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Abstract

Motivation: Mapping genetic interactions (Gls) can reveal important insights into cellular function and has potential
translational applications. There has been great progress in developing high-throughput experimental systems for
measuring Gls (e.g. with double knockouts) as well as in defining computational methods for inferring (imputing)
unknown interactions. However, existing computational methods for imputation have largely been developed for
and applied in baker’s yeast, even as experimental systems have begun to allow measurements in other contexts.
Importantly, existing methods face a number of limitations in requiring specific side information and with respect to
computational cost. Further, few have addressed how Gls can be imputed when data are scarce.

Results: In this article, we address these limitations by presenting a new imputation framework, called Extensible
Matrix Factorization (EMF). EMF is a framework of composable models that flexibly exploit cross-species informa-
tion in the form of Gl data across multiple species, and arbitrary side information in the form of kernels (e.g. from
protein—protein interaction networks). We perform a rigorous set of experiments on these models in matched Gl
datasets from baker’s and fission yeast. These include the first such experiments on genome-scale Gl datasets in
multiple species in the same study. We find that EMF models that exploit side and cross-species information im-
prove imputation, especially in data-scarce settings. Further, we show that EMF outperforms the state-of-the-art
deep learning method, even when using strictly less data, and incurs orders of magnitude less computational cost.
Availability: Implementations of models and experiments are available at: https://github.com/Irgr/EMF.

Contact: mdml@umd.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

expand opportunities for treating infectious diseases (Patrick et al.,
2018).
Consequently, identifying and characterizing Gls has been a

1 Introduction

A genetic interaction (GI) is a measure of how a combination of

gene variants produces a phenotype that is different than expected,
given the phenotypes of each independent gene variant. Most com-
monly, a GI is measured for a pair of gene knockouts with a measure
of cell viability as the phenotype. Although a single GI provides only
limited phenotypic information, mapping a set of GIs in a model or-
ganism is thought to be able to resolve fundamental biological ques-
tions such as the minimum number of genes required for a viable
cell (Hutchison et al., 2016; Kuzmin et al., 2018). Furthermore,
knowledge of GIs has enabled promising new strategies for cancer
treatment (Ashworth and Lord, 2018; Lee ef al., 2018) and may

major focus in systems biology for the past two decades, spurring
innovations in experimental systems and computational methods.
Recently, researchers have sought to go beyond measuring interac-
tions for small sets of specific genes or gene pairs, to develop
approaches for generating what are referred to as ‘unbiased’ maps
of pairwise quantitative Gls between large sets of genes (Costanzo
et al., 2019). A quantitative GI for a tested pair of genes is a real-
valued score for the direction (positive/alleviating versus negative/
aggravating) and strength of the interaction. For example, treated
quantitatively, a synthetic lethal interaction is a GI with a score
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much less than zero. In vitro efforts began in baker’s yeast with
small maps for all pairs of genes involved in key biological functions
(Collins et al., 2007; Roguev et al., 2008; Schuldiner et al., 2005).
These efforts culminated in a landmark study (Costanzo et al.,
2016) that published a map of GlIs for over 90% of all genes in
baker’s yeast (Saccharomyces cerevisiae).

Despite impressive progress, many challenges remain. These
challenges include measuring interactions in species other than
baker’s yeast, examining higher-order interactions for sets of more
than two genes, and measuring GIs for different phenotypes. In fact,
in each of these cases, there have been recent experimental studies
(Dixit et al., 2016; Kuzmin et al., 2018; Ryan et al., 2012, respect-
ively). However, the landscape of yet unmeasured Gls remains vast
and will not be fully explored through in vitro experimentation
alone. Thus, there is an enormous need for in silico methods to com-
plement the recent and ongoing experimental advances.

To address this need, methods have been developed along a num-
ber of dimensions. First, it is important to note the critical difference
between the classification problem posed by binary classes of ex-
treme Gls, and the regression problem associated with the larger in-
formation content contained in quantitative GI data. With respect
to binary GIs, much work has been focused on the prediction of syn-
thetic lethal interactions (Benstead-Hume er al., 2019; Jacunski
et al., 2015; Paladugu et al., 2008; Pandey et al., 2010; Wong et al.,
2004; Wu et al., 2014), sometimes treating the classification prob-
lem as standard link prediction (Liben-Nowell and Kleinberg, 2003;
Lii and Zhou, 2011). However, genome-scale work in yeast has
gone beyond identifying the most extreme interactions to identifying
correlations between genes’ profiles of quantitative GI scores regard-
less of magnitude, in order to create genome-wide maps of gene
function (Costanzo et al., 2010). Hence, in this article, we study
imputing real valued, quantitative GI scores for all gene-pairs.

Ulitsky et al. (2009) were the first to develop methods for the re-
gression problem of predicting quantitative Gls using features
derived from functional annotations, protein—protein interactions,
and the Gene Ontology (GO) (The Gene Ontology Consortium,
2018). More recently, Ma et al. (2018)—building off of the work of
Yu et al. (2016)—introduced an interpretable deep learning method
that uses GO to achieve state-of-the-art performance in predicting
Gl scores in baker’s yeast.

In this work, we present a new computational framework for the
quantitative GI regression problem, termed Extensible Matrix
Factorization (EMF), and show its utility in both baker’s yeast and
fission yeast (Schizosaccharomyces pombe). In developing EMF, we
seek to overcome a number of limitations of existing methods.

First, we note that existing state-of-the-art methods are predi-
cated on the availability of specific kinds of side information as a ne-
cessary input for feature generation. That is, computational
methods such as DCell (Ma et al., 2018) require annotations from
GO. However, the availability and quality of GO annotations vary
widely across species. For example, baker’s yeast has more than
double the number of annotations in fission yeast (The Gene
Ontology Consortium, 2018). Thus, the reliance on specific side in-
formation as input to DCell limits its ability to be used for a wide
range of species. Furthermore, no methods have exploited known
correlations across GI data (Koch ez al., 2012; Roguev et al., 2008;
Ryan et al., 2012) in related species (cross-species information) to
make predictions in species in which data is scarce.

Second, training state-of-the-art methods is computationally in-
tensive. For example, DCell took two to three days to train on data
from Costanzo et al. (2016). Methods that require significant time
to train can impede efforts to develop and benchmark new models;
this bottleneck may grow further as the sizes of GI datasets increase.

To address these limitations, EMF is designed to be a more
broadly useful approach that can flexibly incorporate various kinds
of side information, as available. The EMF framework consists of a
collection of composable matrix factorization (MF) models that can
optionally exploit known non-uniformities in Gls, within-species
side information (via kernelization), and cross-species information
(via gene—gene similarities). A core contribution within EMF is
cross-species matrix factorization (XSMF), a new method for using

information from one (source) species to improve GI imputation in
a second (target) species.

We also designed EMF to have low computational cost~-EMF
models typically takes less than 1 min to train on genome-scale data.
As evidence of the scalability and flexibility of EMF, we use it to im-
pute GIs in baker’s and fission yeast at genome-scale. To the best of
our knowledge, ours is the first study to do so in fission yeast.

Further, we note that recent evidence from data mining literature
shows that MF can be competitive with deep learning for some
problems when attention is paid to details such as hyperparameter
tuning (Rendle et al., 2019). In light of this, we also present in this
study a principled approach to composing EMF models and a rigor-
ous approach to hyperparameter optimization to properly weight
model combinations.

In the remainder of this work, we show that (when properly
applied) MF compares favorably to previous methods. Our contri-
butions include:

1. Extensible matrix factorization (EMF): a framework of compos-
able MF models for imputing GIs. EMF extends and unifies sev-
eral existing MF methods that have not previously been applied
to GlIs. EMF consists of: a cross-species model that regularizes
learned factors across species based on a gene-gene similarity
measure; a kernelized model that regularizes learned factors
within species; and, a bias model that learns the mean GI score
per gene and (motivated by Koch ez al. (2012)) regularizes biases
across species.

2. Rigorous benchmarking of EMF on matched datasets from
baker’s and fission yeast. We compare EMF models on matched
GI datasets for chromosome biology genes from baker’s and fis-
sion yeast using automated approaches for hyperparameter se-
lection (Bergstra et al., 2011) and show that each component of
the EMF framework captures additional and complementary sig-
nal in data-scarce settings. We also compare directly to the one
earlier MF method for imputing GIs, and find EMF to be super-
ior in performance.

3. Application of EMF to genome-scale datasets. We apply the best
performing models from our benchmarking experiment on data-
sets covering 75% and 60% of all non-essential genes in baker’s
and fission yeast, respectively (Costanzo et al., 2010; Ryan et al.,
2012). Compared to the state-of-the-art as reported in literature,
EMF models show superior performance, and train in minutes
instead of days.

2 Materials and methods

Matrix factorization (MF) (Koren et al., 2009; Salakhutdinov and
Mnih, 2008), also referred to as matrix completion (Candés and
Recht, 2009), is a strategy for imputing missing values in a matrix.
The matrix is generally assumed to contain redundancies and poten-
tially other regularities or correlations. In other words, a subset of
visible values suffices to approximately infer some or all missing
values.

MEF has proven to be a broadly effective technique in a wide
range of problem areas (Koren et al., 2009; Lee and Seung, 1999;
Stein-O’Brien et al., 2018). Furthermore, it can have a number of
advantages over more recently developed methods such as deep
learning (Rendle ez al., 2019). A goal of this study is to demonstrate
how MF can be an advantageous strategy for the problem of GI
prediction.

MEF takes as input a 7 x m matrix X which is partially observed.
We use Q to denote the set of indices in X whose values are known.
The goal of MF is to impute missing values in X (i.e. (i,/) € Q). The
basic MF framework starts from the assumption that X, were it
fully-known, would be effectively low-rank. That is, X can be well
approximated by a matrix R of rank k < min(m, 7). MF methods
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seek to estimate R and use the values of R to estimate the missing
values of X.
This suggests the following optimization problem:

U,V = argmin (xij — 14T*z/’-‘)2 (1)
unve (z:zZ)e:Q n

in which U and V are matrices with k rows, where k is a hyperpara-
meter chosen to model the effective rank of X. This framework
allows one to recover R = UTV and admits an interpretation of cor-
responding columns u; and v; as latent factors representing the enti-
ties on the ith row and jth column of X, respectively. To impute
missing value (4,7) € Q, one simply computes the inner-product,
u] v; of the learned latent factors.

Regularization to reduce overfitting can be achieved by including
additional terms, such as the ¢,-regularizer from Koren et al. (2009)
and Salakhutdinov and Mnih (2008):

U,V = argmin Z (x5 — MiT*v}‘)Z + 21U 17 + 1V I1E)- (2)
UV (ijea

The basic MF framework succeeds by exploiting the inherent low
effective rank of the data. Moreover, an important advantage of MF
is the straightforward and principled ways in which it can be adapted
to incorporate additional regularities in the data. For example, ‘side’
information (additional data features) may be predictive in a manner
that is synergistic with the basic low-rank assumption.

2.1 EMF: a composable class of MF models

We present a set of composable components for MF that exploit
cross-species and side information. We derive these from biological
observations and ultimately incorporate these into a unified EMF
framework.

EMF encompasses several existing MF models, including the
basic MF model given in (2) (Salakhutdinov and Mnih, 2008), MF
with bias (MF-b) (Koren et al., 2009) and kernelized probabilistic
MF (K-PMF) (Zhou et al., 2012). Our contribution with EMF is in
presenting a unified view of these models, and expanding their for-
mulations to cross-species settings.

We describe the framework generally as it applies to matrices of
biological data where the rows and columns are indexed by genes.
We begin by introducing two novel components for exploiting
cross-species information, and then present a component for exploit-
ing side information (i.e. within a species). While we apply the EMF
components in both the single-species and cross-species settings, we
describe all components as they apply to a cross-species setting.
Where emphasis is useful, we describe how the models can be lever-
aged specifically for imputing GI.

2.1.1 Cross-species matrix factorization

The first extension to MF that we propose is a cross-species matrix
factorization (XSMF) component, a novel MF scheme that jointly
factorizes matrices in a target and a source species to better impute
missing values in the target.

Let X € R™" be a partially observed matrix for a target species,
and Y € R”*" be a partially observed matrix for a source species.
We use Qx and Qy to denote the indices in X and Y whose values
are known. We present, piecewise, the optimization objective that
defines XSMF.

First, the primary objective of XSMF is to estimate latent factors
U € RF"and V. e R¥ that best reconstruct observed values
in the target species. To do so, XSMF minimizes the objective:

L= > (xj— %), (3)

(/) €Qx

where &;; = ul v;.

Second, XSMF simultaneously estimates latent factors F €
R and H € RM™ that reconstruct observed values in the
source species. To do so, XSMF also minimizes the objective:

L= 3 Oi=3y) 4)

where 3; = £ b;.

Third, given a similarity measure between target species genes
and source species genes, sim(-,-), with corresponding similarity
score matrix, S, XSMF links the factorizations sought by (3) and (4).

It is important to observe here that matrices belonging to target
and source species cannot be naively merged because there is no
complete one-to-one correspondence between genes in the rows and
columns of the target and source. It is also not useful to naively
merge matrices by adding source species values, via new rows and
columns for source genes, to the target matrix. In such a merged ma-
trix, the latent factors between source and target genes would be in-
dependent and not interact.

Thus, XSMF seeks to maximize weighted inner products be-
tween the latent factors of genes by minimizing the objective:

Li==Y " sim(i,j) - uf; (5)
j

or equivalently,
Ly = —tr(USFT). (6)

Finally, ¢, regularization is also added to reduce overfitting and
XSMEF also minimizes the regularizer:

Lo = [UNI; + IVIE + [1FI + I HIE (7)

The full objective function that XSMF minimizes, with respect to
latent factors, can then be written as:

LXSMF = »Ct + )Ls»cs + )Lxﬂx + ;L'/L‘r (8)

with the introduction of user-defined hyperparameters A, Ax and /,.
In the XSMF model, the parameters A, and A have useful interpreta-
tions. The hyperparameter A, controls the tradeoff between recon-
structing the target and source species values, and Ay controls the
degree to which latent factors of similar genes across species ought
to be close in representation.

We highlight that sim(-, -) can be any reasonable similarity meas-
ure of homology. For example, similarity measures like BLAST bit-
scores (Altschul er al., 1990), string kernels for protein and DNA
sequences (Leslie et al., 2001), or similarity scores based on biologic-
al networks (Fan et al., 2019), that have proven to be informative in
other contexts can be utilized with little to no modification. Unlike
researcher-provided labels in GO, many such similarity measures
can be computed with only minimal researcher supervision.

2.1.2 Modeling per-gene biases in average values

It has been observed in other settings that MF models that explicitly
account for per-column and per-row ‘biases’ have been shown to
outperform MF models that do not (Koren et al., 2009). In fact, for
GI data, the average GI score (i.e. the propensity for a given gene to
genetically interact with any other gene) is known to be non-
uniform across yeast genomes (Costanzo et al., 2010, 2016; Ryan
etal.,2012).

Thus, all models in the EMF framework can be extended to ac-
count for per-gene biases. For cross-species models, per-gene latent
bias terms can be introduced and an imputed value in the target spe-
cies between genes (7, j) can instead be modified to:

R =ulv+b; )
In the source species an imputed value can be modified to:
35 =1hj+bj. (10)

Naturally, ¢, regularization over corresponding vectors of biases,
b and b/, can be added to the final optimization objective to reduce
overfitting.

120z 1snBny || uo }senb Aq GZ65509/9981/2 Juaws|ddns/9e/a]oJe/SoleWLIoJUI0Iq /WO dNO"D1WaPED.//:SA]Y WOl PAPEOJUMOC



Identifying driver gene groups

i869

2.1.3 Modeling the conservation of biases across species

EMEF can also ‘link’ biases if one expects biases to be correlated
across species. In fact, this is the case for Gls. Koch ez al. (2012)
showed that the total number of extreme, synthetic lethal interac-
tions can be correlated between similar genes in baker’s and fission
yeast. This observation motivates an additional way to exploit
cross-species similarities in the EMF framework. The following
regularization term that links biases in the source and target can be
added to cross-species models:

Ly, =—bTSb'. (11)

Adding the regularization term L, to the objective of an EMF
model encourages biases of similar genes to also be similar.

2.1.4 Incorporating arbitrary side information

Recent work in MF has introduced a number of additional ways to
incorporate side information—such as networks (Zitnik and Zupan,
20135) or kernels (Zhou et al., 2012)—to further improve model
performance.

We adapt the kernelized approach taken by Zhou et al.
(2012) to extend both single-species and cross-species models in
EMF. To exploit side information in the target species, kernels
that regularize latent factors U and V are introduced.
Kernelization enables incorporation of any arbitrary side infor-
mation about known similarities between (same-species) genes,
as long as appropriate kernels Ky and Ky can be computed for
genes in the target species. Concretely, the following quadratic
terms can either be added in addition to, or replace the usual ¢,
regularizers on U and V:

Ly = tr(UKGLUT) 4 (VKL VT). (12)

Intuitively, these regularizers encourage corresponding latent
factors for two genes to be close if two genes are similar, given a par-
ticular kernel.

For cross-species models, assuming the availability of appropri-
ate kernels in the source species, the same technique can be applied
to factors F and H, and the following quadratic term can be added
for regularization:

Ly = te(FKE'FT) + w(HK 5 HT). (13)

(B) Kernelized cross-species
matrix factorization with bias (K-XSMF-b) learning

(A) Inputs

Per-gene biases

2.2 A kernelized cross-species model including bias for
imputing Gls
In the sections above, we have described, in abstract terms, how loss
terms can be composed to form EMF models with varying complex-
ity. As an example, we describe in detail an instantiation of the EMF
framework designed specifically to impute Gls. Kernelized cross-
species matrix factorization with bias (K-XSMEF-b) is a cross-species
EMF model that imputes missing Gls in a target species. K-XSMF-b
takes as input partially observed matrices of GIs of the target and a
source species, computed cross-species gene—gene similarities, and
side information in both target and source species. We graphically il-
lustrate the components of K-XSMF-b and the greater EMF frame-
work in Figure 1 and describe the optimization objective for K-
XSMF-b in parts.

First, K-XSMF-b models per-gene biases in target and source
Gls, and thus aims to minimize:

L= Z (x5 — MZTI/,' - b,‘)z + s Z (yij — ft-Th,' - b;)z (14)

(i) (i)

Then, given kernels Ky and Ky over source and target genes, K-
XSME-b regularizes its factorization with:

£3 = tr(VKy' V) 4 te(HRG HT) + [[UJ2 + |[FI . (15)

Finally, loss terms that link latent factors and biases across spe-
cies Ly, as in (5), and Ly, as in (11), are added. Given hyperpara-
meters A, /x and A, the full loss function that of the K-XMSF-b aims
to minimize is:

L= L1+ ixlx + AL+ Lp). (16)

Thus, K-XSMF-b is a fully featured EMF model that simultan-
eously exploits cross-species information, side information in the
source and target, and models the effect and conservation of per-
gene biases.

2.3 Parameter learning and hyperparameter selection
Each loss term in the various EMF models described above is differ-
entiable. Thus all the objective functions we work with are amen-
able to typical gradient-based optimization algorithms. In this work,
we use the popular method ADAM to learn our models (Kingma
and Ba, 2017).

For all models, all input GI scores in the target and source species
(where applicable) are normalized to zero mean and unit variance

(C) Parameter (D) Outputs

Latent factors Learn latent factors Imputed GI scores

Partially observed GIs and biases T
X - Target specics Gls b uT v ?U = U; U1+b!
Cross-species Loss is minimized with T
Information E I:D] el :..Inl:ln fact e\lll"l"l Iﬁ:_
simy...) » 4 » » -+
ne-gene a @=(UV.F.HbbY}
KV% argmin L(8; X, ¥, 1)
[]

Side Information
(Optional)

+

kernelization

¥ - Scurce species Gls b

z TCGCGGAGG
o (T CTCGGCGGLTT.

) PFI kernels can be Target

used for regularization A

Source

=

= Kupﬁv » P2 » _::u

Aut t ameter
HH imputation performance

F H Yy =fTh +b';

Fig. 1 (A) Extensible matrix factorization (EMF) is a composable framework of matrix factorization models that takes as input partially observed matrices in a target species
and, optionally, a source species. Here, we use K-XSMF-b, one realization of EMF, to illustrate the range of EMF models as they apply to imputing genetic interactions (GIs).
The XSMF model uses cross-species information in the form of a gene—gene similarity measure (e.g. BLAST). Side information (blue box, which can include PPI networks, GO
annotations, etc.) forms additional optional input, yielding K-XSMF. (B) To model per-gene biases in mean GI score, bias terms (orange box) can be introduced in the target
and source species. Similarities from the provided cross-species similarity measure are used to link both biases and latent factors across species, resulting in K-XSMF-b. (C)
Latent factors and biases are learned using gradient descent. Importantly, to ensure best possible test-time performance, hyperopt is used to automatically select and optimize
hyperparameters (Bergstra et al., 2011). (D) After hyperparameters are selected and latent factors and biases are learned, missing interactions can be imputed
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prior to training. Accordingly, for imputed GI scores, this normal-
ization operation is inverted prior to evaluation. The input cross-
species similarity score matrix is also scaled element-wise to [0, 1]
prior to training.

We take care to ensure fair benchmarking of every MF model in
our experiments. We use hyperopt to automatically tune and opti-
mize model hyperparameters to maximize the performance of each
benchmarked model (Bergstra et al., 2011). Furthermore, a consist-
ent early-stopping strategy is adopted for all models for the same
purpose. Models are early-stopped when the R* score evaluated on
the validation set fails to decrease for five consecutive iterations, or
when the user-defined maximum number of iterations is reached.

For each combination of model, dataset, and proportion of train-
ing examples used, a validation set of 10% of training examples is
first held out. Using this validation set, hyperopt (50 iterations) is
used to determine the best hyperparameters to be used across mul-
tiple repeats.

2.4 Evaluation

In this work, we primarily evaluate imputation performance of mod-
els using the R* measure (the coefficient of determination), in con-
trast to prior studies that have used Pearson’s p (the correlation
coefficient). We report Pearson’s p where context and comparison
to prior work is necessary.

In evaluating EMF models, we rely on R? because it is a measure
of goodness-of-fit while Pearson’s p is a measure of correlation—
and the latter does not imply the former. Critically, R* correctly
rejects a model that systematically mis-estimates the magnitude of
predictions while Pearson p fails to do so. For example, consider a
poor model that systematically predicts values that are exactly half
of the ground truth. Despite being very wrong, such a model would
output values that have perfect correlation but low (or even nega-
tive) R? when compared to ground truth.

When imputing GI scores, the difference between goodness-of-fit
and correlation is critical because extreme classes of Gls (e.g. syn-
thetic lethal interactions) are binarized on strict numerical thresh-
olds in the literature (Costanzo et al., 2010). Thus, a model that
systematically underestimates GI scores will also systematically
under-report the number of predicted extreme Gs.

On the Costanzo et al. (2010) dataset, we also evaluate the abil-
ity of models to correctly classify ‘negative GIs’ (analogous to syn-
thetic sick or lethal) as defined by (Costanzo et al., 2010). We
follow Ma et al. (2018) and Yu et al. (2016) for these evaluations.
That is, we impute interaction scores directly and, afterwards, vary
the binarization threshold to compute the area under the precision-
recall curve (AUPR).

Unless stated otherwise, we use Monte Carlo cross-validation to
evaluate all experiments. For training and evaluation, Gls for unique
gene-pairs are partitioned. Following Zitnik and Zupan (2015), if
two genes A and B are in both rows and columns of an input matrix
and two values are imputed (e.g. across the diagonal of the imputed
matrix), the imputed scores are averaged for evaluation. All reported
evaluation measures are averaged over 10 random repeats.

2.4.1 Comparison against existing factorization based methods

In our experiments, we compare our cross-species models against
two existing factorization-based models. We compare our models to
K-PMF (Zhou et al., 2012), a model originally developed for

Table 1 Summary statistics for genetic interaction datasets.

Species References No. of No. of %
rows columns missing

Baker’s yeast  Collins et al. (2007) 664 664 32

Costanzo et al. (2010) 3885 1377 19

Fission yeast ~ Roguev er al. (2008) 536 536 21

Ryan et al. (2012) 1955 862 16

recommender systems. To the best of our knowledge, we are the first
to use K-PMF to impute Gls. We also compare our models to
Network Guided Matrix Completion, a method that incorporates
network information (from PPI networks or the Gene Ontology) to
impute Gls (Zitnik and Zupan, 2015). We note that both K-PMF
and NGMC do not account for per-gene biases and cannot incorp-
orate information across species. Zitnik and Zupan (2015) also did
not evaluate NGMC on genome-scale datasets available at the time
of publication.

Hyperparameter optimization described in Section 2.3 is applied
to both K-PMF and NGMC. The same early stopping criterion
described in Section 2.3 is applied to K-PMF but not NGMC; all
NGMC models run for 500 iterations.

2.4.2 Comparison against gene ontology based methods

We also compare EMF to DCell, the current state-of-the-art neural-
network based approach developed by Ma et al. (2018), and
Ontotype, the best non-deep-learning based method developed by
Yu et al. (2016). Both methods featurize labels from GO to predict
Gls in baker’s yeast at genome-scale. We downloaded published
data and predictions from Yu et al. (2016) and Ma et al. (2018), and
for these comparisons evaluate EMF using the same 4-fold cross-
validation procedure carried out by these studies. (Published predic-
tions from these studies were not stratified by fold. Thus, while we
follow the same experimental procedure, we train our models on dif-
ferent folds.)

2.5 Implementation

EMF models are implemented using TensorFlow (Abadi et al.,
2016). For NGMC, we use the implementation released by the
authors (Zitnik and Zupan, 2015). Snakemake is used extensively
to configure and manage experiments (Koster and Rahmann, 2012).
Models and scripts to reproduce experiments are publicly available
at: https://github.com/lrgr/EMF.

3 Experiments and results

Armed with the EMF framework defined in the previous section, we
now evaluate it in three ways: first, we demonstrate its superiority
to the state-of-art methods for predicting Gls; next, in chromosome
biology GI datasets for baker’s and fission yeast, we perform a sys-
tematic ablation analysis to identify the components of EMF that
capture additional signal to better impute Gls; and finally, we apply
EMEF to impute GIs on genome-scale datasets in both yeast species.

3.1 Data

Our experiments were performed on two pairs of GI datasets from
baker’s and fission yeast. The first pair of GI datasets consists of
published epistatic miniarray profiles (E-MAPs) for chromosome

Table 2 Overview of benchmarked MF models

Algorithm Target species Source species
Name/short description Abbr. Bias PPI GIs Bias PPI
Matrix factorization MF - = = = —
MF with bias MEF-b oo - - — —
Kernelized probabilistic MF  K-PMF - v - = —
Network guided matrix NGMC - v - = —
completion

K-PMF with bias K-PMF-b v/ v - — —
Cross-species MF XSMF - = v — —
Kernelized XSMF K-XSMF — v vV — v
Kernelized XSMF with bias K-XSMF-b v v v/ v v

For each model, vindicates the additional MF component and side infor-
mation used.
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biology genes in baker’s and fission yeast (Collins e al., 2007;
Roguev et al., 2008).

The second pair is genome-scale GI datasets in baker’s and fis-
sion yeast. Ryan et al. (2012) produced an E-MAP covering ~60%
of all non-essential genes in fission yeast. Costanzo et al. (2010) pro-
duced a synthetic genetic array (SGA) covering ~75% of all non-
essential genes in baker’s yeast. We note that in the SGA dataset for
baker’s yeast, a confidence measure (P-value) computed from tech-
nical replicates is also assigned to each reported GI score
(Baryshnikova et al., 2010).

3.1.1 GI scores

All four datasets measure GI scores with respect to cell growth.
Each yields a matrix of real valued GI scores where index (i, j) corre-
sponds to the interaction of column gene i and row gene j. For
chromosome biology datasets, matrices of GI scores are symmetric.
For genome-scale datasets, the GI scores between a set of array (col-
umns) and query genes (rows) are measured and the set of array and
query genes have non-zero intersection. Thus a unique gene-pair can
correspond to two measured GI scores. We follow Ma ez al. (2018)
to associate each unique gene pair to a unique GI score. That is, if a
gene-pair corresponds to GI scores of opposite signs, the GI scores
are discarded. Otherwise, for baker’s yeast the GI score with lower
P-value is retained, and for fission yeast the average GI score is
retained (as significance is not reported for this dataset).

We note that E-MAPs and SGAs both quantify a GI score be-
tween a pair of genes using similar principles. Both technologies use
imaging to quantify the fitness of the double and corresponding sin-
gle mutants. The GI score is then defined to be the deviation of the
fitness of the double mutant from the multiplicative product of the
fitnesses of the single mutants (Costanzo et al., 2019). However,
since E-MAPs and SGAs are different technologies, raw GI scores
cannot be directly compared. Hence, we applied the normalization
strategy described in Section 2.3.

All datasets are restricted to Gls between non-essential genes
only. For Costanzo et al. (2010) data, as in Ma et al. (2018), GIs for
temperature sensitive alleles are also removed. The matrices of GI
scores for the datasets described above are all partially observed.
The percentage of missing entries and size of each processed dataset
are listed in Table 1.

For experiments with Costanzo et al. (2010), all pairs regardless
of significance were used for training. We report imputation per-
formance on all scores as well as scores restricted to significant pairs
(P<0.05).

3.1.2 Blastp, protein sequences and PPI networks

We use BLASTp bitscores between proteins sequences across species
as the similarity measure for cross-species EMF models. Protein
sequences for baker’s and fission yeast were downloaded from the
Saccharomyces Genome Database and PomBase (Cherry et al.,
2012; Lock er al., 2019) and used to compute bitscores between
genes in the rows of target and source species data. Bitscores be-
tween proteins without available sequences were set to zero. For
chromosome biology datasets (Collins et al., 2007; Roguev et al.,
2008), the set of downloaded sequences covered 99.2% and 99.3%
of baker’s and fission yeast genes. For genome-scale datasets
(Costanzo et al., 2010; Roguev et al., 2008), downloaded sequences
covered 86.9% and 99.8% of baker’s and fission yeast genes.

We downloaded protein—protein interaction (PPI) networks for
baker’s and fission yeast from BioGRID database version 3.5.174
(Oughtred et al., 2019). These PPI networks were used for all mod-
els that incorporated side information. PPI networks were restricted
to genes in the columns of each GI dataset. For chromosome biology
GI datasets, the PPI networks covered 99.1% and 73.5% of genes in
baker’s and fission yeast. For genome-scale GI datasets, the PPI net-
works covered 99.6% and 78.3% of genes in baker’s and fission
yeast. Singletons were then added for genes in GI data missing from
PPI networks.

3.2 Evaluated models
In our experiments, we seek to investigate how composable compo-
nents of EMF affect, and ultimately improve, GI imputation. We im-
plement seven model instances of the EMF framework by
progressively adding components that, model per-gene biases, link
factorizations across a target and source species, and regularize with
side information within each species.

Of the seven EMF models, four are single-species models that
factorize GI data in the target species only:

* Matrix factorization (MF) is the simplest MF model. It uses the
optimization objective described in Section 2 and equation (2)
(Koren et al., 2009; Salakhutdinov and Mnih, 2008).

*  MF with bias (MF-b) is the extension to MF that incorporates a
latent bias term, b, as described in Section 2.1.2 and (9). £, regu-
larization over b is also added to prevent overfitting (Koren
etal.,2009).

* Kernelized probabilistic matrix factorization (K-PMF) is the
model developed by Zhou et al. (2012) with regularizers
described in Section 2.1.4 and (12). Here, Ly, from (12) replaces
the corresponding ¢, regularizers in MF.

We note that MF, MF-b and K-PMF were first introduced by
other researchers and,of these models, only MF has been used to im-
pute missing GIs in prior work (Zitnik and Zupan, 2015). To the
best of our knowledge, our work is the first to evaluate MF-b and
KPMEF for imputing GIs. For context, we also compare EMF models
to NGMC, a MF-based model not that is not encompassed by the
EMF framework but does utilize PPI networks for GI imputation
(Zitnik and Zupan, 2015).

Additionally, we implement one other single-species model that is a
novel extension to K-PMF that has not been explored in prior work:

* K-PMF with bias (K-PMEF-b) is an extension of the K-PMF model
that incorporates per gene biases. K-PMF-b applies the same
modification to K-PMF that MF-b does to MF.

To determine how EMF components which incorporate cross-
species information capture complementary signal to improve per-
formance, we evaluate three cross-species models of increasing
complexity. These cross-species models use BLASTp bitscores to
link the factorizations of GI scores in a target and source species to
better impute GIs in the target. One model additionally uses PPI net-
work information in each species to regularize factorizations.
Another both models and links per-gene biases across species and
incorporates PPI network information:

Table 3 R? score of imputed versus actual Gl scores for chromo-
some biology datasets in baker’s and fission yeast (Collins et al.,
2007; Roguev et al., 2008)

Algorithm % of GIs used in training

Baker’s yeast Fission yeast

10% 25% 50% 75% 10% 25% 50% 75%

MF 0.054 0.178 0.303 0.380 0.093 0.220 0.370 0.464
MEF-b 0.069 0.183 0.308 0.385 0.113 0.234 0.371 0.464
K-PMF 0.105 0.215 0.329 0.397 0.119 0.266 0.397 0.472
NGMC 0.050 0.207 0.304 0.329* 0.081 0.256 0.396" 0.479°
K-PMF-b  0.102 0.218 0.326 0.393 0.136 0.273 0.391 0.475
XSMF 0.070 0.181 0.304 0.386 0.106 0.232 0.373 0.466
K-XSMF ~ 0.104 0.217 0.327 0.399 0.142 0.278 0.405 0.480°
K-XSMF-b 0.116 0.225 0.330 0.397 0.155 0.270 0.394 0.476

Models are evaluated with varying proportions of GI scores used during
training. The best performing models are indicated in bold.

?Folds that did not converge were excluded from evaluation.

bStandard deviations of best performing model and MF baseline overlap.
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*  Cross-species matrix factorization (XSMEF) is the cross-species model
described Section 2.1.1 with loss function as specified by (8).

* Kernelized XSMF (K-XSME) is the cross-species model described
Section 2.2 with model components that correspond to bias
terms removed. Per-gene biases are not fitted and £, is removed
from the loss function defined by (16).

*  K-XSMF with bias (K-XSMEF-b) is the fully featured cross-species
model described in Section 2.2.

A summary of the data and components used by NGMC and
each EMF model is given in Table 2.

Our focus is on imputing GIs in the target species; so for the
three cross-species models, all available GIs in the source species are
used for training while varying the proportions of the target species’
GlIs are held out for evaluation. For example, when baker’s yeast is
the target species, we train on the entire fission yeast dataset and
part of the baker’s yeast dataset, holding out some of the baker’s
yeast dataset for evaluation.

For all kernelized models, PPI network information is incorpo-
rated using regularized Laplacian kernels. For K-PMF, K-PMF-b, K-
XSMEF and K-XSMEF-b, the kernels used for target species factors are
the identity matrix for Ky and the regularized Laplacian for Ky, re-
spectively. Likewise, where applicable, the kernels for source species
factors are the identity matrix for Kr and the regularized Laplacian
for Ky, respectively. We note that hyperparameters for regularized
Laplacian kernels used are also optimized via the same procedure
described in Section 2.3.

During hyperparameter optimization, the maximum rank searched
for in all MF algorithms is set to k=100 and k =200 for chromosome
biology and genome-scale datasets, respectively. The ranges searched
over and the selected hyperparameters for all the above-mentioned
models are listed in our publicly available implementation.

3.3 MF outperforms state-of-the-art gene ontology

based models in baker’s yeast
Surprisingly, EMF outperforms the best deep learning-based method
for GI prediction even when using strictly less data.

We demonstrate this by establishing a baseline comparison, and
contextual correspondence, between a simple EMF model that relies
on GI data alone and Gene Ontology (GO) based state-of-the-art
models, DCell and Ontotype (Ma et al., 2018; Yu et al., 2016).
Specifically, since we expect mean GI scores across genes in genome-
scale datasets to vary greatly, we choose to compare DCell and
Ontotype to MF-b, the simplest model within the EMF framework
that only requires GI data and also models per-gene biases.

We compare MF-b to DCell and Ontotype only in baker’s yeast
since both have only been applied to genome-scale data in baker’s
yeast and their predictions are publicly available. We note that
DCell and Ontotype cannot predict Gls for all ~4.0 million unique
gene-pairs with GI scores available from Costanzo er al. (2010) be-
cause only ~3.3 million gene-pairs can be featurized from GO (as
some genes have no annotations). Even though MF-b does not have
the same limitation, we nonetheless restrict MF-b to only use the 3.3
million GI scores used by Yu et al. (2016) and Ma et al. (2018) to
perform an apples-to-apples comparison.

Though, we argue in Section 2.4 that R? is a better metric, we re-
port regression performance both in terms of R? and Pearson’s p for
context. Ma et al. (2018) and Yu et al. (2016) only report perform-
ance in terms of Pearson’s p in their work. Following prior studies
(Ma et al., 2018; Yu et al., 2016), we also evaluate how well each
model predicts extreme Gls and report the AUPR achieved by each
model for classifying negative Gls (see Section 2.4 for details).

First, following Yu et al. (2016) and Ma et al. (2018), we evalu-
ate predictions restricted to the subset of GI scores deemed signifi-
cant by Costanzo et al. (2010). When imputing significant GI scores,
MEF-b outperforms DCell and Ontotype by 17.5% and 75.1% in
Pearson’s p (0.604 versus 0.514 and 0.345), respectively. In terms of
R?, MF-b more than doubles the R? score of Ontotype (0.271 versus
0.112) and outperforms DCell (0.265). Furthermore, when classify-
ing negative GIs, MF-b again outperforms DCell and Ontotype,

Table 4 R? score of imputed versus actual Gl scores for EMF
models in genome-scale fission yeast dataset (Ryan et al., 2012)

Algorithm % of Gls used in training

10% 25% 50% 75%
MF 0.049 0.147 0.251 0.316
K-PMF-b 0.064 0.159 0.257 0.317
XSMF 0.062 0.153 0.252 0.318°
K-XSMF-b 0.067 0.158 0.254 0.318*

Models are evaluated with varying proportions of GI scores used during
training. The best performing models are indicated in bold.

Standard deviations of best performing model and MF baseline overlap.

Table 5 R? score of imputed versus actual Gl scores for EMF models
in genome-scale baker’s yeast dataset (Costanzo et al., 2010)

Algorithm % of GIs used in training

10% 25% 50% 75%
MF 0.004 (0.007) 0.088 (0.055) 0.180 (0.133) 0.267 (0.189)
K-PMF-b  0.026 (0.009) 0.100 (0.061) 0.180 (0.126) 0.238 (0.176)
XSMF 0.005 (0.006) 0.084 (0.059) 0.190 (0.134%) 0.266 (0.1897)
K-XSMF-b 0.019 (0.011) 0.085 (0.061) 0.200 (0.130) 0.250 (0.182)

Scores for predictions restricted to significant GI scores as determined by
Costanzo et al. (2010) appear on the left. Scores for predictions on all pairs to
the right in parentheses. Other notation is the same as in Table 3.

2Standard deviations of best performing model and MF baseline overlap.

achieving 18.8% and 66.2% improvement in AUPR (0.570 versus
0.480 and 0.343) over DCell and Ontotype.

Second, we hypothesize that methods that perform better at
imputing all GI scores may be less sensitive to noise or variability in
the data; hence we also evaluate models with respect to all imputed
scores. When imputing all GI scores, MF-b achieves double the
Pearson’s p of Ontotype and improves over DCell by 19.0% (0.425
versus 0.191 and 0.358, respectively). When classifying negative
Gls, MF-b again doubles the AUPR of Ontotype and improves over
DCell by 31.5% (0.267 versus 0.104 and 0.203). Surprisingly,
Ontotype and DCell both achieve negative R* scores while MF-b
achieves an R? score of 0.187. These results indicate that, on all
scores, DCell and Ontotype perform worse than a model that pre-
dicts the mean. One reason for this, shown by Supplementary Figure
S1, is that when DCell predicts the sign of a GI score incorrectly, it
does so more often with greater magnitude than MF-b.

MEF-b and other MF-based models presented in this study are
also faster to train. On a machine with an NVidia GTX 1080Ti
GPU, EMF models take <1 min to train on the baker’s yeast dataset.
In fact, the benchmarked MF-b model trains in less than 3 s. In com-
parison, the authors of DCell report in their publicly available soft-
ware release (https://github.com/idekerlab/DCell) that the ‘running
time on a standard Tesla K20 GPU takes 2-3 days’ on Costanzo
etal. (2016).

Having established that MF-b, a simple model in the EMF
framework, outperforms deep learning and GO-based methods
under three different measures, we refrain from comparing other
MF methods to DCell and Ontotype in subsequent sections.
Furthermore, since Pearson’s p fails to detect systematic mis-
estimation of GI score magnitudes (see Section 2.4), subsequent
experiments are evaluated using R” only.

3.4 Ablation analysis on matched chromosome biology
datasets in baker’s and fission yeast

Next, via an ablation analysis, we evaluate how components of the
EMEF framework affect GI imputation. We perform this analysis on
GI datasets for chromosome biology genes in baker’s and fission
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yeast (Collins et al., 2007; Roguev et al., 2008). To compare to prior
work, we also compare EMF models to NGMC (Zitnik and Zupan,
2015). To explore the range of settings that may arise in practice,
we evaluate models with varying amounts of training data in the tar-
get species. These allow us to assess both data-rich and data-scarce
settings. Our results demonstrate that EMF models that jointly ex-
ploit cross-species and side information consistently impute GIs
more accurately. We report these results in Table 3, and standard
deviations across repeats in Supplementary Tables S1 and S2.

Our results first show that modeling per-gene biases aids GI im-
putation. The improvement gained by modeling biases is most clear
when comparing the performance of MF-b to MF. MF-b outper-
forms MF in all but one experiment. We note that, when cross-
species and side information are used, improvement due to modeling
biases is less consistent. When 50% and 75% of Gls are observed
during training, the difference in performance when adding bias
terms to K-XSMF and K-PMF is small. However when data are
scarce, modeling biases more consistently improves imputation. For
example, when 10% of GIs are used during training, K-XSMF-b
outperforms K-XSMF by 11.5% and 9.2% in baker’s and fission
yeast, respectively. In fact, in these scenarios, K-XSMF-b outper-
forms K-XSMF, and K-PMF-b outperforms K-PMF, in six out of
eight experiments.

Unsurprisingly, all models that exploit side information consist-
ently outperform corresponding models that do not. We highlight
some results for the most data-scarce and data-rich scenarios. In
baker’s yeast, when 10% and 75% of GlIs are used, K-PMF-b out-
performs MF-b by 47.8% and 3.4%, and K-XSMF outperform
XSMF by double and by 3.4% percent, respectively. In fission yeast,
when 10% and 75% of Gls are used, K-PMF-b outperforms MF-b
by 20.4% and 2.4%, and K-XSMF outperforms XSMF by 30.2%
and 1.1%. We note that while both models use the same side infor-
mation, K-PMF outperforms NGMC in seven of eight experiments
across both yeast species.

Moreover, our results show that cross-species models outper-
form single-species models. Exploiting cross-species information
only, XSMF outperforms MF across the board, albeit by a small
margin when data is abundant. Again, differences in performances
are largest when data is scarce. When 10% of Gls are used, XSMF
outperforms MF by 29.6% and 14.0% in baker’s and fission yeast,
respectively.

Most strikingly, models that exploit cross-species and side infor-
mation (K-XSMF-b and K-XSMF) are the best performing models
(bolded in Table 3) and outperform the MF baseline without over-
lapping standard deviations in all but one case. Again, data-scarce
scenarios show the largest differences in performance. In baker’s
yeast, when 10% and 25% of target GIs are used during training, K-
XSMF-b outperforms the next best single-species model by 10.5%
and 3.2%, respectively. In fission yeast, K-XSMF-b outperforms K-
PMF-b by 14.0% when 10% of target GIs are used, and K-XSMF
outperforms K-PMF-b 1.8% when 25% of Gls are used. We high-
light that K-XSMF and K-XSMF-b not only exploit cross-species in-
formation, but also side information in both target and source
species. These results highlight the utility and versatility of the EMF
framework.

It is particularly notable that EMF components (i.e. biases,
exploiting side and cross-species information) offer largest improve-
ments in imputation performance when data are scarce. Data-scarce
scenarios are most likely to occur when new methods for measuring
GIs for new phenotypes or new species are developed.

3.5 Results on genome-scale datasets in baker’s and fis-

sion yeast
Finally, we evaluate a representative set of EMF models on genome-
scale GI datasets in baker’s and fission yeast (Costanzo et al., 2010,
Ryan et al., 2012). On these datasets, our results show that incorpo-
rating cross-species information aids GI imputation when training
examples are scarce.

Again, since EMF models do not depend on GO, EMF models
are able to impute interactions between all 4.0 million unique

baker’s yeast gene-pairs published in Costanzo ef al. (2010) as
opposed to the 3.3 million featurizable gene-pairs in Yu ez al. (2016)
and Ma et al. (2018). To the best of our knowledge, our study is the
first to predict GIs at genome-scale in fission yeast, and GIs for all
4.0 million gene-pairs measured by Costanzo et al. (2010) in baker’s
yeast.

In baker’s yeast, as in Section 3.3, we evaluate both all imputed
scores and the subset of scores deemed to be significant by Costanzo
et al. (2010). In fission yeast, we evaluate imputed scores for all
held-out gene-pairs since Ryan et al. (2012) do not report P-values
for measured GI scores. We report the results in Tables 4 and 5, and
standard deviations across repeats in Supplementary Tables S3-S5.

Perhaps unsurprisingly, when a large amount of data are avail-
able, the differences in the best performing models are almost indis-
tinguishable. In fission yeast, XSMF and K-XSMF-b outperforms
MF by a small margin when 75% of Gls are used during training.
When 50% of GIs are observed during training, K-PMF-b outper-
forms K-XSMF-b by just over 1%. In baker’s yeast, when 75% of
GlIs are observed during training, MF and XSMF are the best per-
forming models and outperform their kernelized counterparts by
small margins. Here, one key observation is that in these data rich
settings, cross-species components of the EMF framework do not
impair the single-species MF models which they extend.

However, when data are scarce, the improved performance of
EMF models due to the inclusion of side information and cross-
species information is clear. When fewer than 75% of observed GIs
are used during training, the best performing EMF models outper-
form the MF baseline without overlapping standard deviations in all
but one case. In fission yeast, when 10% and 25% of observed GIs
are used during training, K-XSMF-b and K-PMF-b are the best per-
forming models. Further, both cross-species models improve over
their single-species counterparts: K-XSMF-b outperforms K-PMF-b
by 5%, when 10% of observed Gls are used during training, and
XSMEF outperforms MF by 27% and 4%, when 10% and 25% of
observed interactions are used for training.

Likewise, the inclusion of cross-species information and side in-
formation aids imputation in baker’s yeast when data are scarce.
When imputing significant pairs, both K-PMF-b and K-XSMF-b
roughly quadruple the R* score of their non-kernelized counterparts
when 10% of GIs are used during training. Here, K-PMF-b is clearly
the best performing model when 10% and 25% of GIs are used dur-
ing training. Finally, when imputing all GIs, cross-species models
XSMF and K-XSMF-b achieve the best R? score, when 10%, 25%
and 50% of GIs are used during training.

4 Discussion

In this work, we introduce EMF, a framework of composable MF
models for imputing Gls. The EMF framework unifies several MF
strategies for improving imputation. EMF models can explicitly
model per-gene biases and can readily exploit available side infor-
mation via kernelization. A novel contribution of EMF models is the
ability to simultaneously exploit cross-species information. Given a
cross-species gene—gene similarity measure, EMF models can link
factorizations in a source and target species to better impute missing
values in the target.

Surprisingly, even a simple EMF model outperforms the state-of-
the-art method for GI prediction. This simple model only requires
GlIs as input and does not require labels from the Gene Ontology.
Via an ablation analysis in chromosome biology GI datasets in
baker’s and fission yeast, we show how components of the EMF
framework improve GI imputation. Furthermore, our results show
that EMF models are also effective in genome-scale datasets in both
yeast species. To the best of our knowledge, our study is the first to
impute GIs in fission yeast at genome-scale.

In sum, the EMF framework highlights the versatility, and
surprising utility, of MF based approaches. Our results show that
components in the EMF framework that exploit cross-species infor-
mation are most effective when data are scarce. We also emphasize
that data scarcity is relative. For example, 10% of available data in
baker’s yeast equates to approximately 400,000 observations, which
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is more than have been measured in all but a handful of species.
Thus, we expect MF-based approaches like EMF to be invaluable
for efforts to map GIs in new species. In these scenarios, the incorp-
oration of data across multiple contexts, be it species or phenotypes,
may be fruitful if not necessary. Though not the focus of this work,
we also anticipate that the performance of cross-species models
could be improved via other cross-species similarity measures and
other methodological optimizations [e.g. combining kernels via mul-
tiple kernel learning (Gonen and Alpaydin, 2011)].
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