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ABSTRACT

Group-level studies do not capture individual differences in network organization, an important prerequisite for understanding neural substrates shaping behavior and
for developing interventions in clinical conditions. Recent studies have employed ‘fingerprinting’ analyses on functional connectivity to identify subjects’ idiosyncratic
features. Here, we develop a complementary approach based on an edge-centric model of functional connectivity, which focuses on the co-fluctuations of edges.
We first show whole-brain edge functional connectivity (eFC) to be a robust substrate that improves identifiability over nodal FC (nFC) across different datasets
and parcellations. Next, we characterize subjects’ identifiability at different spatial scales, from single nodes to the level of functional systems and clusters using
k-means clustering. Across spatial scales, we find that heteromodal brain regions exhibit consistently greater identifiability than unimodal, sensorimotor, and limbic
regions. Lastly, we show that identifiability can be further improved by reconstructing eFC using specific subsets of its principal components. In summary, our results
highlight the utility of the edge-centric network model for capturing meaningful subject-specific features and sets the stage for future investigations into individual

differences using edge-centric models.

Introduction

Over the past several decades, the field of neuroimaging has
leveraged powerful computational methods to develop standardized,
population-level descriptions of brain morphology and functional or-
ganization (Glasser et al., 2016; Holmes et al., 1998). These approaches
have facilitated group-level and cross-sectional comparisons of brains
(Smith et al., 2015; Xia et al., 2018), enhancing our knowledge of the
functional and neuroanatomical underpinnings of cognition (Cole et al.,
2014; Crossley et al., 2013), brain development (Cao et al., 2014; Fair
et al., 2009), and neuropsychiatric disease (Fornito et al., 2015). How-
ever, these efforts have emphasized group-level effects at the expense of
individual brains, whose organization is personalized and idiosyncratic
(Cui et al., 2020; Laumann et al., 2015; Poldrack et al., 2015).

Recently, several important studies have begun to shift focus away
from group-level analyses and onto single subjects (Dubois and Adolphs,
2016; Finn et al., 2015). The aim of this line of research is to build
comprehensive maps of individuals’ brains (Gordon et al., 2017; 2018;
Laumann et al., 2015; Poldrack et al., 2015), with the hope that in-
clusion of personalized details will add clarity to brain organization,
brain-behavior relationships (Betzel et al., 2017; Huth et al., 2016; 2012;
Mirchi et al., 2019; Seitzman et al., 2019), and inform treatment of neu-
ropsychiatric disorders by helping design more efficacious and targeted
interventions (Demeter et al., 2020; Gratton et al., 2019).

One particular strand of this research focuses on mapping the fea-
tures of brain networks that are idiosyncratic to individuals. Like fin-
gerprints, these features are capable of distinguishing one person’s brain
from that of another (Finn et al., 2015; Horien et al., 2019a). Brain net-
work fingerprints serve as reliable substrates of individuals (Finn et al.,
2015; Kliemann et al., 2019) that are stable over time (Gratton et al.,
2018; Horien et al., 2019b; Jalbrzikowski et al., 2020a), across sub-
sets of FC data (Byrge and Kennedy, 2019), and across acquisition sites
(Bari et al., 2019). In addition, identifiable characteristics have shown
clinical diagnostic potential (Svaldi et al., 2019) and have proven useful
for the classification of individual behaviors and cognitive states (Salehi
et al., 2020; Yoo et al., 2019).

To date, most fingerprinting analyses have focused on features de-
rived from brain networks in which nodes represent positioned elec-
trodes (Cox et al., 2018) or brain regions (Amico and Goiii, 2018b; Finn
et al., 2015). Recently, we proposed an alternative model of brain con-
nectivity that focuses on interactivity among a network’s connections (or
edges) (Betzel et al., 2021; Esfahlani et al., 2020; Faskowitz et al., 2020;
Jo et al., 2020; Sporns et al., 2020). We refer to these patterns as edge
functional connectivity (eFC). Adopting an edge-centric perspective has
been fruitful in other scientific disciplines, e.g. in uncovering the over-
lapping community structure of complex biological and social networks
(Ahn et al., 2010; Evans and Lambiotte, 2009). Recent studies have
applied edge-centric methods in the form of “line graphs” (Evans and
Lambiotte, 2009) to anatomical networks of interregional white matter
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tracts (de Reus et al., 2014). Similarly, eFC has provided a new win-
dow into studying the organization of brains, including the overlapping
community structure (Faskowitz et al., 2020) and how participation of
functional systems vary across communities (Jo et al., 2020). However,
it remains unclear how eFC compares with traditional nodal functional
connectivity (nFC) in terms of its ability to convey individual-specific
information.

Here, we apply a novel edge-centric framework for investigating
functional brain networks in subject identification. To calculate eFC, we
use a procedure similar to that of calculating nFC. We start by standard-
izing (z-scoring) regional activity time series. nFC is usually computed as
a Pearson correlation - the temporal average of the element-wise prod-
uct of two standardized time series. Here, we omit the temporal av-
eraging procedure, resulting in an “edge time series” (Esfahlani et al.,
2020; Sporns et al., 2020a). The elements of an edge time series index
instantaneous co-fluctuations between pairs of nodes (edges); they ex-
press positive values when their activity deflects in the same direction
and negative when activity deflects oppositely. To calculate eFC, we
compute the correlation between pairs of edge time series, resulting in
an edge-by-edge matrix. Intuitively, if nFC reflects communication be-
tween two brain regions, the edge time series represent communication
patterns across time, and eFC represents similarity between different
patterns of communication (Faskowitz et al., 2020; Uddin, 2020).

In this study, we extend functional connectivity-based fingerprint-
ing to edge-centric networks. Using functional imaging data from two
independently acquired datasets (the Midnight Scan Club (Gordon et al.,
2017) and the Human Connectome Project (Van Essen et al., 2013); MSC
and HCP, respectively), we compare the performance of whole-brain
nFC and eFC on subject identification, demonstrating that with suffi-
cient amounts of data, eFC enables greater and more robust identifiabil-
ity than nFC. Next, we investigated the system- and node-level drivers
of the improved identifiability in eFC, focusing on system-specificity us-
ing a “leave-one-node-out” approach. We found nodes and edges as-
sociated with heteromodal brain systems to be the primary drivers of
subject identification. Finally, we tested whether it was possible to op-
timize identifiability by reconstructing eFC and nFC using a restricted
set of principal components. We found that reconstructed eFC signifi-
cantly outperformed that of reconstructed nFC in terms of its optimized
identifiability. Our work sets the stage for future studies to use eFC to
develop network-based biomarkers for tracking inter-individual differ-
ences in behavior, development, and disease diagnosis.

Results

In this report, we systematically evaluate eFC and nFC in terms of
differential identifiability and discuss their similarities and differences
at regional (node) and subsystems (group of nodes) levels. Throughout
this section, we analyze data from two high-quality independently ac-
quired datasets: the Midnight Scan Club (MSC; (Gordon et al., 2017;
Gratton et al., 2018)), which consists of ten participants scanned ten
times each, and 100 unrelated subjects scanned two times each from
the Human Connectome Project (HCP; (Van Essen et al., 2013)).

Identifiability using edge functional connectivity

Subject identification can be quantified using the measure “differ-
ential identifiability”, or I, ,, which is calculated as the mean within-
subject similarity minus the mean between-subject similarity of connec-
tivity matrices (Amico and Goii, 2018b). Existing subject identification
applications have relied on connectivity patterns derived from nFC and
thus the idiosyncratic characteristics of eFC remains unknown. In this
section we compare the identifiability of cortex-wide nFC and eFC and
its dependence on the amount of data available.

First, we compared cortex-wide eFC and nFC in terms of subject iden-
tifiability. Briefly, this entailed estimating nFC and eFC separately for
each of the 100 resting-state fMRI scans (10 subjects; 10 scans each)
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in the Midnight Scan Club dataset, and generating similarity matrices
for each connectivity modality as the Pearson correlation between the
upper triangle elements of subjects’ nFC or eFC matrices (Fig. 1le). We
then estimated differential identifiability from these similarity matrices
(Fig. 1f).

We found that eFC outperformed nFC, yielding greater values of
1,;; when using functional networks derived from the entire cerebral
cortex (Fig. 2a). Similar results were also found when using different
parcellations and in an independent dataset (Fig. S1). To visualize the
within- and between-subject similarity, we used multi-dimensional scal-
ing to project subjects and their scans into a two-dimensional space that
approximately preserves the pairwise distance relationships encoded in
the nFC and eFC similarity matrices (Fig. 2c-d). Therefore, the distance
between two scans on the MDS plot indicates the similarity measured
via non-linear dimensionality reduction. We calculated the accuracy of
each scan’s subject label against it’s K-nearest neighbors’ subject labels
using standardized Euclidean distance. We found no significant differ-
ences between mean accuracies using nFC and eFC (¢ — fest, p = 0.9786).
The subject label accuracy was calculated as the fraction of subjects in
the nine nearest points in the MDS space that match the subject label of
a scan.

In the previous analysis, we calculated eFC and nFC using approx-
imately 30 minutes of data (the duration of scan session in the MSC
dataset). Next, we tested whether subject identifiability was modulated
by scan length, i.e. whether the value of 1, varied as a function of
the amount of data available (Amico and Goni, 2018a; Bari et al., 2019).
To test this, we created shorter or longer “sessions” by either dividing
the existing runs into shorter, contiguous segments, or by concatenating
data from multiple scans to form longer sessions. We varied the duration
of artificial scan sessions in increments of 100 samples, starting with 100
and ending with 4000. This entire sampling procedure was repeated 100
times. We found that with fewer than 500 time points (approximately 20
minutes) I, was greater for nFC than eFC (p < 1070, ¢ — test); Fig. 2a.
However, at 800 time points (approximately 30 minutes), eFC began
to significantly outperform nFC (p < 107%; ¢ — test); Fig. 2b. We report
similar results using different parcellations and datasets (Fig. S1). Our
results using eFC are in line with previous research where identifiability
was increased with extended scan length using conventional nFC (Amico
and Goni, 2018b; Bari et al., 2019). Collectively, our findings indicate
that, given sufficient amounts of data (approximately 30 minutes), eFC
enables a more robust identification of subjects across sessions than nFC.

Regional drivers of cortex-wide eFC identifiability

In the previous section, we found that eFC improved cortex-wide
identifiability over nFC given a sufficient number of samples. In this
section, we wanted to pinpoint the brain regions that contributed to
this improvement. To do this, we use a “leave-one-node-out” method
to measure the relative impact that each brain region had on sub-
ject identification. We then summarized these results by grouping
nodes according to canonical brain systems and assessing, statisti-
cally, the contribution of each system to the overall identifiability. eFC
measures interactions between pairs of edges, each of which corre-
sponds to a pair of brain regions. To determine which brain regions
drive these effects, we iteratively removed each of the 200 brain re-
gions and recalculated eFC and I, using the remaining 199 re-
gions. We then compared this I,;,, value with the the value obtained
using the intact brain (all 200 regions). Here, regions were defined
based on a functional atlas (Schaefer et al., 2017), where resting-state
nFC was used to create functionally homogeneous parcels of approx-
imately equal sized. Information about the parcellation and atlas can
be found here: https://github.com/ThomasYeoLab/CBIG/tree/master/
stable_projects/brain_parcellation/Schaefer2018_LocalGlobal. We also
performed a similar analysis using edges instead of nodes, the results of
which are reported in Fig. S2. We found that, when removed, cortical ar-
eas located in the control and temporoparietal network regions yielded
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Fig. 1. Schematic of differential identifiability in eFC. All panels from this figure were generated using data from the Midnight Scan Club dataset. (a) To illustrate
the calculation of node and edge FC (nFC and eFC, respectively), consider four nodes: i, j, u, and v. nFC is defined as the pairwise correlation of regional activity. For
nodes i and j, nFC is calculated by first z-scoring each nodes’ time series, computing the element-wise product, and averaging these values (b and c; top). The same
operation could be carried out for nodes « and v. eFC is calculated by first generating co-fluctuation time series for pairs of nodes. This involves computing their
element-wise product, but omitting the averaging step (b; bottom). Each co-fluctuation time series is defined for a pair of nodes. eFC is calculated as the temporal
similarity (e.g. correlation, cosine similarity, etc.) of pairs of co-fluctuation time series (c; bottom). (d) To calculate differential identifiability, (e) we extract the upper
triangle elements of subjects’ eFC matrices and compute the spatial correlation of those elements, resulting in subject-by-subject similarity matrix. (f) Differential
identifiability, I, is calculated as the mean within-subject similarity minus the mean between-subject similarity.
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Fig. 2. Subject identification of eFC and nFC and effect of scan length. All panels from this figure were generated using data from the Midnight Scan Club dataset
with 200 node Schaefer parcellations. (a) I,;;,, of nFC and eFC for single scans (darker color) and for maximally concatenated scans (lighter color). (b) I,;;,, of eFC
and nFC by scan length. The black dotted line (800 time points) indicates the length of the time series in which eFC significantly outperforms nFC. Thick blue and
orange lines are the average I, ,s for 100 iterations and thin lines indicate each iteration’s I,;;;, by scan length. (c) Subjects’ scans plotted using multi-dimensional
scaling for nFC. (d) Subjects’ scans plotted using multi-dimensional scaling for eFC. Each subject’s scan corresponds to a color on the colorbar between panels c - d.
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Fig. 3. Nodal contribution to identifiability in eFC. (a) To assess regional contributions to I, ,, we calculated the change in I, after removing all edges incident
upon each of the N = 200 nodes. Here, we show the change in I,;,, projected onto the cortical surface. (b) We plotted the relative impact of each node’s removal
prior to eFC calculation on I,;,, by brain systems. (c) Excluding entire system’s nodes prior to eFC construction reveals that specific systems contribute positively
or negatively to I,,;, and that (d) compared to random removal of matching numbers of nodes, have significantly different results on 1, (Bonferroni-corrected
p-values; * = p < 0.003, ** = p < 0.0006, *** = p < 0.00006). For visualization we inverted the Al,;;, to —Al,,,, which quantifies the relative effect of a node’s removal
on the overall 1, .. If a removal of a node results in reduced 7, this node’s contribution to identifiability would be considered as ‘increasing I, .

decreased differential identifiability while removal of regions associated
with somatomotor, limbic, and visual networks increased identifiability
(Fig. 3a; note that for the sake of visualization, we invert the sign of
Alyr¢)- All nodes were also grouped according to their systems visual-
izing each node’s contribution to subject identifiability (Fig. 3b). Each
node’s contribution was measured as the 1,  without a particular node
minus the I,,,, calculated from all 200 nodes. For example, in Fig. 3b,
removing a single node from the control A system (represented as a sin-
gle yellow dot) prior to eFC construction would result in a reduction in
1,; s, which we plot here as having a “positive” effect on 1,;,,. In con-
trast, removing a single node from the limbic system yields an increase
in I, hence we plot it as a “negative” effect on /.

Next, we tested which system’s nodes significantly influenced iden-
tifiability compared to random removal of matching numbers of nodes
(Fig. 3c - d). Nodes were randomly reassigned to systems by randomly
permuting system labels (10,000 iterations). We found that when re-
moving nodes from the control A, control B, dorsal attention A, salience
ventral network B, and temporoparietal networks significantly decrease
identifiability than when randomly removing matching numbers of
nodes (thus, the relatively positive effect of these systems in panel
Fig. 3d). Also, we found that excluding nodes from limbic, somatomo-
tor A and B, and central and peripheral visual networks significantly
increase identifiability compared to randomly removing matching num-
bers of nodes (thus, the relative negative effect of these networks to 1,/ ,
in panel Fig. 3d).

In summary, we used a leave-one-node-out approach to uncover the
regional drivers of whole-brain identifiability. We found that the in-
clusion of frontoparietal and superior temporal regions help increase

identifiability, while somatomotor, limbic, and visual regions lead to re-
ductions in identifiability. These results on system-level identifiability
largely agree with prior research using conventional, node-centric func-
tional connectivity (Finn et al., 2015; Mueller et al., 2013; Pefia-Gomez
et al., 2018), localizing idiosyncrasies of brain network organization to
a specific subset of systems.

Identifiability of systems and clusters in eFC

In the previous sections, we demonstrated that given an fMRI scan
of sufficient duration eFC outperforms nFC in subject identification and
that heteromodal brain regions compared to unimodal, contribute to
higher identifiability. Here, we continued our investigation into the
drivers of cortex-wide identifiability, focusing on the contributions of
each functional brain system in eFC to identifiability. In this section, we
aim to answer the questions: How do edges from single systems con-
tribute to identifiability? How do clusters of edges perform in identifia-
bility?

To address these questions, we first estimated 1, , using only con-
nections associated with specific brain systems. In the case of nFC, this
means calculating identifiability using only edges whose stub nodes, the
two brain regions that constitute the end of an edge, are assigned to the
same brain system (Schaefer et al., 2017). We performed a similar op-
eration using eFC’s edge pairs subjected to the requirement that all four
nodes associated with the two edges that comprise an eFC entry were
assigned to the same system. In general, we found that system-specific
1, for eFC and nFC was highly correlated (R =0.9578, p < 1078;
Fig. 4b). We report the top and bottom five systems ordered by their
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Fig. 4. System- and cluster-level characteristics of edge functional connectivity (eFC). The within- versus between-subject similarity of eFC in the MSC dataset
shows variance of identifiability across systems and high correlation to the identifiability of systems using FC. Panel (a) shows the within subject minus between
subject similarity of eFC for systems for 10 rsfMRI scans from 10 subjects. Panel (b) shows the high correlation between identifiability in eFC and nFC by systems. (c)
1,7, was not correlated with the average values of eFC in each cluster but in (d) the standard deviation of eFC values of eFC in each cluster significantly correlated
with I, . The bootstrapped 95% confidence interval is shaded in grey. (e) The correlation of 16 canonical brain systems to I,;,, of eFC clusters. All analyses were

performed using the MSC 200 node parcellation.

I4;7- We found that when both nodes originated in temporoparietal,
control A, control B, default mode network B, and dorsal attention net-
work B, I,; rr tended to be larger (Fig. 4a). In contrast, we found that
when both nodes came from somatomotor B, salience ventral attention
A, control C, visual peripheral, and limbic networks, I, rr tended to
be smaller (Fig. 4a). We note that these single-system edge pairs (four
nodes originating from a single system) represent only a small fraction
(< 1%) of the eFC matrix and therefore, these results are limited to the
subset of matrix elements. Since the eFC incorporates a broader reper-

toire of edge pairs, some of which involve nodes originating in up to
four distinct systems, we further analyze eFC at its cluster-level.

To investigate I,;; ., of edge pairs whose nodes originate in different
systems or clusters, we clustered the eFC matrices using a standard k-
means algorithm using Euclidean distance, varying the number of clus-
ters from k = 2 to 20. To do so, we first performed an eigendecomposi-
tion of a group-averaged eFC matrix (the mean across all scans and sub-
jects; Fig. S4a-b). We retained the first 50 components, which were then
used as input to the k-means clustering algorithm (Fig. S4c). For a given
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number of clusters, k, we repeated the algorithm 250 times (Fig. S4d).
From these 250 estimates, we retained a single representative partition
as the one that was, on average, most similar to the others (Fig. S4e). The
result of this procedure was a partition of edges into non-overlapping
communities for every k. Note that this clustering procedure was car-
ried out using the group-average eFC matrix, which allows the cluster
correspondence across subjects.

We then related properties of the eFC matrix to identifiability. Specif-
ically, we used the group-representative clusters to partition edge-edge
connections into “blocks” that fall between pairs of communities (Fig.
S4f). Then, for each block we calculated the mean and variance of those
connections from all scans by expressing those weights as vectors. Next,
we computed the similarity between all pairs of subjects and scans us-
ing these weights, and from these similarity values calculated the iden-
tifiability of that block. These procedures left us with three measures
for each block: 1) The mean weight of edge-edge connections of each
scan’s matrix, 2) The standard deviation of edge-edge connections of
each scan’s matrix, 3) Identifiability using matrices using the Pearson
correlation of edge-edge connections across all scans. Finally, for each
of the k clusters, we calculated the mean of these three values over all
blocks in which that cluster participated (effectively the rows or columns
of the block matrix). We then plotted the relationship of identifiability
with the mean and standard deviation values in Fig. 4c-d. At each k, we
calculated the 7, rr for the constituent “blocks” of clusters (Fig. 4).

The average value of the mean and standard deviation of 1, for
all blocks involving each cluster was calculated as the representative
value for each cluster. This process resulted in a total of 209 points
(k =2 —20) in Fig. 4c-d. Specifically, we found that the mean eFC of a
cluster was not correlated with its 7; rr (R =0.0497, p = 0.4736; Fig. 4c).
On the other hand, the mean variability of eFC weights associated with a
given cluster was positively correlated with I, (R = 0.4822, p < 10~'2;
Fig. 4d). These blocks refer to the edge-edge weights within a cluster
when the eFC is reordered by the cluster labels (Fig. S4f).

Every block corresponds to a set of edge-edge connections (eFC) be-
tween edges assigned to different clusters. For each block, we calcu-
lated the mean and standard deviation of edge-edge connections, which
summarizes the central tendency and variability of the distribution. We
found that the mean weight of edge-edge connections did not have a
significant relationship with identifiability. However, the variability of
edge-edge connections within a block was significantly correlated with
higher subject identifiability. We also add the results from clusters of
nFC (k = 2 to 20) and their relationship with 1,;,, in Fig. S5. Unlike the
results derived using eFC (mean: R = 0.0497, p = 0.4736; standard devi-
ation: R = 0.4822, p < 10712), we found only weak correlation patterns
when applied to nFC (mean: R = 0.1392, p = 0.0444; standard deviation:
R = 0.1494, p = 0.0309).

What systems might be responsible for driving high levels of 1,;,,?
To address this question, we calculated how frequently each system was
represented within a given cluster, and, separately for each brain system,
calculated the correlation of this frequency with I,;,,. We found that
the presence of control, default mode A and B, dorsal attention, salience
ventral attention, and temporoparietal network nodes in a cluster is pos-
itively correlated with the cluster’s I,;;,,. In contrast, the presence of
nodes from limbic, default mode C, and sensorimotor systems (somato-
motor and visual) networks in clulsters is associated with reduced 1, Ir
(Fig. 4e).

Collectively, these results suggest that in eFC, higher order cognitive
systems, e.g. control, attention, and default mode networks, contribute
to enhance subject identifiability, while sensorimotor and limbic net-
works reduce identifiability. As in the previous section, these results are
in line with previous analyses using nFC demonstrating that similar sys-
tems and regions promote enhanced identifiability (Finn et al., 2015;
Mueller et al., 2013). Furthermore, our results suggest that the intrinsic
heterogeneity and variability of connection weights may be an underly-
ing factor explaining why certain systems are associated with higher or
lower levels of identifiability.
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Reconstructed eFC using PCA improves subject identifiability

Throughout this manuscript, we have focused on calculating 7/,
using the full eFC matrix or specific subsets of its edge-edge connec-
tions. As a final analysis, we wanted to test whether we could improve
differential identifiability by optimally reconstructing eFC using a rela-
tively small number of its principal components.

Previous research has used principal component analysis (PCA) of
nFC to enhance identifiability (Amico and Goni, 2018b; Bari et al.,
2019). Briefly, this procedure entails concatenating nFC (or in this
case, eFC) from all subjects and scans into a single matrix of scans-by-
elements, decomposing this matrix into its principal components (PCs),
and reconstructing eFC by gradually including more and more of its PCs
(in descending order of their eigenvalues). Prior-to and after each re-
construction, we calculated the 7,;,, with added PCs for each scan’s
eFC. Here, we apply this technique to both nFC and eFC from the MSC
dataset.

Using this reconstruction method, we found that 1,;,, could be im-
proved for both nFC and eFC. In both nFC and eFC, I, peaked at
k = 10 components (corresponding to the number of subjects) and eFC
outperformed nFC in subject identification (peak value of I;;,, = 35.27
compared to I,;,, = 21.17; Fig. 5b,e). These results were also found in
test-retest comparisons (Fig. S8). Why, then, do the number of PCs match
the number of subjects when optimizing for identifiability? First, we
tested the effect of scans per subject on the number of PCs for maxi-
mizing identifiability. When testing for two scans per subject with 100
subjects Fig. S7c and with randomly selected two scans per subject with
10 subjects Fig. S7a, the number of PCs required for optimizing iden-
tifiability matched the number of subjects in the dataset. These results
were replicated when we tested on the entire HCP dataset (N = 100, two
scans per subject; Fig. S7e) and when matching scan lengths of the HCP
dataset (2400 time points) to the MSC dataset (800 time points; Fig.
S7f).

Next, we investigated the PC coefficients that improve (PC = 1 — 10)
or reduce (PC = 11 — 100) identifiability. The first principal component
(PC1), mathematically, explains the largest variance of eFC values across
scans and subjects. PC1 was the only component whose coefficients were
uniformly positive (Fig. S9). The next nine coefficients (PC = 2 — 10) ex-
pressed “blocky” patterns that correspond to single subjects (Fig. S9),
while this pattern was absent in PC = 11 — 100 (Fig. S10, Fig. S11, Fig.
$12).

In agreement with previous reports (Amico and Goni, 2018b; Ra-
japandian et al., 2020), our results demonstrate that subject identifi-
cation can be improved by selectively retaining a subset of components
that match the number of subjects in the dataset. We show that the mag-
nitude of improvement is considerably greater using eFC compared to
nFC, suggesting that eFC may better capture personalized and idiosyn-
cratic features compared to nFC (Svaldi et al., 2019; 2018).

Discussion

Here, we applied subject identification to a novel, edge-centric
network representation of the human cerebral cortex. We found that
given sufficient scan length, eFC exhibits greater levels of differential
identifiability than nFC, an improvement that we linked to contribu-
tions made by brain regions in association cortex. Finally, we used
a dimension-reduction and reconstruction method to show that the
relative improvement in identifiability enjoyed by eFC could be fur-
ther enhanced, highlighting the potential for eFC to be used in future
studies.

Edge functional connectivity enhances subject identifiability
Central to this paper is the observation that eFC results in improved

subject identification relative to conventional node-based connectivity,
nFC. Whereas nFC measures the similarity of activity between two brain
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regions — a first-order correlation (Owen et al., 2019) — eFC measures
the similarity of co-fluctuations between edge pairs — a higher-order
correlation (Faskowitz et al., 2020). Understanding the higher-order or-
ganization of networks has proven useful in other disciplines (Ahn et al.,
2010; Evans and Lambiotte, 2009; Nepusz and Vicsek, 2012; Trinh and
Kwon, 2016). Here, adopting an edge-centric perspective allows us to
link higher-order brain network organization with subject specific fea-
tures.

We asked whether the eFC — a higher-order reconstruction — leads
to improved identification of subjects. That is, if we were to examine
the identifiability of whole brain nFC and eFC, would eFC allow us to
more accurately identify a single subject based on their connectivity
data? We also asked whether identification using eFC would be impacted
by scan length and amount of data. In general, we found that given
sufficient amounts of data (approximately 800 time points or 30 min),
eFC outperformed nFC in terms of identifiability. Also, we note that
1,;;; using eFC plateaus at a greater I,;,, with concatenated scans.
This result may reflect the higher-order nature of eFC. Effectively, eFC
measures correlations of correlations and requires more data than nFC to
obtain a stable estimate (Bourin and Bondon, 1998). Our results suggest
that as this estimate stabilizes, eFC may offer advantages over nFC in
terms of the extent to which it encodes individualized and idiosyncratic
features.

Next, we adopted the measure differential identifiability (Amico and
Goiii, 2018b) which is a summary metric of within-subject scan simi-
larity compared to between-subject scan similarities. While other self-
similarity metrics such as the Pearson correlation (Finn et al., 2015) and
12C2 Shou et al. (2013) have robustly identified subjects, I; rr also takes
into consideration the between-subject scan similarities (as does Dis-
criminability (Bridgeford et al., 2020)). Therefore, a scan that is highly
identifiable will not only be self-similar, but also be different from other
subjects’ scans. We note that based on how 1, is calculated, 1,;,,
may be biased by the number of scans per subject relative to the size of
the cohort. This renders direct comparisons and interpretations of 1,;,,
values across different datasets difficult. We add that benchmark tests
across 12C2, Discriminability, and 7, in the MSC 100 and HCP 100
node datasets have shown I,;,, to show the highest subject identifica-
tion (Fig. S13).

Our results were replicated across two datasets and two different
parcellations. These results suggest that higher-order network structure
carries important subject-specific information and that idiosyncratic fea-
tures of networks are hence better captured via an edge-centric view-
point. These observations both challenge and extend current knowl-
edge on subject identification and precision network mapping (Amico
and Goni, 2018b; Finn et al., 2015; Gordon et al., 2017; Gratton et al.,
2018; Svaldi et al., 2018). Our results further advocate for deep phe-
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notyping that requires more data from individuals. Future investiga-
tion is required for understanding the relationship between scan length
(amount of data) and higher-order brain representations, such as eFC
(Owen et al., 2019).

Heteromodal regions drive subject identification

Which brain regions drive the subject specificity of eFC? Are there
particular regions of the brain that make a subject more or less iden-
tifiable? To answer these questions, we analyzed subject identifiability
on three different scales. First, we analyzed each node’s contribution to
1,y using a “leave-one-node-out” approach. We found that when re-
moving certain nodes prior to constructing the eFC matrices, resulted in
significantly reduced or increased I,/ . In particular, nodes and edges
from higher-order systems lead to significant reductions in I, while
those associated with sensorimotor and limbic regions yielded increased
identifiability when removed prior to eFC construction. These findings
support earlier results with nFC in which brain regions of higher-order,
heteromodal function - including frontal, parietal, and temporal areas
- drive subject identification compared to unimodal, primary sensory
brain regions (Finn et al., 2015).

Why might heteromodal regions help enhance identification? One
possible explanation has to do with their polyfunctionality. Regions in
control and temporoparietal networks are thought to support a wide va-
riety of cognitive and psychological operations which are known to vary
across individuals. These same regions have been found to be highly
variable across subjects in terms of their functional connectivity patterns
(Mueller et al., 2013), the most evolutionarily recent parts of cortex to
have expanded (Sepulcre et al., 2010), and are among those that develop
latest in life and therefore likely to have been shaped by early-life ex-
periences (Elston et al., 2009). Combined, the observation that hetero-
modal brain regions drive individuals’ functional fingerprints is likely
a combined effect of cognitive, developmental, and evolutionary pro-
cesses. The precise mechanisms underlying these processes, however,
are unclear and should be the target of future investigations.

We then asked whether higher and lower 1, , is attributable to edge
pairs from a single canonical brain system (Schaefer et al., 2017). To ad-
dress this question, we estimated subjects’ eFC matrices separately from
edge pairs constructed using only one of sixteen brain systems. We found
that identifiability from single-system eFC and nFC were significantly
positively correlated and that edges forming stubs from heteromodal
brain regions tended to have higher I, ;. In other words, the cohesive
edge pairs within single systems are not likely to be driving eFC’s im-
proved I, , which is observed globally. Rather, it suggests that edges
falling between different brain networks may be driving the improved
1,7 in eFC compared to that of nFC.

Results from the “leave-one-node-out” and single-system 1, sug-
gest specific brain regions, namely those involved in higher-order brain
function, drive subject identification. These higher-order association re-
gions have been found to show the highest inter-subject variance in func-
tional connectivity studies (Miranda-Dominguez et al., 2014; Mueller
et al., 2013). The functional connectivity of associative brain regions
has been found to be evolutionarily recent (Zilles et al., 1988), involved
in intelligence (Choi et al., 2008; Cole et al., 2012), and when disturbed,
lead to neuropsychiatric disorders (Fornito and Harrison, 2012; Gre-
icius, 2008). Also, the identifiability of individuals in these higher-order
brain regions using nFC has reported to be predictive of fluid intelligence
(Amico and Goni, 2018b; Finn et al., 2015). Combined, our results show
that subject identifiability and higher-order functionalities both origi-
nate from heteromodal brain regions suggesting idiosyncrasy may arise
from such brain functions.

The number of vertices and connections in eFC and nFC matrices
diverge by orders of magnitude. To match their dimensionality and en-
sure a fairer comparison, we clustered nFC and eFC matrices into the
same number of communities. We found that the variance of edge-edge
connections was positively correlated with subject identification, while
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the average weight of those connections was not. However, we found
relatively weak relationships using group-averaged nFC matrices. Thus,
our results further suggest that variability of edge-edge connections in
eFC are an important feature for subject identifiability. We also found
that clusters containing edges whose stubs originated in heteromodal
systems resulted in greater levels of identifiability compared to clusters
composed of edges associated with unimodal brain systems. These re-
sults are in agreement with findings from nFC studies (Finn et al., 2015;
Pefia-Gomez et al., 2018) and with more recent studies involving clus-
ters of eFC (Jo et al., 2020). Our findings suggest that variability of
connection weights within systems and clusters may be an important
feature driving the efficacy of connectome fingerprinting and identifia-
bility.

For our analyses, we used the Yeo 17 functional brain networks
(Thomas Yeo et al., 2011) from the 100 and 200 node Schaefer par-
cellations (Schaefer et al., 2017). While the Schaefer atlas provides an
incrementally scalable parcellation from 100 to 1000 nodes, due to com-
putational limitations, the differential identifiability and it’s subsequent
analyses were not performed on the finer Schaefer parcellations (300,
400,..., 1000). Based on the results in Fig. S1, in both MSC and HCP
datasets, eFC was found more identifiable over nFC in the 100 and 200
node parcellations. However, the absolute difference in identifiability
diminished as the number of nodes increased from 100 to 200. Further
analysis is required to test subject identifiability in even finer parcella-
tions, which may ultimately lead to a plateau in 1,;,, for both eFC and
nFC. Potentially, a multimodal approach that includes both modalities
of functional brain network representations may be deployed for max-
imum subject identifiability. Further investigation is required to deter-
mine the effect of parcellations and the number of elements in measuring
identifiability.

Collectively, our findings suggest that subject identification is driven
by heteromodal regions from higher-order brain systems. These obser-
vations have clear implications for generating robust network biomark-
ers with subject-specific information, while reducing the amount of re-
quired data to its subset. More importantly, our results demonstrate that
clusters of eFC with high variance, which maybe undermined in group-
level analyses, may be useful in determining subject-specific charac-
teristics or in personalized medical treatment. Also, this study leaves
clues for future research on task-specific biomarkers to further spec-
ify the effect of tasks during fMRI acquisition on identifiability and
to maximize subject-specific characteristics without requiring scans of
prohibitive length, especially for vulnerable and clinical populations
(Laumann et al., 2015). Lastly, clustering eFC matrices showed potential
as a method of dimensionality reduction that is robust across subjects.
Future work is necessary to clarify clusters or subsets of edges that are
robust for group-level versus subject-level brain networks and answer
whether the inter-subject idiosyncrasies and brain’s eFC are modulated
by task states.

Principal Component Analysis highlights idiosyncrasies in eFC

Here, we followed recent nFC studies and applied PCA to eFC data,
effectively reducing eFC to a small set of principal components (Amico
and Goni, 2018b; Bari et al., 2019). We found that selectively recon-
structing eFC using only those components that explained the great-
est variance resulted in improved subject identifiability, far beyond the
improvements when an identical procedure was applied to nFC data.
This suggests that given the exactly same fMRI BOLD data, we can ex-
tract enhanced subject-level fingerprints from eFC data. We note that
other methods such as z-score normalization of cross-subject correlation
matrices also increase the absolute difference between within- versus
between-subject scan similarities (Finn et al., 2015). Further research
is necessary for determining strategies that maximize subject-specific
information from a given dataset.

Interestingly, the number of PCs required to optimize eFC’s subject
identifiability matched the number of subjects in two independently
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acquired datasets. These results parallel previous research using nFC
for subject identification (Amico and Goni, 2018b). Our results addi-
tionally show that this is robust despite a single subject having more
than one test-retest pair of rsfMRI scans. Why, then, do the number of
PCs match the number of subjects when optimizing for identifiability?
To address this question, we analyzed the coefficients of PCs that in-
crease (PC = 1 — 10) versus those that decrease (PC = 11 — 100) identifi-
ability. The first principal component, mathematically, should explain
the largest variance of eFC values across scans. This was the only PC
out of 100 that had a consistently positive value. Also, only PCs 2 to 10
showed significant ‘blockiness’ for specific subject’s scans. One possibil-
ity is that the first PC explains group-level eFC variance, the underlying
group-level eFC features, whereas PCs 2 to 10 tend to explain subject-
level eFC variance. We speculate that the number of blocky PCs are
N — 1 (N = number of subjects) since every subject can be identified
with N — 1 PCs via the process of elimination. These results provide fur-
ther evidence that eFC can be a valuable framework when investigating
and improving subject identifiability with linear transformation algo-
rithms such as PCA. However, future work is necessary to disseminate
the precise features of these PCs and alternative dimensionality reduc-
tion methods such as factor analysis or CCA (Child, 1990; Thompson,
1984) should be explored for I,;;, optimization.

Future directions

Our results present exciting possibilities for future studies. Here, we
used a previously-defined measure of identifiability. However, this mea-
sure can be misleading in some cases. For instance, I,;; -, can still take on
high values if most subjects exhibit high levels of self-similarity, even if
the remaining subjects exhibit poor self-similarity (Abbas et al., 2020a;
2020b; Amico and Goni, 2018b; Jalbrzikowski et al., 2020a). Future
work should investigate alternative measures for quantifying the perfor-
mance of subject identification procedures including image intra-class
correlation (I2C2) coefficients (Shou et al., 2013) and Discriminability
(Bridgeford et al., 2020). Additionally, future work should explore mul-
tivariate approaches for subject identification (Yoo et al., 2019).

Questions on the origins of identifiability by tracking its changes
across development and phylogeny should also be uncovered. Regions
with high levels of identifiability exhibit pronounced cross-species dif-
ferences (Xu et al., 2020), are consistently idiosyncratic across the
human life span (Jalbrzikowski et al., 2020b), genetically influenced
(Demeter et al., 2020), and highly identifiable in rat animal models
(Bergmann et al., 2020). Understanding the origins of identifiability and
connectivity-based idiosyncrasy could help inform our understanding of
psychopathology, brain evolution, and both development and aging.

Applications of machine learning techniques (Demeter et al., 2020),
combining various imaging modalities (Kumar et al., 2018), and in-
creasing the granularity of fMRI parcellations (Tipnis et al., 2020)
have been found effective in improving subject identifiability. Focus-
ing on only those neural elements that maximize subject idiosyncrasies
(Sripada et al., 2020) or selectively reconstructing eFC using high am-
plitude “event” time frames, which in previous work improved identi-
fiability of nFC (Esfahlani et al., 2020), may help reduce the amount
of data and computational resources required for improving identifi-
ability with eFC. Future investigation is required for maximizing the
uncovered idiosyncratic features from limited fMRI scan durations and
computational resources using eFC.

Limitations

An overarching limitation associated with eFC is that linking it back
to individual brain regions is challenging. Each connection in the eFC
matrix always involves four nodes (two edge-edge connections), and
allocating its properties to any one brain region or cognitive system is,
in most cases, not possible. Here, we circumvented this complication
by measuring the effect of a node’s removal (equivalent to 199 edges
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in a 200 node parcellation) from the resulting eFC’s identifiability and
only accounting for edge pairs derived from single systems. While these
approaches attempt to locate edges to brain regions, future work is nec-
essary to determine a robust method in tracing eFC elements back to
specific locations in brain.

A second limitation concerns the measure of “differential identifi-
ability”, which accounts for both within-subject and between-subject
similarity. However, we acknowledge alternative measures of identifi-
ability such as calculating the subject identification accuracy of FC-FC
correlations (Finn et al., 2015), ROC (receiver operating characteris-
tic) curve accuracies (Jalbrzikowski et al., 2020a), and using a Nearest
Centroid Classification for each subject in graph embedding representa-
tions(Abbas et al., 2020a). Nonetheless, we focused our analyses using
1,/ since this approach methodologically extends a popular identifi-
cation approach (Finn et al., 2015) while accounting for “common fea-
tures” shared across subjects (Amico and Goiii, 2018b). However, other
methods for measuring identifiability and comparing fMRI data should
also be investigated and developed to further understand idiosyncrasies
in edge-centric FC.

A final limitation concerns the procedure for estimating edge clus-
ters and utilizing its results. Here, we use a k-means algorithm to parti-
tion edges into a group-wise fixed number of clusters based on the eFC
similarity. The benefit of this approach to estimating edge clusters is
that this algorithm is computationally efficient and can be calculated
using a distance metric. Given the extensive list of alternative methods
for clustering (Fortunato, 2010; Porter et al., 2009; Sporns and Betzel,
2016), other algorithms must be investigated for detecting edge clus-
ters. Also, between-cluster edges may act as bridges between functional
systems that further explain idiosyncrasies and behavioral associations
(Jo et al., 2020). However, we add that our analyses exclude between-
cluster edges and focus on within-cluster edges. Future studies should
investigate the effects of varying clustering algorithms and study the
effect of within-cluster versus between-cluster edges on individual dif-
ferences.

Materials and methods
Datasets

The Midnight Scan Club (MSC) dataset (Gordon et al., 2017) in-
cluded rsfMRI from 10 adults (50% female, age = 29.1 + 3.3). The study
was approved by the Washington University School of Medicine Human
Studies Committee and Institutional Review Board with the informed
consent from all subjects. 12 scans from each subject were acquired
on separate days starting from midnight. Per each subject, 10 rsfMRI
scans were collected with a gradient-echo EPI sequence(run duration =
30 min, TR = 2200 ms, TE = 27 ms, flip angle = 90°) with the partici-
pant’s eyes open while recording eyetracking to monitor for prolonged
eye closure (for assessing drowsiness). Images were collected on a 3T
Siemens Trio.

The Human Connectome Project (HCP) dataset (Van Essen et al.,
2012) included resting state functional data (rsfMRI) from 100 unre-
lated adult subjects (54% female, mean age = 29.11 + 3.67, age range
= 22-36). These subjects were selected as they comprised the “100 Un-
related Subjects (U100)” released by the Human Connectome Project.
The study was approved by the Washington University Institutional Re-
view Board and informed consent was obtained from all subjects. Sub-
jects underwent four 15 minute rsfMRI scans over a two day span. A
full description of the imaging parameters and image preprocessing can
be found in Glasser et al. (2013). The rsfMRI data was acquired with a
gradient-echo EPI sequence (run duration = 14:33 min, TR = 720 ms, TE
= 33.1ms, flip angle = 52°, 2 mm isotropic voxel resolution, multiband
factor = 8) with eyes open and instructions to fixate on a cross. Images
were collected on a 3T Siemens Connectome Skyra with a 32-channel
head coil.
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Image preprocessing

MSC functional preprocessing

Functional images in the MSC dataset were preprocessed using fM-
RIPrep 1.3.2 (Esteban et al., 2017), which is based on Nipype 1.1.9
(Gorgolewski et al., 2011). The following description of fMRIPrep’s pre-
processing is based on boilerplate distributed with the software covered
by a ‘no rights reserved’ (CCO) license. Internal operations of fMRIPrep
use Nilearn 0.5.0 (Abraham et al., 2014), ANTs 2.2.0, FreeSurfer 6.0.1,
FSL 5.0.9, and AFNI v16.2.07. For more details about the pipeline, see
the section corresponding to workflows in fMRIPrep’s documentation.

The T1-weighted (T1lw) image was corrected for intensity non-
uniformity with N4BiasFieldCorrection (Avants et al., 2008; Tustison
etal., 2010), distributed with ANTS, and used as T1w-reference through-
out the workflow. The T1w-reference was then skull-stripped with a
Nipype implementation of the antsBrainExtraction.sh workflow, us-
ing NKI as the target template. Brain surfaces were reconstructed us-
ing recon-all (Dale et al., 1999), and the brain mask estimated pre-
viously was refined with a custom variation of the method to recon-
cile ANTs-derived and FreeSurfer-derived segmentations of the corti-
cal gray-matter using Mindboggle (Klein et al., 2017). Spatial normal-
ization to the ICBM 152 Nonlinear Asymmetrical template version 2009c
(Fonov et al., 2009) was performed through nonlinear registration us-
ing antsRegistration, using brain-extracted versions of both T1w volume
and template. Brain tissue segmentation of cerebrospinal fluid (CSF),
white-matter (WM) and gray-matter(GM) was performed on the brain-
extracted T1w using FSL’s fast (Zhang et al., 2001).

Functional data was slice time corrected using AFNI's 3dTshift
and motion corrected using FSL’s mcf1lirt. Fieldmap-less distortion
correction was performed by co-registering the functional image to the
same subject. T1w image with intensity inverted constrained with an
average fieldmap template, implemented with antsRegistration.
This was followed by co-registration to the corresponding T1lw us-
ing boundary-based registration with 9 degrees of freedom. Motion
correcting transformations, field distortion correcting warp, BOLD-to-
T1lw transformation and T1w-to-template (MNI) warp were concate-
nated and applied in a single step using antsApplyTransforms
using Lanczos interpolation. Several confounding timeseries were cal-
culated based on this preprocessed BOLD framewise displacement (FD),
DVARS and three region-wise global signals. FD and DVARS are cal-
culated for each functional run, both using their implementations in
Nipype. The three global signals are extracted within the CSF, the
WM, and the whole-brain masks. The resultant NIFTI file for each
MSC subject used in this study followed the file naming pattern:
*_spaceTlw_descpreproc_bold.nii.gz.

HCP functional preprocessing

Functional images in the HCP dataset were minimally prepro-
cessed according to the description provided in Glasser et al. (2013).
Briefly, these data were corrected for gradient distortion, and mo-
tion, and then aligned to a corresponding T1-weighted (T1lw) im-
age with one spline interpolation step. This volume was further cor-
rected for intensity bias and normalized to a mean of 10,000. This
volume was then projected to the 32k fs LR mesh, excluding out-
liers, and aligned to a common space using a multi-modal surface
registration Robinson et al. (2014). The resultant CIFTI file for each
HCP subject used in this study followed the file naming pattern:
* _REST{1,2}_{LR,RL}_Atlas_MSMAll.dtseries.nii.

Image quality control

All functional images in the MSC and HCP datasets were retained.
The quality of functional images in the MSC were assessed using fM-
RIPrep’s visual reports and MRIQC 0.15.1 (Esteban et al., 2017). MSC
data was visually inspected for whole brain field of view coverage, signal
artifacts, and proper alignment to the corresponding anatomical image.
All time series data were visually inspected as well.
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Functional networks preprocessing

Parcellation preprocessing

A functional parcellation designed to optimize both local gradient
and global similarity measures of the fMRI signal(Schaefer et al., 2017)
(Schaefer200) was used to define 200 areas on the cerebral cortex.
These nodes are also mapped to the Yeo canonical functional networks
(Thomas Yeo et al., 2011). For the HCP dataset, the Schaefer200 is
openly available in 32k_fs_LR space as a CIFTI file. For the MSC dataset,
a Schaefer200 parcellation was obtained for each subject using a Gaus-
sian classifier surface atlas(Fischl et al., 2004) (trained on 100 unrelated
HCP subjects) and FreeSurfer’s mris_ca_label function. These tools utilize
the surface registrations computed in the recon-all pipeline to transfer
a group average atlas to subject space based on individual surface cur-
vature and sulcal patterns. This method rendered a T1w space volume
for each subject. For use with functional data, the parcellation was re-
sampled to 2 mm T1w space. This process could be repeated for other
resolutions of the parcellation (i.e. Schaefer100).

Functional network preprocessing

Each preprocessed BOLD image was linearly detrended, band-pass
filtered (0.008 - 0.08 Hz) (Parkes et al., 2018), confound regressed and
standardized using Nilearn’s signal.clean, which removes confounds or-
thogonally to the temporal filters (Lindquist et al., 2019). The confound
regression employed (Satterthwaite et al., 2013) included 6 motion es-
timates, time series of the mean CSF, mean WF, and mean global signal,
the derivatives of these nine regressors, and the squares of these 18
terms. Furthermore, a spike regressor was added for each fMRI frame
exceeding a motion threshold (MSC = 0.5 mm framewise displacement,
HCP = 0.25 mm root mean squared displacement). This confound strat-
egy has been shown to be a relatively effective option for reducing
motion-related artifacts (Parkes et al., 2018). Following preprocessing
and nuisance regression, residual mean BOLD time series at each node
were recovered.

Edge graph construction

eFC can be calculated by acquiring the regional time series data
and their z-scores. Next, for all pairs of brain regions, we calculate the
element-wise product of their z-scored time series. This returns the ‘edge
time series’ that represent the magnitude of co-fluctuation for pairs of
brain regions which can be correlated across time as the Pearson corre-
lation coefficient. Lastly, the scalar product between pairs of edge time
seires is calculated and repeated over all pairs of edges to create an
edge-by-edge matrix, which are normalized to the interval [-1, 1].

Differential identifiability

The functional connectome’s identifiability or fingerprinting is based
on the assumption that a single subject’s connectivity profile should be,
more similar within the same subject across scans and sessions than be-
tween different subjects. Previous research using the conventional func-
tional connectome (Finn et al., 2015) showed that, robust identification
of an individual is possible using sample FC to find the “target” FC of the
subject in a pool of subject FCs with Pearson correlation analyses. Prior
research on quantifying individual differences in functional connectiv-
ity include calculating the geodesic distance (Venkatesh et al., 2020) and
Pearson correlation across individual’s scans (Amico and Goni, 2018b).
While the geodesic distance approach also provides a summary mea-
sure of the inter-scan differences, we adopt the quantification metric by
Amico and Goni (2018b), which takes into consideration the covariance
and standard deviation of the eFC and FC matrices. This metric is called
the differential identifiability (/,;,,) derived from the “identifiability
matrix”, i.e. the matrix of correlations (Pearson) between subjects’ FCs.
The I,;,, is calculated by quantifying self-identifiability or I, and
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substracting between subject similarity or I,,,,,,, represented as the di-
agonal and off-diagonal elements of the identifiability matrix (Fig. 1b).
Differential identifiability (I,;,,) of a group of subjects can be summa-
rized as the following:

@
which is the difference of average within-subject similarity and average
between-subjects similarity of FCs. A high value of I,;; ; , in a dataset will
have higher subject identifiability and the optimization of identifiability
is reduced to maximizing I, -

To test for reproducibility and the effect of parcellations, we repeated
the analysis with 100 unrelated subjects from the HCP dataset (Van Es-
sen et al., 2012). The HCP dataset includes four scans of each subject
collected during two scan sessions on separate dates. For each session,
we concatenated both scans (left-to-right and right-to-left phase encod-
ing) into a single session-representative time series. We later used these
two time series to measure within-subject similarity I,,,,. Both datasets
were tested for effects of numbers of parcellations by measuring differ-
ential identifiability in 100 and 200 node datasets (Fig. S1).

Idi/'f = (Iself - Iothcrs) * 100

Tracing identifiability to brain regions by a leave-one-node-out approach

In the previous section, we described the procedure for calculating
1,47 r» ameasure known to quantify the relative similarity of scans within
versus between subjects(Amico and Goiii, 2018a). In this section, we
test which brain regions reduce subject identification when removed
from the calculation of eFC, compared to when measuring 7, with
the entire eFC matrix. In addition, we test whether removal of specific
brain systems significantly reduce I,;,, compared to using the whole-
brain eFC.

The direct connection between eFC’s edge-edge pair co-fluctuation
and a brain region can somewhat be an arbitrary procedure since there
can be up to (ll6 )+ (126) + (lf )+ (146) combinations of brain regions in a
single edge pair in eFC. To avoid making assumptions that edge pairs’
weights are linearly related to the edge pair strength, we adopt a leave-
one-node-out approach prior to eFC matrix construction. The effect of
removing a node prior to eFC construction was calculated by subtracting
the I,;,, of the single-node-removed eFC from the whole-brain 1,;,,
(Fig. 3a-b).

Next, we examined the effect of each functional brain system, and
if removed, the difference in 1, , measured from eFC. Analogous to
the single node removal approach earlier, we removed single systems
(i.e. all nodes from a single system) and measured the effect on I,; rr
by subtracting this result from the whole-brain 1,;,, (Fig. 3c-d). We did
not control for the difference in number of nodes (i.e. entire brain = 200
nodes, single-system-removed ~ 190 nodes) since the effect of the total
number of nodes to I, is unclear.

Single system edge pairs identifiability

The benefit and caveat of the leave-one-node-out approach is that it
removes all edge pairs involving a particular node or system due to eFC’s
overlapping characteristic(Faskowitz et al., 2020). Therefore, we were
still unclear of the effects of a purely single system due to this character-
istic. In order to determine the I,;,, a single-system, we extracted the
edge pairs that include nodes only from a particular system Fig. 4a and
measured the I, ... The analogous approach was applied to nFC, which
included node-pairs from the nFC which include nodes from a single sys-
tem. The single-system level node-pairs were compared to that of edge
pairs from eFC (Pearson correlation). Also, subject similarity matrices
using edge pairs from single systems are included in (Fig. S3).

K-means clustering for identifiability

The eFC matrices used here have approximately a squared dimen-
sionality of components compared to the conventional nodal FC matri-
ces. While the higher dimensionality of eFC may provide insight into the
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relationship of it’s components (the edge-edge communications) that is
not directly shown in FC matrices, clustering the components of the eFC
matrices present a computational challenge. This is especially the case
if the number of partitions of the matrix is unknown and is left for ex-
ploration. To address this issue and cluster the eFC, we have applied a
simple two-step clustering procedure that operates on a low-dimensional
representation of the eFC matrix.

First, following (Faskowitz et al., 2020), we performed an eigende-
composition of the mean eFC matrix (19900 x 19900) created by aver-
aging across eFC matrices from all scans, retaining the top 50 eigenvec-
tors associated with the largest eigenvalues. These eigenvectors were
rescaled to the interval [-1, 1] by dividing each eigenvector by its
largest magnitude element. Then we clustered the rescaled eigenvec-
tors using a standard k-means algorithm with Euclidean distance. We
varied the number of communities, k, from k = 2 to 20, repeating the
clustering algorithm 250 times at each value. We retained as a represen-
tative partition, the one with the greatest overall similarity to all other
partitions.

We used k-means to partition edges into clusters, with the number of
clusters ranging from k = 2 to k = 20 (a total of 209 different clusters). A
partition of eFC into k clusters can be used to divide the corresponding
eFC matrix into k blocks of within-cluster edge-edge connections and
k(k — 1)/2 blocks of between-cluster edge—edge connections. Our aim
was to use features of these blocks to better understand how different
clusters and systems were related to I,;,,. These steps have been illus-
trated in Fig. S4 for further clarification.

To this end, we performed several analyses. First, for each block,
we extracted its elements for every subject and scan and computed the
pairwise similarity matrix. Two scans were considered similar to one
another if the weights of edge—edge connections within that block were
correlated. We then calculated several other features for each block.
These included the mean and standard deviation across each block’s
edge-edge connections as well as the extent to which each of the brain
systems were represented among the edges assigned to the block. In
short, the blocks were derived from the partitions of the group-averaged
eFC matrix into clusters. Each block represents the set of edge-edge
connections between pairs of clusters. The eFC elements from each block
from all scans and subjects were used for calculating the block’s mean
and standard deviation of eFC values. Then, for each of the k clusters,
we calculated the averaged mean and standard deviation of all blocks
involving that cluster. Finally, we counted the elements of each block
by their system labels, which we found were correlated with the block’s
iy

Mathematically, these clusters represent non-overlapping clusters
of edges. We note that other community detection algorithms such as
modularity maximization (Newman and Girvan, 2004) and Infomap
(Rosvall and Bergstrom, 2008) could also be used. Here, however, we
used k-means due to practicality (i.e. fast runtime).

Principal component analysis

Principal component analysis (PCA) is a widely used statistical
method (Jolliffe, 2014) that allows exploration of the underlying struc-
ture of the data. PCA transforms a set of observed data with potentially
correlated variables into a set of linearly uncorrelated variables called
principal components. These principal components are then ranked in a
descending order that explains the most to least variance of the data.
We adopted principal component analysis to directly compare eFC’s
identifiability performance to that of nFC, which has been explored by
Amico and Goni (2018b).

First, the number of principal components are matched with the
number of functional connectomes of the dataset. This allows for the
decomposition from PCA, by definition, to account for 100% of the vari-
ance in the data. The PCs from PC = 2 to 20 were ranked by their ex-
plained variance in a descending order. Individual’s nFC and eFC were
then reconstructed as a function of the number of components included
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based on the rationale that group-level information is carried in high
variance components and subject-level information is conveyed in less
higher variance components. In this reconstruction process, we addi-
tively included PCs in the descending order of explained variance. At
each additive reconstruction, each individual’s connectivity matrix was
reconstructed based on the mean and linear recombination of the PCs
from PC=1to N.

Next, we controlled for the effect of number of scans per individ-
ual, which affects the total scan duration or amount of data per subject
(Fig. 2a,b). From the MSC dataset, we randomly selected two out of
ten scans per subject as the test-retest scans for the PCA-derived 1,;,,
maximization with 100 iterations. In both eFC and nFC, I,;;, , optimized
with ten PCs, which match the number of subjects in the dataset. Also,
we randomly sampled 10 subjects out of 100 to test if I,;;,, optimizes
at the number of subjects regardless of the individuals. From the HCP
dataset, we randomly selected ten subjects out of 100 with two scans per
subject. In each of the 100 iterations, the I, for each PC was plotted
for visualization (Fig. S7c-d). We also tested for the effect of scan dura-
tion by matching the number of time points in the HCP dataset (2400
time points) to that of the MSC dataset (800 time points; Fig. S7f). For
each subject, to create a scan of 800 time points, we concatenated only
the mid 400 time points (out of 1200) in each of the left-to-right and
right-to-left scans. In other words, the mid section of two scans were
connected to create a single scan of 800 time points for each subject.
With the concatenated scans, we performed an analysis analogous to
Fig. S7c. Finally, we calculated the I,;,, from PC reconstruction using
the entire HCP dataset (100 subjects; two scans per subject; Fig. S7e).

In both the MSC and HCP dataset, we found the number of subjects to
match the number of principal components in which 7, , is maximized
in the reconstructed eFC and nFC matrices. To determine the potential
driver of this result, we decomposed each PC’s coefficients for each scan
Fig. S9, Fig. S10, Fig. S11, Fig. S12. For PCs 2 to 10, each subjects’
coefficients were tested against that of the other subjects (¢ — rest with
Bonferroni-correction).

Data Availability

All imaging data come from publicly-available, open-access
repositories. Human connectome project data can be accessed via
https://db.humanconnectome.org/app/template/Login.vim after sign-
ing a data use agreement. Midnight scan club data can be ac-
cessed via OpenNeuro at https://openneuro.org/datasets/dx000224/
versions/1.0.1.

Code Availability

All processing and analysis code is available upon reasonable re-
quest.
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Supplementary material associated with this article can be found, in
the online version, at 10.1016/j.neuroimage.2021.118204
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