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Abstract: Central among the tools and approaches used for ligand discovery and design are Molecular
Dynamics (MD) simulations, which follow the dynamic changes in molecular structure in response
to the environmental condition, interactions with other proteins, and the effects of ligand binding.
The need for, and successes of, MD simulations in providing this type of essential information are
well documented, but so are the challenges presented by the size of the resulting datasets encoding
the desired information. The difficulty of extracting information on mechanistically important state-
to-state transitions in response to ligand binding and other interactions is compounded by these
being rare events in the MD trajectories of complex molecular machines, such as G-protein-coupled
receptors (GPCRs). To address this problem, we have developed a protocol for the efficient detection
of such events. We show that the novel Rare Event Detection (RED) protocol reveals functionally
relevant and pharmacologically discriminating responses to the binding of different ligands to the
5-HT2AR orthosteric site in terms of clearly defined, structurally coherent, and temporally ordered
conformational transitions. This information from the RED protocol offers new insights into specific
ligand-determined functional mechanisms encoded in the MD trajectories, which opens a new and
rigorously reproducible path to understanding drug activity with application in drug discovery.

Keywords: ligand-induced GPCR structure and dynamics; function-related conformational transi-
tions; pharmacological efficacy; serotonin 5-HT2AR receptor; inverse agonist; functional selectivity;
molecular dynamics simulations; non-negative factorization; drug discovery

1. Introduction

The detection of structural changes occurring in the course of Molecular Dynamics
(MD) trajectories of macromolecular systems such as the G-protein-coupled receptors
(GPCRs) is a main step in the analysis of the relationship between structure and dynamics in
their functional mechanisms [1–4]. The conformational transitions underlying the functions
of such systems involve collective motions that occur rarely in the dynamics of trajectories
due to the high barrier associated with the simultaneous involvement of various structural
elements [5,6]. The identification of such conformational transitions in MD trajectories of
GPCRs has proven essential in revealing the dynamic elements of a receptor’s response
to ligands that differ in their pharmacological properties [7] and, even more intriguingly,
the role of specific conformational dynamics of the receptor that prepare for differential
coupling (i.e., functional selectivity [8]). We have demonstrated the collective nature of
these conformational transitions in studies of ligand-dependent functional selectivity of
the 5-HT2A serotonin receptor (5-HT2AR) and the dopamine D2 receptor (e.g., see [7,9–11]),
and have shown that understanding such ligand-determined GPCR functions depends
on a rigorous identification and analysis of the diverse function-related conformational
transitions induced by various ligands.
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Given the massive amount of information collected in the MD simulation trajectories
employed in current methods of drug discovery and design, this task is made difficult by
the presence of data in these simulation trajectories, from a very large number of fluctua-
tion events that do not represent collective motions and do not result in conformational
transitions. Rather, they represent the sampling of disparate degrees of freedom of the
protein that can occur individually on a similar scale to that of the collective ones. To
enable an efficient identification of relevant conformational transition in GPCR trajectories
and overcome the difficulties in the analysis of differences in functional mechanisms of
GPCRs in complex with different ligands, we have developed a Rare Events Detection
(RED) protocol based on a Machine Learning analysis of MD trajectories.

We show here that, with the RED protocol, we have been able to identify in MD trajec-
tory data the set of function-related rare events that lead to the known pharmacological
responses of different ligands, such as the diametrically opposed activation/deactivation
responses of the 5-HT2AR to the agonist serotonin (5-HT) and the inverse agonist Ke-
tanserin (KET) when each is bound to the orthosteric site. The event detection method in
the RED protocol is based on an unsupervised machine learning technique–non-negative
matrix factorization (NMF), which is known to learn a sparse, parts-based representation of
data [12]. NMF has gained popularity in several fields of application for its tendency to be
more congruent with human intuition than other dimensionality-reduction methods [12]
and has been applied successfully to extract hidden patterns from a wide variety of large-
scale datasets, including images, videos, and text documents [13,14]. Its application in the
RED protocol yields specific structural information at specific times in the MD trajectory,
which allowed us to examine the detailed differences in conformational rearrangements
underlying the differences in effector coupling probability, and their connection to the
mode of binding in the orthostatic site of the GPCR.

2. Results

2.1. Construction of the Rare Events Detection (RED) Protocol
NMF is a machine learning technique which is inherently well-suited to the analysis

of sparse, non-negative data obtained from large-scale MD trajectories. The non-negativity
constraints in NMF allow it to decompose such data into parts which tend to correspond
to intuitive interpretations of reality, a quality that has supported the popularity of this
technique in a wide variety of applications [12–15]. Here, the analysis of the data for
the 5-HT2AR in complex with 5-HT and KET begins with the construction of residue
contact maps from the long MD trajectories for these systems, obtained as described in
the Methods.

The “contact map” of residues positioned at 3.5Å is constructed for each frame of
the trajectory (parsed at 0.24 ns) of this 315-residue protein. The map was built using the
atomselect command in VMD“[atomselect top “protein and same residue as within 3.5
of (protein and resid $rez)” frame $fr]” where $rez is a variable representing a particular
residue and $fr is a variable representing a particular frame. This command is looped
over all protein residues and frames, and the distance between each pair of atoms of every
residue pair is considered. When any of these distances is 3.5Å during the simulation,
the residues are considered to be in contact.

This procedure yields a tensor of size (315,315, n), where n is the number of frames
in the trajectory. The elements have values 1 or 0, for contact (3.5Å) or no contact,
respectively. Supplemental Figure S1 shows an example contact map illustrating the
sparseness property of the data. Since NMF requires a two-dimensional matrix input, the
(315,315, n) input tensor was rearranged into an input matrix of size (3152, n).

Because function-related events of conformational transitions occur rarely in the
trajectories of complex systems such as GPCRs, we developed a smoothing operation
to deemphasize fast transitions. Smoothing is applied to each contact array across the
time dimension, by averaging the array in a sliding window of 30 nanoseconds (125
frames). Thus, many fast transitions (between contact and no contact) occur within the 30
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nanoseconds due to fluctuations which tend to average at 0.5, which is not the case for the
rare conformational transitions.

2.2. Detection of Rare Events in the Dynamics of the Ligand-Bound 5-HT2AR
The information about the dynamics of the GPCR system contained in the smoothened

contact map described above is used as input to the Non-negative Matrix Factorization
algorithm described in [12]. We used the NMF function in the Scikit-Learn package
implemented in python [16], and initialized it using the Nonnegative Double Singular
Value Decomposition (NNDSVD) initialization that is advantageous for sparse data (see
Scikit-Learn NMF documentation accessible in [16]). The number of components describing
the system, c, is user-defined and can be tuned based on the size of the simulation trajectory,
the expected number of transitions, and the appearance of a “steady state” solution in the
output (see discussion of Figure 1B below).

Appendix A (Figure A1) shows a schematic of the inputs and outputs of the NMF
algorithm. The input (matrix “I” in Figure A1) of size (R2, n) (R = the number of residues in
the system, n = the number of frames) is decomposed into a “spatial” array (matrix “W” in
Figure A1) of size (R2, c) (c = number of components), as well as a “temporal” array (matrix
“H” in Figure A1) of size (c, n). Because the input matrix encodes the information about
the protein’s structure evolving over the trajectory time, the components, c, which make
up the columns of the “spatial” output matrix W can be thought of as the “archetypes”
produced by the NMF analysis. Here, these are structural archetypes representing the
determinant features of conformational states that evolve over time. For example, the
analysis of a conformational transition, defined by the unfolding of a fully folded alpha
helical segment, might result in an NMF decomposition in which one structural archetype
(component) is the folded structure, and a second structural archetype is the unfolded
structure. Each frame of the simulation trajectory will be a mixing of the archetypes, with
the folded component dominating the trajectory frames before the transition, and the
unfolded component dominating those after the transition. Thus, the structural identity
of the protein at each frame of the trajectory is a combination of the c components in
the “spatial” matrix W, each contributing according to the individual component weights
associated with that frame; these weights are given by the “temporal” matrix H. The
relative weights of the c components in H at a particular frame of the trajectory represent
the mixing of the structural archetypes in that datapoint.

We illustrate the nature of the results obtained from the NMF-based analysis with the
results obtained for the 3-microsecond MD trajectory of the 5-HT2AR bound to serotonin
(the mechanistic interpretation of these results is presented in Section 2.3, below). As shown
in Figure 1A, a plot of the weights of a particular component over the entire trajectory
identifies the trajectory times at which this particular archetype (component) dominates
the structural characteristics of the protein. Therefore, the simultaneous visualization of
the weights for several components along the entire trajectory (i.e., all frames) (e.g., in
Figure 1B) illustrates a typical result of the NMF-based analysis of an MD trajectory in
which several rare events of interest occur over time. We note here that the NMF method
belongs to the category of unsupervised learning tasks for which the optimal choice of
rank (i.e., number of components) is user-defined, essentially based on prior knowledge of
the system. This is akin to the choice of collective variables to represent the motions of a
simulated system protein), as used in the dimensionality reduction in MD trajectory data
by projection into spaces such as time-structure based independent component analysis
(tICA). A good starting point for estimating the number of components is to consider the
expected number of rare events in the trajectory based on mechanistic hypotheses of the
conformational changes required for the molecular process. The user’s expert knowledge
of the system provides an advantage, but as the analysis can be redone with +/� (2–3)
components, convergence can readily be attained.
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Figure 1. Panel (A)-Evolution of the weights of the 4th output component of the NMF decomposition of the smoothened
contact data calculated from the trajectory of the 5-HT2AR complex with 5-HT, plotted over the frames of the trajectory.
Panel (B)–Evolution of the weights of all 6 components plotted over the frames of the trajectory. Panel (C)-Structure of the
receptor showing (in red) the top ten features (residue pairs) contributing to component 4. The residues are identified with
the generic numbering system for GPCRs [17].: Val3.52, Ala3.53, Asn3.56, Iso3.58, His3.60, Phe3.63, Val5.73, Ser5.74, Leu5.76,
Gly5.77, Ala5.80, Lys5.81, Leu5.82. Panel (D)-The colored vertical lines on the weight profile of component 4 denote the
trajectory frames of the GPCR/ligand complex shown in Panels (E–G), representing the structure before, during and after
the event dominated by component 4. Panels (E–G) Snapshots of the receptor at the frames indicated by the colored lines
in Panel (G). The Intracellular Loop 2 (ICL2) residues that are among the top ten features (residue pairs) contributing to
component 4, are highlighted in red and shown in stick model. Panel (H) Component 4 (orange line) plotted alongside
the number of water molecules in the intracellular cavity of the receptor over the frames of the trajectory (see methods for
details). The scalebar on the right side of the graph represents the number of waters in the cavity, while the left scalebar is
normalized to 1 for comparison with component 4.



Molecules 2021, 26, 3059 5 of 23

Figure 1B is a line plot, in which each colored line represents the weights given by
a row (component) of the “temporal” output matrix H over the frames of the trajectory.
The weight of contribution for residue pair i to component c is given by position (i, c) in
the “spatial” output matrix W (see Scheme in Figure A1). The structural context of the
information of the product of the two matrices (H and W) is represented as in Figure 1C
by the identification of the top residue pairs involved in this event. The interlocking
“humps” shown in Figure 1B are created by the rise and decline in the total weight of the
components. This change indicates the increase and then decrease in the dominance of
a particular component in determining the structure of the molecule. For example, the
edges of a main “hump” (e.g., blue line in Figure 1A) indicate, respectively, when the
particular structural archetype of component 4 begins to dominate the changes in protein
structural features, and when it stops dominating them. This signals the evolution of a
“conformational event” that produced a change in the structural dynamics of the protein.

The zeroth component in Figure 1B, which shows the weights of all six components
plotted against time (expressed as frame number), represents a stationary state. The other
components contain information about the dynamics of the ligand-bound receptor protein,
evidenced in the increase and decrease in the contributions to the structure made by
specific components of the contact matrix. Thus, increases in the weights represent the
formation of new contacts to generate the new conformation, while decreases represent the
necessary breaking of other contacts. The occurrence of a new conformational transition
event is identified by an overlap in time (i.e., occurring at the same trajectory frames)
of the decreasing and increasing weights of two consecutive components. In Figure 1B,
four such “events” are detected by the NMF analysis in the 3-microsecond trajectory. As
described in Section 2.3, the defining commonality of the identified rare events is that
they represent collective motions of the multiple structural elements contained in the
components. Together, these elements combine into conformational changes ranging from
the spatial translation of helices to conformational rearrangements of secondary structure
elements. Once identified, their roles in transitions between functional states of the GPCR
system is determined by the identity of the components involved in the event.

The interpretation of the events signaled by the type of results illustrated in Figure 1A,B
is described in the next section with the results from application of the RED protocol to the
analysis of the 3-microsecond MD trajectory of the system (see Methods for structural and
simulation details) using the NMF algorithm with six components.

2.3. Function-Related Rare Events in the Dynamics of the 5-HT2AR Bound to Serotonin (5-HT)
2.3.1. The First Event

This event is defined by the transition of dominance from component 2 to component
4, occurring between trajectory frames 149–337, i.e., at trajectory times 358 ns to 809 ns
(Figure 1B).

The top 10 features (residue pairs) with the highest weights of contribution to compo-
nent 4 are highlighted in red on the 5-HT2AR structure (Figure 1C). Panels E–G of Figure 1
show snapshots of the receptor structure along the trajectory at specific positions on the
weight plot of component 4, indicated in Figure 1D. Thus, the snapshots in this temporal
sequence show the evolution of the conformational change in the ICL2 structure, i.e., before,
during, and after the event detected by the algorithm. The helical secondary structure
component of the ICL2 is seen to change during the event to unstructured. The residue
pairs in the ICL2 that are in the top ten contributing features to component 4 are shown in
stick model, visualizing the contacts that break during the waning of this event, and the
gain in dominance of the structure defined by the second event. Shortly after becoming
unstructured, the ICL2 moves away from the intracellular cavity, thereby increasing its
volume and allowing for more water penetration into the cavity. The increase in volume,
and thus increase in accessibility of this region is well known from the crystal structures to
be involved in the interaction of the GPCR with the heterotrimeric G protein, showing that
this second event is functionally “activation-related” (Figure 1H). The temporal relation
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of this occurrence is quantified in Figure 1H by the evolution of component 4 weights in
the trajectory, starting at around frame 600 (i.e., ~1400 ns), and the completion of the event
dominance with the increase in accessibility to the cavity.

The changes in the structure of the GPCR/ligand complex that correspond to the con-
formational event represented by the evolution of the temporal weights from component
2 dominance to component 4 (Figure 2A), are illustrated in panels B–D of Figure 2. The
snapshots show the structure of the receptor before the rare event (see Figure 2B, corre-
sponding to the red line in Figure 2A), during it (Figure 2C, corresponding to the green line
in Figure 2A), and after the event has occurred (Figure 2D and purple line in Figure 2A).
The structural elements of the receptor that contribute the most to this transition between
components 2 and 4, are rendered in a stick model on the structure of the second extracellu-
lar loop 2 (ECL2). Before the transition (Figure 2B), the ECL2 is in a closed, beta-sheet-like
structure. The conformational transition involves an “unzipping”-like rearrangement of
the secondary structure of the ECL2 with the bonds between the two ends of the ECL2
breaking and separating in a coordinated motion of the multiple residues involved in this
rare event (Figure 2C,D).

Figure 2. Panel (A)–Evolution of the weights of the 2nd and 4th output components of the NMF decomposition of the
smoothened contact data calculated from the trajectory of the 5-HT2AR-serotonin complex, plotted over the frames of the
trajectory. Panels (B–D)–Snapshots of the receptor at the frames indicated by the colored lines in Panel (A). The ECL2
residues that are among the top ten features (residue pairs) contributing to component 2 and 4, are shown in stick model.

2.3.2. The Second Event
Identified by the RED protocol, this second event is defined by the transition of

dominance from component 4 to component 3, which occurs between frames 368–620 of
the trajectory (i.e., at time 833 ns to 1488 ns) (see Figures 1B and 3A). The three columns in
Figure 3 show, respectively, snapshots of the structure of the receptor before the rare event
(column B and red line in Figure 3A), during it (column C and green line in Figure 3A), and
after the rare event (column D and purple line in Figure 3A). The features (residue pairs) of
the receptor that contribute the most to components 3 and 4 are rendered in stick model on
the structure. In this second event, the RED protocol identified collective rearrangements
in several local clusters of residues, which is consistent with the known property of NMF
to factor input data into sparse, localized, intuitive parts (i.e., [12]). Thus, the three columns
of Figure 3 are divided into three segments to focus on the different regions of the GPCR
in which changes occur at the same time in the trajectory. Thus, the first row (B1–D1)
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shows snapshots of the rearrangement of the extracellular ends of TMs 5 and 6. This event
involves a twist and movement of the extracellular end of TM 6 that brings the two TMs
closer, which leads to the formation of contacts, including the hydrophobic interaction
between Leu5.40 and Iso6.60 in TMs 5 and 6, respectively (note that the Ballesteros and
Weinstein generic numbering system of GPCR residue positions [17] is used throughout).

Figure 3. Panel (A) Evolution of the weights of the 3rd and 4th output components of the NMF decomposition of the
smoothened contact data calculated from the trajectory of the 5-HT2AR-serotonin complex, plotted over the frames of the
trajectory. Panels (B1–D1) Snapshots of the receptor at the frames indicated by the colored lines in Panel (A), zoomed to
show the rearrangement of the extracellular ends of TM5 and TM6. The residues shown in stick model (Iso6.60, Leu5.40,
Val5.39, and Asp5.36) are identified by the RED as among the top ten features (residue pairs) contributing to component 3
and 4. Panels (B2–D2) Snapshots of the receptor at the frames indicated by the colored lines in Panel (A), zoomed to show
the rearrangement of the intracellular end of TM6 (addition of a helical turn). The residues shown in stick model (Cys5.72,
Thr6.19, Gly6.20, Arg6.22, Thr6.23, and Met6.24) are identified by the RED as among the top ten features (residue pairs)
contributing to component 3 and 4. Panels (B3–D3) Snapshots of the receptor at the frames indicated by the colored lines in
Panel (A), zoomed to show the rearrangement of the ICL2 from alpha helical to unstructured. The residues shown in stick
model (Ala2.38, Val3.52, Ala3.53, Asn3.56, Iso3.58, His3.60, Phe3.63, and Asn4.37) are identified by the RED as among the
top ten features (residue pairs) contributing to components 3 and 4.
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The conformational transition shown in the second row of each column (B2–D2)
identifies the addition of a helical turn to the helical extension at the intracellular end of
TM6, a region known for its involvement in the interaction of the activated receptor with
the cognate G protein. Row 3 describes the contemporaneous conformational change in the
secondary structure of the intracellular loop 2 (ICL2) (B3–D3). The temporal correlation of
these conformational changes occurring in distal structural domains is sorted by the NMF
algorithm into the same rare event, which suggests an allosteric pathway connection that
can be verified and quantified by an analysis of allosteric pathways (e.g., [10,18]).

2.3.3. The Third Event
The third event is defined by the transition of dominance from component 3 (blue

line in Figure 4A) to component 1 (orange line in Figure 4A), occurring roughly between
trajectory frames 620-820 (time 1488 ns to 1968 ns). Figure 4 shows snapshots of the
receptor structure before (Figure 4B), during (Figure 4C), and after (Figure 4D) the rare
event. During this event, the intracellular end of TM6 moves outwards, away from the
center of the intracellular end of the receptor, and the features of the receptor (NMF
components) that contribute the most to components 3 and 1 are the residue pairs rendered
in stick model with functional colors in the structure panels (4B–D).

Figure 4. Panel (A) Evolution of the weights of the 1st and 3rd output components of the NMF decomposition of the
smoothened contact data calculated from the trajectory of the 5-HT2AR-serotonin complex, plotted over the frames of the
trajectory. Panels (B–D) Snapshots of the receptor at the frames indicated by the colored lines in Panel (A), zoomed to show
the rearrangement of the intracellular end of TM6. The residues shown in stick model (Cys5.72, Thr6.19, Gly6.20, Arg6.22,
Thr6.23, Met6.24, Leu5.71, Tyr6.18, Pro3.57, and His3.60) are identified by the RED as among the top ten features (residue
pairs) contributing to component 3 and 1.

2.3.4. The Fourth Event
This event is defined by the transition of dominance from component 1 to component

5, occurring approximately between frames 775-1197 (time 1860 ns to 2827 ns) in the
trajectory (Figure 5A). Panels B and C of Figure 5 show the conformational changes leading
to the rearrangement of the binding pocket. The receptor is shown in the top and side
views, respectively. During the event, the extracellular end of TM6 undergoes a 4.7 Å
shift (as measured from the alpha carbon of Val6.59), caused by a reorientation of the TM6
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segment following the proline kink around Pro6.50 towards the extracellular end of the TM.
The reorientation (Figure 5D) is due to a decrease of ~20� in the wobble angle of the proline
kink (see [19]). This change is accompanied by a 4.15 Å shift in the extracellular end of TM5
(as measured from the Calpha of Asn5.37). Together, these shifts result in the formation of a
stable contact between Asn5.37 and Val6.59 during the event (see pink structure in Panels
B and C of Figure 5) that did not exist before the event (see green structure in Panels B and
C of Figure 5). The Asn5.37-Val6.59 contact pair was one of the top ten features identified
by component 5 of the RED protocol.

Figure 5. Panel (A) Evolution of the weights of the 1st and 5th output components of the NMF decomposition of the
smoothened contact data calculated from the trajectory of the 5-HT2AR-serotonin complex, plotted over the frames of the
trajectory. Panels (B,C) Snapshots of the receptor at the frames indicated by the colored lines in Panel (A) (green structure at
frame 775 and pink structure at frame 1197). The residues N5.37 and V6.59 are shown in stick model and colored according
to frame (green for frame 775 and pink for frame 1197). Panel (D) Evolution of the wobble angle of the proline kink around
6.50 (see Section 2.3.4 for details) calculated from the trajectory of the 5-HT2AR-serotonin complex, plotted over the frames
of the trajectory. The green and pink lines correspond to the same frames shown by the colored lines of panel A and the
colored structures in panels B-C (green for frame 775 and pink for frame 1197).

2.4. The Relation of RED-Identified Rare Events to the Functional Mechanism of the 5-HT2AR
The conformational transitions associated with the events identified in the trajectory

of the 5-HT2AR/5-HT complex are well-understood in the context of the known molecular
structures of the endpoint states (activated and inactive) of Class A GPCRs [20,21]. The
ability of the RED protocol to identify the temporal sequence of the events and the structural
elements engaged in the dynamic steps producing this conformational change over the
course of the MD trajectory offers new insight into the ligand-based activation process. To
test the ability of the RED protocol to distinguish the events leading to different functional
states of the 5-HT2AR with the same level of detail, we compared the function-related
events detected with the RED analysis in the trajectories of the 5-HT2AR bound to the full
agonist (5-HT), to those obtained in the same way for the 5-HT2AR bound to the selective
inverse agonist Ketanserin (KET) [22]. Given the known pharmacological properties of
these ligands, this comparison juxtaposes molecular events in the dynamics of the GPCR
that relate, respectively, to conformational transitions in the activation and deactivation of
the process. Thus, the events detected by the RED analysis of the 5-HT2AR/KET complex
reveal a major difference in the conformational transitions that determine the size and



Molecules 2021, 26, 3059 10 of 23

volume of the cavity in the intracellular region where activated GPCRs interact with
effectors (G proteins and/or Arrestins).

2.4.1. Detection of Rare Events in The Dynamics of the Ketanserin (KET)-Bound 5-HT2AR
For the analysis of the 5-HT2AR/KET trajectory, the RED protocol was applied to a

3-microsecond trajectory of the 5-HT2AR with KET in the orthosteric site (see Methods and
Supplementary Figure S2). Figure 6A shows the weights of the 6 NMF components plotted
against time (cf. Figure 1B). The zeroth component again represents a stationary state, while
the other five contain information on the dynamics of the protein transitioning between
conformational states. Interestingly, component 2 in the receptor complex with the inverse
agonist KET, corresponds to component 4 in the agonist-bound 5-HT2AR complex. In the
5-HT2AR/5-HT trajectory, the highest weights of contribution to component 4 are from
the features (residue pairs) that determine the conformation of ICL2 (see conformational
changes in the secondary structure of ICL2 in row 3 (B3–D3) of Figure 3). This is also
the case for component 2 for the 5-HT2AR/KET complex, but here component 2 becomes
dominant at a late stage of the trajectory (Figure 6A), compared to the corresponding
component 4 in the 5-HT2AR/5-HT (cf Figure 1A). The evolution of weights for component
2, which start to increase rapidly around frame 700 (~1700 microseconds), is shown in
Figure 6B. Snapshots of the structure in the intracellular region at the times indicated
by the colored vertical lines in 6b, are shown in panels C-G of Figure 6. Clearly, at the
trajectory time corresponding to the red vertical line in Figure 6B, the ICL2 is positioned
outward, away from the intracellular cavity (see ICL2, colored in brown in panel 6c). This
is indicated in the corresponding structure (Figure 6C), by the lack of contact between
Asn4.37 in TM4 and Asn2.37 in TM2 (i.e., the N4.37-N2.37 pair in the contact matrix, which
is one of the top ten residue pairs contributing to component 2). Figure 6D shows the
structure of the protein during the rapid increase in weights, with a contact between N4.37
and N2.37, indicating that the ICL2 is moving towards the intracellular cavity. The initial
N4.37-N2.37 contact is transient, with its breaking indicated by the falling edge of the
small green spike (component 2) around frame 700 (Figure 6E). The contact reforms more
strongly and the ICL2 gradually occludes the intracellular space during the growth in the
large green spike representing the evolution of component 2 weights from frames 800-1200
in Figure 6A. Simultaneously, Helix 8 shifts (see Section 2.4.2 below), thereby causing ICL1
to also start moving inward towards the transmembrane bundle (see ICL1 highlighted in
blue in Figure 6C–G, further decreasing the volume of the intracellular cavity. The result of
the coordinated conformational change in this event is a structure of the intracellular region
of the receptor (Figure 6G) which matches well the corresponding crystal structure of the
5-HT2AR bound to another inverse agonist, Risperidone, as illustrated by the structural
superposition shown in Figure 6H. As seen in (Figure 7A), the volume of the intracellular-
facing cavity of the GPCR decreases, reducing the accessibility to the residues needed for
G protein coupling. The time evolution of component 2 (thin orange line in Figure 7A)
coincides with the changes in the blue trace that indicates the capacity of the intracellular
cavity of the receptor, measured by the number of water molecules that can fill it (cf
Figure 1H).
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Figure 6. Panel (A) shows the evolution of the weights of all 6 components from the RED analysis of the Ketanserin
(KET)-bound 5-HT2AR. Panel (B) shows the weight profile of component 2. The colored vertical lines denote the trajectory
frames corresponding to the snapshots of the GPCR/KET complex shown in panels (C–G), which represent the structure
before, during and after the event, dominated by component 2. The 5-HT2AR-Ketanserin complex is show in cyan, with
the ICL1 colored in blue, the ICL2 colored in brown, and N4.37 and N2.37 shown in stick model. Panel (H) shows a
superposition of the crystal structure of the 5-HT2AR bound to the inverse agonist risperidone (pdb 6A93, in red) with the
structure of the 5-HT2AR-Ketanserin complex (colored gold) at the time corresponding to frame G (gold line in panel (B).

Figure 7. Panel (A) Component 2 (orange line) plotted alongside the number of water molecules in the intracellular cavity
of the receptor over the frames of the trajectory (see methods for details). The scalebar is normalized to 1 for comparison
with component 2. Panels (B,C) show snapshots of the receptor, with the residues constituting the top ten contributing
residue pairs of component 2, highlighted in red. These residues are Leu1.52, Asn2.37 (ICL1), Tyr2.41, Glu3.55, Asn4.37
(ICL2), Asp5.35, Val5.39, Leu5.71, Cys5.72, Asp5.75, Leu5.76, Arg5.79(ICL3), Ser5.84 (ICL3), Arg6.21 (ICL3), Leu7.55, Arg7.61
(Helix 8), Tyr7.67 (Helix 8).

This decrease in the volume of the intracellular cavity constitutes a reversal of the
activation sequence detected in the 5-HT2AR/serotonin complex, which is consistent with
the function of the KET ligand, identified pharmacologically as an inverse agonist. The
top 10 features (residue pairs) with the highest weights of contribution to component 2
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are highlighted in red on the structure of the 5-HT2AR (Figure 7B,C) as salient structural
features related to the ligand-induced GPCR deactivation event.

2.4.2. The RED Protocol Reveals Salient Structural Features of Simultaneous
Conformational Changes in Different Structural Motifs

Component 2 of the rare event in the trajectory of the KET-bound 5-HT2AR simulation
described above (Section 2.4.1) is an example of the structural complexity of the concurrent
conformational transitions detected by the RED protocol. Like component 4 of the 5-
HT-bound 5-HT2AR simulation, it involves local and more distal structural elements,
which undergo transitions to states that have specific functional roles. Thus, an intriguing
observation from the analysis of the elements (residue pairs) of component 2 (Figure 7,
panels B and C) is that, in addition to the residues in ICL2 and TM2, interactions involving
Helix 8 (H8) residues are also included and highlighted among the top ten residue pairs that
contribute to this component. Inspection of the trajectory revealed that, during the rising
edge of the smaller spike (at frame ~700), the formation of the contact between Leu7.55
and Arg7.61 in TM7 (Figure 8E) coincides with the decrease in the wobble angle of H8
(Figure 8B). The wobble angle quantified in Figure 8B is defined analogously to the proline
kink wobble angle [19], but using Arg7.57 as the center of the reorientation. The helical
segments that reorient are the Ser7.46-Phe7.56, and the Lys7.58-Iso7.68. The conformational
change is visualized by comparing the structures in panels D and E of Figure 8, which show
the salient components in TM7 and HX8 identified by the RED as contributing to the event.
The structures correspond to the conformations at times in the trajectories identified by the
corresponding vertical lines in Figure 8B (marked D and E). Subsequently, during the larger
spike in component 2, which evolves in frames 800-1200, there is a further decrease in the
wobble angle of HX8 (Figure 8A), and a change in the contact between Leu1.52-Tyr7.67 at
the times indicated by vertical lines F, G, and H (see Figure 8, panels F–H). The relation
between global conformational changes (Hx8 wobble angles) and local conformational
changes (residue–residue interactions) in the elements of component 2 is demonstrated in
Figure 8C by the high correlation between the inter-residue distance L1.52-Y7.67 with the
H8 wobble angle. Note that the changes in the H8 (Figure 8A) occur at the same time as
the changes in ICL1 and ICL2, described in Figures 6 and 7, and are sorted into the same
component and event by the RED protocol.

The remarkable ability of the RED algorithm to follow changes in the discretely
located residue pair contacts involving several residues pertaining to organized secondary
structures enables the detection and definition of global (both local and distal) changes
in conformation that lead to a particular functional state. The emergence of a single
continuous collective motion is thereby identified as it evolves in an MD simulation
trajectory of the GPCR. This capability is due to the fact that the residue pair contact is
inherently normalized, and thus, by following the cumulative change in the well-defined
local CVs, the event detection is made more robust to (non-collective) noise. Then, the
detection of temporally coordinated changes in local elements that can be distant to one
another reveals function-related changes resulting from the coordinated sequence of local
rearrangements during dynamics.
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Figure 8. Panel (A) Evolution of the wobble angle of Helix 8 (see Section 2.4.2 for details) calculated from the trajectory of
the 5-HT2AR-ketanserin complex, plotted over the frames of the trajectory. Panel (B)-Component 2 (orange line) plotted
alongside the Helix 8 wobble angle over the frames of the trajectory. The scalebar is normalized to 1 for comparison
with component 2. Colored vertical lines denote the trajectory frames of the GPCR/ligand complex shown in Panels
(D–H), representing the structure before, during and after the event, dominated by component 2. Panel (C) Helix 8 wobble
angles (blue line) plotted alongside the distance between the alpha carbons of L1.52-Y7.67 (orange line) over the frames
of the trajectory. Panels (D–H) Snapshots of the receptor at the frames indicated by the colored lines in Panel (B). The
residues shown in stick model (L7.55, R7.61, L1.52, and Y7.67) are among the top ten features (residue pairs) contributing to
component 2.

2.4.3. The Role of The Ligand in Transitions to Functional States
The role of the ligand in determining conformational transitions to function-related

states revealed from rare events detected in the dynamics of ligand bound in the orthosteric
pocket of the GPCR. Application of the RED algorithm to the dynamics of the KET ligand
bound in the orthosteric site of the 5-HT2AR was investigated, with feature data represented
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by the contact map limited to interactions between the ligand and the protein. The contact
data vector resulting from the smoothing operation, described in Sections 2.1 and 2.2, was
of the size (n, 315), where n is the number of frames in the trajectory for the 315 residues in
the protein.

Only three components needed to be considered for this smaller data vector, and
additional constraints were added to increase the sparseness and temporal smoothness
of the components. The weights of the three NMF components plotted against time in
Figure 9A show component 2 to contain the largest absolute weights. The top 10 features
(residues) with the highest weights of contribution to component 2 are highlighted in
red on the 5-HT2AR structure in Figure 9B. For clarity, Figure 9C shows component 2 in
isolation from the other two components. The event occurring during this largest spike
was analyzed by observing frames before, during, and after the event at times indicated
by the colored vertical lines in Figure 9D. The structures from trajectory snapshots at
the times indicated by these vertical lines are shown in Figure 9F–H. The sequence of
snapshots shows that component 2 represents a reorientation of the headgroup of the
ligand, from pointing towards TM7 to pointing towards TM2. This is evidenced by the
formation of a contact between the ligand and Ser2.61 and Thr2.64, two residues whose
weight of contribution to component 2 is in the top ten. The temporal proximity of this
rare event to the conformational changes in the 5-HT2AR discussed in previous sections is
evidenced in Figure 9E, in which the largest spike, which starts around frame 820, occurs
at the same trajectory time as the base of the main hump of component 2 identified in the
RED analysis of the protein (not the ligand) in the 5-HT2AR/KET trajectory (see Figure 6B).
As presented in Sections 2.4.1 and 2.4.2 this signals the start the conformational events
in the intracellular side of the receptor at the same time. This temporal sequence is thus
suggestive of a causative relation between these sets of events in protein regions far from
one another in the molecular scale. Whether the conformational transition observed in
the protein is triggered allosterically by the reorientation of the ligand, and how, is the
topic of a forthcoming analysis with the quantitative tools developed specifically for this
purpose [10,18,23,24].
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Figure 9. Panel (A) Evolution the weights of all 3 components of the NMF decomposition of the smoothened ligand contact
data (see Section 2.4.3 for details) calculated from the trajectory of the 5-HT2AR-ketanserin complex, plotted over the frames
of the trajectory. Panel (B) Structure of the receptor showing (in red) the top ten features (residue pairs) contributing to
component 2. The residues are Ser2.61, Thr2.64, Trp3.28, Iso2.65, Val3.33, Thr3.37, Phe6.51, D3.32, Iso3.40, and Ser3.36. Panel
(C) Evolution of the weights of the 2nd output component. Panel (D) Evolution of the weights of the 2nd output component
with colored vertical lines on the weight profile of component 2 denoting the trajectory frames of the GPCR/ligand complex
shown in Panels (F–H), representing the structure before, during and after the event dominated by component 2. Panel
(E) Evolution of the weights of the 2nd output component of NMF decomposition of the smoothened ligand contact data
(orange line, see Section 2.4.3), plotted alongside the 2nd output component of NMF decomposition of the smoothened
contact data of the receptor (blue line, see Section 2.4.1) Panels (F–H) Snapshots of the receptor at the frames indicated by
the colored lines in Panel (D). Ser2.61 and Thr2.62, shown in stick model, are among the top ten features (residue pairs)
contributing to this component.

3. Discussion

The GPCRs are prototypical allosteric proteins that connect the cell environment to
physiological responses that modulate the state of the cell. The molecular processes un-
derlying the various elements of such complex signal transduction [25–31] include direct
coupling to intracellular effector proteins in various cascades, anchoring to scaffolding
proteins such as PDZ domains, as well as GPCR- and function-specific spatial organi-
zation such a dimerization and oligomerization. Regulatory effects of these processes
involve structural modifications such as phosphorylation by specific classes of kinases,
and interactions with the internalization machinery. The common denominators of these
processes are the molecular conformational changes that transfer the GPCR from state
to state to enable the interactions with the environment and functional protein partners
(e.g., [9–11,30–32]). The drugs targeting GPCRs are, therefore, required and designed to
intervene in this complex array of interrelated mechanisms, mostly by inducing and modu-
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lating the structural and dynamic states of the GPCR molecule. Not surprisingly, therefore,
structural and computational approaches that discover and quantitatively illuminate the
details of GPCR molecule responses to ligands and external stimuli are major factors in the
ability to consider, understand, and perform ligand discovery and design [2–4]. Central
among these tools and approaches are MD simulations that offer the ability to follow the
dynamic changes in GPCR molecular structure in response to the environmental condi-
tion (especially the membrane), interactions with other proteins, and the effects of ligand
binding [32]. The need for, and the success of, using MD simulations for to study such
processes involving the allosteric mechanisms of molecular machines in the membrane
are well known [32–35], and so are the challenges presented by the very large amounts of
resulting data that encode the desired information [7,36,37]. This difficulty is compounded
by the fact that mechanistically important state-to-state transitions of complex molecular
machines such as GPCRs must constitute rare events in the MD trajectories, reflecting the
need to preserve the specificity of their regulation. We have, therefore, focused on improv-
ing the ability to detect regulated allosteric mechanisms in GPCRs and other molecular
machines in the membrane, and have developed the RED protocol described here for the
efficient detection of rare events of conformational transitions.

The results from the application of the new RED protocol to the MD trajectories of
ligand-bound 5-HT2AR, shown here, reveal clearly defined, structurally coherent, and
mechanistically relevant events of conformational changes. The structural interpretation
provided by the RED protocol further showed that these detected events are complex
rearrangements of structural motifs that appear together in the same discrete time frame
along the trajectory, and lead to functionally relevant states of the ligand bound GPCR. We
selected the pharmacologically well characterized ligands, 5HT and Ketanserin, for the
study of ligand-dependent conformational changes in the 5-HT2AR in order to enable a
direct comparative analysis of results from the RED protocol in the functional context of
activation by a full agonist, and “deactivation” by an inverse agonist. Thus, the structural
expression of ligand-dependent activation and deactivation of the receptor must relate
to those observed from structural determinations occurring when the binding of a GPCR
agonist near its extracellular side triggers conformational rearrangements of the protein
molecule to enable the binding and activation of an effector protein (e.g., a heterotrimeric
G-protein, or Arrestin) at the intracellular end (e.g., [9,25,26]-and references therein). This
is achieved through an allosteric process that involves multiple rearrangements of specific
structural microdomains throughout the receptor [38] and leads to the measurable effects
of ligands.

In accordance with this mechanistic insight, we showed here that the application of
the RED protocol to the analysis of MD trajectories detected rare events of conformational
transitions that led to opposing effects on the intracellular region of the 5-HT2AR, reflecting
the opposite pharmacological properties of the ligands as an activator (agonist, 5-HT)
and inactivator (inverse agonist, KET). The temporal information provided by the NMF
algorithm about the events in both GPCR-ligand complexes showed them to consist of
temporally coincident and coordinated changes in several structural motifs. However,
while the events detected in the 5-HT2AR with the full agonist constitute a transition to
states in which the accessible volume increased in the region of the GPCR used to couple
with the G protein, the inverse agonist (KET) led to a closure of the intracellular cavity and
reduction in its volume. The molecular details of the transitions toward the structurally
different states emerged from the analytical power of the NMF algorithm in the RED
protocol to identify the time-resolved increase in the weights of the structural components
dominating the structure at different time points. For example, the roles of structural
components of the motions of the ICL2 in the structural transition of the intracellular cavity
of the 5-HT2AR/KET complex from a large volume that accommodates effector binding
(e.g., [20,39]), to a small and restrictive one that does not support such an interaction,
was identified in detail. This change in volume was quantified by the number of water
molecules the new cavity can contain. As described in the Results section, all the specific
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rare events of conformational transitions detected with the RED protocol and interpreted
from the structural context it provides are complex rearrangements of structural motifs
that appear together in the same discrete timeframe along the trajectory. Remarkably,
when the same RED protocol was applied to detect rare events in the dynamics of the
KET ligand bound in the orthosteric pocket of the 5-HT2AR, it directly highlighted the
involvement of the ligand in the functional rearrangement by detecting the reorientation of
the ligand and the formation of new interactions in the binding pocket which coincided
with the timing of the conformational transitions responsible for the reduction in volume
of the intracellular cavity. Thus, the detection of these events was shown to be directly
translatable into a structural context of ligand-specific transitions that can then be associated
with specific functions of the GPCR. Our hypothesis that this mechanism is a reflection
of the involvement of the ligand in an allosteric pathway is now being investigated and
quantified with approaches [18,24] designed to outline the mechanistic path connecting
the structurally distant sites which were shown here to exhibit temporally coordinated
dynamics.

We note that this quantitative information about the ligand-specific transitions be-
tween functionally relevant states, produced by pharmacologically defined ligands, com-
plements the demonstrated ability of another machine-learning analysis of patterns in
the dynamics of the GPCR-ligand complex [7]. The algorithm identifies specific dynamic
patterns in the MD trajectories of ligand-GPCR complexes to classify the bound ligands by
their pharmacological properties of agonist, partial agonist, etc. Together with the RED
protocol analysis, the two novel machine learning approaches offer deep insights into
ligand-determined functional properties of GPCR-ligand complexes. These open a new
and rigorously reproducible path towards a mechanistic understanding of these important
molecular machines, and for their application in drug discovery.

4. Materials and Methods

Details of the procedures for building the homology model, docking the ligands,
obtaining parameters, and running the simulations have been described previously [7].
The main steps are summarized briefly below.

4.1. Homology Model of the 5-HT2AR
MODELLER (v.9.18) [40] was used to generate the sets of homology models of the

human 5-HT2AR. Three sets of structure-based sequence alignments were used as templates
in Modeller:

Set 1: consisted of two structures of the human 5-HT2BR (PDBID: 4ib4 and 5tvn);
Set 2: included two structures of the human 5-HT2BR (PDBID: 4ib4 and 5tvn) and two

structures of the human 5-HT1BR (PDBID: 4iaq and 4iar);
Set 3: included all the structures in Set 2, augmented by 2 structures of the human �2-

adrenergic receptor b2AR (PDBID: 4lde and 4ldl).
Each of these template structures includes the receptor, bound to one of its agonists.

For each template set, Modeller was used to generate 1000 homology models of the 5-
HT2AR.

Each model’s ability to discriminate between true agonist and decoy structures was
quantified as described previously [7]. The set that only used 5-HT2B as input templates
was found to be the most discriminating model overall and was used for subsequent
docking studies.

4.2. Parametrization and Docking of the Molecular Models
MOL2 files for the 5-HT2AR ligands 5-HT and Ketanserin were obtained from the

ZINC database [41] and docked into the receptor using the Induced Fit Protocol [42] in the
Schrodinger Suite. A starting binding pose was chosen for each ligand based on the emodal
score and comparison to experimental data presented in [7]. As shown in Supplemental
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Figure S2, the structures of the 5-HT2AR/5-HT and 5-HT2AR/KET complexes were very
similar (0.518 Å backbone RMSD).

4.3. Comparison of Modeled Starting Structures to 5-HT2AR Structures in the PDB
4.3.1. Comparison of Starting Structures

After the MD trajectory data described and used in this paper were collected, struc-
tures of the 5-HT2AR in various states were published, including an inactive 5-HT2AR/
risperidone complex (pdb 6A93) [21], as well as an “active” structure of a 5-HT2AR bound to
the partial agonist 25-CN-NBOH and in complex with an engineered Gq (pdb 6WHA) [20].
Comparison of our starting structures to these active and inactive structures reveals that
our starting structures are in a “partially active” conformation.

The RMSD of the transmembrane domains between the inactive structure and the
superposed active state structure is 1.9 Å. The RMSDs of the transmembrane domains
between the inactive structure and the superposed Ketanserin-bound and 5-HT-bound
homology model starting structures are 1.4 and 1.6 Å, respectively. Transmembrane
domains were defined as: TM1-Val1.42 to Val1.57; TM2-Thr2.39 to Iso2.25; TM3 –Cys3.25
to Val3.52; TM4–Ala4.42 to Phe4.63; TM5–Asn5.37 to Lys5.63; TM6–Glu6.31 to Met6.57;
TM7–Iso7.31 to Val7.52 (Ballesteros and Weinstein generic numbering systems defined
in [17])

For the intracellular side of the transmembrane domains, the RMSD between the
inactive structure and the superposed active state structure is 2.2 Å. The RMSDs of the
intracellular side of the transmembrane domains between the inactive structure, and the
superposed starting structures of the 5-HT2AR/Ketanserin and 5-HT2AR/5-HT homology
model, are 1.56 and 1.56 Å, respectively. The intracellular ends of transmembrane domains
were defined as: TM1-Iso1.47 to Val1.57; TM2-Thr2.39 to Leu2.52; TM3–Ser3.39 to Val3.52;
TM4–Ala4.42 to Thr4.51; TM5–Leu5.51 to Lys5.63; TM6–Glu6.31 to Leu6.43; TM7–Ser7.45
to Val7.52

4.3.2. Structures Resulting from the MD Simulations: 5-HT2AR/KET vs.
5-HT2AR/Risperidone Binding Mode

Supplemental Figure S3A shows the binding mode of our 5-HT2AR/KET starting
structure (green) superposed with the pdb 6A93 structure of the 5-HT2AR/risperidone
complex (lavender). Our predicted binding mode of Ketanserin is very similar to the
binding mode of risperidone. One difference is that the extracellularly oriented headgroup
of Ketanserin is oriented towards TM2, while risperidone’s is oriented towards TM7. It is
worth noting that, during the simulation, Ketanserin samples conformations in which the
headgroup reorients towards TM7 (similar to the risperidone structure), and that this is
one of the rare events picked up by the RED protocol in the “deactivation” mechanism (see
Figure 6).

4.3.3. Comparison of Functional Motifs, “Toggle Switch” W6.48
Supplemental Figure S3B shows a comparison of the orientation of the W6.48 in the

“toggle switch” for the 5-HT2AR/risperidone (blue), 5-HT2AR/Gq (violet), 5-HT2AR/KET
(green), and 5-HT2AR/5-HT (coral) structures. In 5-HT2AR/risperidone, W6.48 is flipped
“up” towards the extracellular end of the receptor. In 5-HT2AR/Gq, W6.48 is flipped
“down” towards the intracellular side. In the 5-HT2AR/KET and 5-HT2AR/5-HT starting
structures, W6.48 is flipped “up” but is shifted such that it lies in between the inactive and
active state structures.

4.3.4. Comparison of Functional Motifs, Intracellular Orientation of TM6
Supplemental Figure S4 shows a comparison of the position of the intracellular end

of TM6 for the 5-HT2AR/risperidone (blue), 5-HT2AR/Gq (violet), 5-HT2AR/KET (green),
and 5-HT2AR/5-HT (coral) structures. In 5-HT2AR/risperidone, TM6 orients inwards,
occluding the intracellular cavity where the effector protein binds in active receptors. In
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5-HT2AR/Gq, TM6 is kicked “outwards” in order to accommodate the G-protein. In the
5-HT2AR/KET and 5-HT2AR/5-HT starting structures, TM6 is located in an orientation
intermediate between the active and inactive structures.

4.3.5. Comparison of Functional Motifs, Intracellular Orientation of TM7
Supplemental Figure S5 shows a comparison of the position of the intracellular end

of TM7 for the 5-HT2AR/risperidone (blue), 5-HT2AR/Gq (violet), 5-HT2AR/KET (green),
and 5-HT2AR/5-HT (coral) structures. In 5-HT2AR/risperidone, TM7 orients outwards,
away from the center of the receptor. In 5-HT2AR/Gq, TM7 is located inwards, towards the
center of the receptor. In the 5-HT2AR/KET and 5-HT2AR/5-HT starting structures, TM7 is
inwards, similar to the active structure.

4.3.6. Comparison of Functional Motifs, the Ionic Lock
Supplemental Figure S6 shows a comparison of the position of the ionic lock (R3.50-

E6.30) between TM3 and TM6 for the 5-HT2AR/risperidone (blue), 5-HT2AR/Gq (violet),
5-HT2AR/KET (green), and 5-HT2AR/5-HT (coral) structures. In 5-HT2AR/risperidone
(Supplemental Figure S6B), the ionic lock is formed, as expected for an inactive confor-
mation. In 5-HT2AR/Gq (Supplementry Figure S6A), the ionic lock is broken, as expected
for an active conformation. In the 5-HT2AR/KET and 5-HT2AR/5-HT starting structures
(Supplementary Figure S6C), the ionic lock is broken, but closer together than in the active
state structure.

4.4. Molecular Dynamics Simulations
The 5-HT2AR-ligand complexes were inserted into a membrane containing 144:16

POPC:Cholesterol molecules of in each leaflet using the CHARMM-gui [43]. Each complete
system was equilibrated under the NPT ensemble (T = 310 K) in NAMD according to a
previously established multistep equilibration protocol (see [7] for details). The final frames
of the equilibration were used as an input to run MD simulations of the systems under
the NVT ensemble (T = 310 K) using the OpenMM software [44]. The simulations were
run as 6 replicas for each system. The analysis was performed on ~3-microsecond-long
trajectories for each of the complexes.

4.5. Calculation of the Intracellular Cavity Volume
The volume of the intracellular cavity was defined based on a procedure used to

quantify the volume of vestibules in another membrane protein [45]. Briefly, a water
molecule is considered to be in the intracellular cavity if its oxygen atom is within 15 Å of
the C-alpha atom of L2.43, or within 8 Å of the C-alpha atom of A6.33, but not within 5 Å
of lipid atoms, and not within 12 Å of the C-alpha atom of S3.39.

4.6. Visualization of Intracellular Cavity Volume
PDBs corresponding to the frames in the analysis of the events during which the

volume changed (frames 420, 510, and 620 for serotonin-5-HT2AR complex trajectory, see
Figure 1E–G) and (frames 617, 730, 770, 970, and 1197 for Ketanserin-5-HT2AR complex
trajectory, see Figure 6C–G) were used as input to the CASTp webserver [46] automated
volume calculator, using the default probe radius of 1.4Å.

Supplementary Materials: Figure S1: contact map; Figure S2: starting structures; Figure S3A,B:
binding pocket; Figure S4:TM6 movements in as observed in inactive and active states of the 5-
HT2AR; Figure S5: TM7 movements in as observed in inactive and active states of the 5-HT2AR;
Figure S6A–C: Movements of the ionic lock in inactive and active states of the 5-HT2AR; Figure
S7: Figure S7: Intracellular cavity volumes (inactive and activated states); Figure S8: Intracellular
cavity volumes changes during activation; Figure S9: Intracellular cavity volumes changes during
inactivation.
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Appendix A

The specific advantages offered by the nature and performance of the NMF machine-
learning algorithm in the RED protocol to achieve the new level of mechanistic understand-
ing demonstrated in the results are briefly highlighted.

The scheme in Figure A1 below shows the decomposition of the input array using
NMF into the “spatial” component W and the “temporal” component H, which are to-
gether responsible for the integrated detection of the temporally defined rare events that
provided the mechanistic information detailed in this manuscript. Indeed, the various ML
approaches are able to provide valuable mechanistic insights and address a number of other
open challenges in the field of molecular dynamics as well (e.g., driving the sampling of
the system to functionally relevant states) [36,37]. The popular autoencoder ML technique
was used in various architectures to create low-dimensional embeddings in order to learn
the dynamics of molecular dynamics simulations [47], to cluster folding simulations of
peptides [48], and to enrich the sampling of the conformational space [49], among others.
While the input data and architectures vary, these approaches are trained by reducing the
dimensionality of the input data to a “latent space”, and then projecting back up to the
full dimensional space. The objective of the ML algorithm is then to minimize the error
between the input data and the reconstruction. The expectation is that by squeezing the
dimensionality into the latent space, the neural network will be forced to learn the most
essential patterns of the input data required to reconstruct it with the minimal attainable
error. An advantage of these latent spaces is that the sampled space can be extrapolated
in order to generate “new” examples. However, a significant amount of fluctuation in
molecular dynamics trajectories is due to non-collective, “random” motions, which are
biologically insignificant, yet can nonetheless be learned by the autoencoder as “essential
dynamics” because they are similar in scale to the biologically significant ones. Moreover,
the encodings learned by the deep neural networks, while often powerful in producing use-
ful predictions and outputs, learn structures that are most likely non-intuitive and thus not
yet ideal for interpretation with the purpose of aiding mechanistic understanding encoded
in the MD data. By instead utilizing the NMF algorithm, which had served to uncover
functional and interpretable relationships in gene expression data, cancer microarray data,
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DNA sequence, biomedical text, electromyography, and many others [13,15], our RED
protocol addresses these issues by identifying collective motions (due to non-negativity
constraints that encourage sparseness and parts-based representations [12]) which are the
most likely to be functionally significant.

Figure A1. Schematic illustrating the decomposition of the input array using NMF into a “spatial” component W and a
“temporal” component H.
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