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Performance evaluation is crucial to understanding the behavior of scientific workflows. In this study, we target
an emerging type of workflow, called in situ workflows. These workflows tightly couple components such as
simulation and analysis to improve overall workflow performance. To understand the tradeoffs of various con-
figurable parameters for coupling these heterogeneous tasks, namely simulation stride, and component place-
ment, separately monitoring each component is insufficient to gain insights into the entire workflow behavior.
Through an analysis of the state-of-the-art research, we propose a lightweight metric, derived from a defined in
situ step, for assessing resource usage efficiency of an in situ workflow execution. By applying this metric to a
synthetic workflow, which is parameterized to emulate behaviors of a molecular dynamics simulation, we
explore two possible scenarios (Idle Simulation and Idle Analyzer) for the characterization of in situ workflow
execution. In addition to preliminary results from a recently published study [11], we further exploit the pro-
posed metric to evaluate a practical in situ workflow with a real molecular dynamics application, i.e., GROMACS.
Experimental results show that the in transit placement (analytics on dedicated nodes) sustains a higher fre-
quency for performing in situ analysis compared to the helper-core configuration (analytics co-allocated with

simulation).

1. Introduction

High performance computing (HPC) is mainstream for enabling the
execution of scientific workflows which are composed of complex exe-
cutions of computational tasks and the constantly growing data move-
ments between those tasks [30]. Traditionally, a workflow describes
multiple computational tasks and represents data and control flow de-
pendencies. Moreover, the data produced by the scientific simulation
are stored in persistent storage and visualizations or analytics are per-
formed post hoc. This approach is not scalable, mainly due to the fact
that scientific workflows are becoming increasingly compute- and
data-intensive at extreme-scale [28]. Storage bandwidth has also failed
to keep pace with the rapid computational growth of modern processors
due to the stagnancy of I/0 advancements [33,15]. This asymmetry in
I/0 and computing technologies, which is being observed in contem-
porary and emerging computing platforms, prevents post hoc processing

from handling large volumes of data generated by large-scale simula-
tions [4]. Therefore, storing the entire output of scientific simulations on
disk causes major bottlenecks in workflow performance. From a hard-
ware perspective, moving data consumes more energy than performing
the computing operation on the same amount of data [33]. Although
computational capacity keeps increasing along with chip technologies,
this growth only exacerbates the imbalance between the I/O and the
computation portions in applications. To reduce this disparity, several
new high-performance memory systems that reside closer to the
computation units have been developed (e.g., burst buffers [29],
high-bandwidth memory [34], non-volatile memory [14], etc.). These
systems create opportunities to overcome the expensive cost of 1/0
thanks to the low-latency access capability of those advanced storage
technologies. Simultaneously, scientists have moved towards a new
paradigm for scientific simulations called in situ, in which data is visu-
alized and/or analyzed as it is generated [4]. This accelerates simulation
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1/0 by bypassing the file system, pipelining the analysis, and improving
the overall workflow performance [9].

An in situ workflow describes a scientific workflow with multiple
components (simulations with different parameters, visualization, ana-
lytics, etc.) running concurrently [33,9], potentially coordinating their
executions using the same allocated resources to minimize the cost of
data movement [4]. Data periodically produced by the main simulation
are processed, analyzed, and visualized at runtime rather than
post-processed on dedicated nodes. This approach offers many advan-
tages for processing large volumes of simulated data and efficiently
utilizing computing resources. By co-locating the simulation and the
analysis kernels, in situ solutions reduce the global I/O pressure and the
data footprint in the system [15]. To fully benefit from these solutions,
the simulation and the analysis components have to be effectively
managed so that they do not slow each other down. Therefore, in this
paper we study and characterize two specific categories of in situ
workflows, namely helper-core and in transit workflows [4]. Specifically,
in the helper-core workflow, the analysis component is placed on the
same node as the simulation; while in the in transit workflow, simulation
data is staged to a dedicated node where the analysis is allocated.
Workflows are required to capture the individual behavior of multiple
coupled workflow components (i.e., concurrent executions of over-
lapped steps with inter-component data dependency). Through the use
of a theoretical framework, this paper aims to provide guidelines for the
evaluation and characterization of in situ workflows. We target a
widely-used class of workflows, namely large-scale molecular dynamics
(MD) simulations. We argue that the proposed solutions and the lessons
learned from the proposed synthetic in situ workflows [11] can be
directly translated into production in situ workflows. We further deploy
a practical workflow using a medium-scale all-atom MD simulation run
with a popular MD engine to study the impact of the aforementioned
component placements on the in situ coupling in a realistic setting. To
this end, the insights gained from the practical workflow are beneficial
for scaling up to ensemble workflow, which is a set of different
simulation-analysis workflows exploring a combination of scenarios.
Our contribution is fivefold:

1. We discuss practical challenges in evaluating next-generation
workflows, such as in situ. Most of current HPC monitoring tools
are not specifically designed for these workflows. Thus, utilizing
these tools to evaluate in situ workflows is not straightforward. In this
work, we generalize in situ systems to bring to light the unique
characteristics of in situ workflows from an evaluation standpoint.

2. We define a non-exhaustive list of imperative metrics that need to be
monitored for aiding the characterization of in situ workflows. By
reviewing the state-of-the-art in profiling tools that are able to collect
the metrics, we confirm the feasibility of leveraging this set of met-
rics in the in situ workflow context. Additionally, we highlight our
novel approach of measuring idle time for quantifying the efficiency
of an in situ run.

3. We propose a framework to formalize in situ workflow executions
based on their iterative patterns. Under the framework’s constraints,
we develop a lightweight approach that is beneficial when
comparing the performance of configuration variations in an in situ
system. The aim is to provide a lightweight approach that is able to
run concurrently with the in situ workflow and possibly enable its
adaptation at runtime.

4. We provide insights into the behaviors of in situ workflows by
applying the proposed metric to characterize an MD synthetic
workflow. Leveraging the use of limited computing resources for
emulating simulation behavior at large scales, we use this synthetic
workflow to prove the precision of the proposed metric and identify
the in situ behavior in a wide range of simulation systems.

5. We further examine the significance of in situ placements on coupling
performance through employing the proposed metric in a practical
workflow using a real high-performance MD application. We claim
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that our findings are valuable for designing an ensemble of work-
flows, where multiple independent in situ couplings are running at
the same time.

2. Background and related work

In situ workflows monitoring. Many monitoring and performance
profiling tools for HPC applications have been developed over the past
decade such as TAU [27], CrayPat [10], or HPCTOOLKIT [1]. With the
advent of in situ workflows [5], new monitoring and profiling ap-
proaches targeting tightly-coupled workflows have been studied. LDMS
[2] is a loosely-integrated scalable monitoring infrastructure that targets
general large-scale applications and delivers a low-overhead distributed
solution, in contrast to TAU [27], which provides a deeper under-
standing of the application at a higher computational cost. SOS [36]
provides a distributed monitoring platform, conceptually similar to
LDMS but specifically designed for online in situ characterization of HPC
applications. An SOS daemon running on each compute node intercepts
events and registers them into a database; the monitored application
may fetch data from that database to get feedback. TAU, in association
with ML techniques, has been used to tune the parameters of in situ
simulations and optimize the execution at runtime [39]. ADIOS [20], the
next-generation I0-stack, is built on top of many in situ data transport
layers, e.g., DataSpaces [12] or DIMES [38]. Savannah [15], a workflow
orchestrator, has been leveraged to bundle a coupled simulation with
two main simulations, multiple analysis kernels, and a visualization
service [9]. The performance and monitoring service was provided via
SOS and the I/0 middleware via ADIOS. These works focus mainly on
providing monitoring schemes for in situ workflows. Here we propose,
instead, a novel method to extract useful knowledge from the captured
performance data.

In situ data management. FlexAnalytics [40] optimizes the perfor-
mance of coupling simulations with in situ analytics by evaluating data
compression and query over different I/O paths: memory-to-memory
and memory-to-storage. A large-scale data staging implementation
[37] over MPI-IO operations describes a way to couple with in situ
analysis using a non-intrusive approach. The analytics accesses data
staged to the local persistent storage of compute nodes to enhance data
locality. Decaf [13] provides a message-driven dataflow middleware
that supports both tight and loose coupling of in situ tasks. Our work
mainly focuses on in-memory staging and comprehensively character-
izes memory-to-memory transfer using RDMA for both within a compute
node (helper-core) and across nodes (in transit). Smart [35] provides in
situ MapReduce-like interfaces for scientific analytics—a breakthrough
in being able to access in-memory simulated data, though an intrusive
approach. Our use case prototype has a non-intrusive approach to
employ in situ analytics through two abstract components called the
ingester and the retriever, described in the next section.

3. General in situ workflow architecture

In this section, we describe the architecture of an in situ workflow
that underlies our study. We also define and motivate a set of non-
exhaustive metrics that need to be captured for in situ workflow per-
formance characterization.

In situ architecture. In this work, we propose an in situ architecture
that enables a variety of in situ placements to characterize the behavior
of in situ couplings. Although we focus on a particular type of in situ
workflows (composed of simulation and data analytics), our approach is
broader and applicable to a variety of in situ components. For example,
in situ components could consist of an ensemble of independent simu-
lations coupled together. The in situ workflow architecture (Fig. 1) fea-
tures three main components:

e A simulation component that performs computations and periodically
generates a snapshot of scientific data.
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Fig. 1. A general in situ workflow software architecture.
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e A data transport layer (DTL) that is responsible for efficient data
transfer.

e An analyzer component that applies several analysis kernels to the
data received periodically from the simulation component via the
DTL.

In general, the data transport layer (DTL) may be implemented using
different technologies to enable data delivery between workflow com-
ponents, e.g., the use of Burst Buffers for in transit processing [29], or
complex memory hierarchies for in situ processing of small volumes of
data and a large number of computing jobs [17]. In this paper, we
leverage DataSpaces [12] as DTL implementation to enable efficient and
scalable in memory data staging among coupled components, but our
approach is agnostic from the DTL used.

On the data path “simulation-to-analyzer” depicted on Fig. 1: (1) the
ingester ingests data from a certain data source and stores them in the
DTL and the (2) retriever, in a reverse way, gets data from the DTL to
perform further operations. These two entry points allow us to abstract
and detach complex I/0 management from the application code. This
approach enables more control in terms of in situ coupling and is less
intrusive than many current approaches. The ingester synchronously
inputs data from the simulation by sequentially taking turns with the
simulation using the same resource. The ingester is useful to attach
simple tasks to pre-process data (e.g., data reduction, data compression).
The architecture allows in situ execution with various placements of the
retriever. A helper-core retriever co-locates with the ingester on a subset
of cores where the simulation is running—it asynchronously gets data
from the DTL to perform an analysis. As the retriever is using the helper-
core placement, the analysis should be lightweight to prevent simulation
slowdown. An in transit retriever runs on dedicated resources (e.g.,
staging I/0 nodes [40]), receives data from the DTL and performs
compute-intensive analysis tasks. We compare helper-core and in transit
retrievers in detail in Section 6.

In situ workflow metrics. To characterize in situ workflows, we have
defined a foundational set of metrics (Table 1). As a first metric, it is
natural to consider the makespan, which is defined as three metrics
corresponding to time spent in each component: the simulation, the
analyzer, and the DTL. The periodic pattern enacted by in situ workflows
may impose data dependencies between steps of coupled components, e.
g., the analyzer may have to wait for data sent by the simulation to
become available in the DTL for reading. Thus, we monitor the idle time
of each individual component.

Most current HPC monitoring tools, such as TAU [27], HPCToolkit
[1], or CrayPat [10] aim to capture the performance profile of stand-
alone applications and, thus their design is inadequate for in situ work-
flows. Table 2 provides an overview of whether these tools can be used
to capture the different metrics defined in Table 1. This literature search
further underlines the novelty of our utilization of the idle time during

Table 1

Selected metrics for in situ workflows characterization.
Name Definition Unit
MAKESPAN Total workflow execution time

TIMESIMULATION
TIMEANALYTICS
TmMeDTL
TIMESIMULATIONIDLE

Total time spent in the simulation
Total time spent in the analysis
Total time spent in data transfers
Idle time during simulation

Idle time during analysis

P R )

TIMEANALYTICSIDLE
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Table 2
State-of-the-art tools used for profiling in situ applications.

TAU HPCToolkit CrayPat WOWMON SOS
MAKESPAN [16] [26] [21] [39]
TIMESIMULATION [39,16,21] [26] [21] [39]
TIMEANALYTICS [39,16,21] [26] [21] [39]
TiMeDTL [39,16,25] [26] [39] [25]

the execution to characterize in situ workflows because, to the best of our
knowledge, no study used this approach. Moreover, in this work, we use
TAU for monitoring purposes, mainly due to its versatility, as demon-
strated by Table 2.

Recent works (e.g., LDMS [2], SOS [36], and WOWMON [39]) have
proposed general-purpose distributed approaches to provide global
workflow performance information by aggregating data from each
component. Thanks to those advanced frameworks, extracting mean-
ingful profiling data from in situ workflows is efficient. However, in situ
evaluation is still challenging due to the lack of thorough guidelines for
using these data to extract meaningful insights on in situ workflows. Only
a few studies [9,18] have addressed this challenging problem. In this
work, we focus on how to use profiling data to characterize the in situ
workflows. The motivation behind this study is to address the lack of
characterization studies for in situ workflows.

4. In situ execution model

In this work, we propose a novel method to estimate and characterize
in situ workflows behaviors from collected performance data. To this
end, we develop a theoretical framework of in situ executions. In this
study, we consider a dedicated failure-free platform without any in-
terferences (caches, I/0, network, etc.) from other applications.

4.1. Framework

In traditional workflows, the simulation and the post-processing
analyzer are typical components, in which the post-processing follows
the simulation in a sequential manner. Let a stage be a part of a given
component. We can identify two main stages for each component (see
Fig. 2):

e Simulation component: (S) is the computational step that produces
the scientific data and (W) is the I/0 (or DTL) stage that writes the
produced data.

e Analytics component: (R) is the DTL stage that reads the data pre-
viously written and (A) is the analysis stage.

However, in situ workflows exhibit a periodic behavior: S, W, R, and
A follow the same sequential order but, instead of operating on all the
data, they operate only on a subset of it iteratively. Here, this subset of
data is called a frame and can be seen as a snapshot of the simulation at a
given time t. Let S;, W;, R;, and A; be respectively, the simulation, the
write, the read and the analysis stage at step i, respectively. In other
words, S; produces the frame i, W; writes the produced frame i into a
buffer, R; reads the frame i, and A; analyzes the frame i. Note that, an
actual simulation computes for a given number of steps, but only a
subset of these steps are outputted as frames and analyzed [31]. The
frequency of simulation steps to be analyzed is defined by the stride. Let
n be the total number of simulation steps, s the stride, and m the number

of steps actually analyzed and outputted as frames. We have m = §.

Simulation Analytics

O—O+—+O

Fig. 2. Classic workflow design featuring two components and four stages.
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However, we model the in situ workflow itself and not only the simu-
lation time (i.e., execution times of S;, W;, R;, and A; are known be-
forehand), thus the value of the stride does not impact our model. We set
s=1 (or m=n), so every step always analyzes a frame.

Execution constraints. To ensure work conservation we define the
following constraint: Y " ;S; = S (m is the number of produced frames).
Obviously, we have identical constraints for R;, A;, and W;. Similarly to
the classic approach, we have the following precedence constraints for
alliwith0<i<m:

Si=>Wi—R,—A,;. (€8]

Buffer constraints. The pipeline design of in situ workflows in-
troduces new constraints. We consider a frame is analyzed right after it
has been computed. This implies that for any given step i, the stage W;,
can start if, and only if, the stageRi has been completed. Formally, for all i with
0<i<m:

Ri—»>Wi,,. ®))

Egs. (1) and (2) guarantee that we buffer at most one frame at a time
(Fig. 3). Note that, this constraint can be relaxed such that up to k frames
can be buffered at the same time as follows, R; > Wj.x, where 0 <i<m
and 1 <k <m. In this work, we only consider the case k =1 (red arrows
in Fig. 4).

Idle stages. Due to the above constraints, the different stages are
tightly-coupled (i.e., R; and A; stages must wait S; and W; before starting
their executions). Therefore, idle periods could arise during the execu-
tion (i.e., either the simulation or the analytics must wait for the other
component). We can characterize two different scenarios, Idle Simulation
and Idle Analyzer in which idle time occurs. The former (Fig. 3(a)) occurs
when analyzing a frame takes longer to complete compared to a simu-
lation cycle (i.e., S; + W; > R; + A;). The later (Fig. 3(b)) occurs when the
simulation component takes longer to execute (i.e., S;+ W; <R; + A)).
Fig. 4 provides a detailed overview of the dependencies among the
different stages. Note that, the concept of in situ step is defined and
explained later in the paper.

Intuitively, we want to minimize the idle time on both sides. If the
idle time is absent, then it means that we reach the idle-free scenario:
Si+ W;=R; + A;. To ease the characterization of these idle periods, we
introduce two idle stages, one per component. Let If and I# be, respec-
tively, the idle time occurring in the simulation and in the analysis
component for the step i. These two stages represent the idle time in both
components, therefore the precedence constraint defined in Eq. (1) re-
sults in:

Si= I = Wi=Ri—A—I". 3)

Buffer r r b 9

s, (w| s, |w| s, |W, s, ||s4 w,[ s, ||s5 w,[ s, l w,[ s,
Rl ~ el [~ [RI[a [&] A [&] A

! 1
i In situ step 04

In situ step 05
=

(a) Idle Simulation scenario when S, + W, < R, + A,

Execution [ NP N 7
.

|W2 Sy |W3 S, |W4 S, Wy S l

R A | Rl A [ R A w R A ]

In situ step 03

In situ step 04
Time

(b) Idle Analyzer scenario when S, + W, > R, + A,

Fig. 3. Two different execution scenarios for in situ workflow execution.
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In situ step o,
b Execution constraints

OO0 -
OO0
OO0

Fig. 4. Dependency constraints within and across in situ steps with n=m = 3.
(For interpretation of the references to color in this figure citation, the reader is
referred to the web version of this article.)

Buffer constraints

4.2. Consistency across steps

This work is supported by the hypothesis that every execution of in
situ workflows under the above constraints will reach a consistent state
after a finite number of warming-up steps. Thus, the time spent on each
stage within an iteration can be considered constant over iterations.
Formally, there exists j where 0 < j < m such that for all i wherej <i<m,
we have S;=S;. The same holds for each stage, W;, R;, A;, I, and, I#. This
hypothesis is confirmed in Section 5.3, and in practice, we observe that
the cost of these non-consistent steps is negligible. Our experiments
showed that, on average, j<3 for one hundred steps (m=100).
Therefore, we ignore the warming steps and we consider j = 0. For the
sake of simplicity, we generalize in situ consistency behavior by denoting
S==S; for all i >j. We also have similar notations for R.,A,,I5,[* and
W-. This hypothesis allows us to predict the performance of a given in
situ workflow by monitoring a subset of steps, instead of the whole
workflow. From the two constraints defined by Egs. (3) and (2), and our
hypothesis, we define:

S.+LE+W, =R +A. +1}. 4
The Idle Simulation scenario is when 4 =0, and I¥ = 0 for Idle Analyzer

scenario. Let I+ be the total idle time for an in situ step, using Eq. (4) we
derive:

R.+A —S. —W,, if =0,

L=P+I"= ! 5)
S, +W,—R.—A,, if F=0,

=S, + W, — (R, +A,)| (6)

Here, we could define the idle time a bit differently by saying that
[ =S, +W.—(R +A,). )
We can keep the sign for this indicator, and then define

I.>0 —Idle Analysis, I =1,
I, <0 —lIdle Simulation, /s = —7..

An example of these values is plotted in Fig. 10, along with the equi-
librium point, which defines the configurable parameters at which the
workflow execution switches from one scenario to another. The equi-
librium point is determined at the point where I, =1, = 0.

We assume the read/write operations are fast compared to the
simulation and analysis stages, which is confirmed in Section 5.3, we can
write:

I ~S, —A, ®

Now we take the stride s, which defines after how many simulation steps
a frame is outputted to the analytics, into consideration for further
analysis. Assuming we know the wall-clock time tg for one simulation
step (using the output of running the simulation independently), we
have S+ = sts. The equilibrium point is attained when

sts—A, =0 9
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from which we can deduce, for example, given some resource allocation,
to minimize the idle time, theoretically, we should set the stride
approximately to

In practice, the equilibrium point could slightly change from this
optimal value due to the resource contention of co-located in situ com-
ponents, which is discussed in detail in Section 6.

4.3. In situ step

The challenge behind in situ workflows evaluation lies in collecting
global information from multiple components (in our case, the simula-
tion and the analytics) and use this information to derivate meaningful
characteristics about the execution. The complexity of such a task is
correlated to the number of steps the workflow is running and the
number of components involved. By leveraging the consistency hy-
pothesis in Eq. (4), we propose to alleviate this cost by proposing a
metric that does not require data from all steps. The keystone of our
approach is the concept of in situ step. Based on Eq. (3), the in situ step o;
is determined by the timespan between the beginning of S; and the end
of IA. The in situ step concept helps us to manipulate all the stages of a
given step as one consistent task executing across components that can
potentially run on different machines.

Different in situ steps overlap each other, so we need to distinguish
the part that is overlapped (O';) from the other part (5;). Thus, 6; = 7; +
o;. For example, in Fig. 3(a), to compute the time elapsed between the
start of 64 and the end of o5, we need to sum the two steps and remove
the overlapped execution time (7/4. Thus, we obtain 64 + o5 — (;’4. This
simple example will give us the intuition behind the makespan
computation in Section 4.4.

The consistency hypothesis insures consistency across in situ steps.
We denote o+ as the consistent in situ step (i.e., Vi, 6;= 0+), while ¢, and
. indicate, respectively, the overlapped and the non-overlapped part of
two consecutive in situ steps. Thus, o, = 6.+ o,. To calculate the
makespan, we want to compute the non-overlapped step .. As shown in
Fig. 3, the non-overlapped period &, is the aggregation of all stages
belonging to one single component in an in situ step:

0, =

11
R, +A. +1I*, if I'>0. an

{S* +54+w,, if >0,
We have two scenarios, if I¥ = 0,14 > 0 (Idle Analyzer) then 5, = S, +
W,, otherwise 6, = R, + A,. Hence,

G, = max(S. + W.,R, + A,). 12)

4.4. Makespan

A rough estimation of the makespan of such workflow would be the
sum of the execution time for all the stages (i.e., sum up the m in situ
steps o;). But, recall that in situ steps interleave with each other, so we
need to subtract the overlapped parts:

MAKESPAN = mo, — 6. (mf 1) =m5, +.. 13)

From Eq. (13), for m large enough, the term ¢, becomes negligible. Since
in situ workflows are executed with a large number of iterations, then
MAaKESPAN = mo, (recall that 6, = 7, + a;). This observation indicates
that the non-overlapped part of an in situ step is enough to characterize a
periodic in situ workflow. From Eq. (11), minimizing the makespan is
equivalent to reducing the idle time to zero, which confirms the smallest
makespan occurs at the equilibrium point (i.e., when the idle time is
equal to zero). Therefore, the in situ execution is necessary to be driven
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to the equilibrium point. Using our framework and these observations,
we further define a metric to estimate the efficiency of a workflow.

4.5. In situ efficiency

Based on our in situ execution model, we propose a novel metric to
evaluate resource usage efficiency E of an in situ workflow. We define
efficiency as the time wasted during execution—i.e., idle times IS and I*.
This metric considers all the components (simulation and the analysis)
for evaluating in situ workflows:

I S AW = (R + A

E=1-—=1 :
A max(S. + W.,R. +A,)

14

This efficiency metric allows for performance comparison between
different in situ runs with different configurations. By examining only
one non-overlapped in situ step, we provide a lightweight approach to
observe behavior from multiple components running concurrently in an
in situ workflow. This metric can be used as an indicator to determine
how far the in situ execution is from the equilibrium point, where I- =0
or E=1. We then get an idea of how to adjust the parameters to
approach the equilibrium point, at which the makespan is minimized
(see Section 4.4). Note that, this model and the efficiency metric can be
easily generalized to any number of components.

5. Molecular dynamics synthetic workflow

MD is one of the most popular scientific applications executing on
modern HPC systems. MD simulations reproduce the time evolution of
molecular systems at a given temperature and pressure by iteratively
computing inter-atomic forces and moving atoms over a short time step.
The resulting trajectories allow scientists to understand molecular
mechanisms and conformations. In particular, a trajectory is a series of
frames, i.e., sets of atomic positions saved at fixed intervals of time. The
stride is the number of time steps between frames considered for storage
or further in situ analysis. For example in our framework, for a simula-
tion with 100 steps and a stride of 20, only 5 frames will be sent by the
simulation to the analysis component. Since trajectories are high-
dimensional objects and many atomic motions such as high-frequency
thermal fluctuations are usually of no interest, scientists use well-
chosen collective variables (CVs) to capture important molecular mo-
tions. Technically, a CV is defined as a function of the atomic co-
ordinates in one frame. Reduced to time series of a small number of such
CVs, simulated molecular processes are much more amenable to inter-
pretation and further analysis. A CV can be as simple as the distance
between two atoms, or can involve complex mathematical operations on
a large number of atoms. An example of a complex CV that we will use in
this work is the largest eigenvalue of the bipartite matrix (LEBM). Given
two amino acid segments A and B, if d;; is the Euclidean distance be-
tween C, atoms i and j, then the symmetric bipartite matrix Bop = [bij] is
defined as follows:

dij, if i€A and jeB,
bij = dij, if ieB and j€A, (15)
0, otherwise.

Note that Bsp is symmetric and has zeroes in its diagonal. Johnston et al.
[19] showed that the largest eigenvalue of Bap is an efficient proxy to
monitor changes in the conformation of A relative to B.

5.1. Workflow description

In order to study the complex behavior resulting from coupling a MD
simulation and with an analysis component in the previously discussed
parameter space, we have designed a synthetic in situ MD workflow
(Fig. 5). The Synthetic Simulation component extracts frames from
previously computed MD trajectories instead of performing an actual,
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Fig. 5. Synthetic Workflow: the Extractor (1) sleeps during the emulated delay,
then (2) extracts a snapshot of atomic states from existing trajectories and (3)
stores it into a synthetic frame. The Ingestor (4) serializes the frame as a chunk
and stages it in memory, then the Retriever (5) gets the chunk from the DTL and
deserializes it into a frame. Eventually, the MD Analytics performs certain
analysis algorithm on that frame.

compute-intensive MD simulation. This synthetic workflow is an
implementation of the general and abstract software architecture pro-
posed in Section 3.

Synthetic Simulation. The Synthetic Simulation emulates the process
of a real MD simulation by extracting frames from trajectories generated
previously by an MD simulation engine. The Synthetic Simulation en-
ables us to tune and manage many simulation parameters (discussed in
detail in Section 5.2) including the number of atoms and strides, which
helps the Synthetic Simulation mimic the behavior of real molecular
dynamics simulation. Note that, since the Synthetic Simulation does not
emulate the computation part of the real MD simulation, it mimics the
behavior of the I/O processes of the simulation. Thus, we define the
emulated simulation delay, which is the period of time corresponding to
the computation time in the real MD simulation. In order to estimate
such delay for emulating the simulation time for a given stride and
number of atoms, we use recent benchmarking results from the litera-
ture obtained by running the well-known NAMD [22] and Gromacs [24]
MD engines. We considered the benchmarking performance for five
practical system sizes of 81K, 2M, 12M atoms from Gromacs [24] and
21M, 224M atoms from NAMD [22] to interpolate to the simulation
performance with the desired number of atoms (Fig. 6(a)). The inter-
polated value is then multiplied by the stride to obtain the delay (i.e., a
function of both the number of atoms and the stride).

In Section 5.2, we run the synthetic workflow with 200K, 400 K,
800K, 1.6M, 3.2M, and 6.4M protein atoms. Fig. 6(b) shows the
emulated simulation delay when varying the stride for different
numbers of atoms. The stride varying between 4 K and 16 K delivers a
wide range of emulated simulation delays, up to 40s.

Data Transport Layer (DTL). The DTL Server leverages DataSpaces
[12] to deploy an in memory staging area for coupling data between the
Synthetic Simulation and the Analyzer. DataSpaces follows the pub-
lish/subscribe model in terms of data flow, and the client/server para-
digm in terms of control flow. The workflow system has to manage a
DataSpaces server to manage data requests, keep metadata, and create
in memory data objects.

Analyzer. The Analyzer plays the role of the analytics component in
the synthetic in situ workflow. More specifically, the Retriever subscribes
to a chunk from the in memory staging area and deserializes it into a
frame. The MD Analytics then performs a given type of analysis on this
frame. Recall that, in our model, only one frame at a time can be store by
the DTL (see Fig. 4). We leverage DataSpaces built-in locks to ensure that
a writing operation to the in memory staging area can only happen when
the reading operation of the previous step is complete (constraint model
by Eq. (2)). Thus, the Analyzer is instructed by DataSpaces to wait for
the next chunk available in the in memory staging area. Once a chunk
has been received and is being processed, the Synthetic Simulation can
send another chunk to the Analyzer.

5.2. Experimental setups

For our experiments we use Tellico (UTK), an IBM POWER9 system
that includes four 32-core nodes (2 compute nodes) with 256 GB RAM
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Fig. 6. MD benchmarking results from the literature obtained by using 512
NVIDIA K20X GPUs. The results are interpolated to obtain the (a) estimated
performance and then combined with the stride to synthesize the (b) emulated
simulation delay.

each. Each compute node is connected through an InfiniBand inter-
connect network. Since the Synthetic Simulation only emulates the I/0
operations of an MD simulation without replicating the actual compu-
tation, resource contention is not expected to produce the disparity in
execution performance between different component placements.
Moreover, the main contribution of the Synthetic Simulation is its ability
of mimicking the actions of a real simulation engine with fewer resource
requirements. For these reasons, we leverage this synthetic workflow to
(i) validate the accuracy of the proposed in situ metrics; and (ii) char-
acterize the behavior of coupling a simulation with a variety of system
sizes with an in situ analytics. The Synthetic Simulation runs on one
physical core on a single compute node as it mimics the behavior of a
real simulation. On the other hand, the Analyzer and the DataSpaces
server are co-located on another dedicated node. Particularly, the
Analyzer computes bipartite matrices (see Section 5) using multiple
parallel processes, which improves CV calculation efficiency. After
experimenting with different numbers of Analyzer processes, we fixed
that number at 16 processes (number of cores of an IBM AC922) to reach
a good speed up and to fit the entire Analyzer within one compute node.

Parameter space. Table 3 describes the parameters used in the ex-
periments. For the Synthetic Simulation, we study the impact of the
number of atoms (the size of the system) and the stride (the frequency at
which the Synthetic Simulation component sends a frame to the
Analyzer through the DTL). We consider a constant number of 100
frames to be analyzed due to the time constraint and the consistency in
the behavior between in situ steps. For the DTL, we use the staging
method DATASPACES for all the experiments, in which the staging area
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Table 3
Parameters used in the experiments.

Parameter  Description Values used in the experiments

Synthetic simulation

#atoms Number of atoms [2 x 10°, 4 x 10°, 8 x 10°, 16 x 10°, 32 x 10°,
64 x 10°]

#strides Stride [1000, 4000, 16,000]

#frames Number of frames 100

Data transport layer

SM Staging method DATASPACES

Analyzer

(9% Collective variable LEBM

Isegment Length of segment 16

pairs

is in the main memory of the node assigned to the DataSpaces server. For
the Analyzer, we choose to calculate a compute-intensive set of CVs
(LEBM, Section 5) for each possible pair of non-overlapping segments of
length 16. If there are n amino acids (alpha amino acids) in the system,
there are N = floor(n/16) segments, which amounts to N(N — 1)/2 LEBM
calculations (O(n?)). To fairly interpret the complexity of this analysis
algorithm related to the system size, we manipulate the number of
amino acids to be proportional to the number of atoms. For example, the
system of 400 K atoms yields 2 fold larger number of segments compared
to the system of 200 K atoms. Fig. 7 illustrates the LEBM’s runtime with
respect to the number of atoms.

We leverage user-defined events to collect the proposed metrics
using TAU [27] (Section 3). We focus on two different levels of infor-
mation, the workflow level and the in situ step level (the time taken by
the workflow to compute and analyze one frame).

At the in situ step level, each value is averaged over three runs for
each step. At the workflow level, each value is averaged over all in situ
steps at steady-state and then averaged over the three runs. We also
depict the standard deviation to assess the statistical significance of the
results. There are two levels of statistical error: for averages across the 3
trials at the in situ step level, and for averages over 94 in situ steps
(excluding the three first steps and the three last steps) in each run at the
workflow level.

5.3. In situ step characterization

We study the correlation of individual stages in each in situ step. Due
to lack of space, the discussion is limited to a subset of the parameter
space as the representative of two characterized idle-based scenarios.
Fig. 8 shows the execution time per step for each component with stride
values of 1000 and 4000 steps. Confirming the consistency hypothesis
across steps discussed in Section 4.2, we observe that the execution time
per step is nearly constant, except for a few warm-up and wrap-up steps.
Fig. 8(a) falls under the Idle Simulation (IS) scenario, as the If stage only
appears in the Synthetic Simulation step. Similarly in Fig. 8(b), we
observe the Idle Analyzer (IA) scenario because of the presence of I{*.

24 8 16 32 64
#atoms X107

Fig. 7. Execution time of LEBM on 16 cores, and using a segment length of 16.
The fraction of alpha-amino acids in the entire system is equal to 0.00469.
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These findings verify the existence of the two idle-based scenarios dis-
cussed in Section 4.1. Since both the Synthetic Simulation and Analyzer
are nearly synchronized, we also underline that the execution time of a
single step for each component is equal to each other. This information
confirms the property of in situ workflows in Eq. (4). Overall, we can
observe that the I/0 stages (W; and R;) take an insignificant portion of
time compared to the full step. This negligible overhead verifies the
advantage of leveraging in-memory staging for exchanging frames be-
tween coupled components.

5.4. Idle time observation

By examining the total idle time, we study the impact of the number
of atoms, stride on the performance of the entire workflow and each
component for different scenarios.

—4— Estimated I, 14
—%— Measured I, /
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Fig. 9. Left y-axis: total idle time I- using an helper-core placement at stride
16,000 (the Ilower the better). Estimated I- is estimated from
|S. + W. — (R. +A.)|, and Measured I is measured from IS + 4. Right y-axis:
ratio Estimated I / Measured I- (the closest to 1 the better).
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Accuracy of estimated idle time. For different system sizes, Fig. 9
demonstrates the similarity between Measured I that is the measured
idle time in one in situ step and Estimated I, which is the idle time
estimation computed using Equation (5). The ratio between Estimated
and Measured idle time is close to 1, confirming the accuracy of Eq. (5) to
estimate the idle time I+ for each in situ step, which allows us to apply
this relationship to identify the execution scenario that the workflow is
following.

Execution scenarios. Fig. 10shows that the workflow execution
follows our model (Fig. 3). The blue regions in Fig. 10 represent the Idle
Simulation scenario when S+ W+ <R« + A+, and the yellow area in-
dicates the Idle Analyzer scenario when S+ Ws>R«+ A« While
increasing the number of atoms, which increases the simulation time
and the chunk size, the total idle time I+ decreases in the Idle Simulation
scenario, and increases in the Idle Analyzer scenario. Every in situ step
exhibits a similar pattern in which at a certain system size the workflow
execution switches from one scenario to another. We notice that with
larger stride, the equilibrium point occurs at larger system sizes. As the
stride increases, the Synthetic Simulation sends frames to the Analyzer
less often. Therefore, increasing the stride reduces the gap between
S« + W+ and R+« + A+, which also leads to an equilibrium point reached
with a smaller number of atoms. With a stride of 4000, the equilibrium
point occurs at #atoms =8 X 105, but it occurs at #atoms =16 x 10°
with a stride of 16,000. At a stride of 1000, the execution follows the Idle
Simulation scenario for all observed number of atoms and the equilib-
rium point cannot be reached in this range of system size.

5.5. Estimated makespan

The goal is to verify the assertion made by Eq. (13) stating the
Makespan of an in situ workflow can simply be expressed as the product of
the number of steps and the time of one step mg,. A typical MD simu-
lation can easily feature >107 number of in situ steps, thus a metric
requiring only a few steps to be accurate is interesting. Fig. 11 demon-
strates the strength of our approach to estimate the MakespaN (maximum
error ~5%) using our definition of in situ steps, in addition to the ac-
curacy of our model. In in situ workflows run with a larger number of
steps, monitoring the entire system increases the pressure and slows
down the execution. Thus, without failures and external loads, only
looking at a single non-overlapped step results in a scalable, accurate,
and lightweight approach.

5.6. Resource usage efficiency

We utilize the efficiency metric E given by Eq. (14), to evaluate an in
situ configuration within the objective to propose a metric that allows
users to characterize in situ workflows. Fig. 12 shows that the efficiency
E increases and reach a maximum in the Idle Simulation scenario, and
decreases after this maximum in the Idle Analyzer scenario. Thus, an in
situ run is most efficient at the equilibrium point, where E =~ 1. If a run is
less efficient and classified as the Idle Analyzer scenario, it has more
freedom to perform other analyses or increase the analysis algorithm’s
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Fig. 12. Resource usage efficiency (higher is better).

complexity. In the Idle Simulation scenario, the simulation is affordable
to emulate the motions of a larger number of atoms to more efficiently
use the resource sitting idle.

6. Molecular dynamics realistic workflow

In this section, in order to observe performance interference between
applications running in situ, we replace the Synthetic Simulation by a
high-performance molecular dynamics simulation engine. We use this
realistic workflow to study the effect of different component placements
on workflow execution characterization.

6.1. Workflow description

The simulation component in this practical workflow performs MD
computation instead of sitting idle as the Synthetic Simulation does, thus
it consumes memory that contends with the co-located Analyzer
executing on the same resource.

Practical Simulation. The Practical Simulation (see Fig. 13) utilizes

Idle Analyzer === Equilibrium Point === Equilibrium Point
= =S =
150 Idle Simulation 150 Idle Analyzer 150 Idle Analyzer
% 100 —¢— ldle time I, 100 ldle Simulation 100 ldle Simulation
E —— Idle time I, —— Idle time I,
= =
50
0 1
2 4 8 16 32 064 2 4 16 32 64 2 4 8 16 32 64
#atoms x10° #atoms x10° #atoms x10°

(a) Stride = 1000

(b) Stride = 4000

(c) Stride = 16000

Fig. 10. Detailed idle time I- for three component placements at different strides when varying the number of atoms (lower is better).
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Fig. 13. Practical Workflow: GROMACS (1) simulates the motion of the atomic
system in steps, where Plumed (2) interferes with every stride to update and
gather new coordinates and store it into a frame. The Ingestor (3) serializes the
frame as a chunk and stages it in memory, then the Retriever (5) gets the chunk
from the DTL and deserializes it into a frame. Eventually, the MD Analytics
performs the same analysis algorithm of CV calculation on that frame compared
to Synthetic Workflow.

the MD software package GROMACS [24] to simulate biomolecular
processes. GROMACS enables diverse levels of parallelism, i.e., multi-
threading and process communication via message passing. However,
this MD engine does not explicitly allow us to extract in-memory frames
during the course of the run without manually intruding the source code.
To offer a non-intrusive approach, we use Plumed [32] that intercepts
function calls done by GROMACS periodically to get a snapshot of the
system state in memory. An additional layer implemented by Plumed is
placed on top of the corresponding simulation as an external library.
Therefore, this Plumed kernel approach to obtaining in-memory frames
is not restrictive to a specific simulation engine, but applicable to a
variety of MD codes as long as Plumed provides support for being
incorporated in such MD applications. In particular, a Plumed kernel
function is called in every interval of time, which is determined by the
stride, to collect atomic coordinates at the corresponding simulation
step. Molecular positions are then serialized into an abstract chunk to be
compatible with the data abstraction conducted by the interface of the
Ingestor. Since the chunk is reachable by the Ingestor, the dataflow then
acts similarly to the Synthetic Workflow.

Data Transport Layer and Analyzer. In this workflow, the DTL and
the Analyzer remain the same at the synthetic workflow discussed in
Section 5.

6.2. Experimental setups

In this experiment, we study two component placements: (i) helper-
core—where the Synthetic Simulation, the DataSpaces server, and the
Analyzer are co-located on the same compute node; and (ii) in transit
where the Analyzer and the DataSpaces server are co-located on one
node, and the Synthetic Simulation runs on a dedicated node. We use the
same machine, Tellico, which is described in Section 5.2. The experi-
mental plan is designed to yield baseline insights on a simulation
coupled with an in situ analysis task in the context of ensemble work-
flows. An ensemble workflow is comprised of many small-scale simu-
lations [23] that run independently of each other. Hence, insights from a
single simulation-analysis integration will scale up to the entire
workflow.

On the simulation side, we conduct a GROMACS run on 24 cores of a
compute node, while the remaining cores of the node are assigned to the
Analyzer and the DataSpaces server in the helper-core placement. Spe-
cifically, we run the analytics on 4 physical cores and set 1 core to
execute a DataSpaces server. In contrast to the helper-core placement, the
Analyzer and the DTL server reside in a separate node in the in transit
placement. We keep the resources assigned for each component com-
parable in both placements to demonstrate the impact of such the
component placement on the execution of an in situ workflow. The de-
tails of the parameter space used in this experiment are specified in
Table 4.

For the Practical Simulation, we selected a medium-scale all-atom
system that we used in a previous publication [3] on the molecular
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Table 4
Parameters used in the experiments.

Parameter Description Values used

Practical simulation—Gltph system

#atoms Number of atoms 268,552

#strides Stride [1000, 2000, 3000,
4000, 5000]

#steps Number of simulation steps 45,000

#frames Number of frames #steps / #strides

Data transport layer

SM Staging method DATASPACES

Analyzer

cv Collective variable LEBM

Isegment Length of segment pairs 2

#threads Number of threads 4

#repetitions Number of times computing CV 10

mechanism of active neurotransmitter transport across the cellular
membrane. That study focused on the GltPh transporter protein, which
is an archaeal homolog of the human excitatory amino acid transporter
(EAAT) family of proteins which are implicated in many neurological
disorders and are responsible for permanent neurological damage after
strokes. The 268,552-atom model system contains the GltPh transporter
protein (three identical chains of 605 amino acids, X-ray structure from
PDB entry 2NWX [8]) embedded in a lipid bilayer and surrounded by
water molecules and a physiological concentration of Na* and Cl~ ions.
Molecular interactions are parameterized with the CHARMM36 force-
field [6] implemented in GROMACS [7], with standard simulation set-
tings and a time steps of 2 fs.

To test our analysis workflow with GItPh, we explore different strides
of 1000, 2000, 3000, 4000, 5000 time steps, at which Plumed generates
in-memory frames for later processing. Thus for each #strides, the
number of generated frames on the simulation side, which is also
equivalent to the number of analyzed frames on the analysis side, is

calculated as #fs:ﬁ;s In this experimental setup, we vary the stride as a

configurable parameter to find the equilibrium point. However, this
parameter is not only restricted to the stride, we are always able to set
the equilibrium point to different parameters. On the Analyzer side, the
analysis kernel computes a set of 10 LEBM collective variables (Section
5) for each possible pair of non-overlapping segments of length 2. The
complexity of this CV computation with respect to the predefined
segment length is discussed in Section 5.2. For the DTL, the memory
staging method DATASPACES is used for all subsequent experiments in
this section, and data resides in the memory of the node where the
DataSpaces server runs.

Due to the difficulty of linking TAU to Plumed, in this experiment, we
manually inserted timers to collect performance data that is necessary
for the proposed in situ metrics. Similar statistical methods (Section 5.2)
are applied, so we can accumulate experimental error across both trials
and in situ steps at the same time. We still eliminate the first three in situ
steps and the last in situ step to assure in situ metrics are collected in the
steady state where consistent behavior is observed across in situ steps.

6.3. In situ step characterization over component placements

We examine each in situ step over different placements of in situ tasks.
Fig. 14 illustrates the time spent in each stage on both the simulation and
the analysis side at stride 1000. Since the practical workflow satisfies
dependency constraints within an in situ step and across the aforemen-
tioned stages, the behavior is observed to be approximately stable as
expected in the steady state regime. The results are shown at stride 1000
only due to lack of space, but we note that the consistency is present for
every given stride. This experiment confirms the applicability of our
proposed in situ metrics. In addition, the in transit scheme appears to
result in less bursty behavior in terms of execution compared to the
helper-core scenario. The fluctuations observed when using helper-core
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Fig. 14. Execution time per in situ step for each component with the helper-core
and in transit placement. The Practical Simulation stages are on the left and the
Analyzer stages are on the right (lower is better).

are due to resource contentions between co-located applications.
6.4. Makespan with different component placements

In Section 5.5, we have confirmed the assumption of consistency
across steps and thus, our in situ metric, for the synthetic scenario and for
one component placement. Here, we further estimate the Makespan from
the non-overlapped step 6. based on Eq. (13) using different component
placements. In terms of execution scenarios, an in situ run is classified by
the Idle Simulation and the Idle Analyzer in Section 4.1. In this experi-
ment, we are able to determine which range of strides leads to which
scenario as shown in Fig. 15. We define the equilibrium point as the
inflexion point where the transition from Idle Simulation to Idle Analyzer
happens (i.e., the equilibrium point corresponds to a perfect execution
with zero idle time).

Fig. 15 compares the Makespan between the helper-core and in transit
placement. At first glance, the estimated Makespan is close to the
measured Makespan in both scenarios. The equilibrium point happens at
stride 2000 to stride 3000 in the in transit scheme, whereas the equi-
librium point of the helper-core placement occurs at larger stride (from
stride 3000 to stride 4000). This finding confirms that the in transit
configuration allows executing more frequent analyses at better effi-
ciency than the helper-core does. In the Idle Analyzer case, there is no big
difference in Makespan between the helper-core and the in transit case.
Another way to state this is that component placement has more
importance in the Idle Simulation scenario, which corresponds to the case
when the analytics are performed at high frequency. Although the
experiment is conducted on a single simulation coupled with an in situ
analysis task, the trend observed here sets the foundation for scaling up
to many simulations in the context of ensembles workflows.
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6.5. Resource usage efficiency over component placements

As discussed in Section 5.4, evaluating the coupling performance of
different component placements using the idle time in an in situ step is
challenging due to the involvement of multiple concurrent tasks
competing for computing resources and due to the large parameter space
for each component. In this section, we leverage the efficiency metric E,
Eq. (14), to determine how efficient an in situ run is with respect to a
given configuration. Fig. 16 shows this efficiency value with different
strides and over the helper-core and in transit placements. The compari-
son between two given in situ runs becomes straightforward using E as
the indicator. The higher the E value is, the more efficient the in situ
execution is, in terms of resource usage. The helper-core case has the best
resource usage efficiency (~100%) at larger stride, or lower frequency
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Fig. 16. Resource usage efficiency of the practical workflow over a variety of
strides (higher is better).
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of the Analyzer compared to the in transit case. Resource contention
between co-located applications in the helper-core placement results in
the efficiency degradation when performing the analytics at high fre-
quency. This finding introduces a trade-off between computing resource
cost and the analysis frequency in designing an in situ system. Finally, as
expected, a run with a stride close to the equilibrium point gives a better
resource usage efficiency.

7. Conclusions

In this study, we explored the challenges of evaluating next-
generation in situ workflows. We have provided an analysis of in situ
workflows by identifying a set of metrics that should be monitored to
assess the performance of these workflows on HPC architectures. We
have designed lightweight metric for the makespan and the computa-
tional efficiency of the workflow, based on behavior consistency across
in situ steps under our constrained in situ execution model. We have
validated the usefulness of these proposed metrics with a set of experi-
ments using an in situ MD synthetic workflow. By using a realistic MD
practical workflow, we have compared two different placements for the
workflow components, a helper-core placement and an in transit place-
ment in which the DTL server is co-located with different components.
Under no resource constraint, by allocating dedicated nodes for the in
transit analytics, the in situ coupling is allowed to perform the analysis
more frequently. On the other hand, running the helper-core placement
at the equilibrium point is targeted as the ideal scenario for optimizing
resource utilization if those are limited.

Future work will study different models where the constraints are
relaxed, for example where the workflow allows to buffer multiple
frames in memory instead of one currently. We also plan to generalize
the proposed framework’s constraints to support more communication
protocols, i.e., message-driven dataflow, multiple data transport paths,
or another data transport layer. Another promising research line is to
extend our theoretical framework to take into account multiple analysis
methods, which is often the case for MD trajectory data. In this case, the
time taken by the analysis could vary depending on the method used.
Finally, arising from the necessity of more complex workflows to serve
various in situ analysis requirements, performance evaluation of in situ
workflows should be analyzed in the setting of an ensemble of
workflows.
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