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ABSTRACT

We consider the commonly encountered situation (e.g., in weather forecast) where the goal is to predict the time evolution of a large,
spatiotemporally chaotic dynamical system when we have access to both time series data of previous system states and an imperfect model
of the full system dynamics. Specifically, we attempt to utilize machine learning as the essential tool for integrating the use of past data into
predictions. In order to facilitate scalability to the common scenario of interest where the spatiotemporally chaotic system is very large and
complex, we propose combining two approaches: (i) a parallel machine learning prediction scheme and (ii) a hybrid technique for a composite
prediction system composed of a knowledge-based component and a machine learning-based component. We demonstrate that not only can
this method combining (i) and (ii) be scaled to give excellent performance for very large systems but also that the length of time series data
needed to train our multiple, parallel machine learning components is dramatically less than that necessary without parallelization. Further-
more, considering cases where computational realization of the knowledge-based component does not resolve subgrid-scale processes, our
scheme is able to use training data to incorporate the effect of the unresolved short-scale dynamics upon the resolved longer-scale dynamics
(subgrid-scale closure).

© 2020 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0005541

We consider the general problem of predicting the future time
evolution of a large, complex spatial system when we have access
to information coming from two sources: (i) measurements of
what has happened in the past over some span of time and (ii)
more general scientific knowledge, typically in the form of a
numerical implementation of a mathematical system description,
which is imperfect because of lack of knowledge regarding some

aspects of the system processes or because of practical numerical
restrictions like limited spatial resolution. Among many impor-
tant examples of the general type of problem, what we have in
mind is that of weather prediction, where the system involves
details of complex geographical features (like mountains, oceans,
etc.), as well as complex atmospheric structures (like clouds,
convective vortices, etc.). In this paper, we ask if it is possible to
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use machine learning to combine knowledge from both sources
(i) and (ii) to produce better predictions in a way that is feasible
for very large systems. We describe a machine learning tech-
nique, Combined Hybrid-Parallel Prediction (CHyPP), that can
potentially be applied to this situation and demonstrate its effi-
cacy on test systems. Our proposed machine learning technique
makes use of a version of “reservoir computing,” a method for
training recurrent artificial neural networks that is effective at
predicting complex evolving dynamics, which can be trained and
applied using parallel computing systems. We combine this tech-
nique with a predictor formulated using imperfect knowledge
to produce more accurate forecasts. In the future, we hope that
our technique will prove effective for a large class of important
problems.

I. INTRODUCTION

In recent years, machine learning techniques have been used to
solve a number of complex modeling problems ranging from effec-
tive translation between hundreds of different human languages' to
predicting the bioactivity of small molecules for drug discovery.”
Typically, the most impressive results have been obtained using
artificial neural networks with many hidden neural states.” These
hidden layers form a “black box” model, where internal param-
eters are trained given a set of measured training data, but after
which only the final model output is observed. This formulation
using measured training data contrasts with how models used for
forecasting physical spatiotemporally chaotic processes are formu-
lated, which is typically done using the available scientific knowledge
of the underlying mechanisms that govern the system’s evolution.
For example, in the case of forecasting weather, this knowledge
includes the Navier-Stokes equations, the first law of thermodynam-
ics, the ideal gas law, and simplified representations of physics at the
unresolved spatial scales (see Sec. I'V).*

In this paper, focusing on the key issues of scalability and
unresolved subgrid physics, we consider the general problem of fore-
casting a very large and complex spatiotemporally chaotic system,
where we have access to both past time series of measurements of the
system state evolution and to an imperfect knowledge-based predic-
tion model. We present a method for combining machine learning
prediction with imperfect knowledge-based forecasting that is scal-
able to large systems with the aim that the resulting combined
prediction system can be significantly more accurate and efficient
than either a pure knowledge-based prediction or a pure machine
learning-based prediction. A main source of difficulty for scalabil-
ity of the machine learning is that the dimension of the state of the
systems we are interested in can be extremely large. For example, in
state-of-the-art global numerical weather models, the state dimen-
sion (number of variables at all grid points) can be on the order
of 10°. Thus, both the machine learning input (the current atmo-
spheric state) and output (the predicted atmospheric state) have
this dimensionality. (In contrast to the description of some machine
learning techniques as “deep,” one might refer to the situations we
address as “wide.”) The prediction method that we propose for such
large complex systems builds on the previous work on parallelizable
machine learning prediction” and hybridization of knowledge-based
modeling with machine learning.® We call our technique Combined
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Hybrid/Parallel Prediction (CHyPP, pronounced “chip”). Although
the general method we propose is applicable to different kinds of
machine learning, the numerical examples presented in this paper
use a machine learning method known as reservoir computing.”"
Jaeger and Haas’ described the effectiveness of reservoir computing
for predicting low-dimensional chaotic systems. Research surround-
ing this technique has since expanded,'>'' and it has recently been
shown that reservoir computing using recurrent neural networks
can produce similar quality predictions for chaotic systems to those
of other recurrent architectures, such as Long Short-Term Memory
(LSTM)" and Gated Recurrent Units (GRU),"” while often requir-
ing much less computational time to train.'’ Reservoir computing
techniques can additionally be extended to physical implementa-
tions using, e.g., photonics'” and Field Programable Gate Arrays
(FPGAs).>'"

The rest of the paper is organized as follows. In Sec. 1I, we
first review a simple version of reservoir computing”* and discuss
its shortcomings for forecasting high-dimensional spatiotemporal
chaos. We next describe the hybrid reservoir prediction technique
(Refs. 6 and 18), as well as previous work on how machine learn-
ing can be parallelized for prediction of spatiotemporal systems.”
We then present our proposed CHyPP architecture combining
the two. In Sec. III, we demonstrate how the CHyPP method-
ology improves on each of the component prediction methods.
For these demonstrations, we use the paradigmatic example of the
Kuramoto-Sivashinky model as our test model of the spatiotem-
porally chaotic system that we aim to predict. We highlight the
scalability of the proposed method to very large systems as well as
its efficient use of training data, which we view as the crucial issues
for the general class of applications in which we are interested. In
Sec. IV, we consider a situation with multiple time and space scales
and show by numerical simulation tests that CHyPP can, through its
use of data, effectively account for unknown subgrid-scale processes.
The main conclusion of this paper is that our CHyPP methodology
provides an extremely promising framework, potentially facilitating
significant advances in the forecasting of large, complex, spatiotem-
porally chaotic systems. We believe that, in addition to weather, the
method that we propose may potentially be applicable to a host of
important areas, enabling currently unattainable capabilities. Some
speculative examples of potential applications are forecasting of
ocean conditions, forecasting conditions in the solar wind, magne-
tosphere, and ionosphere (also known as “space weather,” important
for its impact on the Earth-orbiting satellites, Global Positioning
System (GPS) accuracy, and high frequency communications), fore-
casting the evolution of forest fires and their response to mitigating
interventions, forecasting the responses of ecological systems to
climate change, analysis of neuronal activity, etc.

I. RESERVOIR COMPUTING ARCHITECTURE FOR
CHyPP

A. A simple machine learning predictor

To begin, we initially consider the goal of a generic machine
learning system for time series prediction of an unknown dynam-
ical system evolving on an attractor of that system. Later, we will
consider that the machine learning system is a reservoir computer
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FIG. 1. Machine learning prediction device (a) open-loop training phase and (b)
closed-loop prediction phase.

and that the unknown chaotic system is not completely unknown,
and we will try to make use of that knowledge. Given a finite dura-
tion time series of the unknown system state’s evolution up to a
certain time #j, where the state at each time is represented by the
K-dimensional vector u(t) = [u;(t), 2 (), . . ., ux(H)]7, our goal is
to predict the subsequent evolution of the state. As illustrated in
Fig. 1(a), in the initial training phase, at each time t = nAt < t,,
u(#) is input to the machine learning system (u;,(f) = u(f)), which is
trained to output a time At prediction of the dynamical system state
u(t + Af) (e (t + Af) =~ u(t + At)). Werefer to the just-described
input-output configuration as the “open-loop” system [Fig. 1(a)].
To ensure an accurate representation of the true dynamics with a
reservoir of limited size, At is typically short compared to natural
time scales (such as the correlation time or the “Lyapunov time”)
present in the unknown dynamical system whose state is to be pre-
dicted. Once trained, the machine learning system can be run in a
“closed-loop” feedback configuration [Fig. 1(b)] to autonomously
generate predictions over a finite duration of time. That is, with t,
representing the time at the end of the training data, we replace
the former input from the training data by the output by insert-
ing an output-to-input feedback loop, shown by the dashed line
in Fig. 1(b). Then, when u;,(t;) = u(fy) is the input, the reservoir
computer produces an output prediction for u(ty + At), which we
refer to as U(ty + At) = uy,(ty + At). When this predicted state
is then used as the input (u;, (o + At) = a(fy + At)), the reservoir
computer produces an output prediction for u(fy + 2At), denoted
as u(ty + 2A1) (w,,(to + 2At) = u(ty + 2At)). This process is then
iterated to produce predictions of the system state at t = t, + mAt
form=1,2,3,... [Fig. 1(b)].

In the rest of this section, we first present background from
previous work (Secs. II B and II D), then introduce our CHyPP
method for combining a knowledge-based model with reservoir-
based machine learning to form a scalable system concept suitable
for state prediction of very large, spatiotemporally chaotic systems.
Specifically, in Sec. 11 B, we review a basic reservoir computing setup
based on the methods of Refs. 7 and & along with the proposal for
its use as a predictor carried out in Ref. 9. In Sec. I C, we build
upon the simple setup of Sec. II B and describe the methodology
from Ref. 5 for hybrid forecasting of the dynamical system using a
single reservoir computing network and an imperfect model. In Sec.
IT D, the reservoir computing forecasting technique of Sec. IT B is
extended via parallelization of the machine learning with multiple
parallel reservoir computers, in order to predict high-dimensional
spatiotemporally chaotic systems, as was first described in Ref. 5 (but
without the incorporation of a knowledge-based model). Finally,
in Sec. II E, we present our proposed CHyPP architecture and
technique for combining the parallel reservoir method of Sec. II D
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with the hybridization of a knowledge-based predictor and a paral-
lel reservoir-based machine learning prediction of Sec. I C. It is our
belief that it is only by means of such a combination that the most
effective application of machine learning-enabled prediction can
be realized for large, complex, spatiotemporally chaotic dynamical
systems.

B. Basic reservoir computing

We now consider that the ML device shown in Fig. 1 is a reser-
voir computer which, as shown in Fig. 2 (and further discussed
subsequently), consists of a linear input coupler (W,) that couples
the state u;, () into the reservoir (the circle in Fig. 2). The state of the
reservoir is given by a high-dimensional vector r(t), which is then
linearly coupled by W,,, to produce an output vector u,,(t + At)
which, through the training, is a very good approximation to u(t +
Af). In this paper, our implementation of the reservoir is an artificial
recurrent neural network with a large number of nodes. The artifi-
cial neural network that forms our basis of the reservoir computing
implementation is illustrated in Fig. 2. The reservoir network adja-
cency matrix is chosen to be a randomly generated, sparse matrix A
that represents a directed graph with weighted edges. The adjacency
matrix A has dimensions D, x D,, where D, is the number of nodes
in the network. Elements of A are randomly generated such that the
average number of incident connections per node (average number
of nonzero elements of the matrix in each row) is set to a chosen
value (d), the “average in-degree,” while the nonzero elements of
A are chosen from a uniform distribution over the interval [—1,1].
Once generated, A is re-scaled (i.e., multiplied by a scalar) so that the
its largest absolute eigenvalue is a prescribed value p, called the spec-
tral radius. Each node i in the network has an associated scalar state
r:(t). The state of the network is represented by the D, dimensional
vector r(t), whose elements are 7;(t), where i = 1,2,3,...,D,.

The reservoir network state r(t) evolves dynamically while
receiving input through a K x D, input coupling matrix, W;,. We
choose the matrix W;, to contain an equal number of nonzero
elements in each column, which corresponds to coupling each

Uout (t + At)

B - Output at time t+At

PR —— Output coupling
_y' D A —— Reservoir
O — Input coupling
I uin(t) P —— Input at time t

FIG. 2. Diagram of the reservoir computer setup. In the “open-loop” training
phase [analogous to Fig. 1(a)], the dashed line representing coupling from the
output back to the input is absent. In the “closed-loop” prediction phase [analo-
gous to Fig. 1(b)], the coupling from the output back to the input (dashed line) is
activated.
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element of the reservoir input to an equal number of reservoir node
states. Nonzero elements of this matrix are selected randomly and
uniformly from the interval [—o, o], where o is referred to as
the input weight. Given the current state of the reservoir r(¢), the
reservoir state is advanced at each time using a hyperbolic tangent
activation function,

r(t + At) = tanh[Ar(¢) + W;,u;,(0)]. (1)

Before prediction begins, the reservoir computer is trained
in the “open-loop” configuration. During this training phase,
u;, (1) = u(t) 4+ sn(t). Here, u(t) is the measurement of dynamical
system state at time ¢ in the form of a K-dimensional vector. As in
Ref. 7, we add a small, normally distributed K-dimensional vector
s(t) of mean 0 and standard deviation s to the input dynamical
system state during training. The elements of the vector 5(f) are
chosen randomly and independently at each time f. The function
of this added “stabilization noise” is to allow the reservoir com-
puter to learn how to return to the true trajectory when the input
trajectory has been perturbed away from it. We find that, in many
cases, this additional small noise input beneficially promotes sta-
bility of the closed-loop prediction configuration once training has
been completed.

The adjustable constants characterizing the overall prediction
system (e.g., D,, (d), 0, s, and Aft) are referred to as “hyperparam-
eters,” and it is important that they be chosen carefully in order
for the reservoir computer to predict accurately. For example, as
explained in the previous literature, the hyperparameters can be
chosen so that the reservoir system has the so-called “echo-state
property” (see, e.g., Ref. 7), whereby when in the open-loop train-
ing phase, the reservoir state r(f), aside from an initial transient
and with the random sequence 7(f) fixed, the reservoir state r(f)
becomes uniquely determined by the reservoir input sequence u(f)
(and hence independent of the initial values of r). Accordingly, prior
to initiation of the training, we ignore and discard the reservoir and
input states for the first few time steps. The state of the reservoir at
the end of this transient nullification period is labeled r(0). Starting
with r(0), the training system states u(jAt) (j an integer, jAt < t;)
and the resulting reservoir states, r((j + 1)At), are recorded and
saved. We then desire to use these saved states to produce an out-
put, u(t + At), when u(¢) is the input, which we desire to be very
close to u(t + At). To do this, we find it useful to perform an ad hoc
operation on the reservoir state vectors that squares the value of half
of the node states. Specifically, we define ¥(jAf) such that

for i odd, 2)

fi=r

7 =1 forieven. 3)

As surmised in footnote 16 of Ref. 5, this operation improves pre-
diction by breaking a particular odd symmetry of the reservoir
dynamics that is not generally present in the dynamics to be pre-
dicted. We next couple the transformed reservoir state ¥(f + Af)
via a K x D, output coupling matrix W,,, to produce an output
o (£ + AL,

o (t + AL) = W i (t + Ab), (4)

and we endeavor to choose (train) the matrix elements of W,,; so
that u,,,(t + Af) is close to u(t + At). In general, this will require
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that D, > K. To accomplish this, we try to minimize the L?* differ-
ence between u(f + At) and u,,,(f + At). To prevent overfitting, we
insert a Tikhonov regularization term to penalize very large values
of the matrix elements of W,,;,"” that is, we find

out
0<t<ty

l’vl\']lin { Z I:”Wauti(t) - u(t)”2:| + ﬂTrace(woutquut) > (5)

over the KD, scalar values of the matrix W,,,. Here, § is a small regu-
larization parameter and ||- - -|| denotes the L* norm. This technique
is commonly known as ridge regression. In our subsequent numer-
ical experiments (Secs. I1I and I'V), we use the “matrix solution” for
the minimization problem to determine the trained W,,,. In partic-
ular, we proceed as follows. We first form a matrix R where the jth
column is the jth transformed reservoir state r(jAt). We define a tar-
get matrix U consisting of the time series of training data such that
the jth column of U is u(jAt). We then determine a matrix W,,, that
satisfies the following linear system:

Wou(RR' + 1) = UR'. (6)
This can be done by explicitly calculating the matrix inverse,

Wou: = UINKT(INIRT + BI) 1, or, more efficiently, by using a matrix
division algorithm such as mrdivide in MATLAB® as we do in
our numerical experiments. We additionally note that methods of
solving Eq. (5) for W, other than direct matrix solution are also
available and may sometimes be advantageous (e.g., Generalized
Minimal Residual Method (GMRES),”' stochastic gradient descent,””
etc.). By means of this minimization, it is hoped that u,,(f) =
u(?) is achieved. This completes the training process, following
which we can switch to the closed-loop configurations [Fig. 1(b)
and the dashed line in Fig. 2] and attempt to predict the subse-
quent evolution of u(#). Prediction can then proceed via Egs. (1),
(2), and (6) where the prediction of the dynamical system state
u(f) = u,, () and the reservoir input is received from the feedback
100P (uin(t) = uout(t))~

The closed-loop configuration system can be regarded as a sur-
rogate dynamical system that mimics the original unknown dynam-
ical system. As such, if the original unknown dynamical system is
chaotic, the closed-loop predictor system will also be chaotic. Due to
the exponential growth of small errors implied by chaos, we cannot
expect prediction to be good for more than several Lyapunov times
(the Lyapunov time is the typical e-folding time for error growth in a
chaotic system). Thus, we will regard our predictions to be successful
when they are good for a few Lyapunov times.

Now consider that we have made a prediction for u(#), and, at
some later time, we wish to perform another prediction of the same
spatiotemporally evolving system with unknown dynamics. It is not
necessary to retrain our predictor; we can, instead, re-use the previ-
ously obtained W,,,.” To do so, we re-initialize the reservoir state to
zero, switch the reservoir computer into its open-loop configuration,
and allow it to evolve given input states of the unknown dynam-
ical system measured at times ¢, — Ts < t < t, [i.e, w;,(t) = u()].
Ts is some synchronization time that is sufficiently longer than the
characteristic memory of the reservoir computer but, importantly, is
much shorter than the necessary training time needed to determine
Wout. 1, is the time at which we want to begin our prediction. After
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this synchronization period, the reservoir computer is switched to its
standard closed-loop prediction configuration and is used to make
predictions at later times.

If the original system is very high dimensional (i.e., the dimen-
sion K of the measure vector u(f) is very large), then D, > K must
be exceedingly large. This can make the training to determine W,,,
infeasible. For example, if we solve Eq. (5) by the direct matrix
method, Eq. (6) shows that we must solve a D, x D, linear system
of equations. For our computational resources, we find that this
becomes impossible as D, approaches 2 x 10*. Due to this and other
similar considerations, we deem the method discussed in this section
to be untenable for the prediction of large, spatiotemporally chaotic
systems of the type we are interested in.

C. Hybrid reservoir computing

In this section, we briefly review a hybrid scheme proposed
in Ref. 6 for combining reservoir computing with an imperfect
knowledge-based model of the dynamical system of interest. We
again assume access to time series data of measurements of the
state of the dynamical system. We further assume that an imperfect
knowledge-based model of the system producing the measurements
is available and that this imperfect model is capable of forecasting
the state of the dynamical system with some degree of accuracy,
which we wish to improve upon. In the hybrid setup of Ref. 6
(Fig. 3) described below, it has been shown that the machine learning
method and the knowledge-based model augment each other and, in
conjunction, can provide a significantly better forecast than either
the knowledge-based model or the pure machine learning model
acting alone.

As in Sec. 1, we assume that the data used for training is given
by K measurements of the state of the dynamical system at equally
spaced increments in time, At, forming a vector time series u(f). The

Uoyut (t + At)

e Output at time t+At

Hybrid Forecast .--~

PN V— Input coupling

< Knowledge-based
model

e |nput attimet

Uin (t)

FIG. 3. Diagram of the hybrid reservoir computer setup. In the “open-loop” train-
ing phase [analogous to Fig. 1(a)], the dashed line representing coupling from the
output back to the input is absent. In the “closed-loop” prediction phase [analo-
gous to Fig. 1(b)], the coupling from the output back to the input (dashed line) is
activated.
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imperfect knowledge-based model M is an operator that maps the
state u(t) to a forecast of the state at time (t + Af).

We advance the reservoir state in time using the same activa-
tion function as described in Sec. II B,

r(t + At) = tanh[Ar(¢) + W, u;,(D)]. (7)

Once again, during the training phase, w;,(f) = u(t) + sy(f). The
training process is similar to the one employed in Sec. II for the basic
reservoir computer but with the addition of the knowledge-based
prediction (as illustrated in Fig. 3). Using ridge regression, we find a
linear mapping W, from ¥(f) and M [u(¥) + sp(t)] to produce an
approximate prediction of u(t + At),

i+ Aan]
Wuut [M[u,n(t)]] - u(t + At) (8)
Here, u;, (¢) is the same as that input to the reservoir, u;, (f) = u(f) +
sn(t). We again include the small sp(#) vector in the knowledge-
based model input during training to improve the stability of the
method. Additionally, recall that ¥ is related to r by Eq. (2). In the
prediction phase, we run the hybrid system in a closed loop feed-
back configuration (Fig. 3 with the dashed line feedback connection
present) using Egs. (2) and (7), and the following equation:

(t+ Af)
Mlupu (D]

During the prediction phase, the hybrid forecast iy, (f) = uy,(t)
and the hybrid input is received from the feedback loop (u;,(f)
= u,,(?)). Note that, in this scheme, the output is a linear combi-
nation of the reservoir state and the knowledge-based model output
that optimizes the agreement of the combined system output with
the training data. Thus, we can regard the result as being an opti-
mum combination of the reservoir and knowledge-based compo-
nents. Hence, we expect that if one component is superior for some
aspect of the prediction, then it will be weighted more highly for
that aspect of the prediction. This suggests that predictions by this
method may be greatly improved over those available from either
the knowledge-based component or the reservoir component acting
alone (e.g., see Fig. 7 of Ref. 6).

In addition to the hybrid configuration shown in Fig. 3, we have
also tested a modified configuration in which there is an additional
input to the reservoir component from the output of the knowledge-
based model M. We have empirically found that this modification
sometimes yields a small positive improvement in prediction; how-
ever, for simplicity, we henceforth only consider the configuration
in the figure.

o (£ + AL) = Wy |: (9)

D. Parallelization

To obtain a good prediction of a chaotic dynamical system
state using reservoir computing, the reservoir dimensionality must
be much greater than that of the dynamical system (i.e., D, >> K) so
that there are enough free parameters available in W,,, for fitting
the reservoir output state to the measured dynamical system state at
time (¢ + Af). This can cause the computational cost of determin-
ing an optimum output matrix to become unfeasibly high for large
dynamical systems, e.g., because the implementation of this step by
the method of Eq. (6) involves solving a D, x D, linear system. As a
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point of reference, we note that the dimension of the state vector of
a current typical operational global weather forecasting model is on
the order of 10°. A method to make consideration of such problems
feasible for machine learning approaches was proposed in Ref. 5.
The idea is to exploit the short range of causal interactions over a
small time period in many spatiotemporally chaotic dynamical sys-
tems. This was shown to allow the use of multiple relatively small
reservoir computers that each make predictions of a part of the full
dynamical system state as in a local region, illustrated in Fig. 4 and
explained below. This method has the advantage that, in the training
phase, all of the relatively small output matricesW,,;, of each reser-
voir computer can be trained independently, in parallel, thus greatly
reducing the difficulty of training.

For illustrative purposes, consider a spatiotemporal dynam-
ical system in one spatial dimension with periodic boundary
conditions. Let the dynamical system state be represented by a
K-dimensional vector time series u(f) = [u;(8), (2, .. ., ux(®]7,
where each scalar component u;(f) represents the time series at
a single spatial grid point. We divide the system state into P
equally sized, contiguous regions containing Q system variables,
where PQ = K. We denote the system variables in these regions as
u,(t) = [uQ(P,l)H(t),...,uQP(t)]’, where 1 <p < P. Each local
region in space is predicted by a reservoir R, each of which
has internal reservoir states r,(f) and adjacency matrix A, gen-
erated via the process described in Sec. II B. Each reservoir
is coupled to its input, w,,(f), via a matrix of input weights,
Wi, This input corresponds to a local region of the sys-
tem that contains the region to be predicted by that reser-
voir as well as a size £ overlap region on either side, wu;,,(t)
= [tinqp-+1-£ (D Uingp-1+2-¢ (D> - - - Uingp+e ()] . We denote the
dynamical system state in this input region by the size
(2¢€ 4+ Q) dimensional vector v, () = [tqp—1)+1—¢(t)> tqp-1)+2—¢ (1),

..,uQPH(t)]T. This overlap accounts for the short range causal
interactions across the boundaries of the local regions. The assump-
tion here is that, over the incremental prediction time Af, state
information does not propagate fast enough for nodes outside the
input regions of reservoir p to influence the time At change in the
dynamical system states predicted by reservoir p.

Each reservoir state is advanced using the following equation:

r,(t + At) = tanh[Apr, () + Wi pin, (5], (10)

During the training phase (Fig. 4 with the dashed output-to-input
connection absent), Wp,(t) = v,(t) + sn(t),. Here, the (2¢ + Q)
dimensional vector (), is the pth local region of a global vector of
normally distributed random variables, 3(f), chosen independently
at each time ¢,

NQp-1+1-¢

NQp-1+2-¢
00, = : : (11)

NQp+e

After a suitably long transient nullification period, we determine the
output matrices W, for each reservoir that solve the least squared
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optimization problem using ridge regression,

min { 3 [||wow,1,1§,(t+ At —u,(t + At)”z]

Woutp 0<t<ty
+ B Trace(Waut’PWOTut’P)} . (12)

Note that, for each p, matrix W,,,, can be relatively small as the
number of outputs is the number of state variables in region p (not
the entire global state). Furthermore, the determinations of the rel-
atively small W, , matrices are independent for each region p, and
thus can be computed in parallel. The “direct matrix method” solu-
tion for determining each of the W, matrices proceeds as follows.
First, we rewrite Eq. (12) as

min||U, — WoupRy | + BTrace(Wou,Wo,, ) (13)
out,p

where in Eq. (13), U, and R, are analogous to U and R in the single
reservoir prediction [see Eq. (6)]. U, is the target matrix such that
the jth column is u,(jA#), while R, is obtained from R, analogous
to the single reservoir case as described in Eq. (2). Each W, is
calculated by solving the following equation:

~ ~T ~T
Wourp (R,R, + BI) = U,R,. (14)

Note that, as previously claimed, the minimization problem for each
p» Eq. (13), is completely independent and can be solved for the
different p in parallel. As in Sec. II B, in the prediction phase and,
after a period of synchronization, we produce a full state prediction
u(t) by running the system in a closed loop feedback configuration
(i.e., Fig. 4 with the dashed output-to-input feedback connection
present). This is done by concatenating the local predictions from
each reservoir W,(f) = Woup(f) [Where uy,,(t) is the output state
from each reservoir]. Reservoir p then receives inputs from its own
outputs in addition to the left and right overlap zone inputs from the
£ left grid points and the € right grid points. The entire system thus
evolves as follows:

uaut,p(t) = wout,p [i:p(t)]) (15)
_ﬁl (t) Wout,1 (t)
- ﬁZ (t) Wout,2 (t) 5
u(t) = . = : > uin,p(t) = vp(t)

_ﬁP(t) Wout,p (t)
[Tqp-1+1-e(D

qp-n+2-¢(f) 16)

Ugpe(t)
1, (t + At) = tanh[A,r, (1) + Wiy, (0], 17)

where 1, (f) is obtained from r,(¢) using Eq.(2).

Finally, we compare the parallel reservoir method with Con-
volutional Neural Networks (CNNs), a commonly used form of the
artificial neural network architecture that is constructed to learn spa-
tial features.”” The main differences between the parallel reservoir
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FIG.4. Diagram of the parallel reservoir

I'p+1 e o o
computer setup.

| Win,p+1 |

Spatial Grid

method and CNN-based methods are in the type of models they
produce and the method for training each of them. CNNs capture
spatial features via a global model of the local dynamics that param-
eterizes many different local fields. Our chosen approach, on the
other hand, determines many local models for each spatial region
which, in the case of a spatially inhomogeneous system such as
terrestrial weather, we believe will be more accurate than a global
model. In addition, we expect our chosen method is easier to train
due to the simplicity of obtaining the least squares optimal solution
for each relatively small local region.

E. Combined hybrid/parallel prediction (CHyPP)

In our previous work,” we constructed a hybrid prediction
method using a single reservoir. In this section, we consider a
combination of the parallel approach of Sec. IT D (which enables
computationally efficient scaling to high-dimensional spatiotempo-
ral chaos) and the hybrid approach of Sec. II C (which allows us
to utilize partial prior knowledge of the dynamical system), where
we assume that the knowledge-based system provides global pre-
dictions over the entire spatial domain. A diagram of this method
can be found in Fig. 5. While the approach is easily general-
ized to 2- and 3-dimensional spatial processes, in order to most
simply demonstrate our proposed methodology, we again con-
sider a one-dimensional, spatiotemporally chaotic dynamical system
with periodic boundary conditions, with a state represented by a
K-dimensional vector time series u(t) = [u,(9), uz (1), . . ., ux(H]".
Our approximate knowledge-based prediction operator M gives a
global prediction of the full system state for a time Af: M[u(f)]

Hybrid Forecast

U;n (t)

=u(t+ At). As in our parallel reservoir computer prediction
described in Sec. II D, we partition the system state into P equally
sized, continuous regions containing Q variables, where PQ = K
and each such region is predicted by a reservoir R,, p = 1,2,..., P.

Each reservoir R, input is coupled to a local region of the sys-
tem states as in Sec. II D, and the reservoir state r,(t) is advanced
using the following equation:

r,(t + At) = tanh[A,r, (1) + Wi, 0, (D)]. (18)

During the initial training phase, w;y,(t) =v,(#) +sy(t),. In
Eq. (18), Wy, is the input coupling matrix for the local system states,
analogous to that described in Sec. II B. As in Sec. II D, v,(t) is the
state measurements at grid points within the local region to be pre-
dicted along with € grid points to either side and 5(¢), is the pth local
region of the global vector of normally distributed random numbers
n(f). Each reservoir is trained independently, in parallel, using a set
of training data consisting of an equally spaced time series of mea-
sured states of the large scale dynamics beginning at t = 0 after some
initial transient nullification period. Again, we solve the least squares
optimization problem with ridge regression to determine an output
mapping for each reservoir [analogous to Eq. (13)],

. R
min {”Up - waut,p [ﬁpi| ”2 + ﬁTrace(WDut,prutlp)} . (19)
P

Woutp

In Eq. (19), ﬁp is a matrix whose jth column is @,(jAf), where
0, (jAt) is the knowledge-based prediction of the pth local region

e T T T T T T Uout (t + At)
| Wrm,t,p—l | | W()'ut,p I | Wout.,p-%—l |
r,_ r r
o o o GD\ <p> GD e o o FIG. 5. Diagram of the Combined
Hybrid/Parallel  Prediction  (CHyPP)
Winp 1 Winp Winpt1 architecture using reservoir computing.
bV AV N VNN

Spatial Grid
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TABLE I. Hyperparameters used in the results in Sec. Il

(d) (average in degree) 3 £ (local overlap length) 6
p (spectral radius) 0.6 At (prediction time step) 0.25
o (input coupling strength) 0.1  Ts (synchronization time) 25
B (regularization) 1076 s (CHyPP tests) 0

s [reservoir(s)-only tests] 0.001

of the system,

Mlu(t) + S”(t)]Q(p—1)+l
M{u(®) + sp(D]qp-1)+2

a,(t+ At) = (20)
Miu() +s1(0)]g,
The solution to Eq. (19) by the direct matrix method is
R, 57 AT <T AT
Wout,p ([ﬁi] [RP’UP] +ﬁ1> :UP[Rp’Up]' (21)

In the prediction phase, we run the system in a closed-loop con-
figuration according to Eqs. (22)-(25) to predict each local region of
the system given each reservoir state and knowledge-based model
prediction, obtaining 11,(jA¢). The local predictions are appropri-
ately concatenated to form a full state prediction, which is then used

15
P
g 1r 1
z
o=t
3
£
Z 05 ]
0 _— 1 1 1
0 5 10 15 20 25

Prediction Time (Lyapunov Time)

FIG. 6. Average normalized root mean square error (NRMSE) in the CHyPP pre-
diction, where we have fixed the number of system variables predicted in each
region to Q = 8 and the reservoir spatial density at P/L = 16/100. The total
number of spatial grid points K in each prediction are K = 128 for L = 100,
K = 512 for L = 400, and K = 1024 for L = 800. Predictions are made using
an imperfect model with second derivative error e = 0.1. The results shown are
the average of 100 predictions, where each prediction is made using the same set
of reservoirs and training dataset but where the CHyPP method is synchronized
to different initial conditions for u(t). we see that the NRMSE curves are rela-
tively invariant as L increases, indicating that our method can be scaled to large
systems.

scitation.org/journal/cha

as input for the next prediction step, as follows:

. [ %,(0) }
1) = Ugup(t) = waut P > 22
up() u p() P _llp(t)] (22)
u (f) [(Tigp-1)+1-e (D)
_ u, () ~ UQp-1)+2—e(t)
Q=] . | e =5,0= T @
up(t) e ()]
M, ()] gp-1)+1
M, ()] gp-1)+2
u,(t+ A = . , (24)
Miu (0],
1, (t + At) = tanh[A,r,(£) + Wi, w;,,,()]. (25)

In the above equations, we once again calculate I, (f) from r, () using
Eq. (2).

Il. TEST RESULTS ON THE KURAMOTO-SIVASHINSKY
EQUATION

We test the effectiveness of our proposed CHyPP method (Sec.

I1 E) by forecasting the state evolution of the Kuramoto-Sivashinsky
equation with periodic boundary conditions,”>”

dy dy oy oYy

ot = ox 9 oxt 26
where y=y(x,t) and y(x+ L,f) = y(x,t). This spatial one-
dimensional model generally produces spatiotemporally chaotic
dynamics for periodicity length L > 50. For the purpose of com-
paring various methods, we regard Eq. (26) as generating the state
measurements of a putative system that we are interested in, while
the imperfect prediction model we use is a modified version of this
same equation, where an error term € is introduced in the coefficient
of the second derivative term,

dy dy oy

ot~ Yax 0T 9% "o @7
We have also investigated the case where the error is introduced
by multiplying the ydy/dx term in Eq. (26) by (1 + €). For the lat-
ter case, the results of our method are qualitatively similar to those
for Eq. (27). We form our simulated measured time series u(t) by
taking the ith element of u(t) to be y(iAx, t), where Ax = L/K is
the grid spacing used for our numerical solutions of Eq. (26). We
numerically solve the Kuramoto-Sivashinky equation on the same
discretized spatial grid using fourth-order Runge-Kutta exponen-
tial time differencing.”® As a metric for how long a prediction is
valid, we calculate the normalized root mean square error (NRMSE)
between the true and predicted system states. We define the length
of valid prediction, or “valid time,” to be the time at which NRMSE
exceeds 0.2. Since the NRMSE saturates at sqrt(2), we consider this
to be the point when error in the prediction reaches about 15% of
its saturation value. In Sec. IIT A, we demonstrate that our CHyPP
methodology can scale to predict very large systems. In Sec. 111 B,

aty
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FIG. 7. (a) The true dynamics of the Kuramoto-Sivashinsky equation obtained by numerical evolution of Eq. (26) normalized to have mean 0 and variance 1. We plot the
spatial grid point along the vertical axis and the Lyapunov time on the horizontal axis. The Lyapunov time is defined by A at, where Ay is the largest Lyapunov exponent
computed from Eq. (26). Predictions of this evolution by four different methods are shown in panels (b)—(e). The prediction in (b) is made by a single reservoir computer with
16 000 nodes, the prediction in (c) is made by 16 reservoir computers, in parallel, each with 4000 nodes, the prediction in (d) is made by a hybrid with a single reservoir
computer with 16 000 nodes(D), and the prediction in (e) is made by CHyPP with 16 reservoir computers, in parallel, each with 4000 nodes and an imperfect model with
second derivative e = 0.1. The plots on the right (b)-(e) display the difference between the true dynamics (a) and the prediction using each of the corresponding techniques.
The vertical black line marks the valid prediction time. Each technique was trained using a 3375 Lyapunov time sequence of training data.

we show that the CHyPP method requires significantly less training
data than the parallel scheme of Sec. II D (using reservoirs without
a knowledge-based component). We then discuss, in Sec. 111 C, the
sensitivity of the CHyPP and parallel machine learning (Sec. II D)
methods to the local overlap length ¢.

For all of our numerical experiments in this paper, in addition
to our solution of the imperfect model, we use a digital computer to
implement the machine learning. However, if, in the future, CHyPP
is applied to very large systems (e.g., weather forecasting) requiring
a much larger number of parallel machine learning units, then we
envision that it may prove useful to perform the parallel machine
learning using a special purpose physically implemented reservoir
computing array, e.g., based on FPGAs or photonic devices.”™”
Such implementations, called “AI hardware accelerators,” show
great promise with respect to low cost, speed, and compactness.

A. Prediction scalability

We first test the ability of our CHyPP method to scale to large
system sizes. We consider the Kuramoto-Sivashinsky equation,

where we fix the number of system variables (grid points) each
reservoir is trained to predict to Q = 8, as well as the reservoir spatial
density to P/L = 16/100 (P is the number of reservoirs), while vary-
ing the periodicity length L. For all tests in this section, we use the
hyperparameters in Table I unless otherwise specified. We addition-
ally fix the error in the incorrect model to € = 0.1. Figure 6 shows
the resulting NRMSE between the true state and our hybrid parallel
prediction averaged over 100 prediction periods vs time. For each
value of L plotted in Fig. 6, the density of the parallel reservoir com-
puters is kept constant at P/L = 0.16. Additionally, the time plotted
horizontally is in units of the Lyapunov time (the average chaos-
induced e-folding time of small errors in the predicted state orbit).
The NRMSE is relatively unchanged as the value of L is increased,
indicating that the CHyPP prediction, like the parallel reservoir-
only prediction in Ref. 5, can be scaled to very large systems by the
addition of more reservoirs.

Finally, we note that our test system, the Kuramoto-Sivashinky
equation, is homogeneous in space, while the real systems we are
interested in are generally spatially inhomogeneous. For example,
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weather forecasting accounts for geographic features (continents,
mountains, etc.), as well as for latitudinal variation of solar input,
among other spatially inhomogeneous factors. In order to ensure
that our numerical tests with a homogeneous model are also rele-
vant for a typical inhomogeneous situation, we have not made any
use of the homogeneity of Eq. (26): the adjacency matrices A, corre-
sponding to each reservoir p are independently randomly generated
and each W,,;, is determined separately (rather than taking all A,
and Wy, to be the same, as would be possible for a homogeneous
system).

B. CHyPP promotes the possibility of good
performance using a relatively small duration of
training data

The prediction results shown in Figs. 7 and 8 use the param-
eters contained in Table I. In addition, the number of reservoirs
and the length of training data are specified in the figure captions.
Our true Kuramoto-Sivashinky equation dynamics and our imper-
fect model use a periodicity length of L = 100 and are realized over
K = 128 spatial grid points. The imperfect model has an error of

€ = 0.1 and a small valid prediction time of only 0.48 Lyapunov
times. Each plotted valid time is averaged over 100 predictions
that are generated using the same set of reservoirs with the same
training data sequence but that are synchronized to different ini-
tial conditions. Figure 7 displays a set of example predictions of
one of these test time series. Figures 7 and 8 both demonstrate that
CHYyPP vyields significantly longer valid predictions than the paral-
lel reservoir-only method, which (for our choice of € and reservoir
size) produces longer valid predictions than the imperfect model
alone. Both the parallel hybrid and parallel reservoir-only predic-
tions outperform the imperfect model-only approach. From Fig. 8,
we also observe that the CHyPP saturates or reaches a valid predic-
tion time that increases only negligibly with the addition of more
training data, at a much shorter length of training data than the
parallel reservoir-only. As a result of this, the length of training
data before which we would not benefit from increasing the size
of the reservoir is also much shorter in the CHyPP prediction. For
example, consider the plots in (b) and (f) in Fig. 8, where each pre-
diction uses four reservoirs. If we have a 500 Lyapunov time length
of training data, we would not benefit from increasing the number
of nodes per reservoir above 2000 in the reservoirs-only prediction
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TABLE Il. Hyperparameters used in the results in Sec. |V.

(d) (average in-degree) 3 p (spectral radius) 0.6
¢ (local overlap length) ~ N/12 o (input coupling strength) 1
At (Prediction time step) 0.005 B (regularization) 1074

Ts (synchronization time) 0.5

but could obtain a significant performance improvement if we did
so using CHyPP. CHyPP exhibits its most impressive performance
for very short lengths of training data. With only 22.5 Lyapunov
times worth of training data, the parallel reservoir-only method is
able to predict for only 0.44 Lyapunov times, whereas CHyPP with
16 reservoirs of 2000 nodes each predicts for 3.35 Lyapunov times
on average, matching the saturated single reservoir-only prediction
that is trained using 150 times more training data.

C. Prediction quality dependence on local overlap
length

In this section, we investigate the dependence of CHyPP per-
formance on the local overlap length £. Figure 9 shows that when the
local overlap length ¢ is zero or close to zero, the parallel reservoir-
only prediction valid time (solid red line) is very poor, predicting for
only around 0.5 Lyapunov times.

CHyPP, however, is still able to obtain good predictions with
a very little local overlap length. For CHyPP, this indicates that it
is able to utilize the inaccurate model prediction to infer the prop-
agation of dynamical influences between the adjacent prediction
regions. We note that neither CHyPP nor the 16 parallel reservoirs-
only prediction is able to improve upon a corresponding single, large

—
o
1

|

Average Valid Time (Lyapunov Time)

Local Overlap Length (£)

— CHyPP, 16 reservoirs with 4,000 nodes each, € = 0.1
— -Hybrid, 1 reservoir with 16,000 nodes, ¢ = 0.1
—Reservoirs-only, 16 reservoirs with 4,000 nodes each
— -Reservoir-only, 1 reservoir with 16,000 nodes

----- Knowledge-based model only, € = 0.1

FIG. 9. We plot the valid time for the parallel and non-parallel hybrid and
reservoir(s)-only prediction as a function of the local overlap length ¢.

scitation.org/journal/cha

reservoir hybrid prediction or corresponding single large reservoir-
only prediction when the local overlap length is near 0. Regarding
this comparison, however, it is important to recognize that in sys-
tems larger than the one we have used to test our method here, use
of a single reservoir prediction is not possible because the reser-
voir size necessary for prediction becomes infeasible, as discussed
in Sec. I1. This result is, nevertheless, very important for large-scale
implementations of the proposed method. In realistic systems with
three spatial dimensions, a small increase in the local overlap length
£ can lead to increasingly large memory requirements and increas-
ingly large amounts of information that must be communicated
between reservoirs at each prediction iteration. Being able to obtain
a good prediction with less local overlap length when the propagat-
ing dynamics is adequately explained by the imperfect model is thus
another advantage of CHyPP.

IV. TEST RESULTS ON A MULTISCALE SYSTEM
PREDICTION AND THE PROBLEM OF SUBGRID-SCALE
CLOSURE

A common difficulty in numerical modeling arises because
many physical processes involve dynamics on multiple scales. As a
result, fundamentally crucial subgrid-scale dynamics is often only
crudely captured in an ad hoc manner. The formulation of subgrid-
scale models by analytical techniques has been extensively studied
(e.g., see Ref. 27) and is sometimes referred to as “subgrid-scale
closure.” In this section, we show that our CHyPP methodology
provides a very effective data-based (as opposed to analysis-based)
approach to subgrid-scale closure.

In particular, we test our CHyPP prediction method on a
dynamical system with multiple spatial and temporal scales. The
particular system we choose to predict is the multiscale “toy” atmo-
spheric model formulated by Lorenz in his 2005 paper.” We refer
to this model as Lorenz Model III. This model is a smoothed exten-
sion of Lorenz’s original “toy” atmospheric model described in his
1996 paper” (hereafter referred to as Lorenz Model I), with the addi-
tion of small-scale dynamical activity. Lorenz Model III describes the
evolution of a single atmospheric variable, Z, on a one-dimensional
grid with N grid points and periodic boundary conditions, repre-
senting a single latitude. The value of Z at each grid point, Z,, evolves
according to the following equation:

az,/dt = [X, X]g, + V[V, Y], + [V, X)y,, — X, — bY, + F.
(28)
In Eq. (28), X is a smoothed version of Z, and Y is the difference
between Z and X,

I

Xy =) (= BliDZui» Yu=Zy—Xu (29)
i=—1I

a=(3P+3)/(2F +4I), B=(2F+1)/(I"+2F). (30)

Here, I denotes the smoothing distance. Thus, X describes the large-
spatial scale, long-time scale wave component of Z, while Y describes
the small-spatial scale, short-time scale wave component. [V, W],
indicates a coupling between the variables V and W [i.e., interac-
tion within scales (V = W = X or Y) or between scales for (V = X,

Chaos 30, 053111 (2020); doi: 10.1063/5.0005541
© Author(s) 2020

30, 053111-11


https://aip.scitation.org/journal/cha

Chaos

—_— =
— O =— Y — = = -
m\‘ o= —— =~
A — |
i -_— \\\ — _— -_—
~

10 78
Model Time

FIG. 10. Plot of the true dynamics from Lorenz Model Ill using the parameters
N =960, K=32, /=12, F =15 b =10, and ¢ = 2.5. The dynamics have
been normalized to set the mean value to 0 and variance to 1. We plot the value
of Z color-coded (color bar on the right), the spatial grid point along the vertical
axis, and the model time on the horizontal axis.

W = Y)]. For K even, this coupling takes the form

J J
[V, Wk, = Z / Z H=Vak=iWn—kj + Vieksjmi W) / K.
=) =)

(31
Here, ] = K/2 and )" denotes a modified summation where the
first and last summands are divided by 2. For K odd, ] = (K — 1)/2
and each Y’ becomes a standard summation Y. In Eq. (28), the
parameters K, b, ¢, and F describe the coupling distance of the sys-
tem’s large-scale dynamics, the increase in small-scale oscillation
rapidity and the decrease in amplitude (relative to the large-scale
dynamics), the degree of interaction between the large- and small-
scale dynamics, and the overall forcing in the system, respectively.
We note that when b = ¢ = 0 and K = 1, this model reduces to the

Lorenz Model I.
For the purposes of testing our CHyPP method, we also intro-
duce another model formulated by Lorenz, which we will refer to
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as Lorenz Model II.** This model is equivalent to Lorenz Model III
with no distinct small-scale wave component or smoothing present
in the equation

dz,/dt = [Z,Z)x, — Z, + F. (32)

Importantly for our tests, Lorenz notes that, for constant F, the dom-
inant wavenumber in Lorenz Model II depends only on the ratio
N/K.

We test our CHyPP method by using it to predict the dynam-
ics generated from Lorenz Model IIT using Lorenz Model II as our
imperfect knowledge-based predictor. As we discussed in Sec. I,
knowledge-based models used to predict physical multiscale sys-
tems (i.e., the weather) often use simplified representations of
subgrid-scale dynamics. To replicate this type of imperfection in
the knowledge-based model in CHyPP, we realize the Lorenz Model
II dynamics over an equal or fewer number of grid points Nyjodel 11
while using the same N/K ratio as used to generate the true Lorenz
Model III dynamics (i.e., Nuodel n1/Knmode 1 = Niodel 11/ Knodel 11)-
Our imperfect model thus incorrectly represents the effect of small-
scale dynamics that, when Nyodeim > Numodein» are also subgrid.
In our tests, each of these models is solved numerically using a
fourth-order Runge-Kutta scheme.

For the following results in this section, we use the parameters
in Table II. In addition, the value of s used in each of the reser-
voir computing-based prediction methods has been selected for each
method to maximize the valid prediction time. Figure 10 shows a
solution of Lorenz Model III where the value of Z is color-coded.
The spatial variable is plotted vertically, time is plotted horizon-
tally, and the model parameters are given in the caption. As seen
in Fig. 10, there is a wave-like motion with a dominant wavenumber
of &7 (seven oscillations along the vertical periodicity length). This
corresponds to Lorenz’s design of the model to mimic atmospheric
dynamics, which has a predominant wavenumber for Rossby waves

3
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(N=960,K=32)

-3
3

24 Parallel Reservoirs,
1,000 nodes each 0
-3
CHyPP with 24 reser- 0 = 3

voirs of 1,000 nodes .

each and Lorenz Model 11 V' LS? 0
(N =960, K = 32) N — »

Model Time

Model Time

FIG. 11. We plot the predictions of the normalized true dynamics from Lorenz Model IIl (displayed in Fig. 10), where we have measured every spatial grid point of Model Il
during training. We plot the spatial grid point along the vertical axis and the model time on the horizontal axis. The plots on the left show the predictions made using each of
the specified methods, while the plots on the right show the difference between the true dynamics and the prediction (i.e., the prediction error). The parallel reservoir-only
prediction used its optimized value of s = 0.1, while CHyPP used its optimized value of s = 0.085.
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FIG. 12. We plot the predictions of the normalized true dynamics from Lorenz Model Il (displayed in Fig. 10), where corresponding to the Model Il grid, we have measured
only every second spatial grid point of Model Il during training. We plot the spatial grid point along the vertical axis and the model time on the horizontal axis. The plots on
the left show the predictions made using each of the specified methods, while the plots on the right show the difference between the true dynamics and the prediction (i.e.,
the prediction error). The parallel reservoir-only prediction used its optimized value of s = 0.25, while CHyPP used its optimized value of s = 0.08.

of this order as one goes around a mid-latitude circle. Figures 11-14
show predictions of the true Lorenz Model III dynamics (in Fig. 10)
for grid resolutions of varying coarseness. In particular, while the
truth (Fig. 10) is obtained from Model III with N = 960 grid points,
the number of Model II grid points is N = 960, 480, 240, and 120
for Figs. 11, 12, 13, and 14, respectively. Also note that the mea-
surements are taken from the Model III result only at the Model
II grid points. For both the parallel reservoir-only predictions and
CHyPP, we fix the ratio of the number of nodes per reservoir to the
number of grid points each reservoir predicts to be D,/Q = 25. We

Lorenz Model Il
(N=240,K=8)

24 Parallel Reservoirs,
250 nodes each

CHyPP with 24 reser-
voirs of 250 nodes each
and Lorenz Model Il
(N=240,K=8)

0
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0
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N
0
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N

Model Time

0 2 4 6 8 100 2 4 8 10
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— T T — e = e —

e — = = S = —

== ) =

e e
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6
Model Time

choose the Lorenz Model III time units rather than the Lyapunov
time as our time scale for these plots since the largest Lyapunov
exponent of Model III corresponds to the small-spatial scale, short-
time scale dynamics and thus will not be relevant to our intended
goal of forecasting the large-spatial scale, long-time scale dynamics.

We find that CHyPP significantly outperforms each of its com-
ponent methods and that this is true for all of the grid resolutions we
tested. We note that, unlike in the Model II and parallel reservoir-
only predictions, the prediction error in CHyPP seems to appear
locally in a small region and manifests as slanted streaks in the

FIG. 13. We plot the predictions of the normalized true dynamics from Lorenz Model Il (displayed in Fig. 10), where corresponding to the Model Il grid, we have measured
only every fourth spatial grid point of Model Ill during training. We plot the spatial grid point along the vertical axis and the model time on the horizontal axis. The plots on the
left show the predictions made using each of the specified methods, while the plots on the right show the difference between the true dynamics and the prediction (i.e., the
prediction error). The parallel reservoir-only prediction used its optimized value of s = 0.25, while CHyPP used its optimized value of s = 0.017.

Chaos 30, 053111 (2020); doi: 10.1063/5.0005541
© Author(s) 2020

30, 05311113


https://aip.scitation.org/journal/cha

Chaos

ARTICLE scitation.org/journal/cha

3
Lorenz Model Il 0
(N=120,K=4)
-3
o Model Time 3
vy
24 Parallel Reservoirs, :“\“\\'\\-“\&%‘,“Q\}
125 nodes each N/2 E;_‘—‘_ = 0
e
0 2 4 -3
Model Time
CHyPP with 24 reser- 0 Ssae——u——ua== 8
voirs of 125 nodes each e : e
TS e ——— ~
and Lorenz Modelll /2 :\\g\‘\‘?\\\% — =S - 0
(N=120,K=4) N :&:&i&& 3

Model Time

Model Time

FIG. 14. We plot the predictions of the normalized true dynamics from Lorenz Model Il (displayed in Fig. 10), where corresponding to the Model I grid, we have measured
only every eighth spatial grid point of Model IIl during training. We plot the spatial grid point along the vertical axis and the model time on the horizontal axis. The plots on the
left show the predictions made using each of the specified methods, while the plots on the right show the difference between the true dynamics and the prediction (i.e., the
prediction error). The parallel reservoir-only prediction used its optimized value of s = 0.25, while CHyPP used its optimized value of s = 0.0155.

error plots in Figs. 11-14. We have verified that the slant of these
streaks corresponds to the group velocity of the dominant wave
motion (wavenumber ~7). For all predictions made, we again cal-
culate a valid time of prediction; however, since in this case early
error growth using CHyPP is local in space and affects only a small
part of the prediction domain, we choose to use a higher valid time
error threshold of 0.85 (~ 60% of the error saturation value) so that

35 B

= =960 grid points, 1000 nodes per reservoir, s = 0.1
— = 480 grid points, 500 nodes per reservoir, s = 0.25
240 grid points, 250 nodes per reservoir, s = 0.25
— =120 grid points, 125 nodes per reservoir, s = 0.25
——960 grid points, 1000 nodes per reservoir, s = 0.085/ -
——480 grid points, 500 nodes per reservoir, s = 0.08
240 grid points, 250 nodes per reservoir, s = 0.017
15 - ——120 grid points, 125 nodes per reservoir, s = 0.0155
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FIG. 15. We plot the average valid time for each prediction as a function of the
length of training data used. Dashed lines display the results of parallel reser-
voir-only predictions, whereas solid lines display results from CHyPP where the
knowledge-based model is Lorenz Model Il with N = number of grid points,
K = N/30, and F = 15. Each prediction method uses 24 reservoirs.

the valid time metric reflects when error is present in the entire
prediction domain. Figure 15 shows the valid time averaged over
100 predictions from different initial conditions vs training time for
different grid resolutions and reservoir sizes. The dashed lines are
parallel reservoir-only predictions, while the solid lines are CHyPP
predictions. In this figure, the reservoir sizes are scaled in proportion
to the number of Model II grid points used. We find that, while the
quality of the scaled parallel reservoir-only prediction degrades sig-
nificantly as the grid resolution decreases, the quality of the scaled
CHyPP prediction degrades much more slightly from an average
valid time of 3.23 at full resolution to 3.05 at 1/8 resolution. The
Model II valid time is essentially constant at ~ 0.95, correspond-
ing to the fact that all of the grid spacings tested are well below the
characteristic Model II spatial scale. We see from Fig. 15 that the
parallel reservoir-only prediction and CHyPP prediction appear to
reach valid time saturation at about the same training data length for
each grid resolution.

V. CONCLUSION AND DISCUSSION

In this paper, we address the general goal of utilizing machine
learning to enable expanded capability in the forecasting of large,
complex, spatiotemporally chaotic systems for which an imper-
fect knowledge-based model exists. Some typical common sources
of imperfection in such a knowledge-based model are unresolved
subgrid-scale processes and lack of first principles knowledge or
computational ability for modeling some necessary aspect or aspects
of the physics. The hope is that these “imperfections” can be com-
pensated for by use of measured time series data and machine
learning. The two main foreseeable difficulties in realizing this
hope are how to effectively combine the machine learning com-
ponent with the knowledge-based component in such a way that
they mutually enhance each other, and how to promote feasible
scaling of the machine learning requirements with respect to its
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computational cost and necessary amount of training data. Note
that addressing the first of these issues necessarily lessens the diffi-
culty of dealing with the second issue, since good use of any valid
scientific knowledge of the system being forecast can potentially
reduce the amount of learning required from the machine learning
component.

To address these two issues, we propose a methodology
(CHyPP) that combines two previously proposed techniques: (i) a
hybrid utilization of an imperfect knowledge-based model with a
single machine learning component®'® and (ii) a parallel machine
learning scheme using many spatially distributed machine learn-
ing devices.” We note that (ii) applies to large spatial systems
with the common attribute of what we have called “local short-
time causal interactions.” Numerical tests of our proposed com-
bination of (i) and (ii) are presented in Secs. III and IV and
demonstrate good quality prediction that is scalable with size
(Figs. 6 and 7), reduced required length of training data (Fig. 8),
and ability to compensate for unresolved subgrid-scale processes
(Figs. 10-15).

In this paper, our proof-of-principle problems have been one-
dimensional in space with relatively simple mathematical formula-
tions. We note, however, that the CHyPP methodology is readily
applicable to higher dimensions and more complicated situations.
For example, we are currently in the process of applying CHyPP
to global atmospheric weather forecasting for which the atmo-
spheric state is spatially three-dimensional and the system is strongly
inhomogeneous, e.g., due to the presence of complex geographic fea-
tures (including continents, mountains, and oceans), as well as the
latitudinal variation of solar heating.

Finally, we note that in many situations, such as operational
weather forecasting, predictions are produced cyclically once every
cycle time interval. To do this, an accurate estimation of the initial
condition is required at the beginning of each cycle. The process
of formulating accurate initial conditions is called “data assimila-
tion” and is vital to account for sparse and uncertain measurements.
Once every cycle time interval, a set of forecasts are produced for a
set of forecast times, where one of these times is equal to the cycle
time interval. Then, at the beginning of the next cycle, the previ-
ous forecast for the state at the cycle time interval is combined with
state measurements taken during the previous cycle and their corre-
sponding estimated uncertainty to obtain an estimate of the current
state of the system to be predicted. This state estimate is then used
as an initial condition for a forecast model making the next set of
predictions. The problem of formulating data assimilation for our
improved prediction model (CHyPP) awaits further study, which we
are currently pursuing.

In conclusion, we have shown that data-assisted forecasting
via parallel reservoir computing and an imperfect knowledge-based
model can significantly improve prediction of a large spatiotempo-
rally chaotic system over existing methods. This method is scalable
to even larger systems, requires significantly less training data than
previous methods to obtain high quality predictions, is able to
effectively utilize a knowledge-based forecast of information prop-
agation between local regions to improve prediction quality, and
effectively provides a means of using data to compensate for unre-
solved subgrid-scale processes (playing a role akin to traditional
analysis-based closure schemes).
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