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Abstract
We introduce an active scalar equation with a similar structure to the 3D Euler
equations. Through studying the behavior of scale-invariant solutions, we show
that compactly supported Lipschitz solutions belonging to C∞(R2\{0}) can
become singular in finite time. The interesting feature here is that we can
achieve this in the absence of spatial boundaries.
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1. Introduction

Over the past few decades, there has been a growing interest in studying the problem of sin-
gularity formation in fluid equations through the lens of model problems that capture some,
but not all, features of the original fluid equation. Our main interest here will be with the 3D
Euler equation. As an example of this trend, we recall the analogy between the surface quasi-
geostrophic (SQG) equation, inviscid porous medium (IPM) equation and 3D Euler systems.
All three can be written in the following form:

∂tW + u · ∇W = W · ∇u (1)
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with different relations between the unknown divergence-free vector fieldsW and u:

u3DE = (−Δ)−1(∇×W), uSQG = (−Δ)−1/2W, uIPM = (−Δ)−1∂1W.

The analogy between the three systems is clear; the ‘vorticity’ vector field W satisfies the
same equation and the velocity field is determined from W by a −1-homogeneous4 Fourier
multiplier. All that differs is the nature of Fourier multiplier in each case. For example,
the Fourier multiplier in the SQG and 3D Euler systems is isotropic in general5 while in
the IPM equation it is anisotropic. On the other hand, in terms of parity, the Fourier mul-
tiplier is odd in the 3D Euler and IPM systems and even in the SQG system. The issue
of parity seems to be one which has been, somehow, overlooked in previous works on
the 3D Euler system, though it has now become clear that it is an issue of great impor-
tance [12]. In this work we will introduce and analyze a new model that highlights the
importance of parity in the map W → u. Toward this end, we consider the following 2D
system:

∂tW + u · ∇W = W · ∇u, (2)

u = (−Δ)−1

(
∂θW
r

)
, (3)

where r and θ are the radial and angular variables. The lawW → u that we are introducing here
is somehow in between the one of IPM and the SQG; it seems to have the correct ‘parity’ in
relation to the 3DEuler equation and is also isotopic. It should be emphasized that this is simply
a mathematical model to better understand the singularity problem in the 3D Euler equations
and it is not clear whether there is a physical scenario that this system actually models. Our
main result about this system is the existence of compactly supported bounded solutions on
R2 that are smooth away from 0 and locally zero-homogeneous near 0 that become singular in
finite time. To achieve this, we follow the methods introduced in [11] to focus our attention on
a one dimensional equation satisfied by zero-homogeneous solutions. We then move to prove
blow-up of such solutions.

It is important to emphasize that in the case of the IPM equation, this analysis can only be
completed on corner domains (as in [9, 13]). Moreover, in the case of the SQG equation the
parity of the mappingW → u seems to preclude blow-up of homogenous solutions altogether
(though there is not yet a proof of global regularity in this case, there seems to be quite a bit
of evidence in favour of global regularity, see for example [5–7, 10, 11, 14]). Additionally,
one could compare this result with other results on blow-up of infinite energy solutions to fluid
equations such as [2, 4, 18]. An important distinction between those works and the present one
is that there is a clear way to localize the infinite-energy solutions we construct to get finite
energy solutions in the end.

Unlike concavity techniques used to show finite singularity formation for Prandtl equations
(see [8, 15]), or the primitive equation (see [1]), our proof is more based on shock type
singularity through trajectories method, in the spirit of [16, 17].

4 A function f (x) is n-homogeneous if it satisfies f (αx) = αn f (x) for any real α.
5 Though it ceases to be isotropic in the latter case when we look at axi-symmetric solutions, for example.
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1.1. Statement of the main result

Observe that in 2D sinceW is divergence free in (2) and (3) we can writeW = ∇⊥ω and then
we observe that ω satisfies the following active scalar equation:

∂tω + u · ∇ω = 0, (4)

u = ∇⊥(−Δ)−1

(
∂θω

r

)
, (5)

where (r, θ) are the 2D polar coordinates. Let us recall a few definitions

Definition 1.1. We say that f ∈ C(R2\0) belongs to C̊α for 0 � α � 1 if:

sup
x �=0

| f (x)|+ sup
x �=y

‖x|α f (x)− |y|α f (y)|
|x − y|α < ∞.

We say that f ∈ C̊∞ if |x|k∇k f ∈ C̊1 for all k = 0, 1, 2, ··.

Definition 1.2. A function f : R2 → R is said to be m-fold symmetric for m ∈ N if
f (Omx) = f (x) for all x ∈ R2, where Om is the rotation matrix that rotates points by the angle
2π
m counter-clockwise.

Our first result concerns the local well-posedness for the 2D active scalar equations (4)
and (5).

Theorem 1 (Local well-posedness). Fix 0 < α < 1 and m � 3. If ω0 is m-fold sym-
metric function such that∇ω0 ∈ C̊α, then there exists T = T(‖∇ω0‖C̊α ) and a unique m-fold
symmetric solution ω of (4) and (5) on [0, T ) with ∇ω ∈ C([0, T); C̊α).

Second, we have the following natural blow-up criterion in the spirit of Beale–Kato–Majda
criterion.

Theorem 2 (Blow-up criterion). A solution ω(t, x) of (4) and (5) as in theorem 1 cannot
be extended past T∗ < ∞ if and only if

lim
t→T∗

∫ t

0
‖∇ω(τ , ·)‖L∞ dτ = +∞.

Finally, in our last and main theorem, we construct compactly supported solutions covered
under the above local well-posedness theorem 1 that become singular in finite time.

Theorem 3. There exists a four-fold symmetric ω0 ∈ Cc(R2) with ∇ω0 ∈ C̊∞ so that the
unique corresponding four-fold symmetric solution from theorem 1 becomes singular in finite
time. Namely, there exists T∗ < ∞ so that

lim
t→T∗

∫ t

0
‖∇ω‖L∞ = +∞.

1.2. Discussion of previous works

1.2.1. The 1D model. One of the most interesting aspects of equations (4) and (5) is the struc-
ture of the 1D model satisfied by one-homogeneous solutions. We will focus our attention on

5047



Nonlinearity 34 (2021) 5045 T Elgindi et al

the four-fold symmetric case, though this is not necessary. We search for solutions to (4) and
(5) of the form:

ω(x, t) = rg(θ, t),

where g is π
2 periodic. Equation (5) then becomes:

u = ∇⊥(−Δ)−1∂θg.

Now let us introduce F(θ, T ) with

4F + ∂θθF = −∂θg,

note that we can solve uniquely for a π
2 periodic F since g is π

2 periodic. Then it is easy to see
that:

u = ∇⊥(r2F) = 2x⊥F − x∂θF.

Then we see that:

u · ω = (2x⊥F − x∂θF) · ∇(rg) = 2F∂θg− ∂θFg.

Thus we arrive at the following system on S1 for one-homogeneous solutions to (4) and (5):

∂tg+ 2F∂θg = g∂θF, (6)

4F + ∂θθF = −∂θg. (7)

One should compare this with the 1D model derived from the SQG equation in [11] where (7)
is replaced (up to a lower order term) by:

∂θF = H(g),

where H is the Hilbert transform. A very important distinction between these two systems is
the difference in parity: in (7) g and F have the opposite parity while in the SQG case they have
the same parity. This simple looking distinction is what allows us to prove finite time blow-up
for (6) and (7), while it seems that there is global regularity in the SQG case (see [3, 6, 10,
14]). The important distinction is that the natural class of solutions to study to get growth in
(6) and (7) is that of even solutions, rather than odd solutions.

1.2.2. Symmetry condition. The velocity in (5) can be recovered through Biot–Savart kernel:

u =

∫
R2

(x − y)⊥

|x − y|2

(
∂θω

r

)
(y)dy. (8)

Generally, the above Biot–Savart law does not converge at infinity. However we can introduce
the symmetry and show that the Biot–Savart kernel actually gains the decay at infinity (see
corollary 2.14, [11]). Indeed, assuming that g(x) is m-fold symmetric with m � 3, then

K ∗ g(x) = 1
m

m∑
i=1

∫
R2
K(x − Oi

2π/my)g(y)dy,
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whereK is the Biot–Savart kernel andOi
2π/m is the counter-clockwise rotation by angle 2π/m i-

times. The new rotation kernel can be rewrite as

Km(x, y) =
1
m

m∑
i=1

K(x − Oi
2π/my) =

1
m

∇⊥
x

(
Πm
i=1|x − Oi

2π/my|2
)

Πm
i=1|x − Oi

2π/my|2
.

Noting that by fixing y, Πm
i=1|x − Oi

2π/my|2 is also a m-fold symmetric polynomial in x,
then the possible degrees in x are only m and 2m. So that the components of the vector

∇⊥
x

(
Πm
i=1|x − Oi

2π/my|2
)
consists of x with degree m− 1, 2m− 1 and degree of y is at most

m. Thus for |y| � c|x| it holds that

Km(x, y) � c
|x|m−1

|y|m (9)

and it is integrable for m � 3 but fails for m � 2.

1.3. Sketch of the proof

For theorems 1 and 2 the proofs go along the same lines as in [11]. The idea is to set up several
self controlled inequalities including ‖∇ω‖L∞ , ‖∇Φ‖L∞ , and Q(t ) (given in below in (19))
where Φ(t, x) is the flow map defined by

Φ̇(t, x) = u(t,Φ(t, x)), Φ(0, x) = x

andQ(t ) is some semi-normwhich, together with ‖∇ω‖L∞ will control ‖∇ω‖C̊α . Then a priori
estimate on ‖∇ω‖C̊α is obtained to solve the flow map up to some time. The only difference is
that the following inequality is needed in our case.

Lemma 1.1. Assume ω is m-fold rotationally symmetric for some m � 3 and u = ∇⊥

(−Δ)−1 ∂θ
r ω. Then it holds that

‖∇u‖C̊α � Cα‖∇ω‖C̊α ,

∥∥∥∥ u
| · |

∥∥∥∥̊
Cα

� Cα

∥∥∥∥ ω

| · |

∥∥∥∥
C̊α

.

For theorem 3, we look for the blow-up solution to (4) and (5) via the blow-up of the 1D
model (6) and (7). According to the previous discussion, a suitable assumption for blow-up
solution to (6) and (7) is that

• g(t, θ) is even and non-positive on [− π
4 ,

π
4 );

• g(t, θ) has only one maximum and one minimum on [− π
4 ,

π
4 ).

For example, we can choose the initial condition g(0, θ) = −1− cos(4θ). The solution
before the blow-up time is shown in figure 1. Also figure 2 shows its trajectory γ(t,α) defined
by γ̇(t,α) = 2F(t, γ), γ(0,α)= α. The proof highly relies on the trajectory method (see [16,
17]).

2. Preliminary lemmas

We introduce a few notation and give some useful lemmas. For k = 0, 1, 2, ··, and 0 < α � 1,
define the spaces C̊k,α by
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Figure 1. The blow-up time happens around t = 1.03, and is located at the maximum
point.

‖u‖C̊ 0,α = ‖u‖C̊α := ‖u‖L∞ + ‖|x|αu‖Cα , 0 < α < 1,

‖u‖C̊ 0,1 = ‖u‖C̊1 := ‖u‖L∞ + sup
x∈R2\{0}

(|x‖∇u|);

and for k � 1,

‖u‖C̊k,α := ‖u‖C̊k−1,1 + ‖|x|k+α∇ku‖Cα , 0 < α < 1,

‖u‖C̊k,1 := ‖u‖L∞ + sup
x∈R\{0}

(|x|k+1|∇k+1u|).

The following lemma gives an equivalent definition of the C̊α norm. See lemma 1.5 in
Elgindi–Jeong [11].

Lemma 2.1. For any 0 < α � 1 and f ∈ C̊α, we have

1
2
‖ f ‖C̊α � ‖ f ‖L∞ + sup

x �=x′

[
min {|x|α, |x′|α} | f (x)− f (x′)|

|x − x′|α

]
� 2‖ f ‖C̊α ,

1
2
‖ f ‖C̊α � ‖ f ‖L∞ + sup

x �=x′

[
max {|x|α, |x′|α} | f (x)− f (x′)|

|x − x′|α

]
� 2‖ f ‖C̊α .

The following two lemmas are about the product rule in C̊α spaces:
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Figure 2. The trajectory shows the velocity fields is squeezing g near± π
4 and expanding

it near 0.

Lemma 2.2. For any 0 � α � 1, a positive constant C exists such if f ∈ C̊α and g ∈ Cα

with g(0) = 0, we have the product rule

‖ f g‖Cα � C‖ f ‖C̊α‖g‖Cα.

Lemma 2.2 was proved in Elgindi–Jeong’s paper [11].

Lemma 2.3. If f , g ∈ C̊α the following estimate holds

‖ f g‖C̊α � ‖ f ‖C̊α‖g‖C̊α .

Proof. To prove lemma 2.3, without loss of generality we may assume that
min {|x|α, |x′|α} = |x|α. Then,

‖x|α f (x)g(x)− |x′|α f (x′)g(x′)|
|x − x′|α � |x|α|g(x)− g(x′)|

|x − x′|α | f (x)|+ |g(x′)|

× ‖x|α f (x)− |x′|α f (x′)|
|x − x′|α .

Thanks to lemma 2.1,

‖x|α f (x)g(x)− |x′|α f (x′)g(x′)|
|x − x′|α � ‖ f ‖L∞‖g‖C̊α + ‖g‖L∞‖ f ‖C̊α
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which proves the lemma. �
The next lemma is the key lemma (see [11], corollary 2.24) when proving propagation of

the angular regularity of the 2D Euler equation. It will help us to prove the same result for our
equation.

Lemma 2.4. Let 0 < α < 1. If g is m-fold rotationally symmetric function for some m � 3
and ∇g ∈ C̊α, then for

u = ∇⊥(−Δ)−1g,

it holds that

‖∇u‖C̊α � Cα‖g‖C̊α

for a positive constant Cα.

3. Proofs of the results

3.1. Sketch of the proof of theorems 1 and 2

The proof goes along the same line as in [11]. We restate the sketch of the proof here for
completeness.

First we prove lemma 1.1 which is the only difference between our case and [11]:

Lemma 1.1. Let 0 < α < 1. Assume that ω is m-fold rotationally symmetric function for
some m � 3 and that u = ∇⊥(−Δ)−1 ∂θ

r ω. Then it holds that

‖∇u‖C̊α � Cα‖∇ω‖C̊α ,

∥∥∥∥ u
| · |

∥∥∥∥̊
Cα

� Cα

∥∥∥∥ ω

| · |

∥∥∥∥̊
Cα

.

Proof. Let g = ∂θ
r ω. It is clear that g is still m-fold symmetric. On the other hand, we have

g =
x⊥

|x| · ∇ω.

Applying lemma 2.4 yields

‖∇u‖C̊α � Cα‖
x⊥

|x| · ∇ω‖C̊α .

Then the product rule lemma 2.3 gives

‖∇u‖C̊α � Cα

∥∥∥∥x⊥|x|
∥∥∥∥̊
Cα

‖∇ω‖C̊α .

Noticing that x⊥
|x| does belong to C̊

α, the first inequality is proved.
The proof of the second inequality goes the similar way with the proof of lemma 2.4 in [11].

It is easy to see
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u(x)
|x| =

1
|x|

∫
R2
K(x − y)

(
∂θω

r

)
(y)dy =

1
|x|

∫
R2
K(x − y)

y⊥ · ∇ω(y)
|y| dy

=
1
|x|

∫
R2
K(x − y)∇y ·

(
y⊥ω(y)
|y|

)
dy

=
1
|x|

∫
R2

−∇yK(x − y) · y⊥ω(y)|y| dy. (10)

The proof goes with three steps. During the proof we will frequently use lemma 2.1 when
involving C̊α norm.

(i) ‖ u
|·| ‖L∞ � C‖ ω

|·| ‖C̊α . It is equivalent to prove

1
|x| p.v.

∫
R2

−∇yK(x − y) ·
(
y⊥

ω(y)
|y| − x⊥

ω(x)
|x|

)
dy �

∥∥∥∥ ω

| · |

∥∥∥∥̊
Cα

. (11)

Splitting R2 into three regions, A : |y| > 2|x|,B : |y| < 1
2 |x|,C: the remainder set. In the

remainder set C one has |x − y| � 3|x|. Since |∇yK(x − y)| � C 1
|x−y|2 , it holds that

1
|x| p.v.

∫
|x−y|�3|x|

− ∇yK(x − y) ·
(
y⊥

ω(y)
|y| − x⊥

ω(x)
|x|

)
dy

� C
|x|

∫
|x−y|�3|x|

1
|x − y|2 |(x − y)⊥|

∣∣∣∣ω(y)|y|

∣∣∣∣+ 1
|x − y|2 |x

⊥|

×
∣∣∣∣ω(x)|x| − ω(y)

|y|

∣∣∣∣ dy
� C

∥∥∥∥ ω

| · |

∥∥∥∥
L∞

+

∫
|x−y|�3|x|

∥∥ ω
|·|
∥∥̊
Cα

|x|α|x − y|2−α
dy

� Cα

∥∥∥∥ ω

| · |

∥∥∥∥̊
Cα

.

In region A and B, we shall use the rotationally symmetric property. The classic Biot–Savart

kernel can be replaced by a new kernel Km(x − y) = 1
m

∇⊥
x Π

m
i=1|x−O

i
2π/m

y|2

Πm
i=1|x−O

i
2π/m

y|2 . Now (11) becomes

1
|x|

∫
A∪B

−∇yK
m(x − y) ·

(
y⊥

ω(y)
|y|

)
dy �

∥∥∥∥ ω

| · |

∥∥∥∥̊
Cα

. (12)

The symmetric property brings extra decay for ∇yKm(x, y). Since fixing y the term Πm
i=1|x −

Oi
2π/my|2 is also a m-fold rotationally symmetric function in x, then Πm

i=1|x − Oi
2π/my|2

only contains terms like xαyβ , where (|α|, |β|) = (0, 2m), (m,m), (2m, 0). Thus ∇⊥
x Π

m
i=1|x −

Oi
2π/my|2 consists of terms like xα−1yβ where (|α|, |β|) = (m,m), (2m, 0). Now we apply the

same argument to∇yKm(x, y). Because

∇yK
m(x, y) =

1
m

∇y∇⊥
x Π

m
i=1|x − Oi

2π/my|2

Πm
i=1|x − Oi

2π/my|2

− 1
m

∇⊥
x Π

m
i=1|x − Oi

2π/my|2∇yΠ
m
i=1|x − Oi

2π/my|2(
Πm
i=1|x − Oi

2π/my|2
)2 ,
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it holds that in regions A and B

|∇yK
m(x, y)| � C

(
|x|m−1|y|m−1

|x|2m + |y|2m

+
(|x|m−1|y|m + |x|2m−1)(|x|m|y|m−1 + |y|2m−1)

|x|4m + |y|4m

)
.

So that in A we have extra decay on y: |∇yKm(x, y)| � C |x|m−1

|y|m+1 meanwhile in B decay is on x:

|∇yKm(x, y)| � C |y|m−1

|x|m+1 .
We estimate (12) by applying the decay results respectively.

(12) � C

∥∥∥∥ ω

| · |

∥∥∥∥
L∞

1
|x|

∫
|y|�2|x|

|y| |x|
m−1

|y|m+1
dy

+ C

∥∥∥∥ ω

| · |

∥∥∥∥
L∞

1
|x|

∫
|y|�|x|/2

|y| |y|
m−1

|x|m+1
dy

� C

∥∥∥∥ ω

| · |

∥∥∥∥
L∞

.

(ii) For |x| � |x′| and |x − x′| � |x|, | u(x)|x| − u(x′)
|x′ | | � Cα

∥∥ ω
|·|
∥∥̊
Cα

|x−x′ |α
|x|α . It is sufficient to prove

the following bound

1
|x| p.v.

∫
R2

−∇yK(x − y) ·
(
y⊥

ω(y)
|y| − x⊥

ω(x)
|x|

)
dy

− 1
|x′| p.v.

∫
R2

−∇yK(x
′ − y) ·

(
y⊥

ω(y)
|y| − x′⊥

ω(x′)
|x′|

)
dy

� Cα

∥∥∥∥ ω

| · |

∥∥∥∥̊
Cα

|x − x′|α
|x|α . (13)

Splitting R2 into two regions A : |x − y| � 2|x − x′| and B : |x − y| > 2|x − x′|. In region A,
it holds that

1
|x| p.v.

∫
|x−y|�2|x−x′ |

− ∇yK(x − y) ·
(
y⊥

ω(y)
|y| − x⊥

ω(x)
|x|

)
dy

� 1
|x|

∫
|x−y|�2|x−x′ |

1
|x − y|2 |(x − y)⊥|

∣∣∣∣ω(y)|y|

∣∣∣∣
+

1
|x − y|2 |x

⊥|
∣∣∣∣ω(x)|x| − ω(y)

|y|

∣∣∣∣ dy
� |x − x′|

|x|

∥∥∥∥ ω

| · |

∥∥∥∥
L∞

+

∫
|x−y|�2|x−x′ |

∥∥ ω
|·|
∥∥̊
Cα

|x|α|x − y|2−α
dy

� Cα

∥∥∥∥ ω

| · |

∥∥∥∥̊
Cα

|x − x′|α
|x|α .

It is similar to x′.
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In region B, we write inequality as following

1
|x| p.v.

∫
|x−y|>2|x−x′ |

− ∇yK(x − y) ·
(
y⊥

ω(y)
|y| − x⊥

ω(x)
|x|

)
dy

− 1
|x′| p.v.

∫
|x−y|>2|x−x′ |

− ∇yK(x′ − y) ·
(
y⊥

ω(y)
|y| − x′⊥

ω(x′)
|x′|

)
dy

= p.v.
∫
|x−y|>2|x−x′ |

(
∇yK(x − y)−∇yK(x

′ − y)
)

·
(
x⊥

|x|
ω(x)
|x| − y⊥

|x|
ω(y)
|y|

)
dy+

|x′| − |x|
|x|

1
|x′|

×
∫
|x−y|>2|x−x′|

∇yK(x′ − y) ·
(
y⊥

ω(y)
|y|

)
dy

+ p.v.
∫
|x−y|>2|x−x′ |

∇yK(x′ − y) ·
(
x⊥

|x|
ω(x)
|x| − x′⊥

|x′|
ω(x′)
|x′|

)
dy

.

The third term is zero since the integration is on a sphere. The second term can be bounded
by |x−x′ |

|x|
∥∥ ω
|·|
∥∥̊
Cα therefore it is bounded by |x−x′ |α

|x|α
∥∥ ω
|·|
∥∥̊
Cα . For the first term, by mean value

theorem

|∇yK(x − y)−∇yK(x′ − y)| � C
|x − x′|
|x − y|3 .

So that

p.v.
∫
|x−y|>2|x−x′|

(
∇yK(x − y)−∇yK(x

′ − y)
)
·
(
x⊥

|x|
ω(x)
|x| − y⊥

|x|
ω(y)
|y|

)
dy

�
∫
|x−y|>2|x−x′|

(
∇yK(x − y)−∇yK(x

′ − y)
) 1
|x| (x − y)⊥

(
ω(y)
|y|

)
dy

+ C
∫
|x−y|>2|x−x′|

|x − x′|
|x − y|3

x⊥

|x|

(
ω(x)
|x| − ω(y)

|y|

)
dy := I + II.

Involving C̊α norm in II yields

II � C
∫
|x−y|>2|x−x′|

|x − x′|
|x|α

∥∥ ω
|·|
∥∥̊
Cα

|x − y|3−α
dy � Cα

∥∥∥∥ ω

| · |

∥∥∥∥̊
Cα

|x − x′|α
|x|α .

To estimate I, we furthermore split the region into three parts. Part 1: |x − y| > 2|x − x′|, |y| �
2|x|, part 2: |x − y| > 2|x − x′|, |y| � |x|/2, part 3 the remainder set. In part 3, |x|, |y| are
comparable, so that∫

part 3

(
∇yK(x − y)−∇yK(x′ − y)

) 1
|x| (x − y)⊥

(
ω(y)
|y|

)
dy

� C
∫
part 3

|x − x′|
|x − y|3

ω(y)
|y| dy �

∥∥∥∥ ω

| · |

∥∥∥∥
L∞

� |x − x′|α
|x|α

∥∥∥∥ ω

| · |

∥∥∥∥̊
Cα

.

In part 1 and part 2, we shall apply the symmetric property. Instead of using K, we replace K
by Km and study the decay of ∇x∇yKm(x, y). Similar to the discussion in the proof of (i), we
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have in part 1, |∇x∇yKm(x, y)| � C |x|m−2

|y|m+1 while in part 2, |∇x∇yKm(x, y)| � C |y|m−1

|x|m+2 . Thus by
mean value theorem, it holds that

|∇yK
m(x, y)−∇yK

m(x′, y)| �

⎧⎪⎪⎨⎪⎪⎩
C
|x|m−2

|y|m+1
|x − x′|, y in part 1;

C
|y|m−1

|x|m+2
|x − x′|, y in part 2.

Then integrating in both part 1 and part 2 gives∫
part 1 and part 2

(
∇yK(x − y)−∇yK(x

′ − y)
) 1
|x| (x − y)⊥

(
ω(y)
|y|

)
dy

� C
|x − x′|
|x|

∥∥∥∥ ω

| · |

∥∥∥∥̊
Cα

� |x − x′|α
|x|α

∥∥∥∥ ω

| · |

∥∥∥∥̊
Cα

.

Collecting above estimates proves (ii).
With (i) and (ii) we are ready to prove the second inequality in this lemma. It is sufficient

to prove that for |x| � |x′|,

|x|α
|x − x′|α

∣∣∣∣u(x)|x| − u(x′)
|x′|

∣∣∣∣� Cα

∥∥∥∥ ω

| · |

∥∥∥∥̊
Cα

.

If |x − x′| � |x′|, applying (ii) gives the result. Otherwise, we use L∞ bound and (i) to get the
result. �

Secondly, we start to prove theorems 1 and 2.
Existence and blow-up criterion. As we stated in the introduction, the idea is to control

‖∇ω‖C̊α up to some time. To do that we will set up several self controlled inequalities including
‖∇ω‖L∞ , ‖∇Φ‖L∞ ,Q(t), where Q(t ) is the semi-norm defined by (19) which, together with
‖∇ω‖L∞ , will control ‖∇ω‖C̊α .

Recall that the system is⎧⎪⎨⎪⎩
∂tω + u · ∇ω = 0,

u = ∇⊥(−Δ)−1

(
∂θω

r

)
.

(14)

Taking gradient and composing with the flow map Φ gives

∂t∇ω(t,Φ(t, x))+∇u(t,Φ(t, x)) · ∇ω(t,Φ(t, x)) = 0. (15)

Then L∞ bounds comes immediately:∣∣∣∣ ddt∇ω

∣∣∣∣� C‖∇u‖L∞‖∇ω‖L∞ � C‖∇u‖C̊α‖∇ω‖L∞ . (16)

Similarly, the L∞ bounds for∇Φ and∇Φ−1 are∣∣∣∣ ddt∇Φ(t, ·)
∣∣∣∣� C‖∇u‖L∞‖∇Φ(t, ·)‖L∞ � C‖∇u‖C̊α‖∇Φ(t, ·)‖L∞ . (17)∣∣∣∣ ddt∇Φ−1(t, ·)
∣∣∣∣� C‖∇u‖L∞‖∇Φ−1(t, ·)‖L∞ � C‖∇u‖C̊α‖∇Φ−1(t, ·)‖L∞ . (18)
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To estimate under C̊α norm, we are interested in points with comparable distances from the
origin. We write x � x′ when 0 < |x′| < |x| < 2|x′| so that Φ(t, x),Φ(t, x′) are also in compa-
rable distances from the origin. Note that the symmetry condition of ω forces the origin point
as a fixed point, i.e. u(t, 0) = 0. Additionally, by the mean value theorem we have∣∣∣∣ ddtΦ(t, x)

∣∣∣∣= |u(t,Φ(t, x))− u(t, 0)| � C‖∇u(t)‖L∞|Φ(t, x)|.

Thus by Grönwall’s inequality one has

|x| exp
(
−
∫ t

0
C‖∇u(s)‖ds

)
� |Φ(t, x)| � |x| exp

(∫ t

0
C‖∇u(s)‖L∞ ds

)
.

Similarly for Φ(t, x′). On the other hand, given two comparable points z � z′ we can find for
each t > 0 such that Φ(t, x) = z,Φ(t, x′) = z′ so that there exist a constant C depending on
‖∇Φ(t)‖L∞ , ‖∇Φ−1(t)‖L∞

‖z|α∇ω(t, z)− |z′|α∇ω(t, z′)|
|z− z′|α

� C(‖∇Φ(t)‖L∞ , ‖∇Φ−1(t)‖L∞)

× ‖Φ(t, x)|α∇ω(t,Φ(t, x))− |Φ(t, x′)|α∇ω(t,Φ(t, x′))|
|x − x′|α

� C(‖∇Φ(t)‖L∞ , ‖∇Φ−1(t)‖L∞)

×
(
‖x|α∇ω(t,Φ(t, x))− |x′|α∇ω(t,Φ(t, x′))|

|x − x′|α + ‖∇ω(t)‖L∞
)
.

So the following semi-norm:

Q(t) := sup
x �=x′ ,x�x′

‖x|α∇ω(t,Φ(t, x))− |x′|α∇ω(t,Φ(t, x′))|
|x − x′|α (19)

together with ‖∇ω(t)‖L∞ control the full norm ‖∇ω‖C̊α up to the multiplicative constants
depending on α and ‖∇Φ(t)‖L∞ , ‖∇Φ−1(t)‖L∞ .

Next we try to estimate | ddtQ(t)|. Simple calculation shows that∣∣∣∣ ddtQ(t)
∣∣∣∣� ‖x|α∇u(t,Φ(t, x)) · ∇ω(t,Φ(t, x))− |x′|α∇u(t,Φ(t, x′)) · ∇ω(t,Φ(t, x′))|

|x − x′|α

� C(‖∇Φ(t)‖L∞ , ‖∇Φ−1(t)‖L∞)
(
‖∇u‖C̊α‖∇ω‖L∞ + ‖∇u‖L∞

× ‖x|α∇ω(t,Φ(t, x))− |x′|α∇ω(t,Φ(t, x′))|
|x − x′|α

)
. (20)

Taking supremum over x, x′ yields∣∣∣∣ ddtQ(t)
∣∣∣∣� C(‖∇Φ(t)‖L∞ , ‖∇Φ−1(t)‖L∞)‖∇u‖C̊α (‖∇ω‖L∞ + Q(t)). (21)
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Applying lemma 1.1 and noting that ‖∇ω‖C̊α � C(‖∇ω‖L∞ + Q(t)), then (21) becomes

∣∣∣∣ ddtQ(t)
∣∣∣∣� C(‖∇Φ(t)‖L∞ , ‖∇Φ−1(t)‖L∞)(‖∇ω‖L∞ + Q(t))2. (22)

Together with (16), we conclude that ‖∇ω‖C̊α is bounded by some constant depending on

sup
τ∈[0,t]

‖∇Φ(τ )‖L∞ , sup
τ∈[0,t]

‖∇Φ−1(τ )‖L∞ .

To prove that we indeed bound ‖∇ω‖C̊α , it is sufficient to prove ‖∇Φ(t)‖L∞ , ‖∇Φ−1(t)‖L∞
are bounded. Plugging this dependent ‖∇ω‖C̊α bound back into (17) and (18) yields two self
controlled inequalities only about ∇Φ and ∇Φ−1 and both L∞ norms are bounded as long
as t is small. Therefore, ‖∇ω‖C̊α is bounded for small t > 0. Then according to lemma 1.1
the velocity is Lipschitz so that the flow map is well-defined and the time of existence can be
extended as long as ‖∇ω‖C̊α is finite.
Uniqueness. Assuming that there are two solution pairs to system (14): (ω1, u1), (ω2, u2)

both with same initial condition. With out loss of generality, we can assume that ω1(t, 0) =
ω2(t, 0) = 0, that the solutions exist up to some time T > 0 and that ‖∇ωi‖C̊α < ∞ for i =
1, 2. Denote the difference between the two solutions by ω :=ω1 − ω2, u := u1 − u2 so that
ω(t = 0) = 0, u(t = 0) = 0. Furthermore, notice that ω satisfies:

∂tω + u · ∇ω1 + u2 · ∇ω = 0. (23)

Dividing (23) by |x| gives

∂t

(
ω

|x|

)
+ u2 · ∇

(
ω

|x|

)
+
u2
|x| ·

x
|x|

ω

|x| +
u
|x| · ∇ω1 = 0. (24)

Then composing with the flow map Φ2(t, x) which satisfies

Φ̇2(t, x) = u2(t,Φ2(t, x)), Φ2(0, x) = x,

gives

d
dt

(
ω(t,Φ2)
|Φ2|

)
�

∣∣∣∣u2(Φ2)
|Φ2|

∣∣∣∣ ∣∣∣∣ω(t,Φ2)
|Φ2|

∣∣∣∣+ ∣∣∣∣u(t,Φ2)
|Φ2|

∣∣∣∣ |∇ω1(t,Φ2)|

and taking L∞ norm on the right-hand side and applying lemma 1.1 yields:

∣∣∣∣ ddt ω(x)|x|

∣∣∣∣ � C(ω1,ω2)

∥∥∥∥ ω

| · |

∥∥∥∥̊
Cα

. (25)

To control ‖ ω
|·| ‖C̊α , we follow the similar way that controlling ‖∇ω‖C̊α in the existence proof.

Given two comparable points z � z′, for each t > 0 there exist x, x′ such that Φ2(t, x) = z,
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Φ2t, x′ = z′. And the calculation shows that

‖z|α ω(t,z)
|z| − |z′|α ω(t,z′)

|z′ | |
|z− z′|α � C(‖∇Φ2(t)‖L∞ , ‖∇Φ−1

2 (t)‖L∞)

×

∥∥∥Φ2(t, x)|α ω(t,Φ2(t,x))
|Φ2(t,x)| − |Φ2(t, x′)|α ω(t,Φ2(t,x

′))
|Φ2(t,x′)|

∣∣∣
|x − x′|α

� C(‖∇Φ2(t)‖L∞ , ‖∇Φ−1
2 (t)‖L∞)

×
(
‖x|α ω(t,Φ2(t,x))

|Φ2(t,x)| − |x′|α ω(t,Φ2(t,x
′))

|Φ2(t,x′)| |
|x − x′|α +

∥∥∥∥ ω

| · |

∥∥∥∥
L∞

)
.

Thus the semi-norm

R(t) := sup
x �=x′ ,x�x′

‖x|α ω(t,Φ2(t,x))
|Φ2(t,x)| − |x′|α ω(t,Φ2(t,x

′))
|Φ2(t,x′)| |

|x − x′|α

and ‖ ω
|·| ‖L∞ together control ‖ ω

|·| ‖C̊α . Calculating dR
dt gives∣∣∣∣dRdt

∣∣∣∣� 1
|x − x′|α

∣∣∣∣|x|α (u2(Φ2(x))
|Φ2(x)|

Φ2(x)
|Φ2(x)|

ω(Φ2(x))
|Φ2(x)|

+
u(Φ2(x))
|Φ2(x)|

∇ω1(Φ2(x))

)
− |x′|α

(
u2(Φ2(x′))
|Φ2(x′)|

Φ2(x′)
|Φ2(x′)|

ω(Φ2(x′))
|Φ2(x′)|

+
u(Φ2(x′))
|Φ2(x′)|

∇ω1(Φ2(x′))

)∣∣∣∣ .
(26)

Because

|x|α
(
u2(Φ2(x))
|Φ2(x)|

Φ2(x)
|Φ2(x)|

ω(Φ2(x))
|Φ2(x)|

)
− |x′|α

(
u2(Φ2(x′))
|Φ2(x′)|

Φ2(x′)
|Φ2(x′)|

ω(Φ2(x′))
|Φ2(x′)|

)
�

(
|x|α ω(Φ2(x))

|Φ2(x)|
− |x′|α ω(Φ2(x′))

|Φ2(x′)|

)
Φ2(x)
|Φ2(x)|

u2(Φ2(x))
|Φ2(x)|

+
ω(Φ2(x′))
|Φ2(x′)|

|x′|α
(

Φ2(x)
|Φ2(x)|

u2(Φ2(x))
|Φ2(x)|

− Φ2(x′)
|Φ2(x′)|

u2(Φ2(x′))
|Φ2(x′)|

)
,

the first term in rhs of (26) can be bounded by ‖ u2|·| ‖L∞‖
ω
|·| ‖C̊α + ‖ u2|·| ‖C̊α‖ ω

|·| ‖L∞ . Similarly,
because

|x|α u(Φ2(x))
|Φ2(x)|

∇ω1(Φ2(x))− |x′|α u(Φ2(x′))
|Φ2(x′)|

∇ω1(Φ2(x′))

�
(
|x|α u(Φ2(x))

|Φ2(x)|
− |x′|α u(Φ2(x′))

|Φ2(x′)|

)
∇ω1(Φ2(x))

+ |x′|α u(Φ2(x′))
|Φ2(x′)|

(∇ω1(Φ2(x))−∇ω1(Φ2(x
′))),

with the help of lemma 1.1, the second term in rhs of (26) can be bounded by∥∥∥∥ ω

| · |

∥∥∥∥̊
Cα

‖∇ω1‖L∞ +

∥∥∥∥ ω

| · | ‖L
∞‖∇ω1

∥∥∥∥̊
Cα

.

Collecting these bounds yields
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∣∣∣∣dRdt
∣∣∣∣� C(ω1,ω2)

∥∥∥∥ ω

| · |

∥∥∥∥̊
Cα

. (27)

Therefore (25) and (27) together yields∥∥∥∥ ω

| · |

∥∥∥∥̊
Cα

� C(‖∇Φ2(t)‖L∞)
(∥∥∥∥ ω

| · |

∥∥∥∥
L∞

+ R

)
� C(‖∇Φ2(t)‖L∞ , ‖∇Φ−1

2 (t)‖L∞)

×
(∥∥∥∥ω(t = 0)

| · |

∥∥∥∥
L∞

+ R(t = 0)

)
e
∫ t
0C(ω1,ω2)dt = 0.

To get the blow-up criterion, assuming that at blow-up time T ∗ it holds that

lim
t→T∗

∫ T∗

0
‖∇ω‖C̊α < ∞,

then (16)–(18) (using the first estimate) implies finiteness of ‖∇ω‖L∞ , ‖Φ‖L∞ and
‖∇Φ−1(t)‖L∞ . To control Q(t ), from (20) and lemma 1.1 we have∣∣∣∣ ddtQ(t)

∣∣∣∣� C(‖∇Φ(t)‖L∞ , ‖∇Φ−1(t)‖L∞)(‖∇ω‖L∞‖∇ω‖C̊α + ‖∇ω‖C̊αQ(t)). (28)

For simplicity we drop the dependence of ‖∇Φ(t, ·)‖L∞ , ‖∇Φ−1(t)‖L∞ in C(‖∇Φ(t, ·)‖L∞ ,
‖∇Φ−1(t)‖L∞). Noting that ‖∇ω‖C̊α � C(Q(t)+ ‖∇ω‖L∞) � C + CQ, (28) becomes

d
dt
Q(t) � C + CQ+ Q2 � C(1+ Q2).

Solving the inequality gives

Q(t) � tan(CT∗ + arctan(Q0)).

Thus ‖∇ω‖C̊α is finite and the existence of time to the solution passes T ∗ which is a
contradiction.

3.2. Proof of theorem 3

Now we prove the last and main theorem. First we will rewrite the 1D model (6) and (7) as
follows. Changing g to −g and setting G =

∫
F(t, θ)dθ. Then integrating (7) with respect to θ,

the 1D model becomes

gt + 2Gθgθ = gGθθ, 4G+ Gθθ = g. (29)

Now it is sufficient to prove that there is a solution to (29) such that for some positive time T ∗:

lim
t→T∗

‖∂θg(t)‖L∞ = ∞.

Let us choose an initial data g0(θ) to (29) satisfying

• g0(θ) is smooth and nonnegative.
• g0(θ) has a unique maximum valueM at θ = θM , a unique minimum value at θ = θm and
g0 is symmetric with respect to θ = θM and θ = θm.
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• Furthermore g′′0(θM) < 0.

Remark 3.1. It is worth noticing here that since we changed g to−g in the original 1Dmodel
(6) and (7), the properties of g0 as we suggested in the introduction are all opposite.

Inspired by [16, 17], the system can be solved almost explicitly through the trajectory
approach.

Without loss of generality we can always assume θM = 0, and θm = ± π
4 so that g0 is even.

Indeed, one can always set the domain of θ by [θM − π
4 , θM + π

4 ].
Let u = Gθ, I = 4G, then the 1D system (29) becomes{

gt + 2ugθ = uθg,

uθ = g− I.
(30)

Define the trajectory γ(t,α) by

γ̇ = 2u(t, γ), γ(0,α) = α.

The idea of solving equation along the trajectory is that if trajectory ‘Jacobian’ γα is known,
the solution to (30) can be easily represented by

g(t, γ(t,α)) = g0(α)γα(t,α)
1
2 . (31)

Indeed, differentiating γ̇ with respect to α gives

γ̇α = 2uθγα. (32)

Then the first equation in (30) becomes

dg
dt

= uθg = g
1

2γα

dγα
dt

,

which gives (31).
Now we try to set up an equation of γα. Differentiating (32) with respect to time we obtain

γ̈α = 2(uθt + uθθγ̇)γα + γ̇α
2γ−1

α . (33)

Next step is using (30) to eliminate the explicit dependence of u. Noticing that

uθt + uθθγ̇ = gt − It + 2uθθu

= guθ − 2gθu− It + 2uθθu

= (uθ + I)uθ − 2(uθθ + Iθ)u+ 2uθθu− It

= (uθ)
2 + Iuθ − 2Iθu− It

=
1
4
(γ̇αγ

−1
α )2 +

1
2
Iγ̇αγ

−1
α − İ,

where in the last step we used

İ(t, γ(t,α)) = It + Iθγ̇ = It + 2Iθu.
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Substituting the above equality into (33) gives

γ̈α =
3
2
γ̇α

2γ−1
α + Iγ̇α − 2İγα. (34)

It is still hard to see how to solve γα from (34). Fortunately, we have

¨(
γ
−1/2
α

)
=

d
dt

(
−1
2
γ−3/2
α γ̇α

)
=

3
4
γ
− 5

2
α γ̇α

2 − 1
2
γ
− 3

2
α γ̈α,

this yields

γ̈α =
3
2
γ−1
α γ̇α

2 − 2γ
3
2
α

¨(
γ
− 1

2
α

)
. (35)

Plugging (35) into (34) gives

−2γ
3
2
α

¨(
γ
− 1

2
α

)
= Iγ̇α − 2İγα. (36)

By defining Ω = γ
− 1

2
α , (36) becomes

−Ω̈ = I
1
2
γ̇α

γ
3
2
α

− İΩ

= −IΩ̇− İΩ

= − ˙(IΩ). (37)

The above system is equivalent to⎧⎪⎪⎨⎪⎪⎩
Ω̈ = ˙(IΩ)

Ω(0,α) = 1

Ω̇(0,α) = I0(α)− g0(α),

(38)

whose solution is

Ω = φ(t,α)

(
1− g0(α)

∫ t

0
φ−1(s,α)ds

)
, (39)

with

φ(t,α) = exp(
∫ t

0
I(τ , γ(τ ,α))dτ ).

By the periodic boundary condition, we have
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2
π

∫ π
4

− π
4

γα(t,α)dα = 1. (40)

Indeed, G, g are even functions all the time since g0 is even. Thus u = Gθ is odd. Because the
solution is smooth in S1 after periodic extension, we have u(t, π4 ) = u(t,− π

4 ) = 0 which means
that

γ
(
t,
π

4

)
=

π

4
, γ

(
t,−π

4

)
= −π

4
.

Then (40) immediately follows. Therefore, if we let

η(t,α) =
∫ t

0
φ−1(s,α)ds,

it holds that

2
π

∫ π
4

− π
4

η̇2(t,α)(1− g0(α)η(t,α))−2dα = 1. (41)

Remark 3.2. A more general exponent in the definition of Ω (in our case is −1/2) can
be found in [17]. However the function I in Sarria and Saxton’s work only depends on time.
In our case, even I depends on time and space, one can continue this procedure but can not
solve γα completely. Furthermore, in the above argument the exact definition of I is irrele-
vant. The exact form of I will be used later, but the main thing we use is that ∂I

∂θ
� 0 when

θ � 0.

The equation (41) actually gives us a hint about how to control the blow-up time. In Sarria’s
work [16], the above η is only a function of t so that η̇2 can be pulled out outside the integral
and the equation becomes separable. In that case, integrating both sides of (41) yields that

t =
∫ η(t)

0

√
2
π

∫ π
4

− π
4

(1− g0(α)η)−2dα dη.

If the blowup happens, the above integral must be finite. It is clear that η(t = 0) = 0 and η(T )
is an increasing function. But the singular value in integral above shows that η(T ) has an
upper bound 1/max(g0). Thus to prove the existence of the blowup, we need to prove that
when η(T )→ 1/max(g0), t→ T < ∞ which shows the finiteness of the existence of time T .
Furthermore, if we can prove that g(t, θ) becomes unbound as t→ T , then T is exactly the
blow-up time.

However, the difficulty in our case (41) is that η also depends on α which makes it hard to
express t explicitly. Fortunately, since we will show that η̇ is maximum at α = 0 for all time,
we can argue similarly. To do that, we introduce the following claim which will be proved later.
This claim basically shows that all the functions will keep its original shape at t = 0 before
blowing up.

Claim 3.1. Under the assumptions on g0, it is true that u(t, γ) � 0 for α < 0 and u(t, γ) � 0
for α > 0 as long as the solution exists up to time t.
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Nowwe fix time and consider the behavior of η, η̇ andφ aroundα = 0. A simple calculation
shows that (recall that I = 4G)

φα(t,α) = φ(t,α)
∫ t

0
4u(s, γ(s,α))γα(s,α)ds. (42)

Since g is even then G is even as well and u(t, θ) = Gθ is odd so that u(t, 0) ≡ 0 all the
time which means the trajectory goes through α = 0 if it is initially located at α = 0, i.e.
γ(t, 0) ≡ 0. So φα(t, 0) = 0. Noticing that by (32), γα = exp(2

∫ t
0uθ(s, γ(s,α))ds) > 0. There-

fore φα(t,α) � 0 for α < 0 and φα(t,α) � 0 for α > 0 which shows that φ(t,α) � φ(t, 0).
Consequently, we have

ηα = −
∫ t

0
φ−2(s,α)φα(s,α)ds,

η̇α = −φ−2φα,

thus η(t,α) � η(t, 0) and η̇(t,α) � η̇(t, 0). By (41),

1 � η̇2(t, 0)
2
π

∫ π/4

−π/4
(1− g0(α)η(t, 0))−2dα. (43)

Let η0(T ) := η(t, 0), then (43) leads to

dt � dη0
(
2
π

∫ π/4

−π/4
(1− g0(α)η)

−2dα

) 1
2

. (44)

Integrating (44) yields,

t �
∫ η0(t)

0

(
2
π

∫ π/4

−π/4
(1− g0(α)η)−2dα

) 1
2

dη. (45)

Next we calculate g(t, γ(t,α)) to indicate the maximum value of η0(T ). By (31),

g(t, γ(t,α)) =
g0(α)
Ω(t,α)

=
g0(α)

φ(t,α)(1− g0(α)η(t,α))
. (46)

The above representation formulas for t and g (see (45) and (46)) show that the possible blowup
may happen when η0(T ) reaches 1

g0(0)
and the right-hand side of (45) is finite. So basically, we

need to prove the following:

∫ 1
g0(0)

0

(
2
π

∫ π/4

−π/4
(1− g0(α)η)−2dα

) 1
2

dη < ∞, (47)

then the blow-up comes with the blow-up criterion theorem 2. In the following argument,
A � B means that there is a universal constant C such that A � CB.

Since g′′0(0) < 0, Taylor expansion around α = 0 gives that for all α ∈ J := [−r0, r0], there
is θ ∈ J such that
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g0(α) = M − Cα2 +
g(4)0 (θ)
4!

α4,

whereC = − g′′0(0)
2 > 0,M = g0(0), and 0 < r0 < 1 is a constant which will be fixed later. Then

for all α ∈ J and ε small, it holds that

ε+M − g0(α) = ε+ Cα2 − g(4)0 (θ)
4!

α4.

Choosing η close enough to 1
M , and let ε =

1
η
−M and we have that for α ∈ J,

1
η
− g0(α) = ε+ Cα2 − g(4)0 (θ)

4!
α4. (48)

We choose r0 small such that for all α ∈ J, it holds that

|g(4)0 (θ)|
4!

α4 � 1
2
Cα2.

This choice of r0 and (48) gives a lower bound of 1/η − g0(α) for α ∈ J:

1
η
− g0(α) >

1
2
(ε+ Cα2),

so that we can estimate the integral in (45) around the potential blow-up point α = 0. While
outside J, it is easy to see that 1− g0(α)η > 1− g0(α)/M.

According to (43) (noting that η̇ = φ−1), with the help of above lower bounds, it holds that
for small ε,

φ2(t(η), 0) � 2
π

∫ π/4

−π/4
(1− g0(α)η)

−2dα

=
2
π

(∫ −r0

− π
4

+

∫ π
4

r0

(1− g0(α)η)
−2dα

)

+
2
π
(η)−2

∫ r0

−r0

(
1
η
− g0(α)

)−2

dα

� C(r0, g0,M)+ c(η)−2
∫ r0

−r0

(
ε+ Cr2

)−2
dr

= C(r0, g0,M)+ cη−2

⎛⎝ r0
ε2 + Cεr20

+
arctan

(√
Cr0√
ε

)
√
Cε

3
2

⎞⎠
� (ηε)−2ε

1
2 .

At last the finite blow up time T ∗ < ∞ comes from (47):

5065



Nonlinearity 34 (2021) 5045 T Elgindi et al

T∗ �
∫ 1

M

0

(
2
π

∫ π
4

− π
4

(1− g0(α)η)−2dα

) 1
2

dη.

=

∫ 1
M

0
φ(t(η), 0)dη

�
∫ 1

M

0
(ηε)−1ε

1
4 dη

=

∫ 1
M

0
(1−Mη)−1

(
1
η
−M

)1/4

dη

= (M)−3/4
∫ 1

0

(
1

1− y

)1/4

y−3/4 dy

< ∞,

where we use the change of variable y = 1−Mη.
Construction of 2D solution. Now we can choose ω2D

0 such that ω0 = ω2D
0 + rg0 belongs

to Cc(R2) and is four-fold rotationally symmetric. So after some time, ω2D :=ω − rg is still
four-fold rotationally symmetric. The symmetry property forces∇ω2D(x = 0) = 0. Therefore

lim sup
x→0

|∇ω| = lim sup
x→0

|∇(rg)|.

We also have

|∇(rg)|2 = |g∇r + r∇g|2 = |g|2 + |∂θg|2 > |g|2.

Thus it holds that for t � T ∗

‖∇ω‖L∞ � |g(t, 0)|.

If ω does not blow up at T ∗, it must have

sup
t∈[0,T∗]

‖∇ω‖L∞ < ∞.

However according to our previous discussion, it holds that

sup
t∈[0,T∗]

‖∇ω‖L∞ > sup
t∈[0,T∗]

|g(t, 0)| = ∞.

It is a contradiction!
We still have claim 3.1 remaining to prove. Recall that the claim is

Claim 3.1. Under the assumptions on g0, it is true that u(t, γ(t,α)) � 0 for α < 0 and
u(t, γ(t,α)) � 0 for α > 0 as long as the solution exists up to time t.

Proof. It is sufficient to prove that u(t,α) � 0 for α � 0. Indeed, by (32) we have

γα(t,α) = exp

(
2
∫ t

0
uθ(s, γ(s,α))ds

)
> 0, (49)
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Figure 3. Fixing θ, the graph of g(θ′), g(θ′ − θ), g(θ′ + θ) for nonnegative θ′.

as long as it exists. So that γ(t,α) is increasing and for α > 0, γ(t,α) � 0 since γ(t, 0) ≡ 0.
Thus the claim’s result is equivalent to for α � 0, u(t,α) � 0.

Recall that by (29),

u = ∂θ(4+ ∂2
θ )

−1g, (50)

then

u(t, θ) = C(∂θK ∗ g(t, ·))(θ), (51)

where K(θ) is the kernel of operator (4+ ∂2
θ )

−1 and C is a universal constant. The kernel K is
given by

K =
1
4
+

∞∑
k=1

2
4− 16k2

cos(4kθ). (52)

The above summation can be calculated explicitly (see [11]). The idea is to first calculate a 2π
periodic kernel K0 with its Fourier transform satisfying:

K̂0(k) =

⎧⎨⎩
1

4− k2
, |k| �= 2,

0, |k| = 2.
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Then we extend K0 as a four-fold rotationally symmetric function giving our desired kernel
defined on [− π

4 ,
π
4 ]:

K(θ) =
1
4

3∑
n=0

K0

(
θ +

nπ
2

)
.

Taking advantages of the fact that the Fourier transform of the function π θ
|θ| − θ is 1

ik and using
shift property give that for |k| �= 2, the Fourier transform of

K1(θ) =
π

2
sin(2θ)

θ

|θ| −
1
2
sin(2θ)θ

is 1
4−k2 and K̂1(±2) = 1

16 . Thus we can assume that K0(θ) = K1(θ)+ C cos(2θ). The constant

C is calculated through K̂(±2) = 0 and finally we have

K0(θ) =
π

2
sin(2θ)

θ

|θ| −
1
2
sin(2θ)θ − 1

8
cos(2θ). (53)

In conclusion,

K(θ) =
π

8
θ sin(2θ)

|θ| . (54)

Now we can prove the claim for u. For π
4 � θ � 0,

Kθ =
π

4
cos(2θ) � 0,

which, plugging into (51) yields

u(t, θ) =
∫ π/4

−π/4
Kθ(θ

′)g(t, θ− θ′)dθ′. (55)

Then by the oddness of Kθ and the evenness of g, (55) becomes

u(t, θ) =
∫ π

4

0
Kθ(θ′)(g(t, θ− θ′)− g(t, θ + θ′))dθ′

=

∫ π
4

0
Kθ(θ

′)(g(t, θ′ − θ)− g(t, θ′ + θ))dθ′.

Now fixing θ > 0, g(t, θ′ − θ)− g(t, θ′ + θ) � 0 for all θ′ ∈ [0, π4 ] because of the evenness,
periodicity and monotonicity of g (see figure 3). Then the claim is proved.
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