
Simple Reductions from Formula-SAT to Pattern Matching on Labeled Graphs
and Subtree Isomorphism∗

Daniel Gibney† Gary Hoppenworth† Sharma V. Thankachan†

Abstract

The CNF formula satisfiability problem (CNF-SAT) has

been reduced to many fundamental problems in P to prove

tight lower bounds under the Strong Exponential Time Hy-

pothesis (SETH). Recently, the works of Abboud, Hansen,

Vassilevska W. and Williams (STOC’16), and later, Abboud

and Bringmann (ICALP’18) have proposed basing lower

bounds on the hardness of general boolean formula satisfi-

ability (Formula-SAT). Reductions from Formula-SAT have

two advantages over the usual reductions from CNF-SAT:

(1) conjectures on the hardness of Formula-SAT are arguably

much more plausible than those of CNF-SAT, and (2) these

reductions give consequences even for logarithmic improve-

ments in a problem’s upper bounds. Here we give tight re-

ductions from Formula-SAT to two more problems: pattern

matching on labeled graphs (PMLG) and subtree isomor-

phism. Previous reductions from Formula-SAT were to se-

quence alignment problems such as Edit Distance, LCS, and

Frechet Distance and required some technical work. This

paper uses ideas similar to those used previously, but in

a decidedly simpler setting, helping to illustrate the most

salient features of the underlying techniques.

1 Introduction and Related Work.

The Strong Exponential Time Hypothesis (SETH) has
proven to be a powerful tool in establishing condi-
tional lower bounds for many problems with known
polynomial-time solutions. However, recent work by
Abboud, Hansen, Vassilevska W., and Williams [3], as
well as Abboud and Bringmann [2] has sought to use the
hardness of general Formula-SAT problems as the basis
for fine-grained conditional lower bounds, rather than
CNF-SAT and SETH. Since general Formula-SAT con-
tains within it all CNF-SAT instances, Formula-SAT is
at least as hard as CNF-SAT. Additionally, when bas-
ing conditional lower bounds on Formula-SAT rather
than CNF-SAT, the same algorithmic breakthroughs
that previously would have violated SETH, now have far

∗Supported in part by the U.S. National Science Foundation
(NSF) under CCF-1703489.

†Department of Computer Science, University of Central
Florida, Orlando, USA, {daniel.j.gibney, gary.hoppenworth,
sharma.thankachan}@gmail.com.

more remarkable consequences (see Section 1.2 for ex-
amples). This makes it plausible that conjectures based
on the hardness of Formula-SAT are more likely to hold
than those based on the hardness of CNF-SAT.

Aside from a plausible increase in the robustness of
the conjectures, using Formula-SAT as a starting point
has the advantage of allowing for tighter hardness re-
sults. Previous lower bounds based on SETH have been
effective in establishing results of the form: an algorithm
running in time O(nc−ε) for some ε > 0, where the best-

known solution has time complexity Õ(nc) would violate
SETH. Despite this success, SETH has proven less effec-
tive at establishing tighter fine-grained hardness results
regarding how many logarithmic-factors can be shaved.
In fact, the impossibility of proving such a hardness
result via fine-grained reductions from CNF-SAT was
proven in [2]. Overcoming this by using Formula-SAT
as a starting point, in [3] conditional lower bounds of
this form were established for Edit Distance and Longest
Common Subsequence (LCS). In [2], the results on LCS
were further extended to show that an O(n2/ log7+ε n)
time solution for LCS would imply major breakthroughs
in circuit complexity. As a final example, work in [28]
uses reductions from Formula-SAT to analyze which
regular expression matching problems can have super-
polylog factors shaved from their time complexity, and
which cannot.

In this work, we will use Formula-SAT to establish
hardness results similar to those listed above, but for
two additional fundamental problems, Pattern Match-
ing on Labeled Graphs (PMLG) and Subtree Isomor-
phism. We describe these problems next.

Pattern Matching On Labeled Graphs.
(PMLG) Given an alphabet Σ, a labeled graph G is
a triplet (V,E, L), where (V,E) corresponds to the ver-
tices and edges of a graph, and L : V → Σ+ is a func-
tion that defines a nonempty string (i.e., label) over Σ
to each vertex in G. For any string S, we use S[..`]
to denote its prefix ending at ` and S[`..] to denote
its suffix starting at `. We say that a pattern P oc-
curs in G if there is a path v1, v2, . . . , vm in G such that
L(v1)[`..]◦L(v2)◦· · ·◦L(vm)[..`′] equals P for some `, `′.
Given a labeled graph G and a pattern P , the PMLG

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited232

D
ow

nl
oa

de
d 

08
/1

0/
21

 to
 4

5.
30

.1
49

.1
74

. R
ed

is
tri

bu
tio

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/p

ag
e/

te
rm

s



problem is to decide if there exists an occurrence of P
in G.

The PMLG problem began being intensely studied
roughly thirty years ago in the context of alignment of
strings (equivalent to approximate matching under ed-
its, mismatches, etc.) in hypertext. This was initiated
by Manber and Wu [19] and underwent several improve-
ments [4, 5, 21, 22]. In the case where changes are al-
lowed in the pattern, but not in the graph, the best-
known algorithm runs in time O(|V | + |E||P |), match-
ing the time complexity of the dynamic programming
solution of the exact problem, and is by Rautiainen and
Marschall [24]. In the case where changes are allowed in
the graph as well, the problem is NP-complete [5], even
for binary alphabet [15]. The work by Equi et al. in
[11] established the SETH based lower bounds for exact
matching.

Subtree Isomorphism. Given two trees T1 and
T2, is T1 contained in T2? This problem has been
the subject of extensive study [9, 17, 18, 25, 31, 33],
much of this research dating back several decades. For
general trees, both with at most n vertices, the cur-
rently best known solution has a time bound that is
O(nω), where ω is the exponent on fast-matrix mul-
tiplication [31]; for rooted, constant maximum degree
trees it is O(n2/ log n) [17]; and, for ordered trees it
is O(n log n) [10]. Here we will be considering rooted
trees with constant maximum degree. In terms of lower
bounds, SETH based quadratic lower bounds for this
version of the problem have been established in [1], even
for binary rooted trees.

Road Map. We will first describe the Formula-
SAT problem and deMorgan Formulas in more detail.
Following this, we will state our results for PMLG and
Subtree Isomorphism in terms of its implications for
solving Formula-SAT, along with the resulting corollar-
ies. Section 2 provides the reduction from Formula-SAT
to PMLG. The reduction to Subtree Isomorphism is in
Section 3. Finally, in Section 4 we discuss the similar
themes and techniques that appear in both of these re-
ductions.

1.1 Formula-SAT deMorgan Formulas. For our
purposes, we define a deMorgan formula over n Boolean
input variables as a rooted binary tree where each leaf
node represents an input variable or its negation, and
every internal node represents a logical operator from
the set {∧,∨}. Leaf nodes will be called input gates,
and internal nodes will be called AND/OR gates. For
a given bit assignment x, we define F (x) as the binary
value output at the root of F when the input bits are
propagated from the leaves to the root of F . The size
of the formula, which we will denote as s, is defined as

the number of leaves in the tree.
Formula-SAT. Given a deMorgan formula F of

size s over n inputs, does there exist an input x ∈ {0, 1}n
such that F (x) = 1?

The set of all Formula-SAT instances obviously con-
tains within it all CNF-SAT instances. Unsurprisingly,
due to its generality, it appears harder to derive efficient
solutions for Formula-SAT. For CNF-SAT there exists
ever-improving upper bounds [6, 12, 20, 23, 26, 29].
There also exists upper bounds for more general circuits
such as ours, however, these work through restricting
some parameter of the circuit, often some combination
of the size, depth, and type of gates used within it (see
for example [7, 13, 14, 27, 30, 32]).

1.2 Our Results Our reduction will create an in-
stance of PMLG (or Subtree Isomorphism) from a given
instance of Formula-SAT. In doing so, we make explicit
the roles that the size of the circuit s and the number
of inputs n play in determining the size of the resulting
instance.

Theorem 1.1. A Formula-SAT instance of size s on
n inputs can be reduced to an instance of PMLG over
a binary alphabet with a graph G = (V,E) and pattern
P such that |P | is of size O(2n/2 · s) and |E| is of size
O(2n/2 · s2) in O(|E|) time, where G is a DAG with
maximum total degree1 three.

Similarly, for Subtree Isomorphism we have the follow-
ing theorem.

Theorem 1.2. A Formula-SAT instance of size s on
n inputs can be reduced to an instance of Subtree
Isomorphism on two binary trees T1 and T2, where the
size of T1 is O(2n/2 ·s), and the size of T2 is O(2n/2 ·s2)
in O(|T2|) time.

Combining Theorems 1.1 and 1.2 with observations
made by Abboud et al. in [3] (and restated in Appendix
A), we obtain the following ‘breakthrough’ implications
of a strongly subquadratic time algorithm for PMLG or
Subtree Isomorphism. Proofs are deferred to Appendix
A.

Corollary 1.1. The existence of a strongly sub-
quadratic time algorithm for PMLG (or Subtree Isomor-
phism) would imply the class ENP (1) does not have non-
uniform 2o(n)-size Boolean formulas and (2) does not
have non-uniform o(n)-depth circuits of bounded fan-in.
It also implies that NTIME[2O(n)] is not in non-uniform
NC.

1Total degree is in-degree plus out-degree.

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited233

D
ow

nl
oa

de
d 

08
/1

0/
21

 to
 4

5.
30

.1
49

.1
74

. R
ed

is
tri

bu
tio

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/p

ag
e/

te
rm

s



The second corollary gives the consequences of being
able to shave arbitrarily many logarithmic factors from
the quadratic time complexity.

Corollary 1.2. If PMLG (or Subtree Isomorphism)

can be solved in time O( |E||P |logc |E| ) or O( |E||P |logc |P | )

(O( |T1||T2|
logc |T1| ) or O( |T1||T2|

logc |T2| ) resp.) for all c = Θ(1), then

NTIME[2O(n)] does not have non-uniform polynomial-
size log-depth circuits.

In fact, we can give a particular constant c for
which shaving a logc n factor would yield surprising new
results in complexity theory. The following log-sensitive
lower bounds leave a huge gap from the best known
upper bounds; we present these corollaries purely for
instructive purposes.

Hardness of Shaving Log Factors. We work un-
der the Word-RAM model and limit the set of constant-
time primitive operations to those operations which are
robust to change in word size. Specifically, suppose we
are given a word size of w = Θ(log n) and an operation
that can be performed in O(1) time. We stipulate that
we must be able to simulate this operation on words of
size W = Θ(2w) in time n1+o(1). This is a reasonable
assumption that is satisfied by many constant time op-
erations such as addition, subtraction, multiplication,
and division with remainder. See [2] for a detailed dis-
cussion.

The following hypothesis was suggested by Abboud
and Bringmann in [2]. It reflects the fact that the best
known algorithmic solutions to Formula-SAT2 fail to
provide a time complexity better than the näıve solution
on formulas of size s = n3+Ω(1).

Hypothesis 1. ([2]) There is no algorithm that can
solve SAT on deMorgan formulas of size s = n3+Ω(1) in
O( 2n

nε ) time for some ε > 0 in the Word-RAM model.

Corollary 1.3. Hypothesis 1 is false if PMLG (re-
spectively Subtree Isomorphism) can be solved in

time O
(
|E||P |

log10+ε |E|

)
or O

(
|E||P |

log10+ε |P |

)
, (respectively

O
(
|T1||T2|

log10+ε |T1|

)
or O

(
|T1||T2|

log10+ε |T2|

)
) for any ε > 0.

Proof. We show the proof for PMLG; the proof for
Subtree Isomorphism is identical. By Theorem 1.1, an

O( |E||P |
log10+ε |E| ) algorithm for PMLG can be converted to

yield an algorithm running in n1+o(1) · (2n/2·s2)(2n/2s)
log10+ε(2n/2·s2)

=

2As observed by Williams in [34], for deMorgan formulas of

size n3−o(1) there exists a randomized 2n−nΩ(1)
time, zero error

algorithm which can be obtained by applying results from [8] and
[16].

O
(

2n·s3

n9+ε

)
time for Formula-SAT (note the n1+o(1) fac-

tor introduced when moving from a word size of Θ(log n)
to Θ(n)). If we choose s = n3+ε/6 then this yields an
algorithm for Formula-SAT of time O( 2n

nε/2 ), and Hy-
pothesis 1 is false.

Thanks to results highlighted by Abboud et al.
in [3], we can also say the following about shaving
a constant number of logarithmic factors from the
quadratic time complexity. The proof is deferred to
Appendix A.

Corollary 1.4. ENP cannot be computed by non-
uniform formulas of cubic size if PMLG (re-
spectively Subtree Isomorphism) can be solved in

time O
(
|E||P |

log20+ε |E|

)
or O

(
|E||P |

log20+ε |P |

)
(respectively

O
(
|T1||T2|

log20+ε |T1|

)
or O

(
|T1||T2|

log20+ε |T2|

)
) for any ε > 0.

The same hardness results for PMLG apply for
several more specific types of graphs (details will be
presented in the full version of this paper). These
include when the graph G is a deterministic DAG (at
most one edge leaves a vertex with the same leading
character on an edge label) of total degree at most 3,
and the case when G is a directed or undirected planar
graph of degree at most 3.

2 Reduction from Formula-SAT to PMLG

2.1 Technical Overview Our reduction from
Formula-SAT to PMLG uses an intermediate problem
called Formula-Pair.

Definition 1. (Formula-Pair) Given a deMorgan
Formula F = F (x1, . . . , xm, y1, . . . , ym) of size 2m
where each input is used exactly once, and two sets
A,B ⊆ {0, 1}m each of size N , does there ex-
ist a ∈ A and b ∈ B such that F (a, b) =
F (a1, . . . , am, b1, . . . , bm) = 1?

The role Formula-Pair plays in our reduction is
analogous to the role of the Orthogonal Vectors Problem
in many SETH reductions. It was proven in [2] that an
instance of Formula-SAT on a formula of size s over n
inputs can be reduced to an instance of Formula-Pair
on two sets of size N = O(2n/2) and a formula of size
O(s) in linear time (in particular, they reduce from a
harder problem they call F1-Formula-SAT). Note that
we may assume that F contains no input gates with
negated binary variables, since if variable xi is negated
in F , we can flip bit ai for all a ∈ A.

We begin our reduction from Formula-Pair to
PMLG by considering a formula F and some input bit
assignments a ∈ A and b ∈ B. We then construct a
pattern P and labeled graph G such that P occurs in G

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited234

D
ow

nl
oa

de
d 

08
/1

0/
21

 to
 4

5.
30

.1
49

.1
74

. R
ed

is
tri

bu
tio

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/p

ag
e/

te
rm

s



if and only if together a and b satisfy F . In this step, we
must ensure that our construction of P only relies on the
input bit assignments of a, and our construction of G
only relies on the input bit assignments of b. This allows
us to create patterns P1, P2, . . . , PN corresponding to
the N bit assignments in A, and graphs G1, G2, . . . , GN

corresponding to the N bit assignments in B. Then we
will have that Pi occurs in Gj if and only if F (a, b) = 1,
where a ∈ A is the bit assignment corresponding to Pi,
and b ∈ B is the bit assignment corresponding to Gj .
Finally, we combine these patterns and graphs into a
product pattern P and a product graph G such that P
occurs in G if and only if some Pi occurs in some Gj .
This will complete the reduction.

2.2 Reduction Given a deMorgan formula F and a
complete assignment of input bits (a, b) where a ∈ A
and b ∈ B, we will construct a corresponding pattern P
and labeled DAG G over alphabet {0, 1, $} such that P
occurs in G if and only if the output of F is 1 on input
(a, b). This pattern and graph will be built recursively,
starting with the input gates as a base case. For a gate
g = (g1 ∗ g2) where ∗ ∈ {∨,∧}, we will construct a
corresponding pattern and graph for gate g by merging
the patterns and graphs of subgates g1 and g2. At each
step in this process, the pattern corresponding to gate g
occurs in the graph corresponding to gate g if and only
if g evaluates to 1 on input (a, b).

Invariants. We will maintain the following invari-
ants during this recursive procedure. Let g be a gate of
F with height h, and let P and G be the pattern and
graph corresponding to gate g in our construction.

1. Graph G will have a designated source vertex and
sink vertex, both with label “1”. Every maximal
path in G will be of length |P | and start and end
at the source and sink vertices of G respectively.

2. The construction of pattern P is independent of
the choice of bit assignment b ∈ B, and the
construction of graph G is independent of the
choice of bit assignment a ∈ A.

3. Pattern P occurs in G if and only if g has output
1 on input (a, b).

Observe that by the first invariant, every occurrence
of pattern P in graph G will start at the source vertex
of G and end at the sink vertex of G. If this is the case,
we will say that G matches P . We will also refer to the
designated source and sink vertices of G as the start and
end vertices of G.

Input Gate. Each input gate g in F takes as input a
binary variable z. We will design a graph G and pattern

a.

1

G1

G2

1

b.

1

G1

U(|P2|)

1

U(|P1|)

G2

c.

1

0

...

0

1

1

...

1

Figure 1: From left to right: a. the graph for gate
g = (g1 ∧ g2), b. the graph for gate g = (g1 ∨ g2), and
c. the Universal Subgraph U(x). Note that Universal
Subgraph U(x) has a series of x−2 vertex pairs labeled
0 and 1, making its maximal path length x.

P such that G matches P if and only if z had value 1 in
bit assignment (a, b), and hence g evaluates to 1. Our
construction depends on whether z corresponds to an
input bit in a or b.

• Case 1. z corresponds to some ai ∈ a. We let
P := 1ai1 and G be a path of length three with all
vertices labeled 1.

• Case 2. z corresponds to some bi ∈ b. We
let P := 111 and G be a path of length three with
the first and last vertex labeled 1 and the middle
vertex labeled bi.

The start vertex of G will be the first vertex in the
path, and the end vertex of G will be the third (last)
vertex in the path. Then our graph G matches pattern
P if and only if z = 1 and thus the input gate evaluates
to true. Additionally, the construction of P does not
depend on b and the construction of G does not depend
on a. All invariants are satisfied.

AND Gate. Given a gate g = (g1 ∧ g2) and the
graphs and patterns (G1, P1) and (G2, P2) correspond-
ing to gates g1 and g2 respectively, we must construct a
product graph G and pattern P such that G matches P
if and only if G1 matches P1 and G2 matches P2. This
is done rather easily. Let P := 1P1P21. Now let our
product graph G be defined as in Figure 1.a. Our start
vertex is labeled 1 and has an outgoing edge to the start

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited235

D
ow

nl
oa

de
d 

08
/1

0/
21

 to
 4

5.
30

.1
49

.1
74

. R
ed

is
tri

bu
tio

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/p

ag
e/

te
rm

s



vertex of subgraph G1. The end vertex of G1 in turn
has an outgoing edge to start vertex of subgraph G2,
whose own end vertex has an outgoing edge to the final
vertex of G. We now verify all invariants are satisfied.

• Invariant 1. We assume that every maximal
path in G1 (respectively G2) is of length |P1|
(respectively |P2|). Then by the construction of
P and G, every maximal path in G is of length |P |.
The invariant is maintained.

• Invariant 2. Assuming that the construction of
P1 and P2 is independent of b, and the construct
of G1 and G2 is independent of a, it follows that
the construction of pattern P is independent of bit
assignment b, and the construction of graph G is
independent of bit assignment a.

• Invariant 3. Since every occurrence of P in G
starts at the start vertex of G and ends at the end
vertex, we must conclude that P occurs in G if
and only if P1 occurs in G1 and P2 occurs in G2.
Then by our invariant P occurs in G if and only
if g evaluates to 1 on input (a, b). The invariant is
preserved.

OR Gate. Given a gate g = (g1 ∨ g2) and the
graphs and patterns (G1, P1) and (G2, P2) correspond-
ing to gates g1 and g2 respectively, we must construct
a product graph G and pattern P such that G matches
P if and only if G1 matches P1 or G2 matches P2. As
with our AND gate, we let P := 1P1P21. Our product
graph G (see Figure 1.b) splits into two branches. One
branch checks if G1 matches P1 and ignores P2, while
the other branch checks if G2 matches P2 and ignores
P1. We are able to ignore P2 (respectively P1) by con-
structing a ‘universal’ subgraph that matches all binary
strings that start and end with 1 and are of length |P2|
(respectively |P1|). We let U(x) denote the universal
subgraph for length x, and we depict our construction
of U(x) in Figure 1.c. Observe that graphs U(|P1|) and
U(|P2|) match P1 and P2 respectively. We now check
that all invariants are satisfied.

• Invariant 1. A similar argument as in the AND
gate shows that every maximal path in G is of
length |P | and passes through the start and end
vertices of G. The invariant is preserved.

• Invariant 2. Pattern P is independent of bit
assignment b by a similar argument as with the
AND gate construction. However, for our graph G,
we must verify that subgraphs U(|P1|) and U(|P2|)
of G do not depend on bit assignment a. This will
follow from proving that the lengths of patterns

P1 and P2 do not depend on the bit assignment
a. Note that in each of the input, AND, and OR
gate constructions, the length of the constructed
pattern is the same regardless of the bit assignment
a. Thus we conclude that U(|P1|) and U(|P2|) are
independent of the bit assignment a, and therefore
the construction of graph G is independent of the
bit assignment a.

• Invariant 3. Since every occurrence of pattern
P starts at the start vertex of G and ends at the
end vertex, it is immediate that G matches P if
and only if G1 matches P1 or G2 matches P2.
It immediately follows from our invariant that G
matches P if and only if gate g = (g1∨g2) evaluates
to 1 on input (a, b).

2.3 Completing the Reduction Now correspond-
ing to our formula F of size s and a complete assignment
of input bits (a, b), we can build a pattern P and a graph
G such that G matches P if and only if assignment (a, b)
satisfies F . Note that we only add a constant number of
symbols to our pattern P for each gate in F , and there
are fewer than 2s gates in F , so |P | = O(s). On the
other hand, each OR gate in F can contribute O(|P |)
vertices and edges to our final graph G. It follows that
G is of size O(s2).

Using our construction, for every a ∈ A we may
construct a corresponding pattern P , and for every b ∈
B we may construct a corresponding graph G. We will
denote these patterns and graphs by P1, P2, . . . , PN and
G1, G2, . . . , GN respectively. Note that each pattern
Pj makes no assumptions on the bit assignment b, and
graph Gi makes no assumptions on the bit assignment
a. It follows that Gi matches Pj if and only if together
the corresponding bit assignments a ∈ A and b ∈ B
satisfy F .

Next, we construct a final graph G and pattern
P such that P occurs in G if and only if some Gi

matches some Pj . This will complete our reduc-
tion. We define our final pattern P as follows: P :=
$$P1$P2$ · · · $PN$$. The structure of our final graph
G is similar to the final graph presented in [11]. We
present this graph in Figure 2 and briefly explain the
intuition behind it. Let µ = |Pi| for any i. Then sub-
graph U(µ) will match any subpattern Pi in P . The
graph G uses U(µ) to match the subpatterns Pi in P
that do not match with any Gj . Note that since pattern
P has a prefix of two $ symbols and a suffix of two $
symbols, P is forced to pass through the second row of
G. More specifically, the first row of G alone cannot
match the $$ suffix of P , and the third row of G alone
cannot match the $$ prefix of P . Then it can be seen
that P occurs in G only if P passes through the second

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited236

D
ow

nl
oa

de
d 

08
/1

0/
21

 to
 4

5.
30

.1
49

.1
74

. R
ed

is
tri

bu
tio

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/p

ag
e/

te
rm

s



$ U(µ)

1

$ U(µ)

2

$ U(µ)

N − 1

$ U(µ)

2N − 2

$

$ $ $ $ $

G1 $ GN $

$ $

U(µ)

1

$ U(µ)

N

$ U(µ)

2N − 2

$

$ $ $

Figure 2: Our final graph G. Here µ = |Pi|.

row of G, and hence some subgraph Gi matches some
subpattern Pj . Then by construction, P occurs in G
if and only if there exists a ∈ A and b ∈ B such that
F (a, b) = 1. Furthermore, our final graph is a DAG
of size O(N · s2) and our final pattern P is of length
O(N · s). This completes our reduction from Formula-
SAT to PMLG on DAGs.

3 Reduction from Formula-SAT to Subtree
Isomorphism

3.1 Technical Overview We begin our reduction
from Formula-Pair to Subtree Isomorphism by consider-
ing a formula F and some input bit assignments a ∈ A
and b ∈ B. We then construct trees Ta and Tb such
that Ta is contained in Tb if and only if together a and
b satisfy F . In this step it is important that we ensure
that our construction of Ta only relies on the input bit
assignments of a, and our construction of Tb only relies
on the input bit assignments of b. This allows us to
create N Ta trees corresponding to the N bit assign-
ments a in A, and N Tb trees corresponding to the N
bit assignments b in B. Then we will have that some
Ta tree is contained in some Tb tree if and only if the
corresponding bit assignments a ∈ A and b ∈ B satisfy
F (a, b) = 1. Finally, we combine these trees into two
final trees TA and TB such that TA is contained in TB if
and only if some Ta is contained in some Tb. This will
complete the reduction.

3.2 Reduction Given a deMorgan formula F and a
complete assignment of input bits (a, b) where a ∈ A
and b ∈ B, we will construct the corresponding rooted
trees Ta and Tb such that Ta is contained in Tb if and

only if the output of F (a, b) = 1. These trees will be
constructed recursively, starting with the input gates
of F as a base case. For a gate g = (g1 ∗ g2) where
∗ ∈ {∨,∧}, we will construct the corresponding trees
T g
a and T g

b for gate g by merging the trees of subgates
g1 and g2. At each step in this process, T g

a will be
contained in T g

b if and only if gate g has output 1 on
input (a, b).

Invariants. We will maintain the following invariants
throughout our construction. Let g be a gate of F with
height h.

1. The height of T g
a is equal to the height of T g

b and
is at most 4h.

2. The construction of T g
a is independent of the choice

of bit assignment b ∈ B, and the construction of
T g
b is independent of the choice of bit assignment
a ∈ A.

3. Tree T g
a is contained in tree T g

b if and only if gate
g has output 1 on input (a, b).

Input Gate. Given an input gate g corresponding to
a bit value ai ∈ a (respectively, a bit value bj ∈ b), we
will construct trees T g

a and T g
b so that T g

a is contained
in T g

b if and only if ai = 1 (respectively, bj = 1). We
construct T g

a and T g
b as in Figure 3. These trees are

rooted at vertices va and vb respectively. We define
input gates of F to have a height of one, so the trees
in Figure 3 satisfy the first invariant. The remaining
two invariants can be verified by examining every case
of Figure 3.

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited237

D
ow

nl
oa

de
d 

08
/1

0/
21

 to
 4

5.
30

.1
49

.1
74

. R
ed

is
tri

bu
tio

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/p

ag
e/

te
rm

s



AND Gate. Given an input gate g = (g1 ∧ g2), and
the trees T 1

a , T
1
b and T 2

a , T
2
b corresponding to gates g1

and g2 respectively, we wish to construct trees T g
a and

T g
b so that T g

a is contained in T g
b if and only if gate g

has output 1 on input (a, b). By our third invariant it
suffices to ensure that T g

a is contained in T g
b if and only

if T 1
a is contained in T 1

b AND T 2
a is contained in T 2

b . We
construct trees T g

a and T g
b as in Figure 4. The trees are

rooted at vertices v0
a and v0

b respectively. We now verify
that all invariants are satisfied.

• Invariant 1. By our inductive hypothesis tree T 1
a

has the same height as T 1
b and T 2

a has the same
height as T 2

b , so it follows from our construction
that T g

a has the same height as T g
b . Now to see

why the height of these trees is at most 4h, note
that subtrees T 1

a , T
1
b , T

2
a , T

2
b have height at most

4(h − 1), and so trees T g
a and T g

b have height at
most 4(h− 1) + 4 = 4h.

• Invariant 2. We assume that the construction of
trees T 1

a and T 2
a is independent of b, and the trees

T 1
b and T 2

b are independent of a. Then it can be
easily verified that tree T g

a does not depend on b,
and tree T g

b does not depend on a.

• Invariant 3. We must show that tree T g
a is

contained in tree T g
b if and only if g evaluates

to 1 on bit assignment (a, b). By our inductive
hypothesis, it suffices to show that T g

a is contained
in T g

b if and only if T 1
a is contained in T 1

b AND T 2
a

is contained in T 2
b . The ‘if’ direction is immediate

from our construction: just map vertex via in T g
a to

vertex vib in T g
a for i ∈ [0, 4], and map trees T 1

a and
T 1
b to subtrees of T 2

a and T 2
b respectively.

For the ‘only if’ direction we must prove that
subtree T 1

a can only map to a subtree of T 1
b , and

subtree T 2
a can only map to a subtree of T 2

b .
First note that since trees T g

a and T g
b have the

same height, every isomorphism between T g
a and a

subtree T g
b must map the root vertex v0

a of T g
a to the

root vertex v0
b of T g

b . Now suppose T 1
a is mapped to

T 2
b in some isomorphism between T g

a and a subtree
of T g

b . Then vertex v3
a would be mapped to vertex

v4
b , and the path of length two hanging off v3

a

would have nowhere to map to. It immediately
follows that in every valid subtree isomorphism, T 1

a

is mapped to T 1
b , and T 2

a is mapped to T 2
b . Then

T g
a is contained in T g

b if and only if T 1
a is contained

in T 1
b and T 2

a is contained in T 2
b .

Input T g
a T g

b

ai = 0

va vb

ai = 1

va vb

bj = 0

va vb

bj = 1

va vb

Figure 3: The trees T g
a and T g

b corresponding to input
gate g = ai or g = bj .

v0
a

1
v1
a

2
v3
a

T 1
a

v4
a

T 2
a

1

v2
a

2

v0
b

1
v1
b

2
v3
b

T 1
b

v4
b

T 2
b

1

v2
b

2

Figure 4: The trees T g
a (top) and T g

b (bottom)
corresponding to AND gate g = (g1 ∧ g2).

OR Gate. Given an input gate g = (g1 ∨ g2), and

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited238

D
ow

nl
oa

de
d 

08
/1

0/
21

 to
 4

5.
30

.1
49

.1
74

. R
ed

is
tri

bu
tio

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/p

ag
e/

te
rm

s



v0
a

1
v1
a

2
v3
a

T 1
a

v4
a

T 2
a

1
v2
a

2

v0
b

1
v1
b

2
v4
b

T 1
b

v2
b

v5
b

T 2
b

1

2
v3
b

v6
b

Ug

2

2

Figure 5: The trees T g
a (top) and T g

b (bottom) corre-
sponding to OR gate g = (g1 ∨ g2).

the trees T 1
a , T

1
b and T 2

a , T
2
b corresponding to gates g1

and g2 respectively, we will construct trees T g
a and T g

b so
that T g

a is contained in T g
b if and only if T 1

a is contained
in T 1

b OR T 2
a is contained in T 2

b . We construct trees T g
a

and T g
b as in Figure 5. These trees are rooted at vertices

v0
a and v0

b respectively. Tree T g
b contains a subtree Ug,

which we call a universal subtree. We design Ug so
that it contains both tree T 1

a and tree T 2
a for every bit

assignment a. This will allow either T 1
a or T 2

a to match
with Ug, thus achieving the OR gate logic.

We now construct our universal subtree Ug. First,
observe that for any gate g and any two bit assignments
a, a′ ∈ A, the only difference between trees T g

a and T g
a′

is in the input gate subtrees. There are two different
input gate subtrees in T g

a : the ai = 0 subtree composed
of a root vertex and two leaves, and the ai = 1 subtree
composed of a root vertex with a single leaf (see Figure
3). Note that the ai = 0 input subtree contains the
ai = 1 input subtree. Then if we define a bit assignment
u = 0m, it follows that for every a ∈ A, the tree T g

a is
contained within the tree T g

u . Then for trees T 1
a and T 2

a

we construct trees T 1
u and T 2

u so that T 1
a is contained in

T 1
u and T 2

a is contained in T 2
u for all a ∈ A. We define

our universal subtree Ug as the tree created by merging

the root vertex of T 1
u with the root vertex of T 2

u . By
construction, this tree Ug contains T 1

a and T 2
a for all

a ∈ A as intended. We now verify that all invariants
are satisfied.

• Invariant 1. This invariant holds by an argument
identical to that of the AND gate construction.

• Invariant 2. A similar argument as with the AND
gate will show that T g

a does not depend on bit
assignment b. Likewise, tree T g

b does not depend
on bit assignment a; the construction of universal
subtree Ug is independent of a as detailed in its
construction.

• Invariant 3. By our inductive hypothesis, it
suffices to show that T g

a is contained in T g
b if and

only if T 1
a is contained in T 1

b OR T 2
a is contained

in T 2
b . The ‘if’ direction can be seen by observing

that if T 1
a is contained in T 1

b , then we can align T 1
a

with T 1
b and align T 2

a with Ug, which is guaranteed
to contain T 2

a ; the case where T 2
a is contained in T 2

b

is identical.

The ‘only if’ direction follows from a similar argu-
ment given for the AND construction. First note
that since trees T g

a and T g
b have the same height, ev-

ery subtree isomorphism must map the root vertex
v0
a of T g

a to the root vertex v0
b of T g

b . Additionally,
it is immediate from construction that exactly one
subtree T 1

a or T 2
a can be aligned with universal sub-

tree Ug. Then we simply need to verify that there
is no valid subtree isomorphism between T g

a and T g
b

that maps T 1
a to T 2

b or T 2
a to T 1

b . Suppose that T 1
a

was mapped to a subtree of T 2
b (the other case is

symmetric). Then vertex v3
a would map to vertex

v5
b , and the path of length two hanging off v3

a would
have nowhere to map to. We conclude that subtree
T 1
a must map to subtree T 1

b or subtree T 2
a must map

to subtree T 2
b in any subtree isomorphism from T g

a

to T g
b . The invariant is maintained.

3.3 Completing the Reduction The final trees are
constructed using the technique provided in [1]. The
construction is shown in Figure 6 and described next.

• For the final tree TA, start with a complete binary
tree where the number of leaves is the smallest
power of 2 that is greater or equal to N , say 2x.
From each of the 2x leaves, attach a path of length
x. Let the first N leaves at the ends of these paths
be numbered 1 to N . For 1 ≤ i ≤ N , replace leaf i
with root of Tai . For the remaining 2x −N leaves
at the end of paths, replace the leaf with the roots
of 2x −N copies of TaN

.

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited239

D
ow

nl
oa

de
d 

08
/1

0/
21

 to
 4

5.
30

.1
49

.1
74

. R
ed

is
tri

bu
tio

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/p

ag
e/

te
rm

s



1

...

Ta1

. . .

. . .

N

...

TaN

...

TaN

. . .

. . .

2x

...

TaN

1

...

U

. . .

. . .

2x − 1

...

U

2x

1

Tb1

. . .
N

TbN

N + 1
. . .

2x

Figure 6: The final TA (top) and TB (bottom).

• For the final tree TB , again start with a complete
binary tree with 2x leaves. From the first 2x − 1
leaves, attach a path of length x. Replace the end
of each of the paths with the root of a universal tree
U , which is Ta with input bit assignment u = 0m.
From the remaining leaf in the complete binary
tree, replace this leaf with the root of another
complete binary tree, again with 2x leaves. Let
the first N leaves of this second complete binary
tree be numbered 1 to N . For 1 ≤ i ≤ N , replace
leaf i with the root of Tbi .

To see why this works, consider that for TA to be
isomorphic to a subtree of TB , the root of TA must
be mapped onto the root of TB . Then, one of TA’s
2x paths hanging from the leaves of its complete binary
tree must traverse down the lower complete binary tree
in TB . From here, a subtree rooted at the end of one
of these paths in TA must have to be isomorphic to one
of the subtrees hanging from the leaves of the second
binary tree in TB . This is possible if and only if for
some a ∈ A and b ∈ B we have that Ta is isomorphic to
a subtree of Tb. By the invariants proven above, such a
pair a ∈ A and b ∈ B exists iff the starting formula F
evaluates to true on the assignment (a, b).

The final tree TA is of size O(Ns). This is because

there are N trees Ta in TA, and each tree Ta is of size
O(s). The upper bound on the size of Ta follows from
the fact that formula F has s gates, and each gate
contributes constantly many vertices to Ta. The final
tree TB is of size O(Ns2). To see this, fix a particular
assignment (a, b), and consider the tree Tb. Each AND
gate contributes a constant number of vertices to Tb.
Each OR gate appends a universal subtree U of size at
most the size of Ta to Tb. Since the size of Ta is O(s)
and there are s gates in formula F , we have that Tb is
of size O(s2).

4 Discussion

The key property highlighted by the two reductions is
that both problems we reduced to allow for the construc-
tion of two independent objects OA and OB , where OA

is constructed independently from the partial input as-
signments in B, and OB is constructed independently
from the partial input assignments in A.

In order to construct these objects, both reductions
start by fixing an input assignment (a, b). Then, two
new objects for each gate g are constructed using the
objects for the circuits that are input into g. The aim
of this construction is to maintain the invariant that
whichever desired property we want our objects to have
(e.g., the pattern occurring in a graph, or having an
isomorphic subtree) holds iff (a, b) satisfy the circuit
with output gate g. This is accomplished by supposing
(i) we are adding the gate g = g1 ∗ g2 where ∗ ∈ {∧,∨},
(ii) the objects Og1

a and Og1

b have the desired property
iff (a, b) evaluates to true on the circuit with output gate
g1, and (iii) the objects Og2

a and Og2

b have the desired
property iff (a, b) evaluate to true on the circuit with
output gate g2. The task is then to construct Og

a from
only Og1

a and Og2
a , and Og

b from only Og1

b and Og2

b , such
that Og

a and Og
b have the desired property iff g = g1 ∗g2

evaluates to true. By the invariant, this is equivalent
when ∗ = ∧ to Og1

a and Og1

b having the desired property,
and Og2

a and Og2

b having the desired property. In the
case of ∗ = ∨, only one of the pairs Og1

a , Og1

b or Og2
a ,

Og2

b needs to have the property.
In the last step, the final objects OA and OB are

constructed by combining all Oai , 1 ≤ i ≤ N to form
OA, and Obj , 1 ≤ j ≤ N to form OB . These final
objects must allow for selection between different partial
assignments. Additionally, the final objects satisfy the
desired property iff at least one object pair Oai

and Obj

together satisfy the desired property.
The above outlines, on a high level, the approach

used in reductions from Formula-SAT to polynomial-
time problems that appear here, and in [2, 28]. The
techniques presented in [3] instead start with the prob-
lem of the satisfiability of branching programs, but they

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited240

D
ow

nl
oa

de
d 

08
/1

0/
21

 to
 4

5.
30

.1
49

.1
74

. R
ed

is
tri

bu
tio

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/p

ag
e/

te
rm

s



work similarly in the sense that they must model the
logical gates AND and OR (this time connecting logical
statements about reachability). The authors also take
similar steps in order to build two independent objects
based on a fixed input assignment (a, b).

References

[1] A. Abboud, A. Backurs, T. D. Hansen, V. V. Williams,
and O. Zamir. Subtree isomorphism revisited. ACM
Trans. Algorithms, 14(3):27:1–27:23, 2018.

[2] A. Abboud and K. Bringmann. Tighter connections
between formula-sat and shaving logs. In 45th In-
ternational Colloquium on Automata, Languages, and
Programming, ICALP 2018, July 9-13, 2018, Prague,
Czech Republic, pages 8:1–8:18, 2018.

[3] A. Abboud, T. D. Hansen, V. V. Williams, and
R. Williams. Simulating branching programs with edit
distance and friends: or: a polylog shaved is a lower
bound made. In Proceedings of the 48th Annual ACM
SIGACT Symposium on Theory of Computing, STOC
2016, Cambridge, MA, USA, June 18-21, 2016, pages
375–388, 2016.

[4] T. Akutsu. A linear time pattern matching algorithm
between a string and a tree. In Combinatorial Pattern
Matching, 4th Annual Symposium, CPM 93, Padova,
Italy, June 2-4, 1993, Proceedings, pages 1–10, 1993.

[5] A. Amir, M. Lewenstein, and N. Lewenstein. Pattern
matching in hypertext. J. Algorithms, 35(1):82–99,
2000.

[6] T. Brüggemann and W. Kern. An improved local
search algorithm for 3-sat. Electron. Notes Discret.
Math., 17:69–73, 2004.

[7] R. Chen. Satisfiability algorithms and lower bounds
for boolean formulas over finite bases. In Mathematical
Foundations of Computer Science 2015 - 40th Interna-
tional Symposium, MFCS 2015, Milan, Italy, August
24-28, 2015, Proceedings, Part II, pages 223–234, 2015.

[8] R. Chen, V. Kabanets, A. Kolokolova, R. Shaltiel, and
D. Zuckerman. Mining circuit lower bound proofs for
meta-algorithms. Comput. Complex., 24(2):333–392,
2015.

[9] M. Chung. O(nˆ(2.55)) time algorithms for the sub-
graph homeomorphism problem on trees. J. Algo-
rithms, 8(1):106–112, 1987.

[10] R. Cole and R. Hariharan. Tree pattern matching to
subset matching in linear time. SIAM J. Comput.,
32(4):1056–1066, 2003.

[11] M. Equi, R. Grossi, V. Mäkinen, and A. I. Tomescu.
On the complexity of string matching for graphs.
In C. Baier, I. Chatzigiannakis, P. Flocchini, and
S. Leonardi, editors, 46th International Colloquium
on Automata, Languages, and Programming, ICALP
2019, July 9-12, 2019, Patras, Greece, volume 132 of
LIPIcs, pages 55:1–55:15. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, 2019.

[12] T. D. Hansen, H. Kaplan, O. Zamir, and U. Zwick.
Faster k -sat algorithms using biased-ppsz. In Proceed-
ings of the 51st Annual ACM SIGACT Symposium on
Theory of Computing, STOC 2019, Phoenix, AZ, USA,
June 23-26, 2019, pages 578–589, 2019.

[13] R. Impagliazzo, W. Matthews, and R. Paturi. A
satisfiability algorithm for ac0. In Proceedings of
the twenty-third annual ACM-SIAM symposium on
Discrete Algorithms, pages 961–972. SIAM, 2012.

[14] R. Impagliazzo, R. Paturi, and S. Schneider. A satisfia-
bility algorithm for sparse depth two threshold circuits.
In 54th Annual IEEE Symposium on Foundations of
Computer Science, FOCS 2013, 26-29 October, 2013,
Berkeley, CA, USA, pages 479–488, 2013.

[15] C. Jain, H. Zhang, Y. Gao, and S. Aluru. On the
complexity of sequence to graph alignment. In L. J.
Cowen, editor, Research in Computational Molecular
Biology - 23rd Annual International Conference, RE-
COMB 2019, Washington, DC, USA, May 5-8, 2019,
Proceedings, volume 11467 of Lecture Notes in Com-
puter Science, pages 85–100. Springer, 2019.

[16] I. Komargodski, R. Raz, and A. Tal. Improved average-
case lower bounds for demorgan formula size. In 54th
Annual IEEE Symposium on Foundations of Computer
Science, FOCS 2013, 26-29 October, 2013, Berkeley,
CA, USA, pages 588–597, 2013.

[17] A. Lingas. An application of maximum bipartite
c-matching to subtree isomorphism. In CAAP’83,
Trees in Algebra and Programming, 8th Colloquium,
L’Aquila, Italy, March 9-11, 1983, Proceedings, pages
284–299, 1983.

[18] A. Lingas and M. Karpinski. Subtree isomorphism
is NC reducible to bipartite perfect matching. Inf.
Process. Lett., 30(1):27–32, 1989.

[19] U. Manber and S. Wu. Approximate string matching
with arbitrary costs for text and hypertext. In Ad-
vances In Structural And Syntactic Pattern Recogni-
tion, pages 22–33. World Scientific, 1992.

[20] B. Monien and E. Speckenmeyer. Solving satisfiability
in less than 2n steps. Discret. Appl. Math., 10(3):287–
295, 1985.

[21] G. Navarro. Improved approximate pattern matching
on hypertext. Theor. Comput. Sci., 237(1-2):455–463,
2000.

[22] K. Park and D. K. Kim. String matching in hyper-
text. In Combinatorial Pattern Matching, 6th Annual
Symposium, CPM 95, Espoo, Finland, July 5-7, 1995,
Proceedings, pages 318–329, 1995.

[23] R. Paturi, P. Pudlák, M. E. Saks, and F. Zane. An
improved exponential-time algorithm for k -sat. J.
ACM, 52(3):337–364, 2005.

[24] M. Rautiainen and T. Marschall. Aligning sequences
to general graphs in o (v+ me) time. bioRxiv, page
216127, 2017.

[25] S. W. Reyner. An analysis of a good algorithm for
the subtree problem. SIAM J. Comput., 6(4):730–732,
1977.

[26] R. Rodosek. A new approach on solving 3-satisfiability.

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited241

D
ow

nl
oa

de
d 

08
/1

0/
21

 to
 4

5.
30

.1
49

.1
74

. R
ed

is
tri

bu
tio

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/p

ag
e/

te
rm

s



In Artificial Intelligence and Symbolic Mathemati-
cal Computation, International Conference AISMC-3,
Steyr, Austria, September 23-25, 1996, Proceedings,
pages 197–212, 1996.

[27] T. Sakai, K. Seto, S. Tamaki, and J. Teruyama. A
satisfiability algorithm for depth-2 circuits with a sym-
metric gate at the top and AND gates at the bottom.
Electronic Colloquium on Computational Complexity
(ECCC), 22:136, 2015.

[28] P. Schepper. Fine-grained complexity of regular ex-
pression pattern matching and membership. CoRR,
abs/2008.02769, 2020.

[29] U. Schöning. A probabilistic algorithm for k -sat
based on limited local search and restart. Algorithmica,
32(4):615–623, 2002.

[30] K. Seto and S. Tamaki. A satisfiability algorithm and
average-case hardness for formulas over the full binary
basis. Comput. Complex., 22(2):245–274, 2013.

[31] R. Shamir and D. Tsur. Faster subtree isomorphism.
J. Algorithms, 33(2):267–280, 1999.

[32] S. Tamaki. A satisfiability algorithm for depth two cir-
cuits with a sub-quadratic number of symmetric and
threshold gates. Electronic Colloquium on Computa-
tional Complexity (ECCC), 23:100, 2016.

[33] R. M. Verma and S. W. Reyner. An analysis of a good
algorithm for the subtree problem, corrected. SIAM J.
Comput., 18(5):906–908, 1989.

[34] R. Williams. Algorithms for circuits and circuits for
algorithms: Connecting the tractable and intractable.
In Proceedings of the International Congress of Math-
ematicians, pages 659–682, 2014.

A Proving the implications of logarithmically
faster algorithms for Subtree Isomorphism

Theorem A.1. ([3]) Let n ≤ S(n) ≤ 2o(n) be time
constructible and monotone non-decreasing. Let C be a
class of circuits. Suppose there is an SAT algorithm for
n-input circuits which are ANDs of O(S(n)) arbitrary
functions of three O(S(n))-size circuits from C, that
runs in O(2n/n10) time. Then ENP does not have S(n)-
size circuits.

Theorem A.2. ([3]) Suppose there is a satisfiability
algorithm for bounded fan-in formulas of size nk run-
ning in O(2n/nk) time, for all constants k > 0. Then
NTIME[2O(n)] is not contained in non-uniform NC1.

Corollary 1.1. The existence of a strongly subquadratic
time algorithm for PMLG (or Subtree Isomorphism)
would imply the class ENP (1) does not have non-
uniform 2o(n)-size Boolean formulas and (2) does not
have non-uniform o(n)-depth circuits of bounded fan-in.
It also implies that NTIME[2O(n)] is not in non-uniform
NC.

Proof. Note that the condition in Theorem A.1 that
the SAT-algorithm works on n-input circuits which are

ANDs of O(S(n)) arbitrary functions of three O(S(n))-
size circuits is trivially satisfied by a solver that works
over Boolean formula. By Theorem 1.1 (Theorem 1.2
resp.), for circuits (or equivalently formulas) of size
S(n) = 2o(n), a strongly subquadric time algorithm
for PMLG (Subtree Isomorphism resp.) would imply a
SAT algorithm running in time O(n1+o(1) · |E||P |1−ε) =
O(n1+o(1) · 2n−εn/2S(n)4) which is O(2n/n10); the
n1+o(1) factor is introduced when moving from a word
size of Θ(log n) to Θ(n). Thus, Theorem A.1 implies
(1). Part (2) is implied as well since a o(n)-depth
circuit of bounded fan-in can be expressed as a for-
mula of size S(n) = 2o(n). The last statement fol-
lows from Theorem A.2 and the fact that on circuits of
size nk, our subquadratic algorithm would run in time
O(n1+o(1) · 2n−εn/2n2k) which is O(2n/nk).

Corollary 1.2. If PMLG (or Subtree Isomorphism)

can be solved in time O( |E||P |logc |E| ) or O( |E||P |logc |P | ) (

O( |T1||T2|
logc |T1| ) or O( |T1||T2|

logc |T2| ) resp.) for all c = Θ(1), then

NTIME[2O(n)] does not have non-uniform polynomial-
size log-depth circuits.

Proof. We prove this for PMLG, the proof for Subtree
Isomorphism is similar. By Theorem A.2, it suffices
to show that for all k, there exists an algorithm to
check satisfiability of all bounded fan-in formulas of
size nk running in time O(2n/nk). Suppose that for
all c = Θ(1), there exists an algorithm running in time

O( |E||P |logc |P | ) or O( |E||P |logc |E| ). Then by Theorem 1.1, if we

let c > 4k + 1 we obtain an algorithm running in time

n1+o(1) · 2ns3

logc(2
n
2 s2)

=
n1+o(1) · 2nn3k

logc(2
n
2 n2k)

≤ n1+o(1) · 2nn3k(
n
2

)c =
2n+c

nc−3k−1−o(1)
= O

(
2n

nk

)

Corollary 1.4. ENP cannot be computed by non-
uniform formulas of cubic size if PMLG (or Subtree

Isomorphism) can be solved in time O
(
|E|·|P |

log20+ε |E|

)
or

O
(
|E|·|P |

log20+ε |P |

)
for ε > 0, where G is a deterministic

DAG of maximum degree three (or O
(
|T1|·|T2|

log20+ε |T1|

)
or

O
(
|T1|·|T2|

log20+ε |T2|

)
for ε > 0 resp.).

Proof. Theorem A.1 as given in [3] says that solving
Formula-SAT in time O(2n/n10) on formulas of size
s = O(n3+ε) implies that there is a function in class ENP

that cannot be computed by formulas of size O(n3+ε).
Then via a proof identical to that of Corollary 1.3, we
have the above result.

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited242

D
ow

nl
oa

de
d 

08
/1

0/
21

 to
 4

5.
30

.1
49

.1
74

. R
ed

is
tri

bu
tio

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/p

ag
e/

te
rm

s


