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A B S T R A C T   

Performance evaluation is crucial to understanding the behavior of scientific workflows. In this study, we target 
an emerging type of workflow, called in situ workflows. These workflows tightly couple components such as 
simulation and analysis to improve overall workflow performance. To understand the tradeoffs of various con-
figurable parameters for coupling these heterogeneous tasks, namely simulation stride, and component place-
ment, separately monitoring each component is insufficient to gain insights into the entire workflow behavior. 
Through an analysis of the state-of-the-art research, we propose a lightweight metric, derived from a defined in 
situ step, for assessing resource usage efficiency of an in situ workflow execution. By applying this metric to a 
synthetic workflow, which is parameterized to emulate behaviors of a molecular dynamics simulation, we 
explore two possible scenarios (Idle Simulation and Idle Analyzer) for the characterization of in situ workflow 
execution. In addition to preliminary results from a recently published study [11], we further exploit the pro-
posed metric to evaluate a practical in situ workflow with a real molecular dynamics application, i.e., GROMACS. 
Experimental results show that the in transit placement (analytics on dedicated nodes) sustains a higher fre-
quency for performing in situ analysis compared to the helper-core configuration (analytics co-allocated with 
simulation).   

1. Introduction 

High performance computing (HPC) is mainstream for enabling the 
execution of scientific workflows which are composed of complex exe-
cutions of computational tasks and the constantly growing data move-
ments between those tasks [30]. Traditionally, a workflow describes 
multiple computational tasks and represents data and control flow de-
pendencies. Moreover, the data produced by the scientific simulation 
are stored in persistent storage and visualizations or analytics are per-
formed post hoc. This approach is not scalable, mainly due to the fact 
that scientific workflows are becoming increasingly compute- and 
data-intensive at extreme-scale [28]. Storage bandwidth has also failed 
to keep pace with the rapid computational growth of modern processors 
due to the stagnancy of I/O advancements [33,15]. This asymmetry in 
I/O and computing technologies, which is being observed in contem-
porary and emerging computing platforms, prevents post hoc processing 

from handling large volumes of data generated by large-scale simula-
tions [4]. Therefore, storing the entire output of scientific simulations on 
disk causes major bottlenecks in workflow performance. From a hard-
ware perspective, moving data consumes more energy than performing 
the computing operation on the same amount of data [33]. Although 
computational capacity keeps increasing along with chip technologies, 
this growth only exacerbates the imbalance between the I/O and the 
computation portions in applications. To reduce this disparity, several 
new high-performance memory systems that reside closer to the 
computation units have been developed (e.g., burst buffers [29], 
high-bandwidth memory [34], non-volatile memory [14], etc.). These 
systems create opportunities to overcome the expensive cost of I/O 
thanks to the low-latency access capability of those advanced storage 
technologies. Simultaneously, scientists have moved towards a new 
paradigm for scientific simulations called in situ, in which data is visu-
alized and/or analyzed as it is generated [4]. This accelerates simulation 
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I/O by bypassing the file system, pipelining the analysis, and improving 
the overall workflow performance [9]. 

An in situ workflow describes a scientific workflow with multiple 
components (simulations with different parameters, visualization, ana-
lytics, etc.) running concurrently [33,9], potentially coordinating their 
executions using the same allocated resources to minimize the cost of 
data movement [4]. Data periodically produced by the main simulation 
are processed, analyzed, and visualized at runtime rather than 
post-processed on dedicated nodes. This approach offers many advan-
tages for processing large volumes of simulated data and efficiently 
utilizing computing resources. By co-locating the simulation and the 
analysis kernels, in situ solutions reduce the global I/O pressure and the 
data footprint in the system [15]. To fully benefit from these solutions, 
the simulation and the analysis components have to be effectively 
managed so that they do not slow each other down. Therefore, in this 
paper we study and characterize two specific categories of in situ 
workflows, namely helper-core and in transit workflows [4]. Specifically, 
in the helper-core workflow, the analysis component is placed on the 
same node as the simulation; while in the in transit workflow, simulation 
data is staged to a dedicated node where the analysis is allocated. 
Workflows are required to capture the individual behavior of multiple 
coupled workflow components (i.e., concurrent executions of over-
lapped steps with inter-component data dependency). Through the use 
of a theoretical framework, this paper aims to provide guidelines for the 
evaluation and characterization of in situ workflows. We target a 
widely-used class of workflows, namely large-scale molecular dynamics 
(MD) simulations. We argue that the proposed solutions and the lessons 
learned from the proposed synthetic in situ workflows [11] can be 
directly translated into production in situ workflows. We further deploy 
a practical workflow using a medium-scale all-atom MD simulation run 
with a popular MD engine to study the impact of the aforementioned 
component placements on the in situ coupling in a realistic setting. To 
this end, the insights gained from the practical workflow are beneficial 
for scaling up to ensemble workflow, which is a set of different 
simulation-analysis workflows exploring a combination of scenarios. 
Our contribution is fivefold:  

1. We discuss practical challenges in evaluating next-generation 
workflows, such as in situ. Most of current HPC monitoring tools 
are not specifically designed for these workflows. Thus, utilizing 
these tools to evaluate in situ workflows is not straightforward. In this 
work, we generalize in situ systems to bring to light the unique 
characteristics of in situ workflows from an evaluation standpoint.  

2. We define a non-exhaustive list of imperative metrics that need to be 
monitored for aiding the characterization of in situ workflows. By 
reviewing the state-of-the-art in profiling tools that are able to collect 
the metrics, we confirm the feasibility of leveraging this set of met-
rics in the in situ workflow context. Additionally, we highlight our 
novel approach of measuring idle time for quantifying the efficiency 
of an in situ run.  

3. We propose a framework to formalize in situ workflow executions 
based on their iterative patterns. Under the framework’s constraints, 
we develop a lightweight approach that is beneficial when 
comparing the performance of configuration variations in an in situ 
system. The aim is to provide a lightweight approach that is able to 
run concurrently with the in situ workflow and possibly enable its 
adaptation at runtime.  

4. We provide insights into the behaviors of in situ workflows by 
applying the proposed metric to characterize an MD synthetic 
workflow. Leveraging the use of limited computing resources for 
emulating simulation behavior at large scales, we use this synthetic 
workflow to prove the precision of the proposed metric and identify 
the in situ behavior in a wide range of simulation systems.  

5. We further examine the significance of in situ placements on coupling 
performance through employing the proposed metric in a practical 
workflow using a real high-performance MD application. We claim 

that our findings are valuable for designing an ensemble of work-
flows, where multiple independent in situ couplings are running at 
the same time. 

2. Background and related work 

In situ workflows monitoring. Many monitoring and performance 
profiling tools for HPC applications have been developed over the past 
decade such as TAU [27], CrayPat [10], or HPCTOOLKIT [1]. With the 
advent of in situ workflows [5], new monitoring and profiling ap-
proaches targeting tightly-coupled workflows have been studied. LDMS 
[2] is a loosely-integrated scalable monitoring infrastructure that targets 
general large-scale applications and delivers a low-overhead distributed 
solution, in contrast to TAU [27], which provides a deeper under-
standing of the application at a higher computational cost. SOS [36] 
provides a distributed monitoring platform, conceptually similar to 
LDMS but specifically designed for online in situ characterization of HPC 
applications. An SOS daemon running on each compute node intercepts 
events and registers them into a database; the monitored application 
may fetch data from that database to get feedback. TAU, in association 
with ML techniques, has been used to tune the parameters of in situ 
simulations and optimize the execution at runtime [39]. ADIOS [20], the 
next-generation IO-stack, is built on top of many in situ data transport 
layers, e.g., DataSpaces [12] or DIMES [38]. Savannah [15], a workflow 
orchestrator, has been leveraged to bundle a coupled simulation with 
two main simulations, multiple analysis kernels, and a visualization 
service [9]. The performance and monitoring service was provided via 
SOS and the I/O middleware via ADIOS. These works focus mainly on 
providing monitoring schemes for in situ workflows. Here we propose, 
instead, a novel method to extract useful knowledge from the captured 
performance data. 

In situ data management. FlexAnalytics [40] optimizes the perfor-
mance of coupling simulations with in situ analytics by evaluating data 
compression and query over different I/O paths: memory-to-memory 
and memory-to-storage. A large-scale data staging implementation 
[37] over MPI-IO operations describes a way to couple with in situ 
analysis using a non-intrusive approach. The analytics accesses data 
staged to the local persistent storage of compute nodes to enhance data 
locality. Decaf [13] provides a message-driven dataflow middleware 
that supports both tight and loose coupling of in situ tasks. Our work 
mainly focuses on in-memory staging and comprehensively character-
izes memory-to-memory transfer using RDMA for both within a compute 
node (helper-core) and across nodes (in transit). Smart [35] provides in 
situ MapReduce-like interfaces for scientific analytics—a breakthrough 
in being able to access in-memory simulated data, though an intrusive 
approach. Our use case prototype has a non-intrusive approach to 
employ in situ analytics through two abstract components called the 
ingester and the retriever, described in the next section. 

3. General in situ workflow architecture 

In this section, we describe the architecture of an in situ workflow 
that underlies our study. We also define and motivate a set of non- 
exhaustive metrics that need to be captured for in situ workflow per-
formance characterization. 

In situ architecture. In this work, we propose an in situ architecture 
that enables a variety of in situ placements to characterize the behavior 
of in situ couplings. Although we focus on a particular type of in situ 
workflows (composed of simulation and data analytics), our approach is 
broader and applicable to a variety of in situ components. For example, 
in situ components could consist of an ensemble of independent simu-
lations coupled together. The in situ workflow architecture (Fig. 1) fea-
tures three main components:  

• A simulation component that performs computations and periodically 
generates a snapshot of scientific data. 
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• A data transport layer (DTL) that is responsible for efficient data 
transfer.  

• An analyzer component that applies several analysis kernels to the 
data received periodically from the simulation component via the 
DTL. 

In general, the data transport layer (DTL) may be implemented using 
different technologies to enable data delivery between workflow com-
ponents, e.g., the use of Burst Buffers for in transit processing [29], or 
complex memory hierarchies for in situ processing of small volumes of 
data and a large number of computing jobs [17]. In this paper, we 
leverage DataSpaces [12] as DTL implementation to enable efficient and 
scalable in memory data staging among coupled components, but our 
approach is agnostic from the DTL used. 

On the data path “simulation-to-analyzer” depicted on Fig. 1: (1) the 
ingester ingests data from a certain data source and stores them in the 
DTL and the (2) retriever, in a reverse way, gets data from the DTL to 
perform further operations. These two entry points allow us to abstract 
and detach complex I/O management from the application code. This 
approach enables more control in terms of in situ coupling and is less 
intrusive than many current approaches. The ingester synchronously 
inputs data from the simulation by sequentially taking turns with the 
simulation using the same resource. The ingester is useful to attach 
simple tasks to pre-process data (e.g., data reduction, data compression). 
The architecture allows in situ execution with various placements of the 
retriever. A helper-core retriever co-locates with the ingester on a subset 
of cores where the simulation is running—it asynchronously gets data 
from the DTL to perform an analysis. As the retriever is using the helper- 
core placement, the analysis should be lightweight to prevent simulation 
slowdown. An in transit retriever runs on dedicated resources (e.g., 
staging I/O nodes [40]), receives data from the DTL and performs 
compute-intensive analysis tasks. We compare helper-core and in transit 
retrievers in detail in Section 6. 

In situ workflow metrics. To characterize in situ workflows, we have 
defined a foundational set of metrics (Table 1). As a first metric, it is 
natural to consider the makespan, which is defined as three metrics 
corresponding to time spent in each component: the simulation, the 
analyzer, and the DTL. The periodic pattern enacted by in situ workflows 
may impose data dependencies between steps of coupled components, e. 
g., the analyzer may have to wait for data sent by the simulation to 
become available in the DTL for reading. Thus, we monitor the idle time 
of each individual component. 

Most current HPC monitoring tools, such as TAU [27], HPCToolkit 
[1], or CrayPat [10] aim to capture the performance profile of stand-
alone applications and, thus their design is inadequate for in situ work-
flows. Table 2 provides an overview of whether these tools can be used 
to capture the different metrics defined in Table 1. This literature search 
further underlines the novelty of our utilization of the idle time during 

the execution to characterize in situ workflows because, to the best of our 
knowledge, no study used this approach. Moreover, in this work, we use 
TAU for monitoring purposes, mainly due to its versatility, as demon-
strated by Table 2. 

Recent works (e.g., LDMS [2], SOS [36], and WOWMON [39]) have 
proposed general-purpose distributed approaches to provide global 
workflow performance information by aggregating data from each 
component. Thanks to those advanced frameworks, extracting mean-
ingful profiling data from in situ workflows is efficient. However, in situ 
evaluation is still challenging due to the lack of thorough guidelines for 
using these data to extract meaningful insights on in situ workflows. Only 
a few studies [9,18] have addressed this challenging problem. In this 
work, we focus on how to use profiling data to characterize the in situ 
workflows. The motivation behind this study is to address the lack of 
characterization studies for in situ workflows. 

4. In situ execution model 

In this work, we propose a novel method to estimate and characterize 
in situ workflows behaviors from collected performance data. To this 
end, we develop a theoretical framework of in situ executions. In this 
study, we consider a dedicated failure-free platform without any in-
terferences (caches, I/O, network, etc.) from other applications. 

4.1. Framework 

In traditional workflows, the simulation and the post-processing 
analyzer are typical components, in which the post-processing follows 
the simulation in a sequential manner. Let a stage be a part of a given 
component. We can identify two main stages for each component (see 
Fig. 2):  

• Simulation component: (S) is the computational step that produces 
the scientific data and (W) is the I/O (or DTL) stage that writes the 
produced data. 

• Analytics component: (R) is the DTL stage that reads the data pre-
viously written and (A) is the analysis stage. 

However, in situ workflows exhibit a periodic behavior: S, W, R, and 
A follow the same sequential order but, instead of operating on all the 
data, they operate only on a subset of it iteratively. Here, this subset of 
data is called a frame and can be seen as a snapshot of the simulation at a 
given time t. Let Si, Wi, Ri, and Ai be respectively, the simulation, the 
write, the read and the analysis stage at step i, respectively. In other 
words, Si produces the frame i, Wi writes the produced frame i into a 
buffer, Ri reads the frame i, and Ai analyzes the frame i. Note that, an 
actual simulation computes for a given number of steps, but only a 
subset of these steps are outputted as frames and analyzed [31]. The 
frequency of simulation steps to be analyzed is defined by the stride. Let 
n be the total number of simulation steps, s the stride, and m the number 
of steps actually analyzed and outputted as frames. We have m = n

S. 

Fig. 1. A general in situ workflow software architecture.  

Table 1 
Selected metrics for in situ workflows characterization.  

Name Definition Unit 

MAKESPAN Total workflow execution time s 
TIMESIMULATION Total time spent in the simulation s 
TIMEANALYTICS Total time spent in the analysis s 
TIMEDTL Total time spent in data transfers s 
TIMESIMULATIONIDLE Idle time during simulation s 
TIMEANALYTICSIDLE Idle time during analysis s  

Table 2 
State-of-the-art tools used for profiling in situ applications.   

TAU HPCToolkit CrayPat WOWMON SOS 

MAKESPAN [16] [26] [21] [39]  
TIMESIMULATION [39,16,21] [26] [21] [39]  
TIMEANALYTICS [39,16,21] [26] [21] [39]  
TIMEDTL [39,16,25] [26]  [39] [25]  

Fig. 2. Classic workflow design featuring two components and four stages.  
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However, we model the in situ workflow itself and not only the simu-
lation time (i.e., execution times of Si, Wi, Ri, and Ai are known be-
forehand), thus the value of the stride does not impact our model. We set 
s = 1 (or m = n), so every step always analyzes a frame. 

Execution constraints. To ensure work conservation we define the 
following constraint: 

∑m
i=0Si = S (m is the number of produced frames). 

Obviously, we have identical constraints for Ri, Ai, and Wi. Similarly to 
the classic approach, we have the following precedence constraints for 
all i with 0 ≤ i ≤m: 

Si→Wi→Ri→Ai. (1) 

Buffer constraints. The pipeline design of in situ workflows in-
troduces new constraints. We consider a frame is analyzed right after it 
has been computed. This implies that for any given step i, the stage Wi+1 

can start if, and only if, the stageRi has been completed. Formally, for all i with 
0 ≤ i ≤m: 

Ri→Wi+1. (2)  

Eqs. (1) and (2) guarantee that we buffer at most one frame at a time 
(Fig. 3). Note that, this constraint can be relaxed such that up to k frames 
can be buffered at the same time as follows, Ri → Wi+k, where 0 ≤ i ≤m 
and 1 ≤ k ≤m. In this work, we only consider the case k = 1 (red arrows 
in Fig. 4). 

Idle stages. Due to the above constraints, the different stages are 
tightly-coupled (i.e., Ri and Ai stages must wait Si and Wi before starting 
their executions). Therefore, idle periods could arise during the execu-
tion (i.e., either the simulation or the analytics must wait for the other 
component). We can characterize two different scenarios, Idle Simulation 
and Idle Analyzer in which idle time occurs. The former (Fig. 3(a)) occurs 
when analyzing a frame takes longer to complete compared to a simu-
lation cycle (i.e., Si +Wi >Ri +Ai). The later (Fig. 3(b)) occurs when the 
simulation component takes longer to execute (i.e., Si +Wi < Ri +Ai). 
Fig. 4 provides a detailed overview of the dependencies among the 
different stages. Note that, the concept of in situ step is defined and 
explained later in the paper. 

Intuitively, we want to minimize the idle time on both sides. If the 
idle time is absent, then it means that we reach the idle-free scenario: 
Si +Wi = Ri +Ai. To ease the characterization of these idle periods, we 
introduce two idle stages, one per component. Let IS

i and IA
i be, respec-

tively, the idle time occurring in the simulation and in the analysis 
component for the step i. These two stages represent the idle time in both 
components, therefore the precedence constraint defined in Eq. (1) re-
sults in: 

Si→IS
i →Wi→Ri→Ai→IA

i . (3)  

4.2. Consistency across steps 

This work is supported by the hypothesis that every execution of in 
situ workflows under the above constraints will reach a consistent state 
after a finite number of warming-up steps. Thus, the time spent on each 
stage within an iteration can be considered constant over iterations. 
Formally, there exists j where 0 ≤ j <m such that for all i where j ≤ i ≤m, 
we have Si = Sj. The same holds for each stage, Wi, Ri, Ai, IS

i , and, IA
i . This 

hypothesis is confirmed in Section 5.3, and in practice, we observe that 
the cost of these non-consistent steps is negligible. Our experiments 
showed that, on average, j ≤ 3 for one hundred steps (m = 100). 
Therefore, we ignore the warming steps and we consider j = 0. For the 
sake of simplicity, we generalize in situ consistency behavior by denoting 
S* = Si for all i ≥ j. We also have similar notations for R∗,A∗, IS

∗ , IA
∗ and 

W*. This hypothesis allows us to predict the performance of a given in 
situ workflow by monitoring a subset of steps, instead of the whole 
workflow. From the two constraints defined by Eqs. (3) and (2), and our 
hypothesis, we define: 

S∗ + IS
∗ + W∗ = R∗ + A∗ + IA

∗ . (4)  

The Idle Simulation scenario is when IA
∗ = 0, and IS

∗ = 0 for Idle Analyzer 
scenario. Let I* be the total idle time for an in situ step, using Eq. (4) we 
derive: 

I∗ = IS
∗ + IA

∗ =
{

R∗ + A∗ − S∗ − W∗, if IA
∗ = 0,

S∗ + W∗ − R∗ − A∗, if IS
∗ = 0, (5)  

= |S∗ + W∗ − (R∗ + A∗)| (6) 

Here, we could define the idle time a bit differently by saying that 

I ′

∗ = S∗ + W∗ − (R∗ + A∗). (7)  

We can keep the sign for this indicator, and then define 

I ′

∗ > 0 →Idle Analysis, IA
∗ = I ′

∗,

I ′

∗ < 0 →Idle Simulation, IS
∗ = −I ′

∗.

An example of these values is plotted in Fig. 10, along with the equi-
librium point, which defines the configurable parameters at which the 
workflow execution switches from one scenario to another. The equi-
librium point is determined at the point where I∗ = I′∗ = 0. 

We assume the read/write operations are fast compared to the 
simulation and analysis stages, which is confirmed in Section 5.3, we can 
write: 

I ′

∗ ≈ S∗ − A∗ (8)  

Now we take the stride s, which defines after how many simulation steps 
a frame is outputted to the analytics, into consideration for further 
analysis. Assuming we know the wall-clock time tS for one simulation 
step (using the output of running the simulation independently), we 
have S* = stS. The equilibrium point is attained when 

stS − A∗ = 0 (9) Fig. 3. Two different execution scenarios for in situ workflow execution.  

Fig. 4. Dependency constraints within and across in situ steps with n = m = 3. 
(For interpretation of the references to color in this figure citation, the reader is 
referred to the web version of this article.) 
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from which we can deduce, for example, given some resource allocation, 
to minimize the idle time, theoretically, we should set the stride 
approximately to 

s = A∗/tS. (10)  

In practice, the equilibrium point could slightly change from this 
optimal value due to the resource contention of co-located in situ com-
ponents, which is discussed in detail in Section 6. 

4.3. In situ step 

The challenge behind in situ workflows evaluation lies in collecting 
global information from multiple components (in our case, the simula-
tion and the analytics) and use this information to derivate meaningful 
characteristics about the execution. The complexity of such a task is 
correlated to the number of steps the workflow is running and the 
number of components involved. By leveraging the consistency hy-
pothesis in Eq. (4), we propose to alleviate this cost by proposing a 
metric that does not require data from all steps. The keystone of our 
approach is the concept of in situ step. Based on Eq. (3), the in situ step σi 
is determined by the timespan between the beginning of Si and the end 
of IA

i . The in situ step concept helps us to manipulate all the stages of a 
given step as one consistent task executing across components that can 
potentially run on different machines. 

Different in situ steps overlap each other, so we need to distinguish 
the part that is overlapped (σ′

i) from the other part (σi). Thus, σi = σi +
σ′

i. For example, in Fig. 3(a), to compute the time elapsed between the 
start of σ4 and the end of σ5, we need to sum the two steps and remove 
the overlapped execution time σ′

4. Thus, we obtain σ4 + σ5 − σ′

4. This 
simple example will give us the intuition behind the makespan 
computation in Section 4.4. 

The consistency hypothesis insures consistency across in situ steps. 
We denote σ* as the consistent in situ step (i.e., ∀ i, σi = σ*), while σ′

∗ and 
σ∗ indicate, respectively, the overlapped and the non-overlapped part of 
two consecutive in situ steps. Thus, σ∗ = σ∗ + σ′

∗. To calculate the 
makespan, we want to compute the non-overlapped step σ∗. As shown in 
Fig. 3, the non-overlapped period σ∗ is the aggregation of all stages 
belonging to one single component in an in situ step: 

σ∗ =
{

S∗ + IS
∗ + W∗, if IS

∗ ≥ 0,
R∗ + A∗ + IA

∗ , if IA
∗ ≥ 0.

(11)  

We have two scenarios, if IS
∗ = 0, IA

∗ ≥ 0 (Idle Analyzer) then σ∗ = S∗ +
W∗, otherwise σ∗ = R∗ + A∗. Hence, 

σ∗ = max(S∗ + W∗,R∗ + A∗). (12)  

4.4. Makespan 

A rough estimation of the makespan of such workflow would be the 
sum of the execution time for all the stages (i.e., sum up the m in situ 
steps σi). But, recall that in situ steps interleave with each other, so we 
need to subtract the overlapped parts: 

MAKESPAN = m σ∗ − σ’
∗

(
m − 1

)
= m σ∗ + σ’

∗. (13)  

From Eq. (13), for m large enough, the term σ′

∗ becomes negligible. Since 
in situ workflows are executed with a large number of iterations, then 
MAKESPAN = mσ∗ (recall that σ∗ = σ∗ + σ′

∗). This observation indicates 
that the non-overlapped part of an in situ step is enough to characterize a 
periodic in situ workflow. From Eq. (11), minimizing the makespan is 
equivalent to reducing the idle time to zero, which confirms the smallest 
makespan occurs at the equilibrium point (i.e., when the idle time is 
equal to zero). Therefore, the in situ execution is necessary to be driven 

to the equilibrium point. Using our framework and these observations, 
we further define a metric to estimate the efficiency of a workflow. 

4.5. In situ efficiency 

Based on our in situ execution model, we propose a novel metric to 
evaluate resource usage efficiency E of an in situ workflow. We define 
efficiency as the time wasted during execution—i.e., idle times IS

∗ and IA
∗ . 

This metric considers all the components (simulation and the analysis) 
for evaluating in situ workflows: 

E = 1 − I∗
σ∗

= 1 − |S∗ + W∗ − (R∗ + A∗)|
max(S∗ + W∗,R∗ + A∗)

. (14)  

This efficiency metric allows for performance comparison between 
different in situ runs with different configurations. By examining only 
one non-overlapped in situ step, we provide a lightweight approach to 
observe behavior from multiple components running concurrently in an 
in situ workflow. This metric can be used as an indicator to determine 
how far the in situ execution is from the equilibrium point, where I* = 0 
or E = 1. We then get an idea of how to adjust the parameters to 
approach the equilibrium point, at which the makespan is minimized 
(see Section 4.4). Note that, this model and the efficiency metric can be 
easily generalized to any number of components. 

5. Molecular dynamics synthetic workflow 

MD is one of the most popular scientific applications executing on 
modern HPC systems. MD simulations reproduce the time evolution of 
molecular systems at a given temperature and pressure by iteratively 
computing inter-atomic forces and moving atoms over a short time step. 
The resulting trajectories allow scientists to understand molecular 
mechanisms and conformations. In particular, a trajectory is a series of 
frames, i.e., sets of atomic positions saved at fixed intervals of time. The 
stride is the number of time steps between frames considered for storage 
or further in situ analysis. For example in our framework, for a simula-
tion with 100 steps and a stride of 20, only 5 frames will be sent by the 
simulation to the analysis component. Since trajectories are high- 
dimensional objects and many atomic motions such as high-frequency 
thermal fluctuations are usually of no interest, scientists use well- 
chosen collective variables (CVs) to capture important molecular mo-
tions. Technically, a CV is defined as a function of the atomic co-
ordinates in one frame. Reduced to time series of a small number of such 
CVs, simulated molecular processes are much more amenable to inter-
pretation and further analysis. A CV can be as simple as the distance 
between two atoms, or can involve complex mathematical operations on 
a large number of atoms. An example of a complex CV that we will use in 
this work is the largest eigenvalue of the bipartite matrix (LEBM). Given 
two amino acid segments A and B, if dij is the Euclidean distance be-
tween Cα atoms i and j, then the symmetric bipartite matrix BAB =

[bij
]

is 
defined as follows: 

bij =

⎧
⎨

⎩

dij, if i ∈ A and j ∈ B,
dij, if i ∈ B and j ∈ A,
0, otherwise.

(15)  

Note that BAB is symmetric and has zeroes in its diagonal. Johnston et al. 
[19] showed that the largest eigenvalue of BAB is an efficient proxy to 
monitor changes in the conformation of A relative to B. 

5.1. Workflow description 

In order to study the complex behavior resulting from coupling a MD 
simulation and with an analysis component in the previously discussed 
parameter space, we have designed a synthetic in situ MD workflow 
(Fig. 5). The Synthetic Simulation component extracts frames from 
previously computed MD trajectories instead of performing an actual, 
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compute-intensive MD simulation. This synthetic workflow is an 
implementation of the general and abstract software architecture pro-
posed in Section 3. 

Synthetic Simulation. The Synthetic Simulation emulates the process 
of a real MD simulation by extracting frames from trajectories generated 
previously by an MD simulation engine. The Synthetic Simulation en-
ables us to tune and manage many simulation parameters (discussed in 
detail in Section 5.2) including the number of atoms and strides, which 
helps the Synthetic Simulation mimic the behavior of real molecular 
dynamics simulation. Note that, since the Synthetic Simulation does not 
emulate the computation part of the real MD simulation, it mimics the 
behavior of the I/O processes of the simulation. Thus, we define the 
emulated simulation delay, which is the period of time corresponding to 
the computation time in the real MD simulation. In order to estimate 
such delay for emulating the simulation time for a given stride and 
number of atoms, we use recent benchmarking results from the litera-
ture obtained by running the well-known NAMD [22] and Gromacs [24] 
MD engines. We considered the benchmarking performance for five 
practical system sizes of 81K, 2M, 12M atoms from Gromacs [24] and 
21M, 224M atoms from NAMD [22] to interpolate to the simulation 
performance with the desired number of atoms (Fig. 6(a)). The inter-
polated value is then multiplied by the stride to obtain the delay (i.e., a 
function of both the number of atoms and the stride). 

In Section 5.2, we run the synthetic workflow with 200 K, 400 K, 
800 K, 1.6 M, 3.2 M, and 6.4 M protein atoms. Fig. 6(b) shows the 
emulated simulation delay when varying the stride for different 
numbers of atoms. The stride varying between 4 K and 16 K delivers a 
wide range of emulated simulation delays, up to 40 s. 

Data Transport Layer (DTL). The DTL Server leverages DataSpaces 
[12] to deploy an in memory staging area for coupling data between the 
Synthetic Simulation and the Analyzer. DataSpaces follows the pub-
lish/subscribe model in terms of data flow, and the client/server para-
digm in terms of control flow. The workflow system has to manage a 
DataSpaces server to manage data requests, keep metadata, and create 
in memory data objects. 

Analyzer. The Analyzer plays the role of the analytics component in 
the synthetic in situ workflow. More specifically, the Retriever subscribes 
to a chunk from the in memory staging area and deserializes it into a 
frame. The MD Analytics then performs a given type of analysis on this 
frame. Recall that, in our model, only one frame at a time can be store by 
the DTL (see Fig. 4). We leverage DataSpaces built-in locks to ensure that 
a writing operation to the in memory staging area can only happen when 
the reading operation of the previous step is complete (constraint model 
by Eq. (2)). Thus, the Analyzer is instructed by DataSpaces to wait for 
the next chunk available in the in memory staging area. Once a chunk 
has been received and is being processed, the Synthetic Simulation can 
send another chunk to the Analyzer. 

5.2. Experimental setups 

For our experiments we use Tellico (UTK), an IBM POWER9 system 
that includes four 32-core nodes (2 compute nodes) with 256 GB RAM 

each. Each compute node is connected through an InfiniBand inter-
connect network. Since the Synthetic Simulation only emulates the I/O 
operations of an MD simulation without replicating the actual compu-
tation, resource contention is not expected to produce the disparity in 
execution performance between different component placements. 
Moreover, the main contribution of the Synthetic Simulation is its ability 
of mimicking the actions of a real simulation engine with fewer resource 
requirements. For these reasons, we leverage this synthetic workflow to 
(i) validate the accuracy of the proposed in situ metrics; and (ii) char-
acterize the behavior of coupling a simulation with a variety of system 
sizes with an in situ analytics. The Synthetic Simulation runs on one 
physical core on a single compute node as it mimics the behavior of a 
real simulation. On the other hand, the Analyzer and the DataSpaces 
server are co-located on another dedicated node. Particularly, the 
Analyzer computes bipartite matrices (see Section 5) using multiple 
parallel processes, which improves CV calculation efficiency. After 
experimenting with different numbers of Analyzer processes, we fixed 
that number at 16 processes (number of cores of an IBM AC922) to reach 
a good speed up and to fit the entire Analyzer within one compute node. 

Parameter space. Table 3 describes the parameters used in the ex-
periments. For the Synthetic Simulation, we study the impact of the 
number of atoms (the size of the system) and the stride (the frequency at 
which the Synthetic Simulation component sends a frame to the 
Analyzer through the DTL). We consider a constant number of 100 
frames to be analyzed due to the time constraint and the consistency in 
the behavior between in situ steps. For the DTL, we use the staging 
method DATASPACES for all the experiments, in which the staging area 

Fig. 5. Synthetic Workflow: the Extractor (1) sleeps during the emulated delay, 
then (2) extracts a snapshot of atomic states from existing trajectories and (3) 
stores it into a synthetic frame. The Ingestor (4) serializes the frame as a chunk 
and stages it in memory, then the Retriever (5) gets the chunk from the DTL and 
deserializes it into a frame. Eventually, the MD Analytics performs certain 
analysis algorithm on that frame. 

Fig. 6. MD benchmarking results from the literature obtained by using 512 
NVIDIA K20X GPUs. The results are interpolated to obtain the (a) estimated 
performance and then combined with the stride to synthesize the (b) emulated 
simulation delay. 
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is in the main memory of the node assigned to the DataSpaces server. For 
the Analyzer, we choose to calculate a compute-intensive set of CVs 
(LEBM, Section 5) for each possible pair of non-overlapping segments of 
length 16. If there are n amino acids (alpha amino acids) in the system, 
there are N = floor(n/16) segments, which amounts to N(N − 1)/2 LEBM 
calculations (ℴ(n2)). To fairly interpret the complexity of this analysis 
algorithm related to the system size, we manipulate the number of 
amino acids to be proportional to the number of atoms. For example, the 
system of 400 K atoms yields 2 fold larger number of segments compared 
to the system of 200 K atoms. Fig. 7 illustrates the LEBM’s runtime with 
respect to the number of atoms. 

We leverage user-defined events to collect the proposed metrics 
using TAU [27] (Section 3). We focus on two different levels of infor-
mation, the workflow level and the in situ step level (the time taken by 
the workflow to compute and analyze one frame). 

At the in situ step level, each value is averaged over three runs for 
each step. At the workflow level, each value is averaged over all in situ 
steps at steady-state and then averaged over the three runs. We also 
depict the standard deviation to assess the statistical significance of the 
results. There are two levels of statistical error: for averages across the 3 
trials at the in situ step level, and for averages over 94 in situ steps 
(excluding the three first steps and the three last steps) in each run at the 
workflow level. 

5.3. In situ step characterization 

We study the correlation of individual stages in each in situ step. Due 
to lack of space, the discussion is limited to a subset of the parameter 
space as the representative of two characterized idle-based scenarios. 
Fig. 8 shows the execution time per step for each component with stride 
values of 1000 and 4000 steps. Confirming the consistency hypothesis 
across steps discussed in Section 4.2, we observe that the execution time 
per step is nearly constant, except for a few warm-up and wrap-up steps. 
Fig. 8(a) falls under the Idle Simulation (IS) scenario, as the IS

i stage only 
appears in the Synthetic Simulation step. Similarly in Fig. 8(b), we 
observe the Idle Analyzer (IA) scenario because of the presence of IA

i . 

These findings verify the existence of the two idle-based scenarios dis-
cussed in Section 4.1. Since both the Synthetic Simulation and Analyzer 
are nearly synchronized, we also underline that the execution time of a 
single step for each component is equal to each other. This information 
confirms the property of in situ workflows in Eq. (4). Overall, we can 
observe that the I/O stages (Wi and Ri) take an insignificant portion of 
time compared to the full step. This negligible overhead verifies the 
advantage of leveraging in-memory staging for exchanging frames be-
tween coupled components. 

5.4. Idle time observation 

By examining the total idle time, we study the impact of the number 
of atoms, stride on the performance of the entire workflow and each 
component for different scenarios. 

Table 3 
Parameters used in the experiments.  

Parameter Description Values used in the experiments 

Synthetic simulation 
#atoms Number of atoms [2 × 105, 4 × 105, 8 × 105, 16 × 105, 32 × 105, 

64 × 105] 
#strides Stride [1000, 4000, 16,000] 
#frames Number of frames 100 
Data transport layer 
SM Staging method DATASPACES 
Analyzer 
CV Collective variable LEBM 
lsegment Length of segment 

pairs 
16  

Fig. 7. Execution time of LEBM on 16 cores, and using a segment length of 16. 
The fraction of alpha-amino acids in the entire system is equal to 0.00469. 

Fig. 8. Execution time per step for each component. The Synthetic Simulation 
stages are on the left and the Analyzer stages are on the right (lower is better). 

Fig. 9. Left y-axis: total idle time I* using an helper-core placement at stride 
16,000 (the lower the better). Estimated I* is estimated from 
|S∗ + W∗ − (R∗ + A∗)|, and Measured I* is measured from IS

∗ + IA
∗ . Right y-axis: 

ratio Estimated I* / Measured I* (the closest to 1 the better). 
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Accuracy of estimated idle time. For different system sizes, Fig. 9 
demonstrates the similarity between Measured I* that is the measured 
idle time in one in situ step and Estimated I*, which is the idle time 
estimation computed using Equation (5). The ratio between Estimated 
and Measured idle time is close to 1, confirming the accuracy of Eq. (5) to 
estimate the idle time I* for each in situ step, which allows us to apply 
this relationship to identify the execution scenario that the workflow is 
following. 

Execution scenarios. Fig. 10shows that the workflow execution 
follows our model (Fig. 3). The blue regions in Fig. 10 represent the Idle 
Simulation scenario when S* +W* < R* +A*, and the yellow area in-
dicates the Idle Analyzer scenario when S* +W* > R* +A*. While 
increasing the number of atoms, which increases the simulation time 
and the chunk size, the total idle time I* decreases in the Idle Simulation 
scenario, and increases in the Idle Analyzer scenario. Every in situ step 
exhibits a similar pattern in which at a certain system size the workflow 
execution switches from one scenario to another. We notice that with 
larger stride, the equilibrium point occurs at larger system sizes. As the 
stride increases, the Synthetic Simulation sends frames to the Analyzer 
less often. Therefore, increasing the stride reduces the gap between 
S* +W* and R* +A*, which also leads to an equilibrium point reached 
with a smaller number of atoms. With a stride of 4000, the equilibrium 
point occurs at #atoms = 8 × 105, but it occurs at #atoms = 16 × 105 

with a stride of 16,000. At a stride of 1000, the execution follows the Idle 
Simulation scenario for all observed number of atoms and the equilib-
rium point cannot be reached in this range of system size. 

5.5. Estimated makespan 

The goal is to verify the assertion made by Eq. (13) stating the 
MAKESPAN of an in situ workflow can simply be expressed as the product of 
the number of steps and the time of one step mσ∗. A typical MD simu-
lation can easily feature >107 number of in situ steps, thus a metric 
requiring only a few steps to be accurate is interesting. Fig. 11 demon-
strates the strength of our approach to estimate the MAKESPAN (maximum 
error ~5%) using our definition of in situ steps, in addition to the ac-
curacy of our model. In in situ workflows run with a larger number of 
steps, monitoring the entire system increases the pressure and slows 
down the execution. Thus, without failures and external loads, only 
looking at a single non-overlapped step results in a scalable, accurate, 
and lightweight approach. 

5.6. Resource usage efficiency 

We utilize the efficiency metric E given by Eq. (14), to evaluate an in 
situ configuration within the objective to propose a metric that allows 
users to characterize in situ workflows. Fig. 12 shows that the efficiency 
E increases and reach a maximum in the Idle Simulation scenario, and 
decreases after this maximum in the Idle Analyzer scenario. Thus, an in 
situ run is most efficient at the equilibrium point, where E ≈ 1. If a run is 
less efficient and classified as the Idle Analyzer scenario, it has more 
freedom to perform other analyses or increase the analysis algorithm’s 

complexity. In the Idle Simulation scenario, the simulation is affordable 
to emulate the motions of a larger number of atoms to more efficiently 
use the resource sitting idle. 

6. Molecular dynamics realistic workflow 

In this section, in order to observe performance interference between 
applications running in situ, we replace the Synthetic Simulation by a 
high-performance molecular dynamics simulation engine. We use this 
realistic workflow to study the effect of different component placements 
on workflow execution characterization. 

6.1. Workflow description 

The simulation component in this practical workflow performs MD 
computation instead of sitting idle as the Synthetic Simulation does, thus 
it consumes memory that contends with the co-located Analyzer 
executing on the same resource. 

Practical Simulation. The Practical Simulation (see Fig. 13) utilizes 

Fig. 10. Detailed idle time I* for three component placements at different strides when varying the number of atoms (lower is better).  

Fig. 11. MAKESPAN is estimated from 100 σ∗ with stride 16,000, the yellow re-
gion represents the error. Ratio of Estimated MAKESPAN to Measured MAKESPAN uses 
the second y-axes on the right (close to 1 is better). 

Fig. 12. Resource usage efficiency (higher is better).  
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the MD software package GROMACS [24] to simulate biomolecular 
processes. GROMACS enables diverse levels of parallelism, i.e., multi-
threading and process communication via message passing. However, 
this MD engine does not explicitly allow us to extract in-memory frames 
during the course of the run without manually intruding the source code. 
To offer a non-intrusive approach, we use Plumed [32] that intercepts 
function calls done by GROMACS periodically to get a snapshot of the 
system state in memory. An additional layer implemented by Plumed is 
placed on top of the corresponding simulation as an external library. 
Therefore, this Plumed kernel approach to obtaining in-memory frames 
is not restrictive to a specific simulation engine, but applicable to a 
variety of MD codes as long as Plumed provides support for being 
incorporated in such MD applications. In particular, a Plumed kernel 
function is called in every interval of time, which is determined by the 
stride, to collect atomic coordinates at the corresponding simulation 
step. Molecular positions are then serialized into an abstract chunk to be 
compatible with the data abstraction conducted by the interface of the 
Ingestor. Since the chunk is reachable by the Ingestor, the dataflow then 
acts similarly to the Synthetic Workflow. 

Data Transport Layer and Analyzer. In this workflow, the DTL and 
the Analyzer remain the same at the synthetic workflow discussed in 
Section 5. 

6.2. Experimental setups 

In this experiment, we study two component placements: (i) helper- 
core—where the Synthetic Simulation, the DataSpaces server, and the 
Analyzer are co-located on the same compute node; and (ii) in transit 
where the Analyzer and the DataSpaces server are co-located on one 
node, and the Synthetic Simulation runs on a dedicated node. We use the 
same machine, Tellico, which is described in Section 5.2. The experi-
mental plan is designed to yield baseline insights on a simulation 
coupled with an in situ analysis task in the context of ensemble work-
flows. An ensemble workflow is comprised of many small-scale simu-
lations [23] that run independently of each other. Hence, insights from a 
single simulation-analysis integration will scale up to the entire 
workflow. 

On the simulation side, we conduct a GROMACS run on 24 cores of a 
compute node, while the remaining cores of the node are assigned to the 
Analyzer and the DataSpaces server in the helper-core placement. Spe-
cifically, we run the analytics on 4 physical cores and set 1 core to 
execute a DataSpaces server. In contrast to the helper-core placement, the 
Analyzer and the DTL server reside in a separate node in the in transit 
placement. We keep the resources assigned for each component com-
parable in both placements to demonstrate the impact of such the 
component placement on the execution of an in situ workflow. The de-
tails of the parameter space used in this experiment are specified in 
Table 4. 

For the Practical Simulation, we selected a medium-scale all-atom 
system that we used in a previous publication [3] on the molecular 

mechanism of active neurotransmitter transport across the cellular 
membrane. That study focused on the GltPh transporter protein, which 
is an archaeal homolog of the human excitatory amino acid transporter 
(EAAT) family of proteins which are implicated in many neurological 
disorders and are responsible for permanent neurological damage after 
strokes. The 268,552-atom model system contains the GltPh transporter 
protein (three identical chains of 605 amino acids, X-ray structure from 
PDB entry 2NWX [8]) embedded in a lipid bilayer and surrounded by 
water molecules and a physiological concentration of Na+ and Cl− ions. 
Molecular interactions are parameterized with the CHARMM36 force-
field [6] implemented in GROMACS [7], with standard simulation set-
tings and a time steps of 2 fs. 

To test our analysis workflow with GltPh, we explore different strides 
of 1000, 2000, 3000, 4000, 5000 time steps, at which Plumed generates 
in-memory frames for later processing. Thus for each #strides, the 
number of generated frames on the simulation side, which is also 
equivalent to the number of analyzed frames on the analysis side, is 
calculated as #steps

#strides. In this experimental setup, we vary the stride as a 
configurable parameter to find the equilibrium point. However, this 
parameter is not only restricted to the stride, we are always able to set 
the equilibrium point to different parameters. On the Analyzer side, the 
analysis kernel computes a set of 10 LEBM collective variables (Section 
5) for each possible pair of non-overlapping segments of length 2. The 
complexity of this CV computation with respect to the predefined 
segment length is discussed in Section 5.2. For the DTL, the memory 
staging method DATASPACES is used for all subsequent experiments in 
this section, and data resides in the memory of the node where the 
DataSpaces server runs. 

Due to the difficulty of linking TAU to Plumed, in this experiment, we 
manually inserted timers to collect performance data that is necessary 
for the proposed in situ metrics. Similar statistical methods (Section 5.2) 
are applied, so we can accumulate experimental error across both trials 
and in situ steps at the same time. We still eliminate the first three in situ 
steps and the last in situ step to assure in situ metrics are collected in the 
steady state where consistent behavior is observed across in situ steps. 

6.3. In situ step characterization over component placements 

We examine each in situ step over different placements of in situ tasks. 
Fig. 14 illustrates the time spent in each stage on both the simulation and 
the analysis side at stride 1000. Since the practical workflow satisfies 
dependency constraints within an in situ step and across the aforemen-
tioned stages, the behavior is observed to be approximately stable as 
expected in the steady state regime. The results are shown at stride 1000 
only due to lack of space, but we note that the consistency is present for 
every given stride. This experiment confirms the applicability of our 
proposed in situ metrics. In addition, the in transit scheme appears to 
result in less bursty behavior in terms of execution compared to the 
helper-core scenario. The fluctuations observed when using helper-core 

Fig. 13. Practical Workflow: GROMACS (1) simulates the motion of the atomic 
system in steps, where Plumed (2) interferes with every stride to update and 
gather new coordinates and store it into a frame. The Ingestor (3) serializes the 
frame as a chunk and stages it in memory, then the Retriever (5) gets the chunk 
from the DTL and deserializes it into a frame. Eventually, the MD Analytics 
performs the same analysis algorithm of CV calculation on that frame compared 
to Synthetic Workflow. 

Table 4 
Parameters used in the experiments.  

Parameter Description Values used 

Practical simulation—Gltph system 
#atoms Number of atoms 268,552 
#strides Stride [1000, 2000, 3000,   

4000, 5000] 
#steps Number of simulation steps 45,000 
#frames Number of frames #steps / #strides 
Data transport layer 
SM Staging method DATASPACES 
Analyzer 
CV Collective variable LEBM 
lsegment Length of segment pairs 2 
#threads Number of threads 4 
#repetitions Number of times computing CV 10  
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are due to resource contentions between co-located applications. 

6.4. Makespan with different component placements 

In Section 5.5, we have confirmed the assumption of consistency 
across steps and thus, our in situ metric, for the synthetic scenario and for 
one component placement. Here, we further estimate the MAKESPAN from 
the non-overlapped step σ∗ based on Eq. (13) using different component 
placements. In terms of execution scenarios, an in situ run is classified by 
the Idle Simulation and the Idle Analyzer in Section 4.1. In this experi-
ment, we are able to determine which range of strides leads to which 
scenario as shown in Fig. 15. We define the equilibrium point as the 
inflexion point where the transition from Idle Simulation to Idle Analyzer 
happens (i.e., the equilibrium point corresponds to a perfect execution 
with zero idle time). 

Fig. 15 compares the MAKESPAN between the helper-core and in transit 
placement. At first glance, the estimated MAKESPAN is close to the 
measured MAKESPAN in both scenarios. The equilibrium point happens at 
stride 2000 to stride 3000 in the in transit scheme, whereas the equi-
librium point of the helper-core placement occurs at larger stride (from 
stride 3000 to stride 4000). This finding confirms that the in transit 
configuration allows executing more frequent analyses at better effi-
ciency than the helper-core does. In the Idle Analyzer case, there is no big 
difference in MAKESPAN between the helper-core and the in transit case. 
Another way to state this is that component placement has more 
importance in the Idle Simulation scenario, which corresponds to the case 
when the analytics are performed at high frequency. Although the 
experiment is conducted on a single simulation coupled with an in situ 
analysis task, the trend observed here sets the foundation for scaling up 
to many simulations in the context of ensembles workflows. 

6.5. Resource usage efficiency over component placements 

As discussed in Section 5.4, evaluating the coupling performance of 
different component placements using the idle time in an in situ step is 
challenging due to the involvement of multiple concurrent tasks 
competing for computing resources and due to the large parameter space 
for each component. In this section, we leverage the efficiency metric E, 
Eq. (14), to determine how efficient an in situ run is with respect to a 
given configuration. Fig. 16 shows this efficiency value with different 
strides and over the helper-core and in transit placements. The compari-
son between two given in situ runs becomes straightforward using E as 
the indicator. The higher the E value is, the more efficient the in situ 
execution is, in terms of resource usage. The helper-core case has the best 
resource usage efficiency (~100%) at larger stride, or lower frequency 

Fig. 14. Execution time per in situ step for each component with the helper-core 
and in transit placement. The Practical Simulation stages are on the left and the 
Analyzer stages are on the right (lower is better). 

Fig. 15. MAKESPAN is estimated from Eq. (13) over the helper-core and in transit 
component placement, the yellow region represents the error of the Estimated 
MAKESPAN from the Measured MAKESPAN. 

Fig. 16. Resource usage efficiency of the practical workflow over a variety of 
strides (higher is better). 
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of the Analyzer compared to the in transit case. Resource contention 
between co-located applications in the helper-core placement results in 
the efficiency degradation when performing the analytics at high fre-
quency. This finding introduces a trade-off between computing resource 
cost and the analysis frequency in designing an in situ system. Finally, as 
expected, a run with a stride close to the equilibrium point gives a better 
resource usage efficiency. 

7. Conclusions 

In this study, we explored the challenges of evaluating next- 
generation in situ workflows. We have provided an analysis of in situ 
workflows by identifying a set of metrics that should be monitored to 
assess the performance of these workflows on HPC architectures. We 
have designed lightweight metric for the makespan and the computa-
tional efficiency of the workflow, based on behavior consistency across 
in situ steps under our constrained in situ execution model. We have 
validated the usefulness of these proposed metrics with a set of experi-
ments using an in situ MD synthetic workflow. By using a realistic MD 
practical workflow, we have compared two different placements for the 
workflow components, a helper-core placement and an in transit place-
ment in which the DTL server is co-located with different components. 
Under no resource constraint, by allocating dedicated nodes for the in 
transit analytics, the in situ coupling is allowed to perform the analysis 
more frequently. On the other hand, running the helper-core placement 
at the equilibrium point is targeted as the ideal scenario for optimizing 
resource utilization if those are limited. 

Future work will study different models where the constraints are 
relaxed, for example where the workflow allows to buffer multiple 
frames in memory instead of one currently. We also plan to generalize 
the proposed framework’s constraints to support more communication 
protocols, i.e., message-driven dataflow, multiple data transport paths, 
or another data transport layer. Another promising research line is to 
extend our theoretical framework to take into account multiple analysis 
methods, which is often the case for MD trajectory data. In this case, the 
time taken by the analysis could vary depending on the method used. 
Finally, arising from the necessity of more complex workflows to serve 
various in situ analysis requirements, performance evaluation of in situ 
workflows should be analyzed in the setting of an ensemble of 
workflows. 
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