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We study a simplified model of gene regulatory network evolution in which
links (regulatory interactions) are added via various selection rules that are
based on the structural and dynamical features of the network nodes (genes).
Similar to well-studied models of ‘explosive’ percolation, in our approach,
links are selectively added so as to delay the transition to large-scale damage
propagation, i.e. to make the network robust to small perturbations of
gene states. We find that when selection depends only on structure, evolved
networks are resistant to widespread damage propagation, even without
knowledge of individual gene propensities for becoming ‘damaged’. We also
observe that networks evolved to avoid damage propagation tend towards dis-
assortativity (i.e. directed links preferentially connect high degree ‘source’
genes to low degree ‘target’ genes and vice versa).We compare our simulations
to reconstructed gene regulatory networks for several different species, with
genes and links added over evolutionary time, and we find a similar bias
towards disassortativity in the reconstructed networks.
1. Introduction
Mathematical models of gene regulatory networks provide a powerful tool for
understanding the complex features of genetic control. While various modelling
efforts have been successful at explaining gene expression patterns, much less is
known about how evolution shapes the structure of these networks. Recent
studies suggest that evolutionary ‘tinkering’ plays a large role in the organization
of biological networks [1]. Furthermore, these networks are often thought to exist
near some critical point [2–4], where dynamic variability is maximized without
reaching widespread network failure/breakdown. The phase transition between
stability and instability in networks has been widely investigated, with studies
focusing on the effects of topological features [5–8], dynamical features [9–12]
or both [13] and their contributions to the location and behaviour of the transition.
Of particular interest is the evolutionary process that leads to this critical point
and how this process depends on both the topological and dynamical properties
of the network and its nodes. Some previous studies have considered the evol-
ution of these networks but begin with already-established networks that are
then allowed to change over time [14–16]. By contrast, we consider the process
from the very beginning, starting with an ‘empty’ network.

In order to gain insight into this process, we study simple models of gene
network evolution in which links are added according to various competi-
tive selection rules. Similar rules were explored by Achlioptas et al. [17], who
demonstrated that undirected networks grown following competitive link selec-
tion can have drastically delayed percolation transitions, leading to a seemingly
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discontinuous ‘explosive’ transition, a topic which has since
become popular in the network science literature [8,18–23].
Squires et al. [8] extended the idea of competitive selection
to directed networks, where similar, but less drastic ‘weakly
explosive’ transitions occurred. Incrementally growing net-
works according to competitive selection rules is a natural
choice for modelling biological networks, which are the
result of generations of improvements through the complex
process of natural selection. For the same reason, biological
networks share commonalities with systems that are said to
exhibit highly optimized tolerance, in which a yield or fitness
is to be maximized [24,25]. In such systems, competitive
selection rules can be used heuristically to maximize a yield
dependent on the size of a giant component. Besides evol-
ution through natural selection, biological systems develop
over time through neutral evolution, or evolution through
mutation without selection [26–29]. While we primarily
focus on networks evolved via selection, we will also con-
sider a simple case of neutral evolution for comparison.
Other approaches have used a combination of mutation and
selection to evolve networks that maximize the topological
entropy [30] or minimize the distance to a time-dependent
network output function [15]. By comparison, our modelling
efforts focus on growth starting from a blank state, serving to
highlight how simple differences in selection rules can give
rise to very different network structures and change the
nature of phase transitions in the network.

Our models of network growth build upon various
studies of Boolean models of gene regulation. From a dyna-
mical perspective, Boolean networks have been widely used
as mathematical models of gene regulation since their intro-
duction by Kauffman [5]. In these models, at any given
time, nodes (genes) exist in one of two states: ‘on’ (1), mean-
ing that the gene is expressed, or ‘off’ (0), meaning that the
gene is unexpressed. In Kauffman’s original model, gene
states are synchronously updated at each time step according
to a truth table, in which the state of a gene at time t is deter-
mined by the states of all of its input genes at time t− 1.
(While we connect our evolutionary modelling approach
to the case of synchronous update, we also discuss how
the approach may be connected to cases of asynchronous
update.) By tuning system parameters, the models can exhibit
a transition from stable dynamics to ‘chaotic’ (unstable)
dynamics [5,6,10]. Stability here is measured by the saturated
average Hamming distance, or fraction of genes that differ in
state after a long time, between the trajectories of two close
initial conditions. Since a finite network of size N has at
most 2N possible states and the dynamics are deterministic,
the trajectories will eventually reach a steady state in the
form of a fixed point or periodic orbit. If the state of a gene
in the steady state differs between these two trajectories at
time t, the gene is said to be ‘damaged’ at time t [31].

As demonstrated by Squires et al. [31], the stability of
Boolean networks can be mapped directly to a percolation pro-
blem under certain assumptions. In a percolation problem, the
size of a ‘giant component’ is tracked as a certain tuning par-
ameter is varied, typically passing through a critical value
where the giant component transitions from being vanishingly
small to being a non-trivial fraction of the size of the network.
Following Squires et al., by setting a gene’s sensitivity, i.e. the
probability that the gene changes state if one of its inputs
changes state, equal to its probability of being ‘damaged’, we
can map the saturated average Hamming distance, which
provides ameasure of instability in the gene network dynamics,
directly onto the size of the largest out-component in the
subnetwork of ‘damaged’ nodes. As either the node sensi-
tivities or network connections are tuned, the phase transition
from dynamic stability to instability then corresponds to the
percolation transition of this giant component.

We extend this idea by allowing the topology of our
network to change over time following different competitive
selection rules, which works as a primitive model of biologi-
cal networks evolving via natural selection. As new links
are added, at some critical point, percolation will occur in
the damaged subnetwork, corresponding to the network’s
transition from stability to instability.

To summarize, we are motivated by a model of gene regu-
latory dynamics in which there are benefits for the system to
exist on the stable side of the transition between stability and
instability. We utilize the mapping between a model of this
kind and an appropriately defined percolation problem to
explore simple models of evolution via growth. We note that
the percolation problem can be considered as its own simple
abstraction of the propagation of failure in gene regulatory
networks. Using the percolation framework, we investigate the
following growth processes: (i) random link addition, as a
control; (ii) sensitivity-based competitive selection; (iii) struc-
ture-based competitive selection; and (iv) hybrid competitive
selection. We find that incorporating network structure into
the selection rule is key to delaying percolation of the damaged
subnetwork, even while having no knowledge of each gene’s
sensitivity, or probability of becoming damaged. In fact, incor-
porating information about sensitivity can backfire, leading
to highly exclusive networks that would rather form large
components than connect to high-risk genes. Finally, we
compare the results of our simulations to data for several
empirically derived gene regulatory networks and find
similarities in structural properties.
2. Methods
2.1. Modelling failure propagation in gene networks as

a percolation problem
We construct a model of gene regulation as follows: we first con-
sider damage propagation on a network with a fixed topology,
which will later be allowed to evolve. We are motivated by the
traditional Boolean models of gene regulation in which each
gene in the network has a fixed ‘truth table’, or output rule,
that determines its state (0 or 1) at time t based on the states of
its inputs at time t − 1. To simplify the problem for our purposes
but still capture the effects of network topology, we apply the
semi-annealed approximation [10], in which the network
remains fixed, but the truth table for gene i is no longer fixed
but rather randomly filled in at each time step according to
some bias bi, the probability that its state is 1. We can think of
bi as the expression bias of gene i, with genes having a wide dis-
tribution of expression biases. Working within the semi-annealed
approximation, from the gene’s bias, we can then calculate its
sensitivity qi = 2bi(1− bi), which represents the probability that a
gene changes state if the state of one or more of its inputs
change. This can also be thought of as the probability that a
gene spreads ‘damage’. Damaged genes are those whose states
differ in the steady states of two initially close trajectories of
the network’s dynamics, meaning a small perturbation in the
state of the network can lead to unpredictable dynamics of
such genes, likely causing improper regulatory behaviour.
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Following [31], for a locally treelike network under the semi-
annealed approximation, dynamic instability of the network,
measured in terms of the average saturated Hamming distance
between trajectories of two close initial conditions, is equivalently
measured by the expected size of the giant out-component of the
damaged subnetwork, which takes into account both the network
topology and the genes’ propensities for spreading damage, i.e.
their sensitivities. In particular, the phase transition from stability
to instability occurs simultaneously as the onset of a non-trivial
out-component of the damaged subnetwork (i.e. a component
whose size does not go to zero as the number of nodes gets
larger). In the electronic supplementary material, we show that our
simulated networks display the relevant locally treelike properties.

While we are motivated by a model of synchronously
updated genes with locally treelike connectivity, we note, impor-
tantly, that the semi-annealed approximation works well even for
an asynchronous update scheme and for the case of networks
with many small loops. Although there are important differences
between synchronous and asynchronous update models (e.g. the
occurrence of limit cycles [32]), Pomerance et al. [10] and Squires
et al. [13] demonstrate that the semi-annealed approach for deter-
mining the transition between global stability and instability
(and the growth of perturbations) also applies for asynchronous
update. Further, Pomerance et al. [10] show that the approxi-
mation holds even for networks that deviate substantially from
the locally treelike assumption. This is consistent with studies
that show that calculations involving the locally treelike approxi-
mation provide accurate results even for networks that are very
far from treelike [33,34].

By using the semi-annealed approximation, we are able to
work entirely in the realm of the percolation problem, without
needing to directly simulate the complex dynamics of the Boo-
lean network. If fact, we can think of the percolation problem
as its own simple abstraction of gene regulatory networks, in
which genes become damaged with different propensities and
they can propagate that damage to their target genes.

To incorporate evolutionary changes into our percolation fra-
mework, we add new links (edges) individually to the network
according to a given selection rule, described in §2.3. Each new
link represents a new regulatory interaction that has evolved in
the network, potentially changing the stability of the dynamics.
We then repeat this procedure until a sufficient number of
links have been added to the network.

For our simulations, we initialize the network to consist of N
genes and no links. We let E denote the number of links (edges)
in the network at later steps. The gene biases are drawn from a uni-
formdistribution bi∼U[0, 1]. Note that for a single simulation, bias
values do not change, meaning we are fixing an inherent dynami-
cal property of each gene. This is a restrictive assumption, but it
provides a nice starting point for comparing networks evolved
under different selection rules. Before the simulated evolution pro-
cess begins, each gene is assigned damaged statuswith probability
qi, leading to an average of one-third of all genes being damaged
(due to how biaseswere chosen). By averaging overmultiple simu-
lations, we found that keeping the same damage status constant
throughout all steps of a single simulation produces very similar
results to re-randomizing the statuses at each individual step, so
we have chosen to keep the damaged statuses constant. Finally,
at each step, we track the size of the giant components in both
the full network and damaged subnetwork, which also allows us
to efficiently simulate each growth process using the algorithm
suggested in [8].
2.2. Tracking network components
For a gene i, define the in-component IN(i) to be the set of all
genes that can reach i via a directed path in the regulatory net-
work. Similarly, define the out-component OUT(i) to be the set
of all genes that i can reach via a directed path. The strongly con-
nected component SCC(i) is the intersection of these two sets and
the bow tie BT(i) their union.

For a directed network, we say the giant strongly connected com-
ponent (GSCC) is the largest strongly connected component. We
then define the giant out-component GOUT=OUT(GSCC), the
giant in-component GIN= IN(GSCC), and the giant bow tie GBT=
BT(GSCC). In systems where percolation occurs, all four giant
components form simultaneously at the same critical point [35].

Within our networks, we will also have a subset of genes that
are ‘damaged’. The damaged subnetwork is the directed net-
work consisting of these genes and any links that exist between
them. We use an asterisk (*) to distinguish the components of
the damaged subnetwork from those of the full network.

2.3. Network growth via selection
To decide which link to add at each step, we use a class of com-
petitive selection rules based on those introduced by Achlioptas
et al. [17] and extended to directed networks by Squires et al. [8].
The form of these rules is as follows:

1. Consider m potential ‘source’ genes {i1, . . . , im} and m poten-
tial ‘target’ genes {j1, . . . , jm}. All genes are sampled
uniformly from the network.

2. Select the directed link i→ j such that

i ¼ argmini[{i1,...,im}fs(i), j ¼ argmin j[{j1,...,jm}ft(j): (2:1)

3. If the link i→ j already exists in the network or if i = j, then a
different link is selected starting back at step 1.

The choices of fs(i) and ft( j ) are made so as to delay the perco-
lation transition of GOUT*.We consider three forms of competitive
selection (sensitivity-based, structure-based, and hybrid) and the
case of random link addition as a control. As in the original
Achlioptas study, the selection rules we consider rely only on
local information about the candidate links. In the electronic sup-
plementary material, we study the extreme case of m =N for
structure-based selection and demonstrate that, as expected,
having access to global information when adding links serves to
delay the transition for a much, much longer period of time.

2.3.1. Random selection
In the case of m = 1, we select a random link uniformly from all
possible links. This is equivalent to the directed Erdo s–Rényi
process [8,36]. Random selection serves as a simple baseline
to which we can compare the performance and behaviour of
other selection rules. In addition, one can consider random
selection as a model for neutral evolution.

2.3.2. Sensitivity-based selection
To consider the effect of sensitivity, we define

fs(i) ¼ qi, ft(j) ¼ q j: (2:2)

Genes with higher sensitivity values are more likely to be
damaged. The strategy used by sensitivity-based competition is
then to prevent growth of the damaged subnetwork by preventing
‘risky’ genes from connecting.

2.3.3. Structure-based selection
To consider the effect of network structure in delaying the onset
of percolation, we define

fs(i) ¼ jIN(i)j, ft(j) ¼ jOUT(j)j: (2:3)

This rule is a generalization of the dCDGM rule applied to
directed networks [37]. The strategy imposed by structure-based
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Figure 1. Structure of networks formed under our four different selection rules on a network of size N = 100, stopped after E/N = 1.75. Nodes are sorted according
to sensitivity with least sensitive at the top of the circle and increasing in sensitivity clockwise. If a node is damaged, it is filled in blue. Nodes in GOUT are enlarged
and filled in black (if undamaged) or blue (if damaged); all other nodes are filled in white. Isolated nodes with no links are placed below each network with their
corresponding locations in the circular layout left empty. Thick links connect nodes in GOUT. Links are blue if they connect two damaged nodes, black if they connect
nodes in GOUT that are not both damaged, or grey otherwise. We see that GOUT is much larger for the random and sensitivity-based processes as compared with
the structure-based and hybrid processes. Both the sensitivity-based and hybrid processes show a higher density of links between low sensitivity nodes, which is
much more pronounced in the former.

royalsocietypublishing.org/journal/rsif
J.R.Soc.Interface

18:20200790

4

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

10
 A

ug
us

t 2
02

1 
competition is to prevent percolation in the damaged subnetwork
by preventing large components from forming in the full network.
2.3.4. Hybrid selection
The final rule is a combination of structure-based competition
and sensitivity-based competition. We set

fs(i) ¼ qi � jIN(i)j, ft(j) ¼ q j � jOUT(j)j: (2:4)

The hybrid strategywill prevent components from becoming large
in the full network, while also showing a preference towards con-
necting low risk (low sensitivity) genes. High sensitivity geneswill
only be accepted if they belong to small components.
3. Results
3.1. Visualizing networks evolved via different selection

rules
For each of our network measures, we use the average node
degree E/N as the tuning parameter.We can first gain intuition
about the structure of our networks by considering smaller net-
works of sizeN = 100, as is done in figures 1 and 2.We begin by
considering the networkswhen E/N = 1.75, a point after which
percolation of GOUT occurs for both the random and sensi-
tivity-based selection rules, but not the others. Compared to
random selection, sensitivity-based competition has a prefer-
ence towards connecting low sensitivity genes, even going so
far as to exclude a large number of high sensitivity genes
from the network, an effect that is more exaggerated for
higher values of m. By comparison, both the structure-based
and hybrid competition rules take much longer to form a
GOUT component. These two methods are nearly indistin-
guishable, except the hybrid method mimics some properties
of sensitivity-based competition, namely having a higher link
density between low sensitivity genes and exclusion of high
sensitivity genes.

We next consider a higher parameter value of E/N = 5.75,
where GOUT* has now formed for random and sensitivity-
based selection and is beginning to form for structure-based
and hybrid selection. Because sensitivity-based selection
avoids connecting to high sensitivity genes overall, the
GOUT* component mainly consists of lower sensitivity
genes. Since most damaged genes have higher sensitivities,
this also leads to fewer links overall between damaged genes
and a smaller GOUT* component than in the case of random
selection.We also observe that in the random selection and sen-
sitivity-based selection, nearly every link between damaged
genes belongs to GOUT*. By comparison, structure-based
and hybrid selection have a large number of links between
damaged genes, but only a few belong to GOUT*, since
the individual out-components are kept small and avoid
connecting to each other.

3.2. Growth of giant components
Now equipped with better intuition about these selection
methods, we turn our attention to growth of the connected
components in the N→∞ limit. We can approximately
achieve this goal by simulating on a network of size N =
105, shown in figure 3.

As before, we begin by considering the growth of the full-
network components, ignoring damage status. As expected,
the formation of GOUT is delayed much further in struc-
ture-based and hybrid selection methods, due to their
nature of selecting links to maintain smaller component
sizes overall. Meanwhile, sensitivity-based selection instead
tends towards earlier formation of the giant component,
with higher values of m pushing this transition earlier. By
increasing m in structure-based selection, we are more likely
to find a smaller component, and thus are able to spread
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Figure 2. Network structure for a network of size N = 100 grown under the four selection rules stopped after E/N = 5.75. As in figure 1, nodes are sorted according
to sensitivity, with least sensitive at the top of the circle and increasing in sensitivity clockwise and with isolated nodes left out of the circular layout and placed
below each network. We now focus on GOUT* rather than GOUT. Nodes belonging to GOUT* are enlarged and red with thick red links connecting between them.
Damaged nodes that do not belong to GOUT* are blue, with blue links connecting pairs of damaged nodes. All other nodes are coloured white, and all other links
are coloured grey. Even though the size of GOUT for the sensitivity-based process is similar to the random process, the former has a much smaller GOUT*. The
structure-based and hybrid processes show even smaller GOUT*, despite a large number of connections between damaged nodes.
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out links more efficiently to avoid forming larger components.
By comparison, in sensitivity-based selection, increasing m
makes us more likely to find low sensitivity genes (and
avoid high sensitivity genes altogether), resulting in a higher
link density among the lower sensitivity genes and a faster
formation of a giant component. The exclusion of highly sensi-
tive genes leading to faster emergence of a giant component
also explains why hybrid selection transitions slightly earlier
than structure-based selection.

Of greater interest is the formation of GOUT*. We again
have structure-based and hybrid selection leading to later
percolation of GOUT*, but unlike before, sensitivity-based
selection leads to formation of GOUT* later than random selec-
tion. The sensitivity-based selection rule is designed to prevent
formation of GOUT* by preventing connections between
damaged genes, which leads to slower formation of GOUT*
but not GOUT. Comparing structure-based and hybrid selec-
tion, we see that the critical point at which GOUT* forms is
approximately the same when m = 2. But when m is increased,
structure-based selection can delay the transition much more
easily. Again, the additional effect introduced by considering
sensitivities seems to be at play. Hybrid selection is willing to
form larger components, as long as the genes involved have
relatively low sensitivity. Eventually, however, the high sensi-
tivity genes will have smaller components and be more
favourable to gain a new link. It appears that this shift
is enough to lead to faster growth of GOUT* than if all
components were to be kept smaller, ignoring sensitivity.

Other than the location of the percolation transition for
GOUT*, we can also look at the growth rate of this com-
ponent post-transition. One advantage of sensitivity-based
and hybrid selection rules is their slow growth of GOUT*,
despite the earlier transition. Since these rules will tend to
prevent connections between damaged genes, a certain
number of highly sensitive genes will have trouble joining
with GOUT*, and the rate at which GOUT* can achieve its
maximum size is reduced. In particular, increasing m will
slow down the growth even further in sensitivity-based and
hybrid selection, since larger values of m lead to increased
exclusion of genes.
3.3. Maximizing yield
Our model exhibits certain features common to systems
developed through highly optimized tolerance [24,25], namely
incremental improvements in response to maximizing some
yield or fitness function, leading to specialized structures.
While we do not directly maximize any yield function,
our selection methods can be thought of as heuristics for
maximizing

Y ¼ 1
N
(nactive � jGOUT�j), (3:1)

where nactive is the number of genes with at least one link.
Only genes that interact with others will contribute to the
dynamics in a meaningful way. Therefore, we should maxi-
mize the number of active genes to increase the dynamical
variation of the system. At the same time, we do not want
GOUT* to grow too big, since the size of GOUT* directly
gives the number of genes that are damaged in the steady
state. We consider this yield for each of our selection
methods, as shown in figure 4.

Although avoiding connection to high-risk genes is a
potentially useful feature in preventing connections between
damaged genes, we do not want these genes to be kept
entirely isolated from the network. In the case of each selec-
tion rule, the yield quickly grows as the number of active
genes increases, but reaches a maximum when either all
genes have been assimilated into the network or the percola-
tion transition of GOUT* has been reached. The yield then
begins to decrease and approach 1−N*/N, the fraction of
undamaged genes in the network.
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Figure 3. Growth of the connected components on the full network (left) and the damaged subnetwork (right). We compare growth under random selection to our
three competitive rules. Results shown are the averages of 100 runs on networks of size N = 105. We omit GIN and GIN* due to their symmetry with GOUT and
GOUT*, respectively. Of the selection rules considered, we see that structure-based selection (blue curves) does best at delaying the phase transition for the full
network, while the structure-based and hybrid selection (red curves) exhibit simultaneous transitions when we consider only the damaged subnetwork, with the
hybrid selection showing greater suppression of the component size after the transition.
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Sensitivity-based selection is the only of our rules that
does not reach a maximum of Y = 1 before decreasing, due
to a large number of inactive genes. One should note that
after peaking, sensitivity-based selection does continue to
assimilate genes into the network, but at a slower rate than
the growth of GOUT*.

For structure-based and hybrid selection, there is a long
period during which the yield is maximized. Both rules are
able to quickly incorporate genes into the main network,
since small components of size one are much more preferable.
Hybrid selection tends to grow slower at first, due to its slight
exclusion of high sensitivity genes. For m = 2, when both of
these rules form GOUT* at approximately the same time,
hybrid selection performs slightly better, since the slower
growth of GOUT* leads to a higher yield after the transition.
Increasing to m = 3 and beyond, however, the longer delay in
percolationmakes structure-based selection significantly better.
3.4. Correlations
Finally, we consider two forms of correlations in our net-
works. The first is the in–out degree assortativity, given by
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where sums are taken over all directed links i→ j, diin (djout)
is the in- (out-) degree of node i ( j), and �d

s
in (�d

t
out) is the

average in- (out-) degree of all source (target) nodes averaged
over links. The in–out degree assortativity is equivalent to the
Pearson correlation coefficient between in-degree of source
nodes and out-degree of target nodes, with all averages taken
over links. Very positive assortativity indicates a preference of
large degree nodes to connect to other large degree nodes,
while very negative assortativity, also called high disassortativ-
ity, indicates large degree nodes tend to connect to small degree
nodes. When the assortativity is near zero (no preference), the
network is said to be assortatively neutral.

The second relationship we consider is the correlation
between node out-degree and node sensitivity, calculated by
the Pearson correlation coefficient between out-degree and sen-
sitivity averaged only over active nodes. Due to the symmetry
of our selection rules, the correlation between out-degree and
sensitivity is equal to the correlation between in-degree and
sensitivity. Wewill refer to either case as the degree–sensitivity
correlation, since they are interchangeable. Both the in–out
assortativity and degree–sensitivity correlation are shown in
figure 5.

As one should expect, both random selection and sensi-
tivity-based selection are assortatively neutral, since they do
not directly consider component sizes or node degree in the
decision process. Structure-based selection and hybrid selec-
tion are highly disassortative processes, since both will tend
to prevent large in-components from connecting to large out-
components. Nodes with large in-components typically have
large in-degree and similarly with out-components and out-
degree. In both of these rules, the assortativity continues to
decrease until the critical point at which GSCC percolates,
after which the assortativity tends toward zero. Once the
giant components are large enough, there is a high probability
to select genes from the GSCC. If all m genes are from the
GSCC, then they will each have the same component sizes, at
which point a link will be chosen either randomly, in the case
of structure-based selection, or based on sensitivity, in the
case of hybrid selection. Either approach will tend towards
neutral assortativity, since the decisions are independent of
component size, which relates to degree. Since hybrid selection
leads to a faster-growing GSCC, its assortativity tends to zero
much faster. For the case of m = 3, the trend is similar, though
the assortativities of structure-based and hybrid selection
decrease at a slower rate to a higher (less negative) minimum
value. Since higher values of m are better at keeping com-
ponents small, more components exist near the average
component size.

This trend is clarified by considering the degree–sensitivity
correlation. First, we note that both random and structure-
based selection have uncorrelated degrees and sensitivities,
since they ignore sensitivity information. Sensitivity-based
selection has a strong negative degree–sensitivity correlation,
which is also to be expected since low sensitivity genes have
a higher probability of gaining links. The most interesting
case is hybrid selection. Initially, when all components are
small, sensitivity is a larger influence in the hybrid selection,
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Figure 6. In–out assortativity for the transcriptional gene regulatory networks listed in table 1, as a function of the number of links added. Links are ordered using
gene age information [43], and a randomized ordering of the links in the final network is shown for comparison. Both orderings yield the same final network. E. coli
is omitted, due to lack of gene age information from [43]. Note that the horizontal axis is scaled by the total number of final links (Efinal), rather than the number of
genes (N), to allow for comparison across the different networks.

Table 1. Number of nodes, edges, and the in–out assortativity for the
E. coli, yeast, fruit fly, mouse, and human transcriptional networks. These
in–out assortativity values are also the final values in figure 6.

species nodes edges in–out assort.
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causing a negative degree–sensitivity correlation. Once com-
ponents are of moderate size, component size begins to take
over until the formation of GSCC. As discussed previously,
once GSCC forms there is a greater chance that all m potential
genes will come from GSCC, in which case all m genes have
equal component sizes and sensitivity again takes over.
E. coli [38] 201 460 0.0475

S. cerevisiae [39] 409 5068 0.0590

D. melanogaster [40] 329 3407 −0.0447
M. musculus [41] 827 2213 −0.010
H. sapiens (TRRUST) [41] 795 1882 −0.0516
H. sapiens (ENCODE) [42] 122 624 −0.0430
3.5. Connecting with data
We compare our simulated networks to networks reconstructed
from data. We consider several reconstructed transcriptio-
nal gene regulatory networks for different species, listed in
table 1. Using [43], we have estimates on the ages of most
genes found in these networks, which allows us to construct
an ‘ancestral ordering’ of links. We do this by ordering each
gene by age and adding a link once both genes appear. Admit-
tedly, this way of capturing the network through evolutionary
time provides only a very coarse view, since it relies on the
strong assumption that a regulatory link between two genes
appears as soon as the ‘younger’ gene appears. While this
assumption is almost certainly violated, we believe it provides
a good starting point for connecting with data. For comparison,
we also consider a random ordering of the links. In both
the ancestral and random orderings, the final networks are
identical, with the only difference being the order in which
the links were added.

Due to the small size of the networks,which results because
the empirical data are incomplete, the connected components
do not have clear transitions. In addition, we do not have
known values for the bias or sensitivity of each gene. The sen-
sitivity of a gene may be approximated using expression data,
but calculating accurate sensitivities is a challenging problem
and beyond the scope of our investigation.

We can, however, analyse the in–out assortativity of the
network as a function of the number of links added, as
shown in figure 6. The final values of the in–out assortativity
are given in table 1. As we observed in our simulated struc-
ture-based and hybrid networks, when we add links using
the ancestral ordering that incorporates gene age, we see a
general trend in in–out assortativity: a significant early



royalsocietypublishing.org/journal/rsif
J.R.Soc.Interface

18:202

9

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

10
 A

ug
us

t 2
02

1 
drop to a moderately negative minimum, followed by a slow
increase back toward zero. This pattern is clear for three of
the four species for which [43] provides extensive gene age
data: yeast, drosophila, and mouse. We see a similar, yet
weaker, trend for human in figure 6d, but only after an
initial peak with elevated assortativity, which is especially
pronounced for the ENCODE data. We believe that the
difference in the pattern may be due to the small network
size (the ENCODE network includes only 122 genes) and the
biases involved in subsampling from the full human gene
regulatory network. Nonetheless, the difference between the
ancestral ordering and the random ordering for the human
data is similar to the other species: the assortativity for the
ancestral ordering dips far lower than for the random ordering
and stays significantly negative for amuch larger range of links
added. Perhaps interestingly, the two species with positively
assortative final networks, yeast and Escherichia coli, are also
the only single-celled organisms considered. Unfortunately,
incomplete gene age data from [43] means we cannot verify
if the assortativity of the E. coli network follows the same
trend as the others.
00790
4. Discussion
We have seen that using simple competitive rules, a network
can be evolved to resist large-scale damage propagation sig-
nificantly better than the random case. Often this leads to
specialized structure such as higher link density between
low sensitivity genes, high disassortativity, and strong nega-
tive correlations between degree and sensitivity. Perhaps
most surprising is that knowing a gene’s sensitivity is not
necessary to effectively delay the onset of a system-wide
damaged component, although it does help to ensure that
the components remain small. In fact, when we include sen-
sitivity but not structure in the selection rule, more links form
between a smaller subset of genes. Not only does this feature
result in faster growth of giant components, but it also tends
to exclude some high sensitivity genes from contributing to
the network at all. Further, the in–out assortativity of our
simulated networks evolved using structure-based selection
mimics the in–out assortativity of our reconstructed real net-
works, further corroborating the importance of structure
information in the evolution of actual regulatory networks.
Future investigations into the connection between this kind
of model and real-world data would benefit tremendously
from accurate estimates of gene biases.

Surprisingly, using gene sensitivity information along
with structure does not provide a benefit, at least when
applied through a simple multiplicative rule, when compared
to using structure alone. This hybrid rule results in a three-
phase growth process that switches between emphasizing
low sensitivity genes, then small component genes (which
at such a point are high sensitivity), and then back to low
sensitivity genes. The drawbacks found in the purely
sensitivity-based selection take effect, leading to earlier
percolation than if sensitivity were ignored. One can con-
struct more complicated selection rules that incorporate
sensitivity and structure to perform better than structure
alone, but such rules tend to be overly engineered, and
hence we suspect less biological.

One missing aspect of this process is the ability for gene
sensitivities to evolve over time. The sensitivity of a gene is
an innate dynamical property, and should not be expected
to stay constant throughout every generation. In fact, as the
structure of the network evolves over time, the dynamical be-
haviour of individual genes would likely change in response.
Allowing for the coevolution of structure and sensitivity may
lead to a different story, and represents a natural next step.
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