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Abstract
Sea-level rise (SLR) is projected to increase dramatically with profound effects on tidal 
marshes, yet uncertainty stemming from underlying climate change scenarios, model spec-
ifications, and temporal scale is a major hurdle to conservation planning. We compared 
likely effects of SLR for 2030 and 2050 under static inundation and dynamic response 
model predictions for the northeastern USA, where tidal marshes experience elevated rates 
of SLR compared to global averages. Static inundation and dynamic response models of 
SLR, which differ in how they incorporate uncertainty associated with local processes 
and biophysical feedbacks, have historically been applied at different scales, and gener-
ally differ in spatial and temporal predictions of marsh vulnerability. We used population 
estimates for five tidal marsh bird species of conservation concern to predict patterns of 
population change for each SLR model and examined how uncertainty affects planning 
decisions for these species. Static inundation and dynamic response models differed mark-
edly in their predictions for 2030, yet both models predicted with reasonable certainty that 
only 10–15% of tidal marsh in northeastern USA is likely (> 66% chance; as defined by the 
IPCC) to remain by 2050. Most (85–90%) of the marsh is predicted to be as likely as not 
(33–66% chance) to disappear, representing high potential for the loss of habitat for > 85% 
of current populations of four of the five bird species. We propose a planning approach 
using guidelines established by the IPCC to categorize uncertainty associated with marsh 
loss due to SLR and apply it to prioritize key sites for preservation.
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Introduction

Although the consequences of climate change are broadly understood, there is much uncer-
tainty as to how conditions will change. This uncertainty represents a major challenge to 
the development of effective adaptation strategies, particularly at regional scales where 
coordinating effort across agencies and management boundaries is necessary for the pres-
ervation of species. Conservation planning to support long-term management targets, for 
example, would ideally prioritize not only land that is important now, but also land that 
will remain or become important in the future (e.g., Carroll et al. 2010; Veloz et al. 2013; 
Zhu et al. 2015). Translating this uncertainty to practical planning decisions is an ongo-
ing challenge for conservation during rapid climate change. Incorporating an approach to 
quantify uncertainty that is derived probabilistically from model results, coupled with con-
sistent terminology based on the likelihood of the outcome, such as that recommended by 
the Intergovernmental Panel on Climate Change (IPCC; Mastrandrea et al. 2011) can begin 
to address these challenges..

Coastal environments cover only 9% of the Earth’s land surface yet support over 25% 
of the human population (Kummu et al. 2016). By sequestering carbon, filtering sediment 
and pollutants, buffering against storms, supporting fisheries, and providing recreational 
opportunities (Gedan et al. 2009), coastal environments are among the most economically 
important yet vulnerable ecosystems (Barbier et  al. 2011; Arkema et  al. 2013). Despite 
their importance, at least 25% of the world’s coastal wetlands have been lost through con-
version for human use (Mcleod et al. 2011) and much of the remaining area is vulnerable 
to sea-level rise (SLR). Tidal marshes in particular, are dynamic coastal ecosystems that 
are already vulnerable due to their frequent proximity to human development, and their 
persistence in the face of SLR depends on a suite of biological and physical processes 
(French 2006; Kirwan and Murray 2007). Historically, these marshes have avoided inunda-
tion or transition to either open water or mud flats by building vertically at rates similar to, 
or exceeding SLR (Cahoon et al. 2006; French 2006) or by migrating inland (Smith 2013). 
Historical responses to SLR are an imperfect model for the future, however, because fac-
tors such as climate, water quality, sediment delivery rates, primary productivity, and space 
for marsh migration continue to change with human activity (Parris et  al. 2012; Kirwan 
and Megonigal 2013).

Eastern North America contains over one-third of the world’s tidal marsh, which sup-
port a number of vertebrate endemics (Greenberg and Maldonado 2006), and provide 
many additional species, particularly birds, with important habitat throughout the year 
(Correll et  al. 2016). SLR is projected to increase dramatically with profound effects on 
tidal marshes, yet uncertainty regarding the magnitude (McGranahan et al. 2007; Nicholls 
and Cazenave 2010; Sallenger et al. 2012; Kirwan and Megonigal 2013; Kopp et al. 2014; 
Sweet et al. 2017a, b)—due to differences between carbon emissions scenarios (e.g. rep-
resentative concentration pathways, RCP; van Vuuren et  al. 2011), differences in model 
assumptions (e.g., static vs. dynamic process-based models; Hawkins and Sutton 2009; 
Kirwan et al. 2016), and a variety of oceanic and atmospheric dynamics (e.g. Sweet et al. 
2017b and references therein)—is a major hurdle to conservation planning and the devel-
opment of effective adaptation strategies (Nicholls and Cazenave 2010).

Static inundation or ‘bathtub’ models have dominated larger-scale assessments of marsh 
vulnerability (e.g. Nicholls 2004; Cooper et al. 2008) as they can be developed rapidly and 
inexpensively with relatively few data sources (i.e., elevation, proximity to shoreline, and 
SLR predictions). Static models hold coastal topography constant as sea level increases 
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and potentially inundated areas can be identified for a range of SLR predictions to assess 
vulnerability and potential impacts (Mcleod et al. 2010). Static models generally assume 
that marshes do not respond to increased rates of SLR through biophysical feedback that 
accelerates soil building, or through landward marsh migration. Most static models predict 
significant or catastrophic marsh losses this century (e.g., Cooper et al. 2008; Craft et al. 
2009), but there are concerns that they underestimate marsh resilience (e.g., Kirwan et al. 
2016). Dynamic models generally have been restricted to smaller spatial scales because 
they incorporate biophysical feedbacks that may strongly depend on local conditions (Pas-
seri et al. 2015) and require data derived from field measurements (e.g., Morris et al. 2002; 
Kirwan and Guntenspergen 2010; but see Schuerch et  al. 2018 for a global example). 
Dynamic models generally predict smaller marsh losses than static models but may overes-
timate marsh resilience to SLR because they often do not fully consider cumulative effects 
of historical subsurface processes (Parkinson et al. 2017). Despite these well described dif-
ferences, we know little about how uncertainty and differences between static and dynamic 
models may influence the prioritization of areas for conservation. A common way to assess 
the risks associated with SLR is to generate a suite of plausible scenarios that incorporate 
a range of possible futures based on different SLR scenarios (Moss et al. 2010; Parris et al. 
2012). This approach, however, may fail to provide sufficient guidance for managers and 
policy makers because the likelihood of each scenario is unknown (Kerr 2011), and is fur-
ther complicated by the fact that comparisons between dynamic and static responses are 
lacking.

We addressed this guidance issue using existing static and dynamic models, developed 
under multiple emissions scenarios, to evaluate potential effects of SLR on key conserva-
tion targets in tidal marshes of the northeastern USA. We determined the temporal and spa-
tial patterns of future habitat loss for five high priority avian conservation targets, inferred 
the resulting potential for population change, and examined how uncertainty affects the 
practical planning decisions that should be made for these species. We used our results 
to identify and prioritize key sites for preservation and to recommend how uncertainty 
(explicitly quantified as a probabilistic estimate of an outcome) in the loss or dynamic 
response of tidal marshes to SLR can be integrated into planning decision.

Methods

We used an existing probabilistic modeling framework designed by Lentz et  al. (2015) 
to explore varying SLR impacts across the region (https​://woods​hole.er.usgs.gov/proje​ct-
pages​/coast​al_respo​nse/data.html) on the area of 8405 saltmarsh patches in the northeast-
ern USA (Fig. 1). Saltmarsh patches between Maine and Virginia were defined by creating 
a 50 meter buffer around all Estuarine Intertidal Emergent Wetland polygons (Cowardin 
et al. 1979) identified in the National Wetlands Inventory (USFWS 2010) following Wiest 
et al. (2016). Polygons with buffers that intersected were merged, as distances ≤ 100 meters 
between saltmarsh habitats were not perceived as a barrier to movement based on estimates 
of home range size and habitat use for Nelson’s (Ammospiza nelsoni) and saltmarsh (A. 
caudacuta) sparrows (Shriver et al. 2010), two priority species for saltmarsh conservation 
in the region.

The probabilistic modeling framework of Lentz et al. (2015) was developed for a sea-
level-rise decision-support model that considers two coastal response types—a static 
response that is driven by inundation and a response that also considers dynamic evolution 

https://woodshole.er.usgs.gov/project-pages/coastal_response/data.html
https://woodshole.er.usgs.gov/project-pages/coastal_response/data.html
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of the coastal landscape. The static and dynamic response layers of this framework rely 
on a Bayesian network to predict land elevation with respect to projected mean high water 
in 2030 and 2050 based on relative SLR estimates from the IPCC’s RCP scenarios 4.5 

Fig. 1   A comparison of tidal marsh area predicted to survive sea level rise from dynamic (D; green bars) 
and static (S; gray bars) models. Bars represent the percent of 2010 tidal marsh area in each of 8 sub-
regions in northeastern North America (after Wiest et al. 2016) predicted to be likely or very likely (> 66% 
chance) to adapt to SLR and avoid inundation (dynamic model) or to remain above sea level (static model) 
in 2050. Location of study area in North America indicated by box on map in top left corner
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and 8.5 (Stocker et al. 2013). Estimates of SLR are coupled with vertical land movement 
rates due to glacial isostatic adjustment, tectonics, and other non-climatic effects such as 
groundwater withdrawal and sediment compaction, and current elevation data (Lentz et al. 
2015). The resulting SLR response layers differ from many static inundation models by 
integrating uncertainty of inputs across a given decade, and including several RCP scenar-
ios rather than developing separate estimates for each scenario. In the Lentz et al. (2015) 
model, predicted adjusted elevations are discretized into five elevation ranges (− 10 to − 
1, − 1 to 0, 0 to 1, 1 to 5, and 5 to 10 m) and the probability associated with the predicted 
elevation at each location is provided as a separate layer to quantify uncertainty. A third 
data layer describes the likelihood that the dynamic response of the coastal landscape will 
be sufficient to avoid inundation at a given level of SLR. This last portion of the model 
used a combination of published research and expert elicitation to identify SLR thresholds 
for land conversion for six land cover types (subaqueous, marsh, beach, rocky, forest, and 
developed) within each elevational range and time period (Lentz et al. 2015 and references 
therein). For land classified as marsh, the likelihood of a dynamic response refers to the 
possibility that sea-level rise rate, suspended-sediment concentrations, vertical accretion 
rate, and (or) tidal range in an area can allow marshes to persist in light of predicted water-
level increases.

For our analysis, we reclassified the adjusted elevation layers (hereafter ‘static layers’) 
for 2030 and 2050 from the initial five elevation ranges into a binary raster in which pixels 
are predicted to be above or below sea level (given no dynamic response). We also reclassi-
fied the dynamic probability layers (hereafter ‘dynamic layers’) for 2030 and 2050 from the 
continuous probability of avoiding inundation given by Lentz et al. (2015) into categories 
that match the standard terminology used to refer to likelihoods by the IPCC (Mastrandrea 
et al. 2011). Using the IPCC’s uncertainty terminology, where “unlikely” implies a < 33% 
chance of dynamically responding (or avoiding inundation), “as likely as not” a 33–66% 
chance, “likely” a 66–90% chance, and “very likely” a > 90% chance, enables communica-
tion and decision-making to be based on calibrated language in which clear categories have 
been identified and risks can be evaluated.

We extracted estimates of adjusted elevation and likelihood of a dynamic response to 
sea level rise by 2030 and 2050 using the “extract by mask” tool in ArcGIS 10.4 (ESRI 
2016) with the layer of 8405 saltmarsh patches (Wiest et al. 2016) as a mask. This proce-
dure provided static and dynamic inundation predictions for areas corresponding to 8129 
(97%) saltmarsh patches. We classified the remaining 276 patches (< 0.08% of the original 
saltmarsh area) that lacked clear relationships to data in the SLR layers due to differences 
in land cover classifications between models, as having insufficient data.

For each layer, we estimated the percent of tidal marsh remaining by 2030 and 2050 
using two approaches that differ in how they address the potential loss of information when 
using irregularly shaped polygons to extract data from a raster comprising square pixels. 
First, we assumed that the pixel values extracted from the raster layers were representa-
tive of the polygon as a whole. For each raster, we multiplied the proportion of pixels in 
each class by the original area of the saltmarsh patch. For the static model, this resulted in 
an estimate of the area of tidal marsh expected to be submerged or remain unflooded tidal 
marsh. For the dynamic model, we obtained an estimate of the area of each patch with a 
given chance of avoiding inundation based on the IPCC likelihood categories. Second, we 
used only the area of the pixels extracted by the mask to estimate the proportion of the 
entire area that is predicted to fall into a given category. Both approaches produced similar 
results (Supplementary Information; Table S1) and we present only those based on the first 
here.
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For each layer and each decade, we quantified the potential effects of future SLR on the 
populations of five bird species—clapper rail (Rallus crepitans), eastern willet (Tringa sem-
ipalmata semipalmata), Acadian Nelson’s sparrow (Ammospiza nelsoni subvirgatus), salt-
marsh sparrow (A. caudacuta), and seaside sparrow (A. maritima). These populations are 
of particular conservation interest because they largely or entirely breed in tidal marshes. 
Population trajectories vary from annual declines of 9% or more and projected extinction 
within the next few decades, to current stability (Correll et al. 2017; Field et al. 2017a, b, 
2018; Roberts et al. 2019). Population estimates for each of the five species were derived 
from a comprehensive regional marsh bird survey in 2011 and 2012 (Wiest et al. 2016). 
A Bayesian network model incorporated a suite of environmental covariates and survey 
results to estimate population density within 8405 saltmarsh patches throughout the region 
(Wiest et al. 2019). Density estimates indicated that clapper rails, eastern willets and sea-
side sparrows had population sizes > 100,000 in the northeastern USA, whereas saltmarsh 
(< 60,000) and Acadian Nelson’s (< 7000) Sparrows had much lower population sizes in 
the region (Wiest et al. 2016, 2019). We predicted future population sizes for each species 
under the static model by multiplying the original density estimates for each patch by the 
proportion of the patch’s original area that is expected to remain above sea level by a given 
year, and then summing across patches. To estimate change assuming dynamic responses 
to SLR, we prorated the original density estimates for each patch based on the proportion 
of the original patch area classified as falling within each IPCC likelihood category.

To inform current planning that prepares for climate change and uncertainty associated 
with marsh loss due to SLR, information about the full range of possible consequences and 
associated probabilities is needed to support a risk management perspective. Risk is a func-
tion of probability and consequence and often information on the tails of the distribution 
of outcomes can be especially important (Mastrandrea et al. 2011). Therefore, we combine 
results from static and dynamic layers to identify patches that cannot be relied upon to sup-
port conservation goals because they are predicted to be completely inundated in the static 
layer and are as likely as not, or unlikely (< 66% likelihood) to respond dynamically to sea 
level rise and avoid inundation by 2030 or 2050 (Supplementary Information, Tables S2, 
S3). We also identify patches that are predicted both to remain unflooded in the static layer 
and are likely or very likely (≥ 66% likelihood) to respond dynamically and avoid inunda-
tion by these dates (Supplementary Information, Tables S2, S3). These locations provide a 
starting point for conservation planning in the region because they have a high likelihood 
to have value in both the short- and long-term, and can then be prioritized to maximize rep-
resentation of conservation benefits relative to costs.

Results

Regardless of whether we assume static inundation or a dynamic response to SLR, dra-
matic declines in the area of tidal marsh would not be surprising (Table 1). The static out-
comes predicted almost half the salt marsh area in the northeastern USA is likely to be 
underwater by 2030 and ~ 90% is likely to be inundated by 2050 (Table 1). Uncertainty 
in the likelihood of a dynamic response of tidal marsh to SLR was high and differed little 
between 2030 and 2050. Although the fate of most marsh could not be predicted with high 
confidence, our best estimates suggest that only ~ 15% of the current area is likely or very 
likely to adapt to SLR and remain tidal marsh (Table 1).



437Biodiversity and Conservation (2021) 30:431–443	

1 3

Substantial reductions in the population sizes of all five tidal marsh specialist birds 
are predicted, under both static and dynamic outcomes (Fig. 2). Four of the five species 
are projected to be at risk of losses of habitat that supports > 85% of their current popu-
lations under both scenarios, with Acadian Nelson’s sparrow faring only slightly better. 
Outcomes differ slightly in the severity of predicted losses, with the dynamic responses 
showing somewhat more optimistic projections for all species except Acadian Nelson’s 

Table 1   Percentage of northeastern North American tidal marsh present in 2010 that is predicted to remain 
above sea level (a.s.l.) with a static model or adapt to sea level rise (SLR) with a dynamic model in 2030 
and 2050

See methods for procedure used to estimate area and description of insufficient data. See Lentz et al. (2016) 
for a detailed description of the models

Model Predictions 2030 (%) 2050 (%)

Static
Elevation predicted to be greater than 0 meters a.s.l. 51.05 10.52
Insufficient data 0.08 0.08

Dynamic
Unlikely to adapt to SLR increases (0–33%) 0.06 0.07
As likely as not to adapt to SLR increases (33–66%) 84.88 85.34
Likely to adapt to SLR increases (66–90%) 14.73 14.28
Very likely to adapt to SLR increases (90–100%) 0.25 0.23
Insufficient data 0.08 0.08

Fig. 2   Percent of 2010 tidal marsh area (AREA) and population estimates for 5 tidal marsh birds (CLRA: 
Clapper Rail; NESP: Acadian Nelson’s Sparrow; SALS: Saltmarsh Sparrow; SESP: Seaside Sparrow; and 
WILL: Eastern Willet) predicted to be likely or very likely (> 66% chance) to adapt to SLR and avoid inun-
dation (dynamic model, green) or to remain above sea level (static model, gray) in 2050. Bird silhouettes 
from www.allab​outbi​rds.org © Cornell Lab of Ornithology, used with permission. Marsh image from https​
://www.goodf​reeph​otos.com

http://www.allaboutbirds.org
https://www.goodfreephotos.com
https://www.goodfreephotos.com
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sparrow. Differences between static and dynamic predictions, however, are small, rang-
ing from 2.7 to 6.0%.

Outcomes differed in the spatial distribution of tidal marsh predicted to be lost in the 
Northeast by 2050 (Fig.  1). In general, the dynamic response outcomes suggest that a 
greater proportion of tidal marshes from coastal New Jersey south to the Eastern Chesa-
peake Bay are likely to adapt than are predicted to remain by the static model. In contrast, 
dynamic response outcomes suggest that less marsh in coastal Maine, southern New Eng-
land, and Long Island is likely to adapt than is predicted to remain under the static model, 
indicating that static inundation outcomes may overestimate the adaptability of tidal 
marshes in these areas. In all regions, however, both models project that only one-third to 
< 10% of the current area is likely to remain.

Discussion

SLR predictions are sensitive to underlying climate change scenarios, model specifications, 
and temporal scale (Hawkins and Sutton 2009; Stocker et al. 2013), all of which generate 
uncertainty in future projections. Potential changes, however, are sufficiently severe that it 
is important that we find ways to identify conservation and management decisions with a 
high chance of success across a range of future scenarios, despite uncertainty.

The use of standardized terminology to describe uncertainty is also expected to assist 
decision makers by eliminating confusion and identifying the level of risk associated 
with climate change outcomes. For this reason, we have followed IPCC guidelines in 
which a statement that an outcome is “likely” means that the probability of this outcome 
exceeds ≥ 66% probability. When a prediction falls within this range, it also implies that 
all alternative outcomes are “unlikely” (0–33% probability). Focusing on the upper and 
lower probabilities of an outcome when prioritizing conservation action does not suggest 
that outcomes with a 33–66% probability (as likely as not) are unimportant, but simply that 
they may be better suited for later stages of planning.

The static and dynamic models examined here differed markedly in their predictions for 
2030, but both predicted that there is only 10–15% of current tidal marsh in the northeast-
ern US that is likely to remain by 2050 (Lentz et al. 2016; Table 1). These projected marsh 
losses correspond to the disappearance of breeding habitat for over 75% of the current pop-
ulations of each specialist marsh bird species, suggesting potential for severe impacts on 
those that currently have stable populations (e.g., willet) as well as those that are already 
considered globally endangered (e.g., saltmarsh sparrow).

In the face of potentially catastrophic losses of tidal marsh in the Northeastern USA, 
where availability of land to protect is limited and unpredictable (Field et  al. 2017a, b), 
we need to account for the uncertainty associated with available conservation options. Our 
models suggest that, although there is much marsh that might persist, there is only about 
15%, both regionally and within most sub-regions, that we can be confident will remain 
potential habitat for tidal marsh birds by 2050. Much of the remaining area may respond 
dynamically to SLR, however, it is just as likely that it will not. Notably, we found that 
less marsh in northern parts of the region is likely to respond dynamically and remain 
tidal marsh than is predicted to remain unflooded in the static model, while tidal marshes 
from coastal New Jersey south to the Eastern Chesapeake Bay are more likely to adapt 
and remain marsh habitat when compared to projections from the static model. The lack 
of consistent pattern throughout the Northeast may reflect sub-regional differences in 
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sediment load, size of patches, slope of adjacent land cover types or tidal range, and will 
require additional investigation and consideration of local factors. Another consideration is 
the existing proportion of high marsh versus low marsh across the region and how changes 
in the relative proportions and composition of tidal marsh may affect rates of dynamic 
response to SLR. Given this situation, planning decisions require a precautionary approach 
with attention focused on protecting those areas most likely to persist over the long term.

We propose the following planning approach based on the likelihood an event will occur 
to address the uncertainty associated with marsh loss due to SLR. We also suggest that 
the approach to communicating risk outlined by the IPCC (Mastrandrea et al. 2011), and 
exemplified by this case study, will help ensure consistent messaging about the probability 
of future outcomes when working with groups involved in conservation planning:

1.	 Identify areas of overlap that are predicted to be inundated in static models and unlikely 
or as likely as not (< 66% chance) to adapt based on dynamic models, and exclude those 
from initial consideration (Tables S2, S3).

2.	 Prioritize remaining patches to maximize representation of conservation benefits relative 
to costs based on current conditions (e.g., Klingbeil et al. 2018).

3.	 Identify areas of overlap with those predicted to: (a) remain above sea level in static 
models and (b) likely or very likely (> 66% chance) to adapt in dynamic models (Tables 
S2, S3). Prioritize the best of these sites based on the results from (2) because they have 
the highest probability of being valuable in both the short- and long-term. Sites in this 
group that are not ranked high in (2) should be evaluated to determine whether their 
value could be increased via management.

4.	 Prioritize next, based on the ranking in (2), those sites that are predicted to be inundated 
in static models but likely or very likely (> 66%) to adapt in dynamic models.

5.	 Finally, for areas identified as being as likely as not (33–66% chance) to adapt in dynamic 
models, prioritize based on (2), and focus work to improve predictions on those sites that 
are the highest priorities. The best of these sites are potentially also targets for manage-
ment efforts to improve the chance of long-term persistence.

In order to predict potential declines in bird populations due to SLR, our approach relies 
on the assumption that populations will respond linearly to loss of habitat and does not 
explicitly consider differences in the quality of remaining habitat. These assumptions may 
overestimate the resiliency of populations to SLR by not accounting for changes in demo-
graphic rates, food availability, predation, or other factors that regulate persistence of tidal 
marsh bird populations. Alternatively, they may underestimate the ability of species to 
adapt, although there is little evidence that this will occur in any of the target species over 
the timeframes being discussed. While our approach may be a simplification, we expect our 
estimates to be conservative relative to alternatives that account for additional processes 
associated with the persistence of future populations undergoing habitat loss, but for which 
sufficient data currently are lacking. An additional complication is that fewer than 10% of 
saltmarsh patches shared similar predictions for the entire patch area: 328 were predicted to 
be either completely inundated or unlikely to respond dynamically, and 300 were predicted 
to remain above sea level or likely to respond dynamically (Tables A2, A3). This complica-
tion is partially due to our use of ecologically defined patches rather than uniform grid cells 
or hexagons, and models applied at different spatial scales may provide further insights. 
Ultimately, spatial considerations such as these, as well as other important considerations 
related to patch size, connectivity of patches, and the role of refugia, will need to be built 
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into any prioritization of conservation actions and tailored to reflect the species and goals 
of conservation efforts (Warman et al. 2004).

Management and policy implementation benefits from information that is expected to 
be robust over time. This is problematic when future projections vary or change as a func-
tion of time, as is true in many cases where climate change will cause a progressive shift 
from one land cover type to another. Identifying and prioritizing areas that are both cur-
rently important, and predicted to be likely to remain stable over time regardless of future 
scenario or modelling approaches, are perhaps the best way to protect holdout populations 
(sensu Hannah et al. 2014). Clearly identifying sites that are have a low likelihood to sup-
port conservation goals under any circumstance may also help avoid situations where local 
interests might distort global priorities (Klingbeil et  al. 2018). Finally, when available, 
folding information on the likelihood of a dynamic response to climate change into plan-
ning decisions might help distinguish sites where management has the greatest opportunity 
to be effective.
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