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Simple Reductions from Formula-SAT to Pattern Matching on Labeled Graphs
and Subtree Isomorphism*

Daniel Gibney'

Abstract

The CNF formula satisfiability problem (CNF-SAT) has
been reduced to many fundamental problems in P to prove
tight lower bounds under the Strong Exponential Time Hy-
pothesis (SETH). Recently, the works of Abboud, Hansen,
Vassilevska W. and Williams (STOC’16), and later, Abboud
and Bringmann (ICALP’18) have proposed basing lower
bounds on the hardness of general boolean formula satisfi-
ability (Formula-SAT). Reductions from Formula-SAT have
two advantages over the usual reductions from CNF-SAT:
(1) conjectures on the hardness of Formula-SAT are arguably
much more plausible than those of CNF-SAT, and (2) these
reductions give consequences even for logarithmic improve-
ments in a problem’s upper bounds. Here we give tight re-
ductions from Formula-SAT to two more problems: pattern
matching on labeled graphs (PMLG) and subtree isomor-
phism. Previous reductions from Formula-SAT were to se-
quence alignment problems such as Edit Distance, LCS, and
Frechet Distance and required some technical work. This
paper uses ideas similar to those used previously, but in
a decidedly simpler setting, helping to illustrate the most
salient features of the underlying techniques.

1 Introduction and Related Work.

The Strong Exponential Time Hypothesis (SETH) has
proven to be a powerful tool in establishing condi-
tional lower bounds for many problems with known
polynomial-time solutions. However, recent work by
Abboud, Hansen, Vassilevska W., and Williams [3], as
well as Abboud and Bringmann [2] has sought to use the
hardness of general Formula-SAT problems as the basis
for fine-grained conditional lower bounds, rather than
CNF-SAT and SETH. Since general Formula-SAT con-
tains within it all CNF-SAT instances, Formula-SAT is
at least as hard as CNF-SAT. Additionally, when bas-
ing conditional lower bounds on Formula-SAT rather
than CNF-SAT, the same algorithmic breakthroughs
that previously would have violated SETH, now have far
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more remarkable consequences (see Section 1.2 for ex-
amples). This makes it plausible that conjectures based
on the hardness of Formula-SAT are more likely to hold
than those based on the hardness of CNF-SAT.

Aside from a plausible increase in the robustness of
the conjectures, using Formula-SAT as a starting point
has the advantage of allowing for tighter hardness re-
sults. Previous lower bounds based on SETH have been
effective in establishing results of the form: an algorithm
running in time O(n°~*) for some € > 0, where the best-
known solution has time complexity O(n¢) would violate
SETH. Despite this success, SETH has proven less effec-
tive at establishing tighter fine-grained hardness results
regarding how many logarithmic-factors can be shaved.
In fact, the impossibility of proving such a hardness
result via fine-grained reductions from CNF-SAT was
proven in [2]. Overcoming this by using Formula-SAT
as a starting point, in [3] conditional lower bounds of
this form were established for Edit Distance and Longest
Common Subsequence (LCS). In [2], the results on LCS
were further extended to show that an O(n?/log" " n)
time solution for LCS would imply major breakthroughs
in circuit complexity. As a final example, work in [28§]
uses reductions from Formula-SAT to analyze which
regular expression matching problems can have super-
polylog factors shaved from their time complexity, and
which cannot.

In this work, we will use Formula-SAT to establish
hardness results similar to those listed above, but for
two additional fundamental problems, Pattern Match-
ing on Labeled Graphs (PMLG) and Subtree Isomor-
phism. We describe these problems next.

Pattern Matching On Labeled Graphs.
(PMLG) Given an alphabet X, a labeled graph G is
a triplet (V, E, L), where (V, E) corresponds to the ver-
tices and edges of a graph, and L : V — X% is a func-
tion that defines a nonempty string (i.e., label) over ¥
to each vertex in G. For any string S, we use SJ../]
to denote its prefix ending at ¢ and S[{..] to denote
its suffix starting at . We say that a pattern P oc-
curs in G if there is a path vy, vs, ..., v,, in G such that
L(v1)[¢..]o L(vg)o- o L(vy)[..¢] equals P for some £, ¢'.
Given a labeled graph G and a pattern P, the PMLG
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problem is to decide if there exists an occurrence of P
in G.

The PMLG problem began being intensely studied
roughly thirty years ago in the context of alignment of
strings (equivalent to approximate matching under ed-
its, mismatches, etc.) in hypertext. This was initiated
by Manber and Wu [19] and underwent several improve-
ments [4, 5, 21, 22]. In the case where changes are al-
lowed in the pattern, but not in the graph, the best-
known algorithm runs in time O(|V| + |E||P|), match-
ing the time complexity of the dynamic programming
solution of the exact problem, and is by Rautiainen and
Marschall [24]. In the case where changes are allowed in
the graph as well, the problem is NP-complete [5], even
for binary alphabet [15]. The work by Equi et al. in
[11] established the SETH based lower bounds for exact
matching.

Subtree Isomorphism. Given two trees 77 and
Ts, is Ty contained in 75?7 This problem has been
the subject of extensive study [9, 17, 18, 25, 31, 33],
much of this research dating back several decades. For
general trees, both with at most n vertices, the cur-
rently best known solution has a time bound that is
O(n¥), where w is the exponent on fast-matrix mul-
tiplication [31]; for rooted, constant maximum degree
trees it is O(n?/logn) [17]; and, for ordered trees it
is O(nlogn) [10]. Here we will be considering rooted
trees with constant maximum degree. In terms of lower
bounds, SETH based quadratic lower bounds for this
version of the problem have been established in [1], even
for binary rooted trees.

Road Map. We will first describe the Formula-
SAT problem and deMorgan Formulas in more detail.
Following this, we will state our results for PMLG and
Subtree Isomorphism in terms of its implications for
solving Formula-SAT, along with the resulting corollar-
ies. Section 2 provides the reduction from Formula-SAT
to PMLG. The reduction to Subtree Isomorphism is in
Section 3. Finally, in Section 4 we discuss the similar
themes and techniques that appear in both of these re-
ductions.

1.1 Formula-SAT deMorgan Formulas. For our
purposes, we define a deMorgan formula over n Boolean
input variables as a rooted binary tree where each leaf
node represents an input variable or its negation, and
every internal node represents a logical operator from
the set {A,V}. Leaf nodes will be called input gates,
and internal nodes will be called AND/OR gates. For
a given bit assignment x, we define F'(x) as the binary
value output at the root of F' when the input bits are
propagated from the leaves to the root of F. The size
of the formula, which we will denote as s, is defined as

the number of leaves in the tree.

Formula-SAT. Given a deMorgan formula F' of
size s over n inputs, does there exist an input « € {0,1}"
such that F'(z) =17

The set of all Formula-SAT instances obviously con-
tains within it all CNF-SAT instances. Unsurprisingly,
due to its generality, it appears harder to derive efficient
solutions for Formula-SAT. For CNF-SAT there exists
ever-improving upper bounds [6, 12, 20, 23, 26, 29].
There also exists upper bounds for more general circuits
such as ours, however, these work through restricting
some parameter of the circuit, often some combination
of the size, depth, and type of gates used within it (see
for example [7, 13, 14, 27, 30, 32]).

1.2 Owur Results Our reduction will create an in-
stance of PMLG (or Subtree Isomorphism) from a given
instance of Formula-SAT. In doing so, we make explicit
the roles that the size of the circuit s and the number
of inputs n play in determining the size of the resulting
instance.

THEOREM 1.1. A Formula-SAT instance of size s on
n inputs can be reduced to an instance of PMLG over
a binary alphabet with a graph G = (V, E) and pattern
P such that |P| is of size O(2"/? . s) and |E| is of size
0272 - s2) in O(|E|) time, where G is a DAG with
mazimum total degree® three.

Similarly, for Subtree Isomorphism we have the follow-
ing theorem.

THEOREM 1.2. A Formula-SAT instance of size s on
n inputs can be reduced to an instance of Subtree
Isomorphism on two binary trees Ty and Ta, where the
size of Ty is O(2"/25), and the size of Ty is O(2"/? - s?)
in O(|Tz|) time.

Combining Theorems 1.1 and 1.2 with observations
made by Abboud et al. in [3] (and restated in Appendix
A), we obtain the following ‘breakthrough’ implications
of a strongly subquadratic time algorithm for PMLG or
Subtree Isomorphism. Proofs are deferred to Appendix

A.

COROLLARY 1.1. The existence of a strongly sub-
quadratic time algorithm for PMLG (or Subtree Isomor-
phism) would imply the class ENP (1) does not have non-
uniform 2°("-size Boolean formulas and (2) does not
have non-uniform o(n)-depth circuits of bounded fan-in.
It also implies that NTIME[29(™)] is not in non-uniform
NC.

TTotal degree is in-degree plus out-degree.
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The second corollary gives the consequences of being
able to shave arbitrarily many logarithmic factors from
the quadratic time complexity.

COROLLARY 1.2. If PMLG (or Subtree Isomorphism)

can be solved in time O(ILZU‘PEI‘) or (9(%)

(O( 1T || T5| ) or O({LTel 1T T2] ) resp.) for all c = ©(1), then

log® [T | log® [T%|
NTIME[2°(™] does not have non-uniform polynomial-
size log-depth circuits.

In fact, we can give a particular constant c¢ for
which shaving a log®n factor would yield surprising new
results in complexity theory. The following log-sensitive
lower bounds leave a huge gap from the best known
upper bounds; we present these corollaries purely for
instructive purposes.

Hardness of Shaving Log Factors. We work un-
der the Word-RAM model and limit the set of constant-
time primitive operations to those operations which are
robust to change in word size. Specifically, suppose we
are given a word size of w = O(logn) and an operation
that can be performed in O(1) time. We stipulate that
we must be able to simulate this operation on words of
size W = ©(2%) in time n'T°(}). This is a reasonable
assumption that is satisfied by many constant time op-
erations such as addition, subtraction, multiplication,
and division with remainder. See [2] for a detailed dis-
cussion.

The following hypothesis was suggested by Abboud
and Bringmann in [2]. It reflects the fact that the best
known algorithmic solutions to Formula-SAT? fail to
provide a time complexity better than the naive solution
on formulas of size s = n3+1),

HypOTHESIS 1. ([2]) There is no algorithm that can

solve SAT on deMorgan formulas of size s = n3T%1) jn
O(i—:) time for some € > 0 in the Word-RAM model.

COROLLARY 1.3. Hypothesis 1 is false if PMLG (re-
spectively Subtree Isomorphism) can be solved in

time O<M> or O(M) (respectively

log!0+te |E| log!0+te | P|
AT ITo| AT ITo|
O (10g10+5 ‘T ‘ or O 10g10+5 ‘T I ) fOT any €> 0

Proof. We show the proof for PMLG; the proof for

Subtree Isomorphism is identical. By Theorem 1.1, an

O(%) algorithm for PMLG can be converted to
(2"/2-52)(2"/25)

yield an algorithm running in n!+o() . logT0Fe(2n /2 52) =

ZAs observed by Williams in [34], for deMorgan formulas of

Q1
size n37°(1) there exists a randomized 27" ™

algorithm which can be obtained by applying results from [8] and
[16].

time, zero error

O <2§+E ) time for Formula-SAT (note the n'*t°() fac-

tor introduced when moving from a word size of ©(logn)
to ©(n)). If we choose s = n®T¢/¢ then this yields an
algorithm for Formula-SAT of time O(-% 27), and Hy-
pothesis 1 is false. 0

Thanks to results highlighted by Abboud et al.
in [3], we can also say the following about shaving
a constant number of logarithmic factors from the
quadratic time complexity. The proof is deferred to
Appendix A.

COROLLARY 1.4. ENP cannot be computed by non-
uniform  formulas of cubic size if PMLG (re-
spectively Subtree Isomorphism) can be solved in

time O(%) or O(%) (respectively

O(w> 0r0<w>)f0rcmys>0

log20+e | Ty | log20+e |Ty|

The same hardness results for PMLG apply for
several more specific types of graphs (details will be
presented in the full version of this paper). These
include when the graph G is a deterministic DAG (at
most one edge leaves a vertex with the same leading
character on an edge label) of total degree at most 3,
and the case when G is a directed or undirected planar
graph of degree at most 3.

2 Reduction from Formula-SAT to PMLG

2.1 Technical Overview Our reduction {from
Formula-SAT to PMLG uses an intermediate problem
called Formula-Pair.

DEFINITION 1. (FORMULA-PAIR) Given a deMorgan
Formula F = F(x1,...,%m,Y1,---,Ym) of size 2m
where each input is used exactly once, and two sets
A,B C {0,1}™ each of size N, does there ex-
ist a € A and b € B such that F(a,b) =
F(al,...,am,bl,...,bm):1?

The role Formula-Pair plays in our reduction is
analogous to the role of the Orthogonal Vectors Problem
in many SETH reductions. It was proven in [2] that an
instance of Formula-SAT on a formula of size s over n
inputs can be reduced to an instance of Formula-Pair
on two sets of size N = O(2"/?) and a formula of size
O(s) in linear time (in particular, they reduce from a
harder problem they call F;-Formula-SAT). Note that
we may assume that F' contains no input gates with
negated binary variables, since if variable x; is negated
in F', we can flip bit a; for all a € A.

We begin our reduction from Formula-Pair to
PMLG by considering a formula F' and some input bit
assignments ¢ € A and b € B. We then construct a
pattern P and labeled graph G such that P occurs in G
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if and only if together a and b satisfy F. In this step, we
must ensure that our construction of P only relies on the
input bit assignments of a, and our construction of G
only relies on the input bit assignments of b. This allows
us to create patterns Pi, Py, ..., Py corresponding to
the N bit assignments in A, and graphs G1,Gs,...,Gy
corresponding to the N bit assignments in B. Then we
will have that P; occurs in G if and only if F'(a,b) = 1,
where a € A is the bit assignment corresponding to P;,
and b € B is the bit assignment corresponding to Gj.
Finally, we combine these patterns and graphs into a
product pattern P and a product graph G such that P
occurs in G if and only if some P; occurs in some Gj;.
This will complete the reduction.

2.2 Reduction Given a deMorgan formula F' and a
complete assignment of input bits (a,b) where a € A
and b € B, we will construct a corresponding pattern P
and labeled DAG G over alphabet {0, 1,$} such that P
occurs in G if and only if the output of F' is 1 on input
(a,b). This pattern and graph will be built recursively,
starting with the input gates as a base case. For a gate
g = (g1 * g2) where x € {V,A}, we will construct a
corresponding pattern and graph for gate g by merging
the patterns and graphs of subgates g; and go. At each
step in this process, the pattern corresponding to gate g
occurs in the graph corresponding to gate ¢ if and only
if g evaluates to 1 on input (a,b).

Invariants. We will maintain the following invari-
ants during this recursive procedure. Let g be a gate of
F with height h, and let P and G be the pattern and
graph corresponding to gate g in our construction.

1. Graph G will have a designated source vertex and
sink vertex, both with label “1”. Every maximal
path in G will be of length |P| and start and end
at the source and sink vertices of G respectively.

2. The construction of pattern P is independent of
the choice of bit assignment b € B, and the
construction of graph G is independent of the
choice of bit assignment a € A.

3. Pattern P occurs in G if and only if g has output
1 on input (a, b).

Observe that by the first invariant, every occurrence
of pattern P in graph G will start at the source vertex
of G and end at the sink vertex of G. If this is the case,
we will say that G matches P. We will also refer to the
designated source and sink vertices of G as the start and
end vertices of G.

Input Gate. Each input gate g in F' takes as input a
binary variable z. We will design a graph G and pattern

Figure 1: From left to right: a. the graph for gate
g = (91 A\ g2), b. the graph for gate g = (g1 V g2), and
c. the Universal Subgraph U(z). Note that Universal
Subgraph U(x) has a series of  — 2 vertex pairs labeled
0 and 1, making its maximal path length z.

P such that G matches P if and only if z had value 1 in
bit assignment (a,b), and hence g evaluates to 1. Our
construction depends on whether z corresponds to an
input bit in a or b.

e Case 1. z corresponds to some a; € a. We let
P :=1a;1 and G be a path of length three with all
vertices labeled 1.

e Case 2. z corresponds to some b; € b. We
let P := 111 and G be a path of length three with
the first and last vertex labeled 1 and the middle
vertex labeled b;.

The start vertex of G will be the first vertex in the
path, and the end vertex of G will be the third (last)
vertex in the path. Then our graph G matches pattern
P if and only if z = 1 and thus the input gate evaluates
to true. Additionally, the construction of P does not
depend on b and the construction of G does not depend
on a. All invariants are satisfied.

AND Gate. Given a gate g = (g1 A g2) and the
graphs and patterns (G, P;) and (Gs, P2) correspond-
ing to gates g1 and go respectively, we must construct a
product graph G and pattern P such that G matches P
if and only if G; matches P; and G matches P5. This
is done rather easily. Let P := 1P;P,1. Now let our
product graph G be defined as in Figure 1.a. Our start
vertex is labeled 1 and has an outgoing edge to the start
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vertex of subgraph G;. The end vertex of G; in turn
has an outgoing edge to start vertex of subgraph Gs,
whose own end vertex has an outgoing edge to the final
vertex of G. We now verify all invariants are satisfied.

e Invariant 1. We assume that every maximal
path in Gp (respectively Gs) is of length |Pi]
(respectively |Pz]). Then by the construction of
P and G, every maximal path in G is of length |P|.
The invariant is maintained.

e Invariant 2. Assuming that the construction of
P, and P, is independent of b, and the construct
of G1 and (G5 is independent of a, it follows that
the construction of pattern P is independent of bit
assignment b, and the construction of graph G is
independent of bit assignment a.

e Invariant 3. Since every occurrence of P in G
starts at the start vertex of G and ends at the end
vertex, we must conclude that P occurs in G if
and only if P; occurs in G; and P, occurs in Gs.
Then by our invariant P occurs in G if and only
if g evaluates to 1 on input (a,b). The invariant is
preserved.

OR Gate. Given a gate ¢ = (g1 V g2) and the
graphs and patterns (G1, P;) and (Ga, P2) correspond-
ing to gates g1 and gs respectively, we must construct
a product graph G and pattern P such that G matches
P if and only if G; matches P; or Go matches P,. As
with our AND gate, we let P := 1P, P,1. Our product
graph G (see Figure 1.b) splits into two branches. One
branch checks if G; matches P; and ignores P,, while
the other branch checks if G5 matches P, and ignores
P;. We are able to ignore Py (respectively Py) by con-
structing a ‘universal’ subgraph that matches all binary
strings that start and end with 1 and are of length |Ps|
(respectively |Pi]). We let U(z) denote the universal
subgraph for length z, and we depict our construction
of U(x) in Figure 1.c. Observe that graphs U(|FP1]) and
U(|Pz|) match P, and P, respectively. We now check
that all invariants are satisfied.

e Invariant 1. A similar argument as in the AND
gate shows that every maximal path in G is of
length |P| and passes through the start and end
vertices of G. The invariant is preserved.

e Invariant 2. Pattern P is independent of bit
assignment b by a similar argument as with the
AND gate construction. However, for our graph G,
we must verify that subgraphs U(|Py|) and U(|P|)
of G do not depend on bit assignment a. This will
follow from proving that the lengths of patterns

P; and P, do not depend on the bit assignment
a. Note that in each of the input, AND, and OR
gate constructions, the length of the constructed
pattern is the same regardless of the bit assignment
a. Thus we conclude that U(|P;|) and U(|P|) are
independent of the bit assignment a, and therefore
the construction of graph G is independent of the
bit assignment a.

e Invariant 3. Since every occurrence of pattern
P starts at the start vertex of G and ends at the
end vertex, it is immediate that G matches P if
and only if G; matches P; or G2 matches Ps.
It immediately follows from our invariant that G
matches P if and only if gate g = (g1 V g2) evaluates
to 1 on input (a, b).

2.3 Completing the Reduction Now correspond-
ing to our formula F of size s and a complete assignment
of input bits (a,b), we can build a pattern P and a graph
G such that G matches P if and only if assignment (a, b)
satisfies F'. Note that we only add a constant number of
symbols to our pattern P for each gate in F', and there
are fewer than 2s gates in F, so |P| = O(s). On the
other hand, each OR gate in F' can contribute O(|P])
vertices and edges to our final graph G. It follows that
G is of size O(s?).

Using our construction, for every a € A we may
construct a corresponding pattern P, and for every b €
B we may construct a corresponding graph G. We will
denote these patterns and graphs by Py, Ps, ..., Py and
G1,Go,...,Gy respectively. Note that each pattern
P; makes no assumptions on the bit assignment b, and
graph G; makes no assumptions on the bit assignment
a. It follows that G; matches P; if and only if together
the corresponding bit assignments a € A and b € B
satisfy F.

Next, we construct a final graph G and pattern
P such that P occurs in G if and only if some G;
matches some P;. This will complete our reduc-
tion. We define our final pattern P as follows: P :=
$$P1$P8 - - - $PN$S. The structure of our final graph
G is similar to the final graph presented in [11]. We
present this graph in Figure 2 and briefly explain the
intuition behind it. Let p = |P;| for any é. Then sub-
graph U(u) will match any subpattern P; in P. The
graph G uses U(p) to match the subpatterns P; in P
that do not match with any G;. Note that since pattern
P has a prefix of two $ symbols and a suffix of two $
symbols, P is forced to pass through the second row of
G. More specifically, the first row of G alone cannot
match the $$ suffix of P, and the third row of G alone
cannot match the $$ prefix of P. Then it can be seen
that P occurs in G only if P passes through the second
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Figure 2: Our final graph G. Here p = |P;|.

row of GG, and hence some subgraph G; matches some
subpattern P;. Then by construction, P occurs in G
if and only if there exists a € A and b € B such that
F(a,b) = 1. Furthermore, our final graph is a DAG
of size O(N - s?) and our final pattern P is of length
O(N - s). This completes our reduction from Formula-
SAT to PMLG on DAGs.

3 Reduction from Formula-SAT to Subtree
Isomorphism

3.1 Technical Overview We begin our reduction
from Formula-Pair to Subtree Isomorphism by consider-
ing a formula F' and some input bit assignments a € A
and b € B. We then construct trees T, and T} such
that T, is contained in T} if and only if together a and
b satisfy F'. In this step it is important that we ensure
that our construction of T, only relies on the input bit
assignments of a, and our construction of T} only relies
on the input bit assignments of b. This allows us to
create N T, trees corresponding to the N bit assign-
ments a in A, and N T} trees corresponding to the N
bit assignments b in B. Then we will have that some
T, tree is contained in some T} tree if and only if the
corresponding bit assignments a € A and b € B satisfy
F(a,b) = 1. Finally, we combine these trees into two
final trees T4 and T'g such that T4 is contained in Tg if
and only if some T, is contained in some Tj. This will
complete the reduction.

3.2 Reduction Given a deMorgan formula F' and a
complete assignment of input bits (a,b) where a € A
and b € B, we will construct the corresponding rooted
trees T, and T} such that T, is contained in T} if and

only if the output of F(a,b) = 1. These trees will be
constructed recursively, starting with the input gates
of F as a base case. For a gate g = (g1 * g2) where
x € {V,A}, we will construct the corresponding trees
T and T} for gate g by merging the trees of subgates
g1 and go. At each step in this process, T¢ will be
contained in T} if and only if gate g has output 1 on
input (a,b).

Invariants. We will maintain the following invariants
throughout our construction. Let g be a gate of F' with
height h.

1. The height of TY is equal to the height of 7} and
is at most 4h.

2. The construction of T is independent of the choice
of bit assignment b € B, and the construction of
T} is independent of the choice of bit assignment
a € A.

3. Tree TY is contained in tree T if and only if gate
¢ has output 1 on input (a,b).

Input Gate. Given an input gate g corresponding to
a bit value a; € a (respectively, a bit value b; € b), we
will construct trees T¢ and T} so that T is contained
in 7] if and only if a; = 1 (respectively, b; = 1). We
construct 7Y and T as in Figure 3. These trees are
rooted at vertices v, and v, respectively. We define
input gates of F' to have a height of one, so the trees
in Figure 3 satisfy the first invariant. The remaining
two invariants can be verified by examining every case
of Figure 3.
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AND Gate. Given an input gate g = (g1 A g2), and
the trees T}, T} and T2,T7 corresponding to gates g
and g respectlvely, we w1sh to construct trees TJ and
T7 so that T is contained in T} if and only if gate g
has output 1 on input (a,b). By our third invariant it
suffices to ensure that T is contained in 7}/ if and only
if T! is contained in 7} AND 77 is contained in 7;?. We
construct trees T¢ and T} as in Figure 4. The trees are
rooted at vertices v) and vj respectively. We now verify
that all invariants are satisfied.

e Invariant 1. By our inductive hypothesis tree T}
has the same height as T} and T7? has the same
height as T}, so it follows from our construction
that 7Y has the same height as 7. Now to see
why the height of these trees is at most 4h, note
that subtrees T, T}, T2, T? have height at most
4(h — 1), and so trees T¢ and T} have height at
most 4(h — 1) + 4 = 4h.

e Invariant 2. We assume that the construction of
trees T} and T is independent of b, and the trees
T} and T? are independent of a. Then it can be
easily verified that tree T does not depend on b,
and tree T} does not depend on a.

e Invariant 3. We must show that tree T7 is
contained in tree T if and only if g evaluates
to 1 on bit assignment (a,b). By our inductive
hypothesis, it suffices to show that 79 is contained
in 77 if and only if T)} is contained in 7)) AND T2
is contained in 77?. The ‘if” direction is immediate
from our construction: just map vertex v: in T to
vertex v} in T¢ for i € [0,4], and map trees T} and
T} to subtrees of T2 and T} respectively.

For the ‘only if’ direction we must prove that
subtree 77} can only map to a subtree of T}, and
subtree T2 can only map to a subtree of TbQ.
First note that since trees T¢ and T} have the
same height, every isomorphism between T and a
subtree T} must map the root vertex v of T to the
root vertex vg of Tbg . Now suppose T} is mapped to
T} in some isomorphism between 7 and a subtree
of T. Then vertex v3 would be mapped to vertex
v}, and the path of length two hanging off v3
would have nowhere to map to. It immediately
follows that in every valid subtree isomorphism, 7'}
is mapped to Tbl, and T2 is mapped to TbQ. Then
TY is contained in T} if and only if T); is contained
in T} and T2 is contained in T2.
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Figure 3: The trees T¢ and T corresponding to input
gate g = a; or g = b;.

0
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. /\\._._.2

T, i

Figure 4: The trees T¢ (top) and 7} (bottom)
corresponding to AND gate g = (g1 A g2).

OR Gate. Given an input gate g = (g1 V g2), and
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Figure 5: The trees T¢ (top) and T} (bottom) corre-
sponding to OR gate g = (g1 V ¢2).

the trees T}, T}} and T2, T} corresponding to gates g,
and go respectively, we will construct trees T and T} so
that T is contained in T} if and only if 7} is contained
in T}) OR T7? is contained in T2. We construct trees T
and 7, as in Figure 5. These trees are rooted at vertices
v? and vl? respectively. Tree T} contains a subtree U,,
which we call a universal subtree. We design U, so
that it contains both tree T} and tree T2 for every bit
assignment a. This will allow either T} or T2 to match
with Uy, thus achieving the OR gate logic.

We now construct our universal subtree Uy. First,
observe that for any gate g and any two bit assignments
a,a’ € A, the only difference between trees 7Y and T7,
is in the input gate subtrees. There are two different
input gate subtrees in T¢: the a; = 0 subtree composed
of a root vertex and two leaves, and the a; = 1 subtree
composed of a root vertex with a single leaf (see Figure
3). Note that the a; = 0 input subtree contains the
a; = 1 input subtree. Then if we define a bit assignment
u = 0™, it follows that for every a € A, the tree T is
contained within the tree 7. Then for trees T} and T2
we construct trees T} and T2 so that T} is contained in
T! and T? is contained in T2 for all a € A. We define
our universal subtree U, as the tree created by merging

the root vertex of T} with the root vertex of T2. By
construction, this tree U, contains 7! and T for all
a € A as intended. We now verify that all invariants
are satisfied.

e Invariant 1. This invariant holds by an argument
identical to that of the AND gate construction.

e Invariant 2. A similar argument as with the AND
gate will show that T¢ does not depend on bit
assignment b. Likewise, tree Ty does not depend
on bit assignment a; the construction of universal
subtree U, is independent of a as detailed in its
construction.

e Invariant 3. By our inductive hypothesis, it
suffices to show that T is contained in T} if and
only if T} is contained in 7} OR 77 is contained
in Tb2. The ‘if” direction can be seen by observing
that if T is contained in T}, then we can align T}
with 73} and align T?? with Uy, which is guaranteed
to contain 77; the case where 772 is contained in 7}
is identical.

The ‘only if” direction follows from a similar argu-
ment given for the AND construction. First note
that since trees T¢ and T} have the same height, ev-
ery subtree isomorphism must map the root vertex
v of TY to the root vertex v) of 7. Additionally,
it is immediate from construction that exactly one
subtree T or T2 can be aligned with universal sub-
tree Uy. Then we simply need to verify that there
is no valid subtree isomorphism between T¢ and T}/
that maps T} to T or T2 to T}}. Suppose that T}
was mapped to a subtree of Tb2 (the other case is
symmetric). Then vertex v3 would map to vertex
vy, and the path of length two hanging off v3 would
have nowhere to map to. We conclude that subtree
T} must map to subtree T} or subtree 72 must map
to subtree T2 in any subtree isomorphism from 77
to 7). The invariant is maintained.

3.3 Completing the Reduction The final trees are
constructed using the technique provided in [1]. The
construction is shown in Figure 6 and described next.

e For the final tree T}, start with a complete binary
tree where the number of leaves is the smallest
power of 2 that is greater or equal to N, say 2%.
From each of the 2% leaves, attach a path of length
x. Let the first IV leaves at the ends of these paths
be numbered 1 to N. For 1 <i < N, replace leaf i
with root of T,,. For the remaining 2* — N leaves
at the end of paths, replace the leaf with the roots
of 2% — N copies of T, .
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Figure 6: The final T4 (top) and T (bottom).

e For the final tree Tz, again start with a complete
binary tree with 2% leaves. From the first 2% — 1
leaves, attach a path of length x. Replace the end
of each of the paths with the root of a universal tree
U, which is T, with input bit assignment u = 0.
From the remaining leaf in the complete binary
tree, replace this leaf with the root of another
complete binary tree, again with 2% leaves. Let
the first NV leaves of this second complete binary
tree be numbered 1 to N. For 1 < ¢ < N, replace
leaf 7 with the root of Ty,.

To see why this works, consider that for T4 to be
isomorphic to a subtree of Tz, the root of T4 must
be mapped onto the root of Tg. Then, one of Tx’s
2" paths hanging from the leaves of its complete binary
tree must traverse down the lower complete binary tree
in Tg. From here, a subtree rooted at the end of one
of these paths in T4 must have to be isomorphic to one
of the subtrees hanging from the leaves of the second
binary tree in Tg. This is possible if and only if for
some a € A and b € B we have that T, is isomorphic to
a subtree of Ty. By the invariants proven above, such a
pair a € A and b € B exists iff the starting formula F
evaluates to true on the assignment (a,b).

The final tree T4 is of size O(Ns). This is because

there are N trees T, in T4, and each tree T, is of size
O(s). The upper bound on the size of T, follows from
the fact that formula F has s gates, and each gate
contributes constantly many vertices to T,. The final
tree T is of size O(Ns?). To see this, fix a particular
assignment (a,b), and consider the tree Tj,. Each AND
gate contributes a constant number of vertices to Ty.
Each OR gate appends a universal subtree U of size at
most the size of T, to Ty. Since the size of T, is O(s)
and there are s gates in formula F', we have that T}, is
of size O(s?).

4 Discussion

The key property highlighted by the two reductions is
that both problems we reduced to allow for the construc-
tion of two independent objects O4 and Op, where O 4
is constructed independently from the partial input as-
signments in B, and Op is constructed independently
from the partial input assignments in A.

In order to construct these objects, both reductions
start by fixing an input assignment (a,b). Then, two
new objects for each gate g are constructed using the
objects for the circuits that are input into g. The aim
of this construction is to maintain the invariant that
whichever desired property we want our objects to have
(e.g., the pattern occurring in a graph, or having an
isomorphic subtree) holds iff (a,b) satisfy the circuit
with output gate g. This is accomplished by supposing
(i) we are adding the gate g = g1 * go where x € {A, V},
(ii) the objects O9* and Oj' have the desired property
iff (a,b) evaluates to true on the circuit with output gate
g1, and (iii) the objects 092 and OJ> have the desired
property iff (a,b) evaluate to true on the circuit with
output gate ga2. The task is then to construct O from
only 09 and 092, and Oy from only Of* and O7?, such
that O¢ and Oj have the desired property iff g = g1 * g2
evaluates to true. By the invariant, this is equivalent
when * = A to 09" and Of' having the desired property,
and 0% and O} having the desired property. In the
case of * = V, only one of the pairs OJ', Of* or 02,
O} needs to have the property.

In the last step, the final objects O4 and Op are
constructed by combining all O,,, 1 < i < N to form
Oa, and Op,, 1 < j < N to form Op. These final
objects must allow for selection between different partial
assignments. Additionally, the final objects satisfy the
desired property iff at least one object pair O,, and Oy,
together satisfy the desired property.

The above outlines, on a high level, the approach
used in reductions from Formula-SAT to polynomial-
time problems that appear here, and in [2, 28]. The
techniques presented in [3] instead start with the prob-
lem of the satisfiability of branching programs, but they
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work similarly in the sense that they must model the
logical gates AND and OR (this time connecting logical
statements about reachability). The authors also take
similar steps in order to build two independent objects
based on a fixed input assignment (a,b).
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A Proving the implications of logarithmically
faster algorithms for Subtree Isomorphism

THEOREM A.1. ([3]) Let n < S(n) < 2°(™ be time
constructible and monotone non-decreasing. Let C be a
class of circuits. Suppose there is an SAT algorithm for
n-input circuits which are AN Ds of O(S(n)) arbitrary
functions of three O(S(n))-size circuits from C, that
runs in O(2"/n1%) time. Then ENP does not have S(n)-
size circuits.

THEOREM A.2. ([3]) Suppose there is a satisfiability
algorithm for bounded fan-in formulas of size n* run-
ning in O(2"/n*) time, for all constants k > 0. Then

NTIME[29(™)] is not contained in non-uniform NC'.

Corollary 1.1. The existence of a strongly subquadratic
time algorithm for PMLG (or Subtree Isomorphism)
would imply the class EN® (1) does not have non-
uniform 2°(" -size Boolean formulas and (2) does not
have non-uniform o(n)-depth circuits of bounded fan-in.
It also implies that NTIME[29()] is not in non-uniform
NC.

Proof. Note that the condition in Theorem A.1 that
the SAT-algorithm works on n-input circuits which are

ANDs of O(S(n)) arbitrary functions of three O(S(n))-
size circuits is trivially satisfied by a solver that works
over Boolean formula. By Theorem 1.1 (Theorem 1.2
resp.), for circuits (or equivalently formulas) of size
S(n) = 2°") a strongly subquadric time algorithm
for PMLG (Subtree Isomorphism resp.) would imply a
SAT algorithm running in time O(n!*°W . |E||P|1=¢) =
O(ntte() . gn=en/2G(n)4) which is O(2"/n'0); the
n'*toM) factor is introduced when moving from a word
size of ©(logn) to ©(n). Thus, Theorem A.l implies
(1). Part (2) is implied as well since a o(n)-depth
circuit of bounded fan-in can be expressed as a for-
mula of size S(n) = 2°. The last statement fol-
lows from Theorem A.2 and the fact that on circuits of
size n*, our subquadratic algorithm would run in time
O(ntto) . gn=en/2p2k) which is O(2"/n*). 0

Corollary 1.2. If PMLG (or Subtree Isomorphism)

can be solved in time O(l‘o?lﬁ;lﬂ or O(l‘ogl‘ﬁgl‘) (

O(%) or (’)(%) resp.) for all ¢ = ©(1), then

NTIME[2°("] does not have non-uniform polynomial-
size log-depth circuits.

Proof. We prove this for PMLG, the proof for Subtree
Isomorphism is similar. By Theorem A.2, it suffices
to show that for all k, there exists an algorithm to
check satisfiability of all bounded fan-in formulas of
size n* running in time O(2"/n*). Suppose that for
all ¢ = ©(1), there exists an algorithm running in time
O(ngllijl') or O(l(‘)gl‘ll;l‘). Then by Theorem 1.1, if we
let ¢ > 4k 4+ 1 we obtain an algorithm running in time

n1+o(1) . 2n53

n1+0(1) . 2'n,n3k

log€(27% s2) log® (23 n2k)
nl—i—o(l) . onp3k on+e on
= n\C T e-3k—1-o(1) 0 <nk>
(%)
a
Corollary 1.4. ENP cannot be computed by non-

uniform formulas of cubic size if PMLG (or Subtree

; — |E||P|
Isomorphism) can be solved in time O (10g20+5 5 or

o (%) for e > 0, where G is a deterministic

DAG of mazimum degree three (or O (M) or

10g20+5 ‘Tl‘
T || T3]
@ (10g20+5 ol fore >0 resp.).

Proof. Theorem A.1 as given in [3] says that solving
Formula-SAT in time O(2"/n!?) on formulas of size
s = O(n**+¢) implies that there is a function in class ENP
that cannot be computed by formulas of size O(n3+¢).
Then via a proof identical to that of Corollary 1.3, we
have the above result. d
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