itself is a (P, p)-partition. The equality «,(P) = < (P) follows as 5" is the maximal
(P, p)-partition for p, and all other (P, p)-partitions must be bounded above by p”. O

We define the generating polynomial of (P, p)-partitions by

S(p.p) = Z Xp(1) - Xf(p)- (3.3)
fedtp(P)
By Proposition 3.4, we have §p ) = §(p,7) and Fp,) = 0 unless p”(i) > 1 for all minimal
elements i.

3.1. Linear (P, p)-partitions

The case of linear orders is again of particular interest. To study it, we generalize the notion of
descent compositions to account for the restriction map, giving the following two definitions.

Definition 3.5. For £ a linear order on [p] and p a restriction map satisfying p~(i) > 1 foralli € £,
we define two associated weak compositions.

(1) The reduced weak descent composition of (L, p), denoted by rdes(L, p), is formed as follows.
Remove edges between descents, i.e. whenever i < j and i > j, and call the resulting chains
Cy, ..., G in ascending order of £. For s = 1, ...,r, set ¢, = p~(ming{G}), and define the
part ¢; of rdes(£, p) to be rdes(£, p),, = |Cs| and set all other parts to 0.

(2) The weak descent composition of (£, p), denoted by des(L, p), is formed as follows. Remove
edges between i and j whenever i < j and p~(i) < p*(j), and call the resulting chains
C{, ..., C; in ascending order of £. Fors = 1,...,¢, set ¢/ = ﬁ‘:(minﬁ{cs’}), and define the
part ¢ of des(Z, p) as des(Z, p); = |C;| and set all other parts to 0.

For Definition 3.5(1), we have the same chain decomposition as in Definition 2.2. In particular,
for any restriction map p we have

flat(rdes(c, p)) = Des(L), (34)

and so rdes(£, p) encodes Des(£) along with information about the restriction p. In Lemma 3.7 we
will see that des(Z, p) is a refinement of the information in rdes(Z, p).

For a linear order £ on [p], we now always list the values of p according to the order £, not
according to the natural order on [p]. With this convention, p* is always weakly increasing in the
order of L.

< 8 < 9 and let

Example 3.6. Let £ be the linear order 2 < 5 < 1 <
= , 8) be a restriction

p = (p(2), p(5), p(1), p(4), p(6), p(7), p(3), p(8), p(9))
map. The chains after removing edges for descents become

4 <6 <7<3
(2,3,4,3,6,8,6,8
G G G

—— — ——
2<5 1<4<6<7 3<8<9.
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Note this is the same ascending chain decomposition as in Example 2.3 where we computed the
descent composition for the same linear order £. We compute o~ = (2, 2, 3, 3,5, 5, 6, 8, 8), and so
c1 = p~(2) = 2, c; = p~(1) = 3, c3 = pX(3) = 6. Therefore, rdes(Z, p) = (0, |C1], |2, 0,0, |C3]) =
(0,2,4,0,0, 3).

The chains after removing edges for i < j and 5°(i) < p*(j) become

& &4 (a4 Gy (o4
—— —— — —~ = —
2<5 1<4 6 <7 3 8<9.

p(3) =6, and c; = p(8) = 8. Therefore

We have ¢; = p(2) =2,¢; =p(1)=3,¢; =p(6) =5,¢, =
(0,2,2,0,2,1,0,2).

des(£, p) = (0, [C}I, IG,], 0, |C5], IC4l, 0, |C5]) =
Notice, when i < j and i > j, we have p°(i) < p*(j). Thus, the following lemma expresses
precisely how des(L, p) refines rdes(Z, p).

Lemma 3.7. For £ a linear order on [p] and p: [p] — N a restriction map, we have flat(des(Z, p))
refines flat(rdes(L, p)) and rdes(L, p) > des(L, p).

Proof. The chains Cy, ..., C are unions of consecutive chains Cy, ..., C;, and so (|C;],...,|C,|)
refines (|Cql, ..., |G|), proving the first statement. If for s < t, C/ is a sub-chain of C, then
¢, = p*(ming{C}}) > p“(ming{C:}) = ¢ since p* is weakly increasing with respect to £. Thus
each nonzero part of rdes(L, p) occurs weakly before all nonzero parts of des(Z, p) that refine it,
proving the second. O

Under certain assumptions on £ and p, the generating polynomial for (£, p) depends only on
the reduced weak descent composition rdes(Z, p).

Definition 3.8 ([1]). For a weak composition a of length n, the slide polynomial §, is given by

Falvr )= > KA (35)

flat(b) refines flat(a)
ba

where the sum is over weak compositions b that dominate a and for which the flattening of b refines
the flattening of a.
For example, we have
33.02) = X1%5 + X33 + X3XX3.

Note if a is a weak composition of length n with the property q; > 0 whenever a; > 0
for some i < j, then §; = Fpayq)(X1,....%y) [1](Lemma 3.8). In particular, fundamental qua-
sisymmetric polynomials are slide polynomials. Furthermore, we have the following result from
[1](Theorem 4.5).

Theorem 3.9 ([1]). For a weak composition a, we have
Jgrgogomxa(xlv cees Xm, 07 sy 0) = Fﬂat(a)(xla X2, .. ~); (36)
where 0™ x a denotes the weak composition obtained by prepending m Q’s to a.

With this in mind, we have the following generalization of Proposition 2.5.

Proposition 3.10. Let £ be a linear order on [p] and p: [p] — N a restriction map. Then rdes(Z, p) =

des(z, p) if and only if for all i < j, whenever i < j we have 5~(i) = 5 (j). Moreover, when this is the
case, we have

S(L,p) = Srdes(p)- (37)

Conversely, for any weak composition a, there exists p and £ such that . ) = Fa
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Proof. We may assume p = p* and let comp(p) = rdes(p). The condition on p ensures the chains
used to compute des(L, p) are broken only between descents, since we never have i < j, i < j, and
PE() < pE(). Thus des(Z, p) = rdes(Z, p).

Let f € #/,(L) be a (L, p)-partition and let b = comp(f). Then b > comp(p). Letting £ = {£1 <
£y < --- < {,} so that we have

fle) = fll) = -+ =< f(&p)
Al Al Al
pl) = p(L2) < p(&)

A

IA

notice ¢; < ¢;y1 implies p(¢;) = p(£iy1), and ¢; > £;,1 implies both f(¢;) < f(¢iy1) and p(¥4;) <
po(£iy1). Thus flat(b) refines flat(comp(p)). In particular, every (£, p)-partition contributes a term of
Scomp(p) = Brdes(p)- Conversely, for any weak composition b such that flat(b) refines flat(comp(p))
and b > comp(p), we may construct a unique (£, p)-partition f such that comp(f) = b.

Given a with flat(a) = («q, ..., o), we may take £ to be the linear order

p—a1+1)<---<p<p—ar—ar+1)<---<(p—0a1)<--- <1<+ <.

Then clearly Des(£) = «. If the nonzero entries of a occur at indices r; < --- < r, then we may
take p to be the restriction map such that p(i) = r; whenever i is in the jth descent chain of £. This
ensures a = comp(p) = rdes(£, p) = des(L, p), and so, by the first statement of the proposition,
Sc.p) = Sa as desired. O

Example 3.11. Given the weak composition a = (0, 2, 4, 0, 0, 3), we may realize the pair (£, p)
for which §q = F(, ) as follows. We have flat(a) = (2, 4, 3) and so we will take £ to be the linear
order

G G G
—~— — ——
8<9<4<5<6<7<1<2<3.

The nonzero entries of a occur at indices 2, 3, 6, and so we set p to be

p(8)=p(9) =2, p(4)=p(5)=p(6)=p(7)=3, p(1)=p(2)=p(3)=6.

Observe the conclusion of Proposition 3.10 does not hold in general.

Example 3.12. Take £Ltobe2 <3 < 1and p = (2, 3, 4). Then we have

2 2 2
Sic.p) = XjX2 + X7X3 + X7Xa + X1X2X3 + X1X2X4
2 2
+ X1X3X4 + X53X3 + X5X4 + X2X3X4
= F0.2,0,1) + F0,1.1,1) — T(1,1,0,1)-

In this case, p© = p but it is not constant over the increasing chain 2 < 3. Here, rdes(Z, p) =
(0,2,0,1), and indeed we see Fres(c,p) appear as a term in §. ,), but there are other terms as
well. Note as well the slide expansion is not positive.

Remark 3.13. In Remark 2.10 we saw the linear extensions of P-partitions span an algebra contain-
ing all P-partition generating functions, and this algebra has a basis consisting of linear extensions
with distinct descent compositions. Corollary 2.7 gives us a beautiful positive expansion of any
‘P-partition generating functions in terms of the fundamental basis. We aim to obtain similar results
for (P, p)-partitions, but already Example 3.12 shows we cannot expect such results for all (P, p).
While Corollary 3.15 gives a direct analogue of Corollary 2.7 expanding positively any bounded
‘P-partitions in terms of linear bounded P-partition, the example shows that, unfortunately, the
linear bounded P-partitions are not linearly independent nor positive in terms of slide polynomials.
In Section 4 we will define flagged (P, p)-partitions for which all the desired properties hold.
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3.2. Fundamental theorem for (P, p)-partitions
Stanley’s Fundamental Theorem of P-partitions holds for (P, p)-partitions as well.

Theorem 3.14 (Fundamental Theorem of (P, p)-partitions). Given a poset P on [p] and a restriction p,
we have

AP = || (0, (38)

LeZL(P)

where the disjoint union is over the set #(P) of linear extensions of P.

Proof. We proceed by induction on the number of incomparable pairs i, j in P. If there is no such
pair, then P must be a linear order, and so .#(P) = {P} and the result follow trivially. Now assume
P has some incomparable pair. Fix i < j an incomparable pair in 7. We construct two new posets
Pij and P;.; that are the transitive closure obtained by adding i < j or i > j to P, respectively. We
will show that

»Q{p(p) = <‘Z{p(7)i<j) u V‘Z{p(’Pl&j)a (3-9)

a disjoint union. The result will follow from the induction hypothesis.

Notice «,(Pisj) N #,(Pi-j) = @ since a (P, p)ixj-partition f satisfies f(i) < f(j) whereas a
(P, p)i-j-partition f satisfies f(i) > f(j). Since any relation of P is contained in both P;; and P;j,
if f € @,(Pi<j) U #,(Pisj), then f € «/,(P). The restriction p is the same function across the three
sets involved, so it has the same p-restrictions.

Now assume f € ,(P) and consider the values f(i) and f(j). If f(i) < f(j), then f € «,(Pj).
Indeed it satisfies all the conditions imposed by P plus the additional condition imposed by i < j.
Moreover the restriction imposed by p is the same on both sets. Now if f(i) > f(j), thenf € «,(P).
Such f satisfies all conditions imposed by P plus the condition imposed by i > jandi <j. O

In particular, this gives a simple decomposition of the generating function of a poset as the sum
of generating functions of all linear extensions of the poset.

Corollary 3.15. Given a poset P on [p] and a restriction p, we have

S =Y, Bicor (3.10)

LeZL(P)

Remark 3.16. The above corollary gives an efficient algorithm to program the polynomials Fp ),
especially in packages like SageMath that contains modules for orders and linear extension. But
again, be aware this does not, in general, give a decomposition into the slide polynomial basis.

4. Flagged (P, p)-partitions

Assaf and Searles [1, Theorem 3.9] showed (fundamental) slide polynomials form a basis of
polynomials, and Proposition 3.10 shows slide polynomial are (£, p)-partitions for some p and
L. However, Example 3.12 shows for some restrictions p on linear orders we do not get single
slide polynomials, and, in fact, the expansion in terms of slides polynomials may not be positive. In
this section we are interested in important subfamilies of (P, p)-partitions that will give positivity
results when expanded in the basis of slide polynomials.

4.1. Flagged and well-labelled (P, p)-partitions
The subfamily of (P, p)-partitions of interest includes the flagged Schur functions defined by

Lascoux and Schiitzenberger [5] and studied further by Wachs [9]. This motivates calling the
elements of this subfamily flagged (P, p)-partitions.
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Definition 4.1. For a poset P, a restriction p is a P-flag if p(i) > 0 for all i € [p],

(i) ifi <jand i < j, then p(i) = p(j), and
(ii) ifi <jand i > j, then p(i) < p(j).

We call «,(P) the set of flagged (P, p)-partitions to emphasize p is a P-flag.

We see in Proposition 3.10 the slide polynomials are exactly the generating functions of flagged
(L, p)-partitions for £ a linear order. To prove our main theorem, we introduce a second family of
(P, p)-partitions that we call well-labelled.

Definition 4.2. For a poset P on [p] and a restriction p, we say (P, p) is well-labelled if

(i) ifi <jand i < j, then p(i) > p(j),
(i) if i < j and i > j, then p(i) < p(j), and
(iii) for all incomparable i,j € P, if i < j, then p(i) > p(j).

The inequality p(i) > p(j) in (i) of Definition 4.2 may appear strange, but in conjunction with (iii),
it will be what we need in the inductive proof of Theorem 1.1. As we inductively construct linear
extension of P, the property of being well-labelled is preserved (see Lemma 4.5). Definition 4.1
is what we really want, but it is not preserved by the operation in Lemma 4.5. Thankfully, the
following result shows that every P-flag p generates a polynomial equal to a polynomial obtained
by a well-labelled pair (7', p’) where p’ is a P’-flag.

Proposition 4.3. Given poset P on [p] and a P-flag p, there exists a permutation r: [p] — [p] such
that

(1) pom is a w~Y(P)-flag,
(2) (==Y (P), p o ) is well-labelled, and
(3) Fp(P) = Fpor (7w~ (P)).

Proof. The Hasse diagram H(P) of P is the directed graph on [p] where we have an edge i — j
for each cover i < j. Consider the connected components My, M5, ..., M, of the directed graph
H*(P) obtained from H(P) by removing every edge i < j where i > j. The order P induces a
partial order on these connected components, and since p is a P-flag, it must be constant on each
connected component. Therefore we may re-index the components as follows. Setting m; = p(x)
for any x € M;, we may assume the M;’s are indexed in such a way that m; > my, > --- > m, and
M, - --M;M; is a linear extension of the P-induced order on the M;’s.
Define a permutation 7 on [p] such that for 1 < k < £ we have

(@) {7 (IMy] + -+ + M1l + 1), ..., w(IMy] + - - - + [M])} = My, and
(b) w(IMyf + -+ + [Mgal + 1) < -+ < w(IMa] + - - - + [Mi]).

We claim 7 has the desired properties. To see p o m is a 7w~ !(P)-flag, suppose i ~<g-1(py J OF,
equivalently, 7 (i) <p 7 (j). If 7(i) < 7(j), then 7 (i) and 7 (j) are in the same component M, and so
we must have i < j as well by (a) and (b). Conversely, if 7 (i) > 7(j), then since p is a P-flag, we
have p(7(i)) < p((j)) placing 7 (i) in a later component than 7 (j) by our indexing choice, and so
i>].

To see 7w~ !(P) is well-labelled by p o 7, notice conditions (i) and (ii) of Definition 4.1 imply
conditions (i) and (ii) of Definition 4.2. For (iii), suppose i and j are incomparable in 7 ~'(?) with
i < j. If m(i), #(j) are in the same component My, then p o (i) = p o 7(j). Otherwise, since i < j,
we must have (i) in an earlier, and thus greater, component than 7 (j), and so p o 7 (i) > p o 7(j),
as desired.

Finally, to see the partition generating functions coincide, regarding the nodes of P as fixed, as
we permute their labels with 7!, we correspondingly permute the restrictions so that the latter
remain fixed with each node. Thus the set of (P, p)-partitions is identical to that of (x~'(P), p o
7 )-partitions. O
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4> <4 4> <4
OF oF
4> 1>
oF oF

@ @+ -0 O

Fig. 4. An example of a poset P together with a P-flag p (left) and the poset 7 ~!(P) well-labelled by p o 7 (right).

Example 4.4. Consider the poset P in Fig. 4. The connected components of H*(P) are M; =
{1, 2,5}, M, = {3, 6}, M3 = {4} and M4 = {7}. The P-flag p is constant on each component with val-
ues my = 4, my = 4, m3 = 2 and my = 2. The indexing is valid since 4 > 4 > 2 > 2 and MsM3M,M;
is a linear extension of the P-induced order on the components. The permutation 7 is given by

(1 2 3 4 5 6 7
T=\1 2 536 47
with result that 7 ~!(P) is well-labelled by p o 7, as seen in Fig. 4.

In view of Proposition 4.3, to prove our Main Theorem 1.1, we can always assume we have a
well-labelled flagged (P, p). The next result is the heart of the proof; it relies on the Fundamental
Theorem 3.14 for (P, p)-partitions.

Lemma 4.5. Let P be a poset on [p] and p a map such that (P, p) is well-labelled. For any incomparable
pair i, j € [p], let P; = Pis; and P, = P, be the transitive closure obtained by adding i < jori > j to
P, respectively. Then (P1, p) and (P, p) are both well-labelled.

Proof. Since i and j are incomparable in P with i < j, and (P, p) is well-labelled, we must have
p(i) = p(j). We claim i < j in P; = P, since otherwise any intermediate k would already exist
in P, contradicting the incomparability of i and j. Therefore i < j, i < j and p(i) > p(j), hence
condition (i) of Definition 4.2 is satisfied. For all other pairs of elements in P; the conditions of
being well labelled are already satisfied from P. For P, the situation is similar, we have j < i,j > i
and p(j) < p(i), and condition (ii) of Definition 4.2 is satisfied. It is the only pair we need to check
and the rest follows. O

Lemma 4.6. Let £ be a linear order on [p] and p a map such that (L, p) is well-labelled. We have
S(c.p) = S(z,5¢) is a slide polynomial or zero.

Proof. If p* has any values < 0, then we have Sz 52y = 0. Now, since p is weakly decreasing on
segments of £ that do not have descents, p* will be constant on those same segments. The lemma
then follows from Proposition 3.10. O

Proof of Main Theorem 1.1. Given a poset P on [p] and a P-flag p, by Proposition 4.3 we may
transform this to a well-labelled and flagged (7, p’) such that
S P.p) — 3(73’ ")

Following the proof of the Fundamental Theorem 3.14 for (P, p)-partitions, we recursively use
Eq. (3.9). Lemma 4.5 guaranties at each step, we get well-labelled pair. Hence by induction on the
number of incomparable pairs we have

§(P.p) = S(P'p) = Z (L.0)
LeZL(P)
with each (£, p) in the sum well-labelled, so Theorem 1.1 follows by Lemma 4.6. O
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<4 <3
P @ <3 > <3
<2 <2

Fig. 5. An example of decomposition «7,( »(P1) U «7,(P,) for well-labelled flagged (P, p)-partition. The pairs
(P1, p) and (P, p) are well labelled.

P, =4 <3 Ly <3 Lo a <2

<2 <2 Q =g <2

Fig. 6. Terminating the example, 5~ is computed (in red and bold). (For interpretation of the references to colour in
this figure legend, the reader is referred to the web version of this article.)

Example 4.7. Let P be the poset depicted on the left side of Fig. 5, and let p be the restriction map
(p(1), p(2), p(3)) = (4, 3, 2). The pair (P, p) is well labelled and flagged. Take two incomparable
elements in P, say 1 and 2. We add the relation 1 < 2 or 2 < 1 obtaining the order P; and P, in
Fig. 5. We have (P, p) and (P, p) are well labelled. We can repeat the process for P, and get two
well labelled pairs (£1, p) and (£3, p). The order Py, £1 and £, are linear order, we compute p“ for
each (see Fig. 6). We get that

Ser.p) = 5(0,1,2,0) + F0,1.1,1) + F(0,2,0,1)
where the right hand side are slide polynomials.

Remark 4.8. If we remove the hypothesis that (P, p) is well-labelled in Lemma 4.5, then the
statement is wrong and cannot be fixed easily. For example in Fig. 7, (P”, p) is not well-labelled
as 2,3 are incomparable in P”, but 2 < 3 and p(2) = 2 < 3 = p(3). While we do have the
decomposition

Spr.p) = 3(6,, Se T8, 155

2y’

(cf, o~ ) is not well labelled and S £ 55 is not a single slide polynomial. Here § = F1,1,0,1)
1P

// o
(£5.72)
cancels a term in 3 - to give the correct expansion
1P
P .p) = S(Pyp) = S0.1.1.1) + F(0.2.0.1)
as computed with the well-labelled flagged pair (7, p) seen in Fig. 6.

In particular, when p is a P-flag, we have the following analog of Corollary 2.7 giving a
combinatorial formula for the nonnegative slide expansion.

Corollary 4.9. Given a poset P on [p] and a (well labelled) P-flag p, we have
Sp.p) = Z Sic.p) Z Srdes(£.p)- (4.1)

LeL(P) LeZL(P)
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<4 <4
Ll <3 Ly <2
<2 =3 <1

Fig. 7. An example where P” is not well-labelled with respect to p and Lemma 4.5 fails.

4.2. Two applications

We now give two important examples of positive expansions in terms of slide polynomials that
are analogues of Corollaries 2.8 and 2.11, respectively.

4.2.1. Product of slide polynomials

In Corollary 2.8, the theory of P-partitions can be used to determine the structure constants
for fundamental quasisymmetric functions in terms of the shuffle product on strong compositions.
Assaf and Searles [1] (Definition 5.9) generalized the shuffle product on strong compositions to the
slide product on weak compositions.

Definition 4.10 ([1]). Let a, b be weak compositions of length n. Let A and B be words defined by
A=(2n—1)"..-(3)%-1(1)% and B = (2n)"1 - - - (4)P»-1(2)". Define the shuffle set of a and b, denoted
by Sh(a, b), by

Sh(a, b) = {C € A B | Dess(C) > a and Desg(B) > b}, (4.2)

where Des,(C); (respectively Desg(C);) is the number of letters from A (respectively B) in the ith
increasing run of C.
Define the slide product of a and b, denoted by a L b, to be the formal sum

awb = Z Des(bump, ;,(C)), (43)
CeSh(a,b)

where bump, 4(C) is the unique element of the shuffle set 0"~“Pe(9) ., C such that Des,(bump, 5
(C)) = a and Desg(bump, ,y(C)) > b and if D € 0"* L C satisfies Desa(D) > a and Desg(D) > b,
then Des(D) > Des(bump, ;)(C)).

Assaf and Searles then used the slide product to characterize the structure constants for slide
polynomials [1, Theorem 5.11] as follows.

Theorem 4.11 ([1] Thm 5.11). Let a, b be two weak compositions. Then
§aS = ) _lc | awblF, (4.4)
C

where [c | a w b] denotes the coefficient of c in the slide product a w b.

Here we give a more direct interpretation with a greatly simplified proof using well-labelled,
flagged (P, p)-partitions. We use Proposition 4.3 to prove the disjoint union of the two linear
orders is well-labelled and flagged, and then use Lemma 4.5 to find the expression and recover
Theorem 4.11.

Corollary 4.12. Let a, b be two weak compositions. Choose two linear posets A and B along with two
well-labelled, flagged restriction maps « and B such that 4 «) = Fa and Fz,g) = F». Then

SaSh = S(a.0)S(5.5) = S(AaB.00p) = Z Srdes(z.a®p)s (4.5)
LeZ(ABB)
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Fig. 8. The well-labelled flagged (P, p) for computing the slide product F,0.2)F(0,2,00 We give here the six linear
extensions together with < for each.
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where A@B denotes the partial order as the disjoint union of A and B, i.e. no element of A is comparable
to an element of B. The set #(A @ B) corresponds to the slide product of A and B.

Example 4.13. Leta = (0,0,2) and b = (0, 2, 0), and take (P, p) as in Fig. 8. This gives the
following expansion for slide polynomials as

$(0,0,2)8(0,2,0) = F(0,2,2) + F(1.2,1) + F0.3,1) + F(1.3,0) + S2.2,0) + S(0,4,0)-
Note this generalizes Example 2.9 for the shuffle product Fp)F).

4.2.2. Flagged Schur polynomials

Also in [1, Theorem 3.13], the authors show the positive expansion of Schubert polynomials in
terms of slide polynomials. Lascoux and Schiitzenberger [5] show when a permutation is vexillary,
the Schubert polynomial is a flagged Schur polynomial (see also [9]). This shows many flagged Schur
polynomials are slide positive. We claim all flagged Schur polynomials are slide positive, giving the
restricted analogue to Corollary 2.11. Let us recall what are flagged Schur polynomials.

Given a partition A and a flag b = b; < b, < ... < by,, the flagged Schur function s, p is the sum
of the monomials corresponding to semistandard tableau of shape A and entries in row i bounded
by b;. As in the Schur case, we may express this in terms of (P, p)-partitions as

S(Pr.op) = Sibs

where P, is the poset constructed as in Fig. 2 and py, is the restriction given by pp(x) = b; if x € P
is in row 1.

For example, $431,(2,4,4) iS given by the (P, p)-partitions with P = P, and p = pp as in Fig. 9.
This is the flagged Schur polynomial equal to the Schubert polynomial indexed by the vexillary
permutation w = 1637245 (see [9]).

Theorem 4.14. For X a partition and b = by < b, < .- < by a flag of integers, we have

Sib = Z S (Cr.op) Z Srdes((Lr,0p))> (4.6)

TeSYT(A TeSYT())

where a standard tableau T determines a unique linear extension Lt of P;.

Proof. It is clear the pair (P;, pp) is well-labelled and flagged, and so the formula follows from
Corollary 49. O

Any term § . 5cq is zero if the first entry of o 0“7 is < 1 and can be removed from the sum. The
remaining terms are all flagged, hence the summation is a sum of slide polynomials.



16 S. Assaf and N. Bergeron / European Journal of Combinatorics 86 (2020) 103085

<2

Q= W= @2 0Q+x@O= Q+x@*

Fig. 10. The well-labelled flagged (P, p) partitions for A = (3,2) and p restriction given by the flag 1,6. We give here
the five linear extension together with 5~7 for each standard tableau. (For interpretation of the references to colour in
this figure legend, the reader is referred to the web version of this article.)

Remark 4.15. Reiner and Shimozono [7, Theorem 23] show any flagged Schur polynomial is a single
key polynomial. More generally, they show any flagged skew Schur polynomial is a positive sum of
key polynomials [7, Theorem 20]. More recently, Assaf and Searles [2, Theorem 2.13] show any key
polynomial is a positive sum of slide polynomials. Combining those results yields any flagged skew
Schur function expands positively in terms of slide polynomials. We offer here a more immediate
approach to this result by using flagged (P, p)-partitions.

Example 4.16. Consider A = (3,2) and b = (2, 6). Each standard tableau T gives rise to a linear
extension £r of P,. We compute 57 (in red in Fig. 10). If the first component of p*7 is < 1, then
we remove this linear order. The last linear order in Fig. 10 has component 0. Hence it will not
contribute to the expansion. The four other linear orders are flagged (£r, p*7)-partitions and thus
slide polynomials. Therefore taking terms as they appear from left to right in Fig. 10, we have

5(3,2),2.6) = §(0,3,0,0,0,2) T §(2,2,0,0,0,1) + F(1,3.0,0,0,1) + S(2.3)-
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