
Journal of Systems Architecture 118 (2021) 102178

A
1

M
a

b

c

d

e

f

Contents lists available at ScienceDirect

Journal of Systems Architecture

journal homepage: www.elsevier.com/locate/sysarc

An Analyzable Inter-core Communication Framework for High-Performance
Multicore Embedded Systems
Rohan Tabish a,∗,1, Jen-Yang Wen b,1, Rodolfo Pellizzoni c, Renato Mancuso d, Heechul Yun e,
arco Caccamo f, Lui Raymond Sha a

University of Illinois at Urbana-Champaign, United States of America
Microsoft Corporation, United States of America
University of Waterloo, Canada
Boston University, United States of America
University of Kansas, United States of America
Technical University of Munich, Germany

A R T I C L E I N F O

Keywords:
High-performance computing
Communication
Inter-core
Multicore
Heterogeneous systems
Embedded systems

A B S T R A C T

Multicore processors provide great average-case performance. However, the use of multicore processors for
safety-critical applications can lead to catastrophic consequences because of contention on shared resources.
The problem has been well-studied in literature, and solutions such as partitioning of shared resources have
been proposed. Strict partitioning of memory resources among cores, however, does not allow intercore
communication.

This paper proposes a Communication Core Model (CCM) that implements the inter-core communication
by bounding the amount of intercore interference in a partitioned multicore system. A system-level perspective
of how to realize such CCM along with the implementation details is provided. A formula to derive the WCET
of the tasks using CCM is provided. We compare our proposed CCM with Contention-based Communication
(CBC), where no private banking is enforced for any core. The analytical approach results using San Diego
Vision Benchmark Suite (SD-VBS) for two models indicate that the CCM shows an improvement of up to 65
percent compared to the CBC. Moreover, our experimental results indicate that the measured WCET using
SD-VBS is within the bounds calculated using the proposed analysis.
1. Introduction

Commercial-off-the-shelf (COTS) multi-core processors have been
developed by industry to meet the ever growing processing require-
ments. These processors offer great average case performance, low
power consumption compared to multiple single cores as well as cost
effective design. However, the use of multi-core processors for safety-
critical applications can lead to the unpredictable timing behavior
of the task on the core under consideration. This unpredictability in
a multi-core processor is because of the contention on the shared
resources such as DRAM, LLC and the Memory controller by the other
cores. The problem has been well studied in the research commu-
nity [1–5] and so far has been acknowledged in industry by Federal
Aviation Authority (FAA) [6].

Researchers in [4] demonstrated that strict partitioning of the
shared resources (LLC, bus bandwidth and DRAM banks) in a multi-
core environment is required to achieve predictable execution of the

∗ Corresponding author.
E-mail address: rtabish@illinois.edu (R. Tabish).

1 Equal authors.

tasks running on each core. A similar approach has been proposed by
𝑀𝐶2 in [7] where predictability in a multicore processor is ensured by
implementing different isolation techniques for each criticality level.
Strict partitioning of the shared resources has been adopted by FAA in
its recent CAST32 A position paper [6].

The work in [8] describes how to implement inter-core communica-
tion for mixed-criticality tasks using cache isolation and DRAM banks
in a multi-core processor inside 𝑀𝐶2 framework. However, in their
proposed model all the cores that need to communicate compete for
the same DRAM bank. This is a problem (as shown in evaluation of this
paper) because it introduces significant amount of contention, making
the communication slow. We refer to the communication between all
the cores using the same bank described in [8] as CBC in this work.
Another limitation of the work proposed in [8] is that they provide
no theoretical bounds for their intercore communication mechanisms.
vailable online 31 May 2021
383-7621/© 2021 Published by Elsevier B.V.

https://doi.org/10.1016/j.sysarc.2021.102178
Received 24 December 2020; Accepted 10 May 2021

http://www.elsevier.com/locate/sysarc
http://www.elsevier.com/locate/sysarc
mailto:rtabish@illinois.edu
https://doi.org/10.1016/j.sysarc.2021.102178
https://doi.org/10.1016/j.sysarc.2021.102178
http://crossmark.crossref.org/dialog/?doi=10.1016/j.sysarc.2021.102178&domain=pdf


Journal of Systems Architecture 118 (2021) 102178R. Tabish et al.

m
c
p
t
m
a
C

2

s
s
t
p
b
d
u

2

c
m
t

i

To address these limitations, we propose CCM model that minimizes
the number of cores accessing the same bank to support intercore
communication. Moreover, we also provide a mathematical expression
to theoretically analyze the schedulability when running tasks in our
proposed CCM model.

Our work follow the partitioning approach described in [4] to
propose and implement inter-core communication framework. When
designing such a framework, our design philosophy is to minimize
the number of cores accessing a DRAM bank at any point in time to
avoid communication slow-down. Our proposed design is implemented
using standard Linux and POSIX based system calls. However, our
implementation is compatibility to any real-time OS that is POSIX
compliant.

There are many ways to implement the inter-core communication
and it depends on the amount of data needed to be shared. For small
communication messages, an intuitive approach is to use a portion of
LLC and avoid accessing the main memory [8]. However, the imple-
mentation of locking chunks of messages in the LLC requires specific
hardware support. This paper focuses on the scenarios where messages
are large and hardware support for locking2 LLC is not available. The
main contributions of this paper include the following:

• A novel CCM that bounds the amount of contention on the DRAM
banks for implementing shared memory communication inside
the SCE framework is proposed.

• A mathematical expression on how to calculate WCET of a task
under the proposed CCM is provided.

• Implementation details of the communication library (CommLib)
and a communication task (CT) based on the proposed CCM are
provided.

• An extensive evaluation of the proposed CCM is provided is
compared with CBC where the inter-core communication is im-
plemented without private banks.

The rest of this paper is organized as follows, Section 2 introduces
the related work and background. Section 3 introduces the system
odel and assumptions. Section 4 presents how to bound the inter-
ore memory interference in SCE with the proposed CCM. Section 5
resents the delay analysis of the proposed system. Section 6 describes
he details about the implementation of the proposed library and com-
unication server. Section 7 presents the analytical results of the CCM
nd the CBC approach and provides the measurement-based results for
CM on the P4080 platform. Finally, Section 9 concludes our work.

. Related work and DRAM background

This section is divided into various subsections. Section 2.1 de-
cribes the background related to the DRAM memory controller and
ome of the previous works proposed by the research community
o analyze and predict the DRAM memory controller’s behavior. In
articular, we describe the work proposed in [9] that we use as a
asis to analyze our proposed system model. Next, in Section 2.2 we
escribe the necessary background and related work required for the
nderstanding of this paper.

.1. DRAM background and related work

Main memory such as DRAM is a shared resource in a multicore pro-
essor, which greatly affects the system’s overall performance. DRAM
emory controllers are designed to generate DRAM specific commands
o access data in the DRAM.

2 In ARM Cortex-A9 platform, the cache locking feature is supported, but
n ARM Cortex-A53 platform, this feature does not exist.
2

The DRAM controller and the DRAM module are connected through
a command/address bus and a data bus. The DRAM memory is gener-
ally organized into a set of ranks; each rank is divided into multiple
banks that can be accessed in parallel, provided that no collision occurs
on either bus. Each bank has a two-dimensional array of memory
organized into rows and columns. An activate (ACT) command must
be issued to load the data in the row buffer to access the data in a
row. Once loaded, all the read/write memory requests (CAS) accessing
the row buffer data will constitute a row hit. However, if a memory
request targets a different row, then the current buffer must be written
back to the array with a pre-charge command (PRE) first before the
second row can be activated. A request that is a hit in the row buffer
(open row access) takes a much shorter time than that is a miss in the
row buffer (close row access). The minimum time it takes to complete
open row access, and close row access is device-dependent. Once the
DDR device for the system is selected, the timing constraint values can
be found on JEDEC standard documents, such as [10].

Scheduling algorithm in COTS memory controllers have been
developed to offer low average-latency and maximize the throughput.
One of the most common scheduling algorithms is the First-Ready First-
Come-First-Serve (FR–FCFS) scheduling algorithm that prioritizes: (1)
row-hit over row conflicts; (2) old commands over newer commands
in case of row conflicts. Another widely used scheduling algorithm is
round-robin.

In the real-time community, there has been a great effort to analyze
the DRAM memory controller’s behavior. The complexity of the COTS
DRAM systems, however, has made such efforts difficult. To address
such complexity, researchers have chosen to design hardware (HW)
real-time DRAM controllers [11–17] that are easier to analyze. The
problem with these HW real-time DRAM controllers is that they have
lower performance than the COTS DRAM controllers. Moreover, these
HW DRAM controllers have yet to be adopted by the industry. Thus,
there is a need to analyze the DRAM memory controller accompanied
by modern COTS processors.

To analyze COTS-based memory controllers’ memory behavior,
some researchers have proposed to model the main memory as a black
box where each request from the memory controller takes a specific
amount of time, and memory requests from other cores are serviced
in a round-robin or first-come-first-serve (FCFS) basis. A variety of
previous works addressing main memory as a black box include: [18–
22]. However, the memory model assumed in these approaches is
not safe for COTS multicore platforms because it hides critical details
necessary to place an upper bound on its timing [23].

Recently, the authors in [9] proposed a new approach for bounding
memory interference. In their approach, they considered the timing
characteristics of major resources in the DRAM system, including the re-
ordering effect of FR–FCFS and the rank/bank/bus timing constraints.
Using this approach, the authors showed that they obtain a tighter
upper bound on the worst-case memory interference delay for a task
when it executes in parallel with other tasks. The presented technique
combined two approaches: a request-driven and a job-driven ap-
proach. The request-driven approach focuses on the task’s own memory
requests, and the job-driven approach focuses on interfering memory
requests during the task’s execution. Combining two approaches yields
a tight upper bound on the worst-case response time of a task in the
presence of memory interference.

2.2. Background on partitioning shared resources

In a multicore system, there are shared resources such as avail-
able bus bandwidth and DRAM banks. These shared resources can
be partitioned among the cores to avoid conflicts. Researchers in the
real-time community have introduced OS-based techniques to regulate
access to the shared resources to bound the inter-core interference.
For example, memory regulation techniques such as [1] proposed to

regulate the amount of main memory access by each core in each



Journal of Systems Architecture 118 (2021) 102178R. Tabish et al.

t

P
t
i

i
a
e
e
e
m
P
i
o
r
a
t

c
t
t
e
p
i
s
1

3

3

c
a
m
t
m
m
w
b
e
s

3

i
b
r
a
a
m
t
(
A
t
p

t
t

i
i

regulation periods to reduce the interference on the memory controller.
Other researchers proposed to partition the shared resource to reduce
the inter-core interference channels. Techniques such as [3,7] partition
the DRAM banks in the shared main memory among cores. While other
techniques such as [2,24,25] partitions the shared last level cache (LLC)
o prevent cache evictions caused by inter-core interference.
In this paper, we use approaches similar to MemGuard [1] and

ALLOC [3] to partitioned the shared resource in our system. However,
he resource partitioning can also be achieved using the 𝑀𝐶2 work
n [7,8].
MemGuard is a memory bandwidth reservation mechanism that

s implemented at the Operating System (OS) layer. This mechanism
ims to distribute the bandwidth available from the memory controller
qually among all the cores. It works periodically, and for each interval,
.g., 1 ms, a fixed memory budget (𝑄𝑝) is assigned to each core. During
ach period, the hardware performance counter (PMC) on each core
easures the number of memory requests generated by the core. The
MC is programmed to generate an overflow interrupt to the core once
ts assigned budget has been exhausted. Upon the reception of the
verflow interrupt, MemGuard stalls the core by dequeuing all the tasks
unning on that core. At the beginning of the new period, a new budget
ssignment occurs. At the budget replenishment, previously dequeued
asks are scheduled again.
DRAM memory module contains multiple resources (banks) that

an be accessed in parallel. In COTS multicore platforms, banks are
ypically shared among all the cores even though programs running on
he cores do not share memory space. To partition the banks and assign
ach bank to a particular core, we rely on PALLOC. PALLOC allows
artitioning of banks to avoid bank sharing among cores, thereby
mproving isolation on COTS multicore platforms without requiring any
pecial hardware support. On P4080, we see a latency improvement of
.6x times when we have different banks for each core.

. System model and assumptions

.1. Architectural/hardware assumptions

We assume a standard COTS-based multi-core processor with 𝑛
ores. Each core in the system features a private cache. There is also
shared last-level cache (LLC). We also assume that the underlying
ain memory is a DRAM with 𝐵 banks. CPUs access main memory
hrough a shared interconnect. The platform provides a mechanism to
easure the number of memory requests issued by each core to the
ain-memory. The platform is capable of counting aggregated read and
rite memory accesses. These assumptions are meet by various COTS
ased embedded platforms such as P4080 from NXP that we use in our
valuation, Intel Core2Quad Q8400 and many other platforms employ
uch hardware performance tools.

.2. Proposed model

Using the hardware assumptions described in Section 3.1, we specif-
cally partition the shared DRAM banks and the available memory
andwidth equally among all the cores. For simplicity, we partition the
esource equally among all the cores. A system designer can always
ssign uneven partitioning of the shared resources depending upon the
pplications/workloads requirements. In our proposed CCM, out of 𝑛
ulti-core processors one core is dedicated for inter-core communica-
ion. This core is referred to in rest of the paper as Communication Core
CC). All the other cores are referred to as Application Cores (ACs). The
Cs are only allowed to access their dedicated DRAM banks, whereas
he CC is capable of accessing all DRAM banks. A block diagram of our
roposed model is shown in Fig. 1.
In our proposed CCM the CC is responsible for copying data from

he bank of one AC to the bank on another AC. The task responsible for
his data movement is called communication task (CT). A summary of
3

Fig. 1. Block diagram.

the system parameters and their values used for evaluations in Section 7
s provided in Table 1. Within each memory regulation interval, the CC
s capable of accessing all the banks. There exist at most (𝑛−1) ⋅ (𝑛 − 2)
communication sequences that need to be completed in one memory
regulation period assuming all the ACs need to communicate with each
other. For each pair of communicating cores, we assume CC issues at
most 𝑡𝑐 memory requests to the sender’s private bank, and at most 𝑡𝑐
memory requests to the receiver’s private bank. The total number of
memory requests made by the CC to banks of ACs during one memory
regulation period is represented by 𝑇𝑐 = 2 ⋅ (𝑛 − 1) ⋅ (𝑛 − 2) ⋅ 𝑡𝑐 .

The CT is also responsible for communication between I/O devices
and ACs. We specifically note that the proposed CCM is in accor-
dance with the design principles of Integrated Modular Avionics (IMA)
architecture. Originally, strict partitioning of shared resources in a
multicore framework was designed to support the use of the standard
IMA architecture on each core. The (single core) IMA architecture uses
Time Division Multiplexing Access (TDMA) to run applications with
different criticality in different partitions. Within each partition, tasks
are scheduled by generalized rate-monotonic algorithm [26]. In IMA
standard, the zero partition (I/O partition) is used to handle all the I/O
and inter-partition message exchanges. Existing work [27] further pro-
posed to consolidate the zero partitions from each core into a specific
core, called I/O core, to manage the I/O accesses. It is natural to extend
the I/O core architecture to implement inter-core communication using
the model as shown in Fig. 1; here the CC takes the place of the I/O
core, being responsible for moving I/O data between I/O devices and
all the other ACs as well as the inter-core communication data between
ACs.

More in details, using the CCM, one can handle the I/O data
from I/O devices using the following two approaches: (i) either the
communication core transfers data from/to device memory into its own
private bank and move it from/to the private bank of AC that needs it;
(ii) or the CC can directly transfer the data from the I/O device to the
bank of the application core that needs it. For simplicity, we consider
the second approach, shown as black arrows in Fig. 1. When an AC
needs to access an I/O device buffer, CC issues at most 𝑡𝑖𝑜 memory
requests from the TX buffer in the sender’s private bank (I/O output),
and at most 𝑡𝑖𝑜 memory requests to the RX buffer in the receiver’s
private bank (I/O input). The memory transactions required to move
data to/from a device buffer to the private bank of ACs is represented
by 𝑇𝑖𝑜 = 2 ⋅ (𝑛 − 1) ⋅ 𝑡𝑖𝑜.

In summary, in each memory regulation period, the CC performs
up to 𝑇𝑐 memory transactions for inter-core communication, and up to
𝑇𝑖𝑜 transactions for I/O transfers. The CC can then use the remaining
regulation budget (𝑄𝑝 − 𝑇𝑐 − 𝑇𝑖𝑜) to execute tasks that access CC’s own
private banks. These tasks include OS related activities such as drivers,
device bookkeeping and interrupt handling etc.



Journal of Systems Architecture 118 (2021) 102178R. Tabish et al.

t
t
e
c
s

b

m
m
f
t
b
1
O

b
a
d

Table 1
System parameters.
System parameters Symbol Value

Number of cores 𝑛 8
Number of ACs 𝑛 − 1 7
Memory regulation period 𝑃 1 ms

Table 2
Task parameters.
Description Symbols

Core to which 𝜏𝑖 has been assigned 𝐶𝑜𝑟𝑒𝑖
Number of main memory requests of any job of task 𝜏𝑖 𝐻𝑖
Solo execution time 𝑒𝑖
Period (and deadline) 𝑇𝑖

3.3. Motivating example

In this subsection we provide a motivating example of our proposed
model. The parameters used in this example are similar to what has
been included in the evaluation section. Consider a system of eight
cores (𝑛 = 8). Here one core is dedicated for communication purpose.
The remaining seven cores are ACs. All the cores have their own
DRAM bank. Let us assume that the minimum guaranteed bandwidth
rate provided by the memory controller is computed experimentally
using the approach in [1] and is found to be 1.2 GB/s. If we split
the bandwidth equally among the cores then each of the core will get
153 MB/s. Let us assume that we have memory regulation implemented
at the granularity of 1 ms. Given the minimum guaranteed bandwidth
of each core is 153 MB/s, each core is assigned a 𝑄𝑝 of 2520 memory
ransactions per memory regulation period. Since the memory transac-
ions are generated by the misses in the LLC, the transaction length is
qual to the cache line size. The cache line size for the P4080 platform
onsidered in our evaluation is 64 bytes. We assume same cache line
ize for this example.
For simplicity of this example, we assume that the whole memory

udget is available to CC i.e. 𝑇𝑐 = 𝑄𝑝 and 𝑇𝑖𝑜 = 0. These 2520 memory
transactions will be divided equally between all the pairs of ACs. This
gives us per-pair communication budget of 𝑡𝑐 = 𝑇𝑐∕(2⋅(𝑛−1)⋅(𝑛−2)) = 30
emory transactions. This translates to data size of 1920 bytes per
emory regulation period. By assigning 𝑡𝑐 = 30 memory transactions
or one AC-pair, we can say that during each memory regulation period
he maximum packet size that can be successfully transferred from the
ank of one application core to the bank of another application core is
920 bytes. In this example we assumed 𝑇𝑐 = 𝑄𝑝. However, in an actual
S implementation 𝑇𝑐 is always less than 𝑄𝑝. This is because some of

the budget assigned to the CC is used for OS bookkeeping (such as I/O
activity, interrupts handling etc.) activities. We empirically measure
this overrhead in our evaluation.

3.4. Application task model

We consider a partitioned and fixed priority scheduling policy,
where each core has a set 𝛤 of 𝑁 periodic application tasks,
{𝜏1,… , 𝜏𝑁}, each with different priority whereby 𝜏1 has the highest
priority and 𝜏𝑁 has the lowest priority. Each task 𝜏𝑖 can be represented
as 𝜏𝑖 = {𝐶𝑜𝑟𝑒𝑖,𝐻𝑖, 𝑒𝑖, 𝑇𝑖}. Where 𝐶𝑜𝑟𝑒𝑖 is the core, 𝜏𝑖 is assigned to.
𝐻𝑖 is the worst-case number of main memory accesses of 𝜏𝑖. 𝑒𝑖 is the
worst-case execution time of the task measured in isolation, i.e., when
no interference tasks are present and no memory regulation is enforced.
The amount of communication data that a task needs to send to another
task is included in 𝐻𝑖. 𝑇𝑖 is the period of the task. The deadline of a
task is equal to its period. Table 2 summarizes the task parameters.

An AT is a task deployed on an AC. It accesses only the private
DRAM bank assigned to it. It only shares DRAM banks with ATs on
the same core and the CT.
4

4. Bounding interfering memory requests in the proposed system

The maximum number of memory requests that each core can
issue in a memory regulation period is 𝑄𝑝. However, as discussed
in [9,3], interfering memory requests that access the same bank (intra-
bank interference) as the task under analysis produce more delay and
lead to more pessimistic WCET, compared to memory requests that
access different banks (inter-bank interference). In this section, we
describe how to bound the interfering intra-bank (𝐴𝑖𝑛𝑡𝑟𝑎) and inter-bank
memory requests (𝐴𝑖𝑛𝑡𝑒𝑟) in a memory regulation period according to
the proposed CCM described in Section 3.

In order to calculate the total interference caused by the CC and
all the ACs to the AC under analysis during a memory regulation
period, we apply the following approach: first, we calculate the total
interference caused by CC; second, we calculate the interference caused
by all the ACs; and finally, we sum the two interferences to get the total
interference.

4.1. Interference caused by CC

The amount of inter-bank and intra-bank interference caused by the
CC in the CCM can be summarized as follows:

• The intra-bank interference (𝐴𝑖𝑛𝑡𝑟𝑎) caused by CC when moving
I/O data to(input)/from(output) the bank under analysis. This
intra-bank interference can be accounted as 2 ⋅ 𝑡𝑖𝑜.

• The inter-bank interference (𝐴𝑖𝑛𝑡𝑒𝑟) caused by CC when moving
I/O data to(input)/from(output) other (𝑛 − 2) ACs. This (𝐴𝑖𝑛𝑡𝑒𝑟)
can be accounted as 2 ⋅ (𝑛 − 2) ⋅ 𝑡𝑖𝑜.

• The intra-bank interference (𝐴𝑖𝑛𝑡𝑟𝑎) caused by CC when mov-
ing communication data to(receive)/from(send) the bank under
analysis. This (𝐴𝑖𝑛𝑡𝑟𝑎) can be accounted as 2 ⋅ (𝑛 − 2) ⋅ 𝑡𝑐 .

• The inter-bank interference (𝐴𝑖𝑛𝑡𝑒𝑟) caused by CC by moving
communication data to(receive)/from(send) other ACs is 2 ⋅ (𝑛 −
2) ⋅ (𝑛−2) ⋅ 𝑡𝑐 . This is due to the fact that CC accesses each private
bank of an AC for at most 2 ⋅ (𝑛 − 2) ⋅ 𝑡𝑐 transactions, and there
are (𝑛−2) banks belonging to other ACs that can cause inter-bank
interference to the AC under analysis.

• The inter-bank interference (𝐴𝑖𝑛𝑡𝑒𝑟) caused by leftover CC budget
after depletion of I/O and communication budget. This can be
written as 𝑄𝑝 − 2 ⋅ (𝑛 − 1) ⋅ 𝑡𝑖𝑜 − 2 ⋅ (𝑛 − 1) ⋅ (𝑛 − 2) ⋅ 𝑡𝑐

The total intra-bank and inter-bank interference caused by CC can
e obtained by summing the various terms, as expressed in Eqs. (1)
nd (2) below. Note that the total memory interference caused by CC
uring a memory regulation interval is the sum of Eqs. (1) and (2) and
is equal to the memory regulation budget (𝑄𝑝).

𝐴𝑖𝑛𝑡𝑟𝑎
𝐶𝐶 = 2 ⋅ 𝑡𝑖𝑜 + 2 ⋅ (𝑛 − 2) ⋅ 𝑡𝑐 (1)

𝐴𝑖𝑛𝑡𝑒𝑟
𝐶𝐶 = 𝑄𝑝 − 2 ⋅ 𝑡𝑖𝑜 − 2 ⋅ (𝑛 − 2) ⋅ 𝑡𝑐 (2)

4.2. Interference caused by other ACs to AC under analysis

In our proposed model, all the ACs only access their own bank
with a memory regulation budget of 𝑄𝑝. This means that the only
interference introduced by all other ACs to the AC under analysis is
inter-bank interference (𝐴𝑖𝑛𝑡𝑒𝑟).

The total intra-bank and inter-bank interference caused by all the
ACs to the AC under analysis are expressed in Eqs. (3) and (4), respec-
tively.

𝐴𝑖𝑛𝑡𝑟𝑎
𝐴𝐶 = 0 (3)

𝐴𝑖𝑛𝑡𝑒𝑟
𝐴𝐶 = (𝑛 − 2) ⋅𝑄𝑝 (4)



Journal of Systems Architecture 118 (2021) 102178R. Tabish et al.

s
m
r
w
c

m
c
h

p
t

4.3. Total interference caused to AC under analysis

To obtain the total intra-bank interference caused by CC and the
ACs to the AC under analysis, we simply add Eqs. (1) and (3) to obtain
Eq. (5). Whereas, the total inter-bank interference can be obtained by
adding Eqs. (2) and (4) to obtain Eq. (6).

𝐴𝑖𝑛𝑡𝑟𝑎 = 𝐴𝑖𝑛𝑡𝑟𝑎
𝐶𝐶 + 𝐴𝑖𝑛𝑡𝑟𝑎

𝐴𝐶

= 2 ⋅ 𝑡𝑖𝑜 + 2 ⋅ (𝑛 − 2) ⋅ 𝑡𝑐
(5)

𝐴𝑖𝑛𝑡𝑒𝑟 = 𝐴𝑖𝑛𝑡𝑒𝑟
𝐶𝐶 + 𝐴𝑖𝑛𝑡𝑒𝑟

𝐴𝐶

= (𝑛 − 1) ⋅𝑄𝑝 − 2 ⋅ 𝑡𝑖𝑜 − 2 ⋅ (𝑛 − 2) ⋅ 𝑡𝑐
(6)

From Eq. (5) we can see the value of 𝐴𝑖𝑛𝑡𝑟𝑎 is dependent on the
ystem parameters 𝑡𝑖𝑜 and 𝑡𝑐 and that it is only a fraction of the overall
emory regulation budget. This shows that the proposed CCM indeed
educes the intra-bank memory interference, compared to the CBC
here we cannot use bank privatization while supporting inter-core
ommunication in a strictly partitioned system.
In the CBC configuration, where intercore communication is imple-
ented with no bank privatization. In the worst case we can have all
ores issuing memory requests to the same bank. This results in a much
igher intra-bank interference count as shown in Eqs. (7) and (8).

𝐴𝑖𝑛𝑡𝑟𝑎
𝐶𝐵𝐶 = (𝑛 − 1) ⋅𝑄𝑝 (7)

𝐴𝑖𝑛𝑡𝑒𝑟
𝐶𝐵𝐶 = 0 (8)

5. Response time analysis

The response time of a task or group of tasks in a memory regu-
lated system is inflated compared to solo execution time because of:
(1) memory contention caused by tasks on other cores; and (2) stall
induced by memory regulation. During each memory regulation period,
a core either makes 𝑄𝑝 memory accesses, exhausting all of its budget
and being stalled, or it does not exhaust its full budget. We define a
memory regulation period in which a core exhausts its full 𝑄𝑝 budget
and is stalled because of regulation as a stall period; whereas, a period
in which a core does not utilize its full memory regulation budget is
defined as a contention period. During a regulation period, the faster a
core exhausts its 𝑄𝑝 budget the more regulation delay it suffers. Hence,
in the worst case we can assume that the core immediately performs 𝑄𝑝
memory accesses at the beginning of the period and is stalled for the
entire period (𝑃 ).

To compute the response time of the task in our proposed CCM
model, we first measure the solo execution time of the task in isolation.
The cores in our model are out-of-order; in the best case, the memory
access latency can be hidden from the processor because in absence
of data dependencies, the CPU pipeline will not stall waiting for the
completion of a memory load. (i.e., the instruction level parallelism
of the task is high). When measuring the execution time of task in
isolation, it is not known how many memory requests generated by the
task were reordered and overlapped with CPU instructions.

To obtain a safe upper bound to the total response time, one can
simply assume that all memory requests had zero latency when mea-
sured solo, while all requests experience full memory latency: there is
no MSHR available, or no instruction that can be reordered to hide the
latency of this memory request, and access close rows when considering
interference from other cores.

In order to compute the response time analysis of a task in the
proposed CCM we thus proceed as follows:

(1) Similar to [28], for each task 𝜏𝑗 , we define a pure computation
time 𝑐𝑗 as the execution time of the task minus the minimum latency for
the 𝐻𝑗 memory requests of the task. As discussed above, the minimum
latency is zero, therefore the pure computation time equals to the
5

measured execution time (𝑐𝑗 = 𝑒𝑗).
Fig. 2. Breakdown of measured WCET for a generic task with term of stall periods,
contention periods. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)

(2) Then, when considering the tasks that execute in the busy
interval, we add an extra latency term 𝑃 for each stall period (since
they are just stalled for the whole period, without computation in the
worst case). For memory requests issued in contention periods, we
instead add a latency term that represents the maximum cumulative
latency of all such requests (including the effects of contention). Let us
call 𝑅𝐿 the total latency for stall periods, and 𝐶𝐿 the total memory
latency (including contention effects) for contention periods. We also
define the total memory latency as 𝑀𝐿 = 𝑅𝐿 + 𝐶𝐿.

We can then perform response time analysis [29] of independent
eriodic tasks by computing a level-i busy interval as follows: Let 𝑅𝑖 be
he response time at the previous iteration. We define:

• 𝐻̄𝑖 =
∑

∀𝑗,𝑗≤𝑖 𝐻𝑗 ⋅ ⌈
𝑅𝑖
𝑇𝑗
⌉ as the total number of memory requests

performed by all tasks on core under analysis that arrive in the
interval 𝑅𝑖 (including task under analysis).

• 𝑐𝑖 =
∑

∀𝑗,𝑗≤𝑖 𝑐𝑗 ⋅ ⌈𝑅𝑖
𝑇𝑗
⌉ as the total computation performed by

all tasks on core under analysis that arrive in the interval 𝑅𝑖
(including the one under analysis).

We then compute 𝑅𝑖 for the next iteration as:

𝑅𝑖 ← 𝑃 + 𝑐𝑖 +𝑀𝐿(𝑅𝑖, 𝐻̄𝑖), (9)

and continue to iterate until convergence, or 𝑅𝑖 > 𝑇𝑖. Note that we are
summing the total computation with the overall latency. We also need
to add, however, an extra term 𝑃 to account for the fact that the critical
instant might start right after the memory regulation budget has been
exhausted (by previous tasks not in the busy interval). The challenge is
how to compute𝑀𝐿 at each iteration, which we discuss in Section 5.2.
As reported in the equation, we will show that 𝑀𝐿 is a function of the
length of the busy interval 𝑅𝑖, and the total number of memory requests
𝐻̄𝑖.

Fig. 2 gives an example of the breakdown of a measured WCET of
a task in a memory regulated system. In Fig. 2 we can see that the
measured WCET can be broken down into 4 stall periods (blue and
green blocks) and 5 contention periods (red blocks). Note that all the
periods except the last one must take up an entire memory regulation
period. The last memory regulation period of a task may finish before
the end of the memory regulation period. Inside a contention period,
the task executes and suffers memory latency due to contention. The
first regulation period (blue block) represents the initial stall term due
to the memory regulation budget being already exhausted when the
task under analysis is activated. The sum of the last three stall periods
(green blocks) in Fig. 2 is the 𝑅𝐿 of the example task. The sum of all
the memory latency (light blue blocks) within each of the 5 contention
periods in Fig. 2 is the 𝐶𝐿 of the example task. The total memory
latency (𝑀𝐿) is the sum of 𝑅𝐿 and 𝐶𝐿.

5.1. Contention latency

Before detailing how to derive the total memory latency 𝑀𝐿, we

need to discuss the contention latency 𝐶𝐿. In general, the contention



Journal of Systems Architecture 118 (2021) 102178R. Tabish et al.

c

r
l
t
b
S
o

t
t
𝐻
p

i
R
f
o
c
o
a
t

r
b
u
𝐿

t
m
a
𝐽
g

𝐶

latency is a function of the number of memory requests, as well as the
DRAM device being used, the behavior of the DRAM controller, and the
employed latency analysis, as discussed in Section 2.1. In this paper,
we adopt the Job-Driven delay analysis proposed in [9]. We discuss
only Job-Driven delay because the Request-Driven delay analysis leads
to extremely pessimistic bounds for out-of-order execution cores [30].
Based on [9], contention latency is a function of three parameters:the
number of memory requests issued by the core under analysis (which
we denote with 𝐽 ), the interfering memory requests issued from other
cores targeting the bank accessed by the core under analysis (𝐼 𝑖𝑛𝑡𝑟𝑎),
and the number of interfering memory requests issued by other cores
targeting banks that the core under analysis does not access (𝐼 𝑖𝑛𝑡𝑒𝑟).
Thus, we write 𝐶𝐿(𝐽 , 𝐼 𝑖𝑛𝑡𝑟𝑎, 𝐼 𝑖𝑛𝑡𝑒𝑟) to denote an upper bound on the
cumulative memory latency of 𝐽 requests of the core under analysis.
We now show how to derive 𝐶𝐿(𝐽 , 𝐼 𝑖𝑛𝑡𝑟𝑎, 𝐼 𝑖𝑛𝑡𝑒𝑟) based on the analysis
in [9]. It is important to note, however, that any memory analysis able
to derive such a function could be used instead, without any change to
the rest of the analysis. Hence, our general framework is independent of
the specific characteristics of the DRAM controller being used, as long
as inter-bank requests cause less interference than intra-bank requests.

Based on the observations in [9], the worst case access latency for
a close-row memory access, due to row conflict caused by a previous
access to the same bank, can be expressed as 𝐿𝑐𝑜𝑛𝑓 . Since conflicting
accesses to the same bank cannot proceed in parallel, an interfering
intra-bank memory access can at most cause 𝐿𝑐𝑜𝑛𝑓 delay to the core
under analysis. An inter-bank memory interference can at most cause
𝐿𝑖𝑛𝑡𝑒𝑟 = 𝐿𝑃𝑅𝐸

𝑖𝑛𝑡𝑒𝑟 + 𝐿𝐴𝐶𝑇
𝑖𝑛𝑡𝑒𝑟 + 𝐿𝑅𝑊

𝑖𝑛𝑡𝑒𝑟 delay to the core under analysis.
Where 𝐿𝑃𝑅𝐸

𝑖𝑛𝑡𝑒𝑟 , 𝐿
𝐴𝐶𝑇
𝑖𝑛𝑡𝑒𝑟 , and 𝐿𝑅𝑊

𝑖𝑛𝑡𝑒𝑟 can be derived from DRAM device timing
onstraints, as discussed in [9].
Assume there are 𝐼 𝑖𝑛𝑡𝑟𝑎 interfering memory accesses to banks that

the core under analysis can access, and there are 𝐼 𝑖𝑛𝑡𝑒𝑟 interfering
memory accesses to banks that the core under analysis cannot access.
Then, the time taken by the core under analysis to perform 𝐽 memory
accesses with an FR–FCFS scheduling algorithm is bounded by:

𝐶𝐿(𝐽 , 𝐼 𝑖𝑛𝑡𝑟𝑎, 𝐼 𝑖𝑛𝑡𝑒𝑟) = (𝐽 + 𝐼 𝑖𝑛𝑡𝑟𝑎) ⋅ 𝐿𝑐𝑜𝑛𝑓 + 𝐼 𝑖𝑛𝑡𝑒𝑟 ⋅ 𝐿𝑖𝑛𝑡𝑒𝑟. (10)

First we consider the case where 𝐼 𝑖𝑛𝑡𝑒𝑟 = 0. The worst case mem-
ory latency for a system with out-of-order processors is when there
is no reordering and overlapping instructions available in the micro
architecture so that the memory latency cannot be concealed from the
processor. As the authors of [9] observed, every intra-bank memory
request suffers a worst case latency of 𝐿𝑐𝑜𝑛𝑓 due to bank conflict; Hence,
𝐶𝐿(𝐽 , 𝐼 𝑖𝑛𝑡𝑟𝑎, 0) = 𝐽 ⋅ 𝐿𝑐𝑜𝑛𝑓 + 𝐼 𝑖𝑛𝑡𝑟𝑎 ⋅ 𝐿𝑐𝑜𝑛𝑓 is the time it takes for a
DRAM bank to serve 𝐽+𝐼 𝑖𝑛𝑡𝑟𝑎 memory requests when all the consecutive
accesses are row-conflicts and the memory latency is not optimized by
out-of-order processors.

Then, we consider the case when there are 𝐼 𝑖𝑛𝑡𝑒𝑟 > 0 inter-bank
memory accesses. Based on the inter-bank interference delay derived
in [9], each inter-bank memory interference causes at most 𝐿𝑖𝑛𝑡𝑒𝑟 addi-
tional delay to a memory transaction accessing another bank because
of the timing constraints defined in the specifications [10]. Therefore,
𝐼 𝑖𝑛𝑡𝑒𝑟 inter-bank memory accesses create at most 𝐼 𝑖𝑛𝑡𝑒𝑟 ⋅ 𝐿𝑖𝑛𝑡𝑒𝑟 memory
delay.

By combining the two cases, we derive Eq. (12).
The value of 𝐿𝑐𝑜𝑛𝑓 and 𝐿𝑖𝑛𝑡𝑒𝑟 are related to the DRAM device timing

parameters. When a specific DRAM device instance is selected, these
values can be treated as constants. Throughout this paper we use DDR-
1333H as the selected device, based on the timing constraints defined
in [10], we have 𝐿𝑖𝑛𝑡𝑒𝑟 = 37.5 ns, 𝐿𝑐𝑜𝑛𝑓 = 58.5 ns. We refer interested
readers to [9] for the details on how to derive the value of 𝐿𝑐𝑜𝑛𝑓 and
6

𝐿𝑖𝑛𝑡𝑒𝑟 from the DRAM timing constraints. o
5.2. Latency computation

Based on the function 𝐶𝐿(𝐽 , 𝐼 𝑖𝑛𝑡𝑟𝑎, 𝐼 𝑖𝑛𝑡𝑒𝑟), we now detail how to
determine 𝑀𝐿(𝑅𝑖, 𝐻̄𝑖). Given a response time (𝑅𝑖), the number of
memory regulation periods that the tasks in the busy interval extend
on (excluding the first one that is fully stalled due to previous tasks)
is equal to 𝐾 = ⌈(𝑅𝑖 − 𝑃 )∕𝑃 ⌉. As explained earlier in this section, out
of these 𝐾 periods, some are regulation, and some are contention. Let
us call 𝐾𝑟𝑒𝑔 the number of regulation periods, and 𝐾𝑐𝑜𝑛𝑡 the number of
contention ones. Since we do not know the number of such intervals
that results in the worst case latency (𝑀𝐿), we will treat 𝐾𝑟𝑒𝑔 and
𝐾𝑐𝑜𝑛𝑡 as variables and use them to write an optimization problem with
the objective of maximizing 𝑀𝐿. Clearly, it must hold by definition:
𝐾𝑟𝑒𝑔 +𝐾𝑐𝑜𝑛𝑡 = 𝐾.

Similarly, we can split the memory requests of the tasks in the busy
interval between requests in regulation periods and contention periods.
Let us call 𝐻̄𝑟𝑒𝑔

𝑖 and 𝐻̄𝑐𝑜𝑛𝑡
𝑖 the requests in regulation and contention

periods, respectively. We then also have by definition: 𝐻̄𝑟𝑒𝑔
𝑖 + 𝐻̄𝑐𝑜𝑛𝑡

𝑖 =
𝐻̄𝑖. Furthermore, since we need to have 𝑄𝑝 memory requests for each
regulation period, it must also hold: 𝐻̄𝑟𝑒𝑔

𝑖 = 𝐾𝑟𝑒𝑔 ⋅ 𝑄𝑝. That implies:
𝐾𝑟𝑒𝑔 ≤ ⌊𝐻̄𝑖∕𝑄𝑝⌋, and 𝐻̄𝑐𝑜𝑛𝑡

𝑖 = 𝐻̄𝑖 −𝐾𝑟𝑒𝑔 ⋅𝑄𝑝.
We can now derive the latency. Given 𝐾𝑟𝑒𝑔 regulation periods, the

egulation latency is simply: 𝑅𝐿(𝐾𝑟𝑒𝑔) = 𝐾𝑟𝑒𝑔 ⋅ 𝑃 . For the contention
atency, note that since we have 𝐾𝑐𝑜𝑛𝑡 contention periods, there are a
otal of 𝐼 𝑖𝑛𝑡𝑟𝑎 = 𝐴𝑖𝑛𝑡𝑟𝑎 ⋅𝐾𝑐𝑜𝑛𝑡 and 𝐼 𝑖𝑛𝑡𝑒𝑟 = 𝐴𝑖𝑛𝑡𝑒𝑟 ⋅𝐾𝑐𝑜𝑛𝑡 intra-bank and inter-
ank memory requests, respectively (based on Eqs. (5), (6) derived in
ection 4). We can plug in the values we obtained in the 𝐶𝐿 function to
btain a contention latency: 𝐶𝐿(𝐻̄𝑐𝑜𝑛𝑡

𝑖 , 𝐴𝑖𝑛𝑡𝑟𝑎 ⋅𝐾𝑐𝑜𝑛𝑡, 𝐴𝑖𝑛𝑡𝑒𝑟 ⋅𝐾𝑐𝑜𝑛𝑡). Finally,
summing the regulation and contention latencies yields Eq. (11):

𝑀𝐿(𝑅𝑖, 𝐻̄𝑖) = 𝑅𝐿(𝐾𝑟𝑒𝑔)

+ 𝐶𝐿(𝐻̄𝑐𝑜𝑛𝑡
𝑖 , 𝐴𝑖𝑛𝑡𝑟𝑎 ⋅𝐾𝑐𝑜𝑛𝑡, 𝐴𝑖𝑛𝑡𝑒𝑟 ⋅𝐾𝑐𝑜𝑛𝑡)

= 𝐾𝑟𝑒𝑔 ⋅ 𝑃

+ 𝐶𝐿(𝐻̄𝑖 −𝐾𝑟𝑒𝑔 ⋅𝑄𝑝, 𝐴
𝑖𝑛𝑡𝑟𝑎 ⋅ (𝐾 −𝐾𝑟𝑒𝑔),

𝐴𝑖𝑛𝑡𝑒𝑟 ⋅ (𝐾 −𝐾𝑟𝑒𝑔))

(11)

Finally, we need to discuss the contention latency 𝐶𝐿. In general,
he contention latency is a function of: (1) how many memory requests
he core under analysis makes during contention periods, which is
̄ 𝑐𝑜𝑛𝑡
𝑖 ; (2) the number of memory requests made during contention
eriods by other cores.
In this paper, we adopt the Job-Driven delay analysis proposed

n [9] as the 𝐶𝐿 function. We discuss only Job-Driven delay because the
equest-Driven delay analysis leads to pathologically pessimistic bound
or out-of-order execution cores [30]. Based on [9], the 𝐶𝐿 is a function
f three parameters: the number of memory requests issued by the
ore under analysis (𝐽 ), the interfering memory requests issued from
ther cores targeting the bank that core under analysis accesses (𝐼 𝑖𝑛𝑡𝑟𝑎),
nd the number of interfering memory requests issued by other cores
argeting the banks that core under analysis does not access (𝐼 𝑖𝑛𝑡𝑒𝑟).
Based on the observations in [9], the longest time it takes for a close

ow memory access with conflict can be expressed as 𝐿𝑐𝑜𝑛𝑓 . An intra-
ank memory interference can at most create 𝐿𝑐𝑜𝑛𝑓 delay to the core
nder analysis. An inter-bank memory interference can at most create
𝑖𝑛𝑡𝑒𝑟 = 𝐿𝑃𝑅𝐸

𝑖𝑛𝑡𝑒𝑟 + 𝐿𝐴𝐶𝑇
𝑖𝑛𝑡𝑒𝑟 + 𝐿𝑅𝑊

𝑖𝑛𝑡𝑒𝑟 delay to the core under analysis.
Assume there are 𝐼 𝑖𝑛𝑡𝑟𝑎 interfering memory accesses to the banks

hat the core under analysis can access, and there are 𝐼 𝑖𝑛𝑡𝑒𝑟 interfering
emory accesses to the banks that the core under analysis cannot
ccess. Then, the time taken by the core under analysis to perform
memory accesses with a work-conserving FR–FCFS scheduling al-
orithm is bounded by the 𝐶𝐿 function as expressed in Eq. (12),

𝐿(𝐽 , 𝐼 𝑖𝑛𝑡𝑟𝑎, 𝐼 𝑖𝑛𝑡𝑒𝑟) = 𝐽 ⋅ 𝐿𝑐𝑜𝑛𝑓 + 𝐼 𝑖𝑛𝑡𝑟𝑎 ⋅ 𝐿𝑐𝑜𝑛𝑓 + 𝐼 𝑖𝑛𝑡𝑒𝑟 ⋅ 𝐿𝑖𝑛𝑡𝑒𝑟 (12)

First we consider the case where 𝐼 𝑖𝑛𝑡𝑒𝑟 = 0. The worst case mem-

ry latency for a system with out-of-order processor is when there



Journal of Systems Architecture 118 (2021) 102178R. Tabish et al.

b

d
t
i

p
v
D
d
e
𝐿

s
d
M

S

0

s

c

t
T
t

c
m
c
C
t
T

A
c
o
t
d
R
o
i

s
n
s
t
t
a
t
c
a
l
t
b
t
c
t

b
b
b
d
t
t

is no reordering and overlapping instructions available in the micro
architecture so that the memory latency cannot be concealed from
the processor. As authors in [9] observed, every interfering intra-
ank memory request can cause at most 𝐿𝑐𝑜𝑛𝑓 memory delay; Hence,

𝐶𝐿(𝐽 , 𝐼 𝑖𝑛𝑡𝑟𝑎, 0) = 𝐽 ⋅ 𝐿𝑐𝑜𝑛𝑓 + 𝐼 𝑖𝑛𝑡𝑟𝑎 ⋅ 𝐿𝑐𝑜𝑛𝑓 is the time it takes for a
DRAM bank to serve 𝐽+𝐼 𝑖𝑛𝑡𝑟𝑎 memory requests when all the consecutive
accesses are row-conflicts and the memory latency is not optimized by
out-of-order processors. This is the bound for memory access time when
only one bank is accessed during the busy interval.

Then, we consider the case when there are 𝐼 𝑖𝑛𝑡𝑒𝑟 > 0 inter-bank
memory accesses. Based on the inter-bank interference delay proposed
in [9], each inter-bank memory interference causes at most 𝐿𝑖𝑛𝑡𝑒𝑟
elay to a memory transaction accessing another bank because of the
iming constraints defined in the specifications [10]. Therefore, 𝐼 𝑖𝑛𝑡𝑒𝑟
nter-bank memory accesses create at most 𝐼 𝑖𝑛𝑡𝑒𝑟 ⋅𝐿𝑖𝑛𝑡𝑒𝑟 memory delay.
By combining the two cases, we derive Eq. (12).
The value of 𝐿𝑐𝑜𝑛𝑓 and 𝐿𝑖𝑛𝑡𝑒𝑟 are related to the DRAM device timing

arameters. When a specific DRAM device instance is selected, these
alues can be treated as constants. Throughout this paper we use
DR-1333H as the selected device,3 based on the timing constraints
efined in [10], we have 𝐿𝑖𝑛𝑡𝑒𝑟 = 37.5 ns, 𝐿𝑐𝑜𝑛𝑓 = 58.5 ns. Readers are
ncouraged to refer to [9] for the details on how to derive the value of
𝑐𝑜𝑛𝑓 and 𝐿𝑖𝑛𝑡𝑒𝑟 from the DRAM timing constraints.
In summary, at each iteration performed to compute the task re-

ponse time we need to solve the following optimization problem to
etermine 𝑀𝐿:
aximize (over variable 𝐾𝑟𝑒𝑔):

𝐾𝑟𝑒𝑔 ⋅ 𝑃 + 𝐶𝐿(𝐻̄𝑖 −𝐾𝑟𝑒𝑔 ⋅𝑄𝑝,

𝐴𝑖𝑛𝑡𝑟𝑎 ⋅ (𝐾 −𝐾𝑟𝑒𝑔), 𝐴𝑖𝑛𝑡𝑒𝑟 ⋅ (𝐾 −𝐾𝑟𝑒𝑔))
(13)

ubject to:

≤ 𝐾𝑟𝑒𝑔 ≤ min
(

𝐾,
⌊ 𝐻̄𝑖
𝑄𝑝

⌋)

(14)

For a general 𝐶𝐿 function, one could try all possible values of 𝐾𝑟𝑒𝑔

ubject to constraint in Inequality (14) and find the one that maximizes
Eq. (13). However, when employing the 𝐶𝐿 in Eq. (12), the problem
an be simplified: Note that in this case Eq. (13) is equivalent to:
𝐾𝑟𝑒𝑔 ⋅

(

𝑃−(𝑄𝑝+𝐴𝑖𝑛𝑡𝑟𝑎)⋅𝐿𝑐𝑜𝑛𝑓−𝐴𝑖𝑛𝑡𝑒𝑟 ⋅𝐿𝑖𝑛𝑡𝑒𝑟

)

+ (𝐻̄𝑖+𝐴𝑖𝑛𝑡𝑟𝑎 ⋅𝐾)⋅𝐿𝑐𝑜𝑛𝑓+𝐴𝑖𝑛𝑡𝑒𝑟 ⋅

𝐾 ⋅𝐿𝑖𝑛𝑡𝑒𝑟. Hence, if 𝑃 −(𝑄𝑝+𝐴𝑖𝑛𝑡𝑟𝑎) ⋅𝐿𝑐𝑜𝑛𝑓 −𝐴𝑖𝑛𝑡𝑒𝑟 ⋅𝐿𝑖𝑛𝑡𝑒𝑟 is positive, then
𝑀𝐿 is maximized by taking the maximum value 𝐾𝑟𝑒𝑔 = min

(

𝐾,
⌊

𝐻̄𝑖
𝑄𝑝

⌋)

;
otherwise, by taking the minimum 𝐾𝑟𝑒𝑔 = 0.

6. Implementation

For proof-of-concept, we implement our CommLib using POSIX APIs
on Linux because of its ease to use, open source and easy portability.
We know that Linux is not real-time OS. However, for proof-of-concept
it is a fair choice. Our implementation is still valid for any POSIX
compliant real-time OS. As explained that for I/O data either the CC
directly transfers data from/to device memory into its own private bank
and move it from/to the private bank of AC that needs it; or the CC
can directly transfer the data from the I/O device to the bank of the
application core that needs it. In this paper, we are not concerned about
the movement of I/O data and communication between the CC and ACs.
The rest of this section describes inter-core communication between
ACs using proposed CCM.

As depicted in Fig. 3(a), when a task running on one AC wants to
send data to another task running on a different AC, it writes the data
to sending (TX) buffer in its private DRAM bank. In Fig. 3(a), the TX
buffer that stores outgoing messages from ACi to ACj is named TX_i_j.
It should be noted that all the tasks on an AC sending data to the other

3 This is the DDR device used in the evaluation platform P4080.
7

Fig. 3. Message flow diagram.

receiving (RX) tasks on a particular destination AC would write to same
TX buffer. For instance, Fig. 3 shows that AC1 has separate TX buffers
o send to different ACs. The situation is symmetric on the other cores.
he main reason for having separate TX buffers per AC pair is to reflect
he fact that we assign 𝑡𝑐 for each AC pair.
For the receiver task there is a separate RX buffer for each pair of

ommunicating ATs. We name the RX buffer that stores the incoming
essages from AT_k to AT_j as RX_k_j. The data from the TX buffer is
opied into the RX buffer of a destination AT in another AC using the
C, as depicted in Fig. 3(b). The TX and RX buffers are non-cacheable
o the ACs. In the next subsection, we provide the details of how the
X buffer and RX buffers are implemented.
The TX/RX buffers are created/implemented in the private banks of

Cs using POSIX shm_create(). The CT as a part of the initialization pro-
ess creates these buffers. The buffers are mapped to the ATs running
n ACs using mmap(). All ATs that need to send inter-core messages
o receiving ATs need to access the corresponding TX buffer in their
edicated bank as shown in Fig. 3. The receiving ATs access their local
X buffers to read any data produced by ATs on a different core. In
rder for the ATs running on the ACs to access TX/RX buffers we have
mplemented a shared library, named CommLib.
We assume that there is a system configuration file, provided by the

ystem administrator, that specifies all the possible inter-core commu-
ication channels, message sizes, and periods, between the ATs in the
ystem. Based on parameters recorded in the system configuration file,
he TX/RX buffers are created and initialized with appropriate size so
hat the buffers will never overflow as long as all ATs use the library
ccording to the parameters recorded in the configuration file. When
he CT and the ATs that use the CommLib initialize, they read the same
onfiguration file to obtain the names of the buffers they interact with,
nd stores the list of buffers along with other metadata in their own
ocal data structure. The ATs use CommLib to write/read data to/from
he TX/RX buffers. The CT running on CC has access to all the TX/RX
uffers. As discussed in Section 3, all the TX and RX buffers are mapped
o be non-cacheable. In our implementation, we make the buffers non-
acheable by modifying the mmap() system call so that we can make the
asks in our system always access the TX/RX buffers as non-cacheable.
As described in earlier subsections, an inter-core communication

udget (𝑡𝑐) is assigned for each pair, therefore we implemented a TX
uffer for each AC-pair in our proposed CCM. The TX buffer is shared
y the CT and all the ATs running on the same AC that want to send
ata to a specific AC. Hence, access to the shared data structure needs
o be protected to avoid race conditions. To reduce the long blocking
imes for tasks accessing the TX buffer, we propose the use of two



Journal of Systems Architecture 118 (2021) 102178R. Tabish et al.

r
s
t
w
A
f
t
s
t
i
t

i
R
T
i
o

t
t
n
s
n
i
i
L
a
r
T

o
i

w
o
b
M
f
o
W
b
t
C

s

7

a
d
a
l
t
i
i

Fig. 4. Per AC-pair TX buffer and per AT-pair RX buffer.

circular buffers, as the Message Schedule Queue and the Outgoing
Message Queue shown in Fig. 4. Using two circular buffers results
in less blocking. In fact in this case, it is enough to acquire a mutex
only for the amount of time required to update the metadata of the
TX buffer, rather than for the entire duration of a send operation. The
Outgoing Message Queue in Fig. 4 is used to store the actual TX
packet data sent. The sent data is written to a free memory location
pointed in the next free entry in the queue (nextFreeBufPtr). The data
written to the nextFreeBufPtr location can be less than or equal to the
packet size supported by our CCM as described in Fig. 4.

The pseudo code of the send API that takes txTaskID, rxTaskID,
pointer to the txData and size is shown in Algorithm 1. Based upon the
txTaskID and rxTaskID passed in the send API, an array of metadata
holding information about all the TX buffers that the current AT may
access, and their corresponding metadata are searched to find the
correct TX buffer (txBufferPtr) to which the send data must be written
to, as shown in line 2 of Algorithm 1. Once the correct TX buffer
has been identified the task tries to acquire the mutex. There can be
multiple ATs that call send and try to write to the same TX buffer.
Therefore, synchronization is required in the form of a mutex lock.

Once a lock has been acquired the send procedure saves the current
nextFreeBufPtr in the temp variable, increments the nextFreeBufPtr, and
releases the lock. The sent data is then copied to the address pointed by
temp (see lines 5 through 9 in Algorithm 1). After data copy has been
completed via the temp pointer, the address in the temp, along with
other metadata such as txTaskID, rxTaskID and size, have to be stored
into the Message Schedule Queue. The Message Schedule Queue is
also shared between all the ATs that access the same TX buffer. As such,
the send procedure acquires a lock on the metadata of the Message
Schedule Queue. The metadata of the Message Schedule Queue are
dPtr and wrPtr. The only metadata that needs locking as a part of the
end call is wrPtr. After a lock has been acquired on the metadata of
he Message Schedule Queue the temp pointer is written at the wrPtr,
rPtr is then incremented and the lock is released (line 10 to 13 in
lgorithm 1). The CT only reads wrPtr to determine if the queue is
ull, it never updates the value of wrPtr, therefore it does not have
o acquire the mutex. Note that in our implementation, the critical
ections contain only an update for the shared pointers. Therefore,
he blocking time between ATs due to synchronization is short and is
ndependent of the packet size. In addition, no synchronization between
he CT and the ATs is required.
For the RX API, we create per AT-pair RX buffers so that the

nterference among all the receiving tasks can be minimized. Each
X buffer is only shared between the CT and a single receiving task.
herefore, a Incoming Message Queue with a rdPtr and a wrPtr is
mplemented. Since only the RX AT updates the rdPtr, whereas the CT
nly updates the wrPtr, there is no mutex required at the RX buffer.
8

The pseudo code of the receive API is shown in Algorithm 2. Similar
o the send API, the receive API searches all the RX buffers linked to this
ask as shown in line 2 of Algorithm 2. Upon match, it checks if there is
ew data in the RX buffer by comparing the rdPtr and wrPtr pointers as
hown in Fig. 4. Since we design the receive to be non-blocking, in case
o new data is found in the receive buffer, the call returns -1 as shown
n line 3 and 4 of pseudo code in Algorithm 2. Each receiving task has
ts own Incoming Message Queues, no synchronization is required.
ines number 5 through 7 in Algorithm 2 describe this. When there is
n incoming message in the queue, it is read into the buffer pointed by
xData passed to the receive API. The rdPtr of RX buffer is incremented.
he number of bytes being read is returned.
Note that both the send and the receive interact with the buffers

n the caller AT’s private bank, no inter-bank memory interference is
ntroduced by these functions.
The CT running on CC has its per AC-pair communication band-

idth replenished every memory regulation period (P). It then iterates
ver all the TX buffers in the private banks of all the ACs. For each TX
uffer, based on the sender and receiver information contained in the
essage Schedule Queue, the CT is responsible for copying the data:
rom the Outgoing Message Queue to the Incoming Message Queue
f corresponding RX buffer in the private DRAM bank of the RX core.
hen the Message Schedule Queue is empty, or the communication
andwidth for this particular TX buffer is exhausted, the CT moves to
he next TX buffer. After all the TX buffers have been processed, the
T sleeps for the rest of the regulation period.

end(txTaskID, rxTaskID, txData, size)
txBufferPtr : = findtxBuffer(txTaskID,rxTaskID) ;
if txBufferPtr.full() then

return -1 ;
lock(txBufferPtr);
temp : = txBufferPtr.nextFreeBufPtr ;
Increment txBufferPtr.nextFreeBufPtr;
unlock(txBufferPtr);
memcpy (temp, txData, size);
lock(txBufferPtr);
txBufferPtr.wrPtr.idx := temp ;
Increment txBufferPtr.wrPtr ;
unlock(txBufferPtr);
return size;

Algorithm 1: Pseudo Code For send API

receive(txTaskID, rxTaskID, rxData, size)
rxBufferPtr : =findrxBuffer(txTaskID,rxTaskID) ;
if rxBufferPtr.full() then

return -1; // No new data
memcpy(rxData, rxBufferPtr.rdPtr, rxBufferPtr.size);
Increment rxBufferPtr.rdPtr ;
size := rxBufferPtr.size;
return size;

Algorithm 2: Pseudo Code For receive API

. Evaluation

This section provides a detailed evaluation of our proposed CCM
nd compares it with the CBC where no private bank is enforced, as
escribed in Section 4. We start by describing the experimental setup
nd the benchmarks that we have used for evaluation. We then ana-
ytically show how different memory budget assignments (𝑄𝑝) impact
he WCET. Next, we evaluate the communication bandwidth of the
mplemented CT based on our platform. Using the analysis discussed
n Section 5, we then compare and show the benefit of CCM over the
CBC approach for the considered benchmarks. Finally, we show that
proposed analysis for CCM provides a safe WCET bound.



Journal of Systems Architecture 118 (2021) 102178R. Tabish et al.

w
c
p
w
t
w
a
𝑒

i
a
𝑠
p
𝐴

c

A
T
c
w
t

b
e
m

S
p
t
a
o
n
e
t

7

o
W
o
W

b
i

Table 3
SD-VBS benchmark solo measurements.
Benchmark 𝑒𝑖 (ms) 𝐻𝑖 Memory access rate (1/ms)

disparity 318 4448615 13989
localization 244 668 3
mser 44 719914 16362
sift 521 2668107 5121
stitch 293 1588683 5422
svm 290 214138 738
texture_synthesis 25 42342 1694
tracking 176 289821 1647

7.1. Experimental setup and benchmarks

Our experimental setup considers P4080 platform from Freescale
that employs eight Power Architecture e500mc cores operating at
frequencies up to 1.5 GHz. Each core in the system has its dedicated
32 KB I/D Level 1 cache and a 128 KB Level 2 backside cache. A
2 MB of shared Level 3 cache is also present. As discussed in Section 3,
e cannot formally prove that the considered HW platform is timing
ompositional; as is the case with most available COTS platforms, no
recise micro architectural model is available. Therefore, in the paper
e rely on an experimental evaluation based on measurements to show
hat the derived WCET provides safe bound. If such architectural model
as available, we argue that the proposed communication scheme and
nalysis could still be applied after deriving tasks parameters (𝐻𝑖 and
𝑖) based on static program analysis [31].
A Linux-3.0.6 operating system that supports resource partition-

ng is installed on the evaluation platform. The task under analysis
nd all the stressing tasks are statically allocated to each core by
𝑐ℎ𝑒𝑑_𝑠𝑒𝑡𝑎𝑓𝑓𝑖𝑛𝑖𝑡𝑦(). Only one DDR controller is enabled. For the pro-
osed CCM, PALLOC [3] is enabled and configured so that all the
𝐶s can only access one single private DRAM bank, while the 𝐶𝐶 can

access all the DRAM banks. We use MemGuard [19] to enforce memory
regulation on every core in the system, and every core is regulated by
the same memory budget. memory regulation period is configured to
1 ms. and the memory regulation budget is 2520 memory transactions
for each core. The 2520 memory transactions per MemGuard period
orrespond to a memory bandwidth of 153 MB∕s per core.
For the proposed CCM, we consider a system with a single CC and 7

Cs. The WCET is obtained by using the equations derived in Section 5.
he parameters used to compute WCET are listed in Table 1. The worst
ase scenario for CCM is when the task under analysis runs on an AC,
hile there are 6 interfering ACs, each issuing 𝑄𝑝 memory requests
owards its own DRAM bank during every memory regulation period.
Whereas, a periodic CT is deployed on the CC and accesses private

anks of each AC and generates communication memory traffic of 𝑇𝑐 at
very MemGuard regulation period. The CC is also using its remaining
emory budget to stress its own bank.
In order to evaluate the system, we use San Diego Vision Benchmark

uite (SD-VBS) [32]. We use the on-chip event processing unit (EPU)
rovided by P4080 to profile the memory access counts (𝐻𝑖) of each
ask under analysis. We measured the solo run time (𝑒𝑖) and memory
ccess count of the benchmarks with 𝑐𝑖𝑓 (352 × 240) input resolution
n the evaluation platform. The memory regulation budget is set to a
umber that is larger than the available bandwidth, so no regulation is
nforced. The measured parameters are listed in Table 3, the value is
he maximum value observed of 200 instances on the platform.

.2. Task WCET with different memory regulation budget assignment

As discussed in Section 5, in a memory regulated system, the WCET
f a task is dependent on the memory budget assigned to the core.
hen the memory budget is small, the task tends to suffer more mem-
ry regulation and less memory contention from the interfering cores.
9

hereas, if the memory budget is large the task tends to suffer memory
Table 4
Budget distribution on CC.
Total budget assignment (𝑄𝑝) 2520
Average OS overhead 604
Communication budget (𝑇𝑐 ) 1848
Metadata overhead (percentage) 13.6

contention from the interfering cores rather than regulation [33]. De-
pending upon the characteristics of tasks, the optimal memory budget
assignment for different tasks can be different.

We analyzed the WCET of the tasks in SD-VBS benchmark with
various memory budget assignment for the proposed CCM. Fig. 5
shows the WCET of three selected tasks with various memory budget
assignment. All the 𝑄𝑝 assignment are a multiple of 84 because there
are 42 communication pairs among the 7 ACs, and each transaction
compose a read and a write memory access. In this experiment we
assume 𝑇𝑐 = 𝑄𝑝 for all the 𝑄𝑝 assignment so that the number of intra-
ank inter-core interference (𝐴𝑖𝑛𝑡𝑟𝑎) is maximized and thus the bound
s safe. Note that in real-world implementations, 𝑇𝑐 = 𝑄𝑝 cannot be
achieved since the CC might be using some of the memory transactions
for its local computation and the OS related overhead. More details are
described in next subsection.

The inverted bell curves of disparity and tracking show that the
WCET of the tasks under analysis increase rapidly when the assigned
memory budget is very small or very large. The budget assignment that
determines the shortest WCET is different for the two tasks that gives
the smallest WCET are different. 𝑑𝑖𝑠𝑝𝑎𝑟𝑖𝑡𝑦 has smallest WCET when
the memory budget is around 2520 while 𝑡𝑟𝑎𝑐𝑘𝑖𝑛𝑔 has smallest WCET
when the system has memory budget around 1344. 𝑙𝑜𝑐𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 is a
special case in Fig. 5. It is extremely computation intensive, the average
memory access rate is 3 access per millisecond. The curve shows that it
provides the smaller WCET when memory budget is smaller, since it is
very unlikely that it can exhaust the memory budget and get regulated
even with a extremely small memory budget.

A memory budget assignment that produces relatively small WCETs
can be found experimentally. For example, authors in [34] discussed
how to obtain better system performance by assigning uneven memory
regulation budgets to different cores. The development of a near opti-
mal memory budget assignment algorithm is beyond the scope of this
paper.

For our experimental and analytically results, we pick a per-core
memory regulation budget (𝑄𝑝) to 2520 which corresponds to the
minimum guaranteed bandwidth as used in the previous research [28],
and it provides a reasonable WCET for the benchmarks we evaluated.

7.3. Throughput of the CT

Considering the system parameters in Section 7.1 for the considered
P4080 platform with CCM. When assigning a 𝑄𝑝 = 2520 to CC in our
implementation some of the memory transactions are used by the CC to
manage the OS related overhead. Table 4 summarizes the distribution
of 𝑄𝑝 on the CC. With CT not deployed on CC. We find out that on
average 604 memory transactions on CC within a memory regulation
period are used to deal with OS related overhead. This indicates that
in our implementation the maximum value of 𝑇𝑐 available to CT is
𝑄𝑝 − 604 = 1916. In our evaluation, we pick a value of 𝑇𝑐 = 1848
because it is the exact multiple of 84 that does not exceed the maximum
available 𝑇𝑐 . Using a communication budget of 1848, the actual amount
of memory transactions used to move the data between different pairs
of ACs are 1596. This means around 13.6 percent of memory transac-
tions issued by CT are used in dealing with the metadata. The memory
transactions of 1596 per memory regulation period can move data at a

rate of 389 Mbps between all pairs of ACs.



Journal of Systems Architecture 118 (2021) 102178R. Tabish et al.

C
5
C

Fig. 5. WCET with different memory regulation budget assignments.
t

Fig. 6. WCET of tasks in CBC and CCM.

7.4. CCM and CBC

In this section, we compare the WCET of tasks deployed on the
target P4080 platform with our proposed CCM versus the one with CBC
that does not employ private bank.

The WCET of tasks in the CCM is obtained by assigning a Memguard
budget of 𝑄𝑝 to all the cores.

For simplicity, all the cores are assigned a budget of 𝑄𝑝 = 2520
in CCM. The six interfering ACs with their assigned budget stress
their private banks. Out of the total budget of 𝑄𝑝 = 2520, CC uses a
communication budget of 𝑇𝑐 = 1848 to move the data between all the
pairs of banks used by ACs. Whereas, the remaining memory budget
of 𝑄𝑝 − 𝑇𝑐 = 672 is used by CC to access its own private bank. The
WCET of the task under analysis is measured on the seventh AC that
runs different benchmarks from SD-VBS.

For CBC, the WCET is obtained by considering the following worst
case. The task under analysis runs in one AC, while 6 memory intensive
interfering ACs stress the memory, each with all its memory budget.
The ACs are assigned the same Memory Budget (𝑄𝑝 = 2520) as in the
CCM experiment. The CC is assigned memory budget of 0 and stays
idle. Since CC is not required in CBC scheme, we make it stay idle to
get a fair comparison between the two approaches.

Since there is no private bank enforced in the CBC, the worst case
scenario corresponds to the case in which, during the busy interval, the
memory access of all the active cores are issued to the same DRAM bank
and all the interfering memory access are considered to cause intra-
bank contention delay. From Fig. 6 can see that for all the benchmarks,
CM provides a smaller WCET compared to CBC, with an average of
6% WCET reduction. For the localization benchmark, the WCET on
CM is reduced by 65% compared to on CBC.
10
Fig. 7. Analyzed and measured WCET.

7.5. Analytical bound and measurement

In this section we show that the proposed WCET bound for CCM is
safe for the target platform. We configure the PALLOC and MemGuard
to the parameters as described in Section 7.1. For the 6 interfering
ACs, we run a memory intensive 𝑏𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ [1] benchmark to stress
he private banks of the ACs. We also deploy a 𝐶𝑜𝑚𝑚𝑇𝑎𝑠𝑘 on the
CC to periodically access the private DRAM banks of all ACs to stress
the memory controller with 𝑇𝑐 = 1848 communication traffic at every
regulation period.

The analytical and measured WCET of CCM normalized to solo
runtime of the SD-VBS is shown in Fig. 7. The results in Fig. 7 show that
the analyzed WCET safely bounds the execution time when measured
on the platform.

8. Discussion and future work

In this section, we list some of the limitations of our work. First of
all, the CCM model divides the memory bandwidth equally among all
the ACs, this might not scale well as the number of cores increase. This
is something we plan to address in our future work. Another issue is
the pessimism in the theoretical bound we derived in this paper. The
two major factors that contribute to the pessimism are: (1) We assume
all the DRAM access of the task under analysis in the worst case hit a
closed row in the DRAM bank and the latency is not optimized by the
out-of-order micro-architecture, (2) We assume that the solo execution
time measured contains only CPU executions, all the memory access
are optimized away by the out-of-order processor. These assumptions
helped greatly simplify our analysis and represent a conservative, safe
upper-bound on real behavior of the system. However, we believe
that the bound can be further improved by relaxing some of these
assumptions. We also plan to integrate I/O and provide end-to-end
system.



Journal of Systems Architecture 118 (2021) 102178R. Tabish et al.
9. Conclusion

In this paper, we complete the strictly partitioned multi-core frame-
work by bringing inter-core communication into the picture. For our
evaluation, we considered two communication models that are CBC and
CCM. Compared to the CBC where all the cores can access all the DRAM
banks, the CCM where at most only two cores access any DRAM bank
can help improve the worst-case system performance. This approach
provides tighter upper bounds on the inter-core interference that can be
easily factored into schedulability analysis. The presented results show
the gain of CCM over the CBC. Moreover, our presented approach and
model gives system level prospective of how to move networked single
core processors into a single multi-core architecture without breaking
the hard-real time requirements that need to be met within a single
core.

Acknowledgments

The material presented in this paper is based upon work supported
by the National Science Foundation (NSF), United States under grant
numbers NSF CNS 1815891 and in part by NSF CNS 1932529 and NSF
CNS 1815959. Marco Caccamo was supported by an Alexander von
Humboldt Professorship endowed by the German Federal Ministry of
Education and Research. Any opinions, findings, and conclusions or
recommendations expressed in this publication are those of the authors
and do not necessarily reflect the views of the NSF and other sponsors.

References

[1] H. Yun, G. Yao, R. Pellizzoni, M. Caccamo, L. Sha, Memguard: Memory
bandwidth reservation system for efficient performance isolation in multi-
core platforms, in: Real-Time and Embedded Technology and Applications
Symposium, RTAS, 2013 IEEE 19th, IEEE, 2013, pp. 55–64.

[2] R. Mancuso, R. Dudko, E. Betti, M. Cesati, M. Caccamo, R. Pellizzoni, Real-
time cache management framework for multi-core architectures, in: Real-Time
and Embedded Technology and Applications Symposium, RTAS, 2013 IEEE 19th,
IEEE, 2013, pp. 45–54.

[3] H. Yun, R. Mancuso, Z. Wu, R. Pellizzoni, Palloc: DRAM bank-aware memory
allocator for performance isolation on multicore platforms, in: Real-Time and
Embedded Technology and Applications Symposium, RTAS, 2014 IEEE 20th,
IEEE, 2014, pp. 155–166.

[4] L. Sha, M. Caccamo, R. Mancuso, J.-E. Kim, M.-K. Yoon, R. Pellizzoni, H. Yun, R.
Kegley, D. Perlman, G. Arundale, et al., Single Core Equivalent Virtual Machines
for Hard Real—Time Computing on Multicore Processors, Tech. Rep., 2014.

[5] J. Herman, C.J. Kenna, M.S. Mollison, J. H., D.M. Johnson, RTOS support for
multicore mixed-criticality systems, in: 2012 IEEE 18th Real Time and Embedded
Technology and Applications Symposium, 2012, pp. 197–208.

[6] FAA position paper on multi—core processors, CAST-32A (rev 0), 2017, Ac-
cessed: 2017-10-16 https://www.faa.gov/aircraft/air_cert/design_approvals/air_
software/cast/cast_papers/media/cast-32A.pdf.

[7] N. Kim, B.C. Ward, M. Chisholm, C.Y. Fu, J.H. Anderson, F.D. Smith, Attack-
ing the one-out-of-m multicore problem by combining hardware management
with mixed-critcality provisioning, in: 2016 IEEE Real-Time and Embedded
Technology and Applications Symposium, RTAS, 2016, pp. 1–12.

[8] M. Chisholm, N. Kim, B. Ward, N. Otterness, J. Anderson, F. Smith, Reconciling
the tension between hardware isolation and data sharing in mixed-criticality,
multicore systems, in: 2016 IEEE International Real-Time Systems Symposium,
RTSS’16, 2016.

[9] H. Kim, D. De Niz, B. Andersson, M. Klein, O. Mutlu, R. Rajkumar, Bounding
memory interference delay in COTS-based multi-core systems, in: Real-Time and
Embedded Technology and Applications Symposium, RTAS, 2014 IEEE 20th,
IEEE, 2014, pp. 145–154.

[10] A. JEDEC, Va, USA, JESD79-3F: DDR3 SDRAM specification, 2012.
[11] B. Akesson, K. Goossens, M. Ringhofer, Predator: A predictable SDRAM memory

controller, in: Proceedings of the 5th IEEE/ACM International Conference on
Hardware/Software Codesign and System Synthesis, ACM, 2007, pp. 251–256.

[12] L. Ecco, S. Tobuschat, S. Saidi, R. Ernst, A mixed critical memory controller
using bank privatization and fixed priority scheduling, in: Embedded and Real-
Time Computing Systems and Applications, RTCSA, 2014 IEEE 20th International
Conference on, IEEE, 2014, pp. 1–10.
11
[13] S. Goossens, B. Akesson, K. Goossens, Conservative open-page policy for mixed
time-criticality memory controllers, in: Proceedings of the Conference on Design,
Automation and Test in Europe, EDA Consortium, 2013, pp. 525–530.

[14] Y. Krishnapillai, Z.P. Wu, R. Pellizzoni, A rank-switching, open-row DRAM
controller for time-predictable systems, in: Real-Time Systems, ECRTS, 2014 26th
Euromicro Conference on, IEEE, 2014, pp. 27–38.

[15] Z.P. Wu, Y. Krish, R. Pellizzoni, Worst case analysis of DRAM latency in multi-
requestor systems, in: Real-Time Systems Symposium, RTSS, 2013 IEEE 34th,
IEEE, 2013, pp. 372–383.

[16] J. Reineke, I. Liu, H.D. Patel, S. Kim, E.A. Lee, PRET DRAM Controller: Bank
privatization for predictability and temporal isolation, in: Hardware/Software
Codesign and System Synthesis, CODES+ISSS, 2011 Proceedings of the 9th
International Conference on, IEEE, 2011, pp. 99–108.

[17] J. Nowotsch, M. Paulitsch, D. Bühler, H. Theiling, S. Wegener, M. Schmidt, Multi-
core interference-sensitive WCET analysis leveraging runtime resource capacity
enforcement, in: Real-Time Systems, ECRTS, 2014 26th Euromicro Conference
on, IEEE, 2014, pp. 109–118.

[18] D. Dasari, B. Andersson, V. Nelis, S.M. Petters, A. Easwaran, J. Lee, Response
time analysis of COTS-based multicores considering the contention on the shared
memory bus, in: Trust, Security and Privacy in Computing and Communica-
tions, TrustCom, 2011 IEEE 10th International Conference on, IEEE, 2011, pp.
1068–1075.

[19] H. Yun, G. Yao, R. Pellizzoni, M. Caccamo, L. Sha, Memory access control
in multiprocessor for real-time systems with mixed criticality, in: Real-Time
Systems, ECRTS, 2012 24th Euromicro Conference on, IEEE, 2012, pp. 299–308.

[20] R. Pellizzoni, A. Schranzhofer, J.-J. Chen, M. Caccamo, L. Thiele, Worst case
delay analysis for memory interference in multicore systems, in: Proceedings of
the Conference on Design, Automation and Test in Europe, European Design and
Automation Association, 2010, pp. 741–746.

[21] S. Schliecker, M. Negrean, R. Ernst, Bounding the shared resource load for
the performance analysis of multiprocessor systems, in: Proceedings of the
Conference on Design, Automation and Test in Europe, European Design and
Automation Association, 2010, pp. 759–764.

[22] B. Andersson, A. Easwaran, J. Lee, Finding an upper bound on the increase in
execution time due to contention on the memory bus in COTS-based multicore
systems, ACM Sigbed Rev. 7 (1) (2010) 4.

[23] H. Yun, R. Pellizzon, P.K. Valsan, Parallelism-aware memory interference delay
analysis for cots multicore systems, in: Real-Time Systems, ECRTS, 2015 27th
Euromicro Conference on, IEEE, 2015, pp. 184–195.

[24] B.C. Ward, J.L. Herman, C.J. Kenna, J.H. Anderson, Outstanding paper award:
Making shared caches more predictable on multicore platforms, in: 2013 25th
Euromicro Conference on Real-Time Systems, ECRTS, IEEE, 2013, pp. 157–167.

[25] V. Suhendra, T. Mitra, Exploring locking & partitioning for predictable shared
caches on multi-cores, in: Design Automation Conference, 2008. DAC 2008. 45th
ACM/IEEE, IEEE, 2008, pp. 300–303.

[26] L. Sha, R. Rajkumar, S.S. Sathaye, Generalized rate-monotonic scheduling theory:
A framework for developing real-time systems, Proc. IEEE 82 (1) (1994) 68–82.

[27] J.-E. Kim, M.-K. Yoon, R. Bradford, L. Sha, Integrated modular avionics (ima)
partition scheduling with conflict-free i/o for multicore avionics systems, in:
Computer Software and Applications Conference, COMPSAC, 2014 IEEE 38th
Annual, IEEE, 2014, pp. 321–331.

[28] R. Mancuso, R. Pellizzoni, M. Caccamo, L. Sha, H. Yun, WCET(m) estimation in
multi-core systems using single core equivalence, in: Real-Time Systems, ECRTS,
2015 27th Euromicro Conference on, 2015, pp. 174–183.

[29] J. Lehoczky, L. Sha, Y. Ding, The rate monotonic scheduling algorithm: Exact
characterization and average case behavior, in: Real Time Systems Symposium,
1989, Proceedings, IEEE, 1989, pp. 166–171.

[30] R. Pellizzoni, H. Yun, Memory servers for multicore systems, in: Real-Time and
Embedded Technology and Applications Symposium, RTAS, 2016 IEEE, IEEE,
2016, pp. 1–12.

[31] S. Hahn, M. Jacobs, J. Reineke, Enabling compositionality for multicore timing
analysis, in: Proceedings of the 24th International Conference on Real-Time
Networks and Systems, ACM, 2016, pp. 299–308.

[32] S.K. Venkata, I. Ahn, D. Jeon, A. Gupta, C. Louie, S. Garcia, S. Belongie,
M.B. Taylor, SD-VBS: The San Diego vision benchmark suite, in: Workload
Characterization, 2009. IISWC 2009. IEEE International Symposium on, IEEE,
2009, pp. 55–64.

[33] G. Yao, H. Yun, Z.P. Wu, R. Pellizzoni, M. Caccamo, L. Sha, Schedulability
analysis for memory bandwidth regulated multicore real-time systems, IEEE
Trans. Comput. 65 (2) (2016) 601–614.

[34] R. Mancuso, R. Pellizzoni, N. Tokcan, M. Caccamo, WCET derivation under single
core equivalence with explicit memory budget assignment, in: LIPIcs-Leibniz In-
ternational Proceedings in Informatics, Vol. 76, Schloss Dagstuhl-Leibniz-Zentrum
fuer Informatik, 2017.

http://refhub.elsevier.com/S1383-7621(21)00128-4/sb1
http://refhub.elsevier.com/S1383-7621(21)00128-4/sb1
http://refhub.elsevier.com/S1383-7621(21)00128-4/sb1
http://refhub.elsevier.com/S1383-7621(21)00128-4/sb1
http://refhub.elsevier.com/S1383-7621(21)00128-4/sb1
http://refhub.elsevier.com/S1383-7621(21)00128-4/sb1
http://refhub.elsevier.com/S1383-7621(21)00128-4/sb1
http://refhub.elsevier.com/S1383-7621(21)00128-4/sb2
http://refhub.elsevier.com/S1383-7621(21)00128-4/sb2
http://refhub.elsevier.com/S1383-7621(21)00128-4/sb2
http://refhub.elsevier.com/S1383-7621(21)00128-4/sb2
http://refhub.elsevier.com/S1383-7621(21)00128-4/sb2
http://refhub.elsevier.com/S1383-7621(21)00128-4/sb2
http://refhub.elsevier.com/S1383-7621(21)00128-4/sb2
http://refhub.elsevier.com/S1383-7621(21)00128-4/sb3
http://refhub.elsevier.com/S1383-7621(21)00128-4/sb3
http://refhub.elsevier.com/S1383-7621(21)00128-4/sb3
http://refhub.elsevier.com/S1383-7621(21)00128-4/sb3
http://refhub.elsevier.com/S1383-7621(21)00128-4/sb3
http://refhub.elsevier.com/S1383-7621(21)00128-4/sb3
http://refhub.elsevier.com/S1383-7621(21)00128-4/sb3
http://refhub.elsevier.com/S1383-7621(21)00128-4/sb4
http://refhub.elsevier.com/S1383-7621(21)00128-4/sb4
http://refhub.elsevier.com/S1383-7621(21)00128-4/sb4
http://refhub.elsevier.com/S1383-7621(21)00128-4/sb4
http://refhub.elsevier.com/S1383-7621(21)00128-4/sb4
https://www.faa.gov/aircraft/air_cert/design_approvals/air_software/cast/cast_papers/media/cast-32A.pdf
https://www.faa.gov/aircraft/air_cert/design_approvals/air_software/cast/cast_papers/media/cast-32A.pdf
https://www.faa.gov/aircraft/air_cert/design_approvals/air_software/cast/cast_papers/media/cast-32A.pdf
http://refhub.elsevier.com/S1383-7621(21)00128-4/sb9
http://refhub.elsevier.com/S1383-7621(21)00128-4/sb9
http://refhub.elsevier.com/S1383-7621(21)00128-4/sb9
http://refhub.elsevier.com/S1383-7621(21)00128-4/sb9
http://refhub.elsevier.com/S1383-7621(21)00128-4/sb9
http://refhub.elsevier.com/S1383-7621(21)00128-4/sb9
http://refhub.elsevier.com/S1383-7621(21)00128-4/sb9
http://refhub.elsevier.com/S1383-7621(21)00128-4/sb10
http://refhub.elsevier.com/S1383-7621(21)00128-4/sb11
http://refhub.elsevier.com/S1383-7621(21)00128-4/sb11
http://refhub.elsevier.com/S1383-7621(21)00128-4/sb11
http://refhub.elsevier.com/S1383-7621(21)00128-4/sb11
http://refhub.elsevier.com/S1383-7621(21)00128-4/sb11
http://refhub.elsevier.com/S1383-7621(21)00128-4/sb12
http://refhub.elsevier.com/S1383-7621(21)00128-4/sb12
http://refhub.elsevier.com/S1383-7621(21)00128-4/sb12
http://refhub.elsevier.com/S1383-7621(21)00128-4/sb12
http://refhub.elsevier.com/S1383-7621(21)00128-4/sb12
http://refhub.elsevier.com/S1383-7621(21)00128-4/sb12
http://refhub.elsevier.com/S1383-7621(21)00128-4/sb12
http://refhub.elsevier.com/S1383-7621(21)00128-4/sb13
http://refhub.elsevier.com/S1383-7621(21)00128-4/sb13
http://refhub.elsevier.com/S1383-7621(21)00128-4/sb13
http://refhub.elsevier.com/S1383-7621(21)00128-4/sb13
http://refhub.elsevier.com/S1383-7621(21)00128-4/sb13
http://refhub.elsevier.com/S1383-7621(21)00128-4/sb14
http://refhub.elsevier.com/S1383-7621(21)00128-4/sb14
http://refhub.elsevier.com/S1383-7621(21)00128-4/sb14
http://refhub.elsevier.com/S1383-7621(21)00128-4/sb14
http://refhub.elsevier.com/S1383-7621(21)00128-4/sb14
http://refhub.elsevier.com/S1383-7621(21)00128-4/sb15
http://refhub.elsevier.com/S1383-7621(21)00128-4/sb15
http://refhub.elsevier.com/S1383-7621(21)00128-4/sb15
http://refhub.elsevier.com/S1383-7621(21)00128-4/sb15
http://refhub.elsevier.com/S1383-7621(21)00128-4/sb15
http://refhub.elsevier.com/S1383-7621(21)00128-4/sb16
http://refhub.elsevier.com/S1383-7621(21)00128-4/sb16
http://refhub.elsevier.com/S1383-7621(21)00128-4/sb16
http://refhub.elsevier.com/S1383-7621(21)00128-4/sb16
http://refhub.elsevier.com/S1383-7621(21)00128-4/sb16
http://refhub.elsevier.com/S1383-7621(21)00128-4/sb16
http://refhub.elsevier.com/S1383-7621(21)00128-4/sb16
http://refhub.elsevier.com/S1383-7621(21)00128-4/sb17
http://refhub.elsevier.com/S1383-7621(21)00128-4/sb17
http://refhub.elsevier.com/S1383-7621(21)00128-4/sb17
http://refhub.elsevier.com/S1383-7621(21)00128-4/sb17
http://refhub.elsevier.com/S1383-7621(21)00128-4/sb17
http://refhub.elsevier.com/S1383-7621(21)00128-4/sb17
http://refhub.elsevier.com/S1383-7621(21)00128-4/sb17
http://refhub.elsevier.com/S1383-7621(21)00128-4/sb18
http://refhub.elsevier.com/S1383-7621(21)00128-4/sb18
http://refhub.elsevier.com/S1383-7621(21)00128-4/sb18
http://refhub.elsevier.com/S1383-7621(21)00128-4/sb18
http://refhub.elsevier.com/S1383-7621(21)00128-4/sb18
http://refhub.elsevier.com/S1383-7621(21)00128-4/sb18
http://refhub.elsevier.com/S1383-7621(21)00128-4/sb18
http://refhub.elsevier.com/S1383-7621(21)00128-4/sb18
http://refhub.elsevier.com/S1383-7621(21)00128-4/sb18
http://refhub.elsevier.com/S1383-7621(21)00128-4/sb19
http://refhub.elsevier.com/S1383-7621(21)00128-4/sb19
http://refhub.elsevier.com/S1383-7621(21)00128-4/sb19
http://refhub.elsevier.com/S1383-7621(21)00128-4/sb19
http://refhub.elsevier.com/S1383-7621(21)00128-4/sb19
http://refhub.elsevier.com/S1383-7621(21)00128-4/sb20
http://refhub.elsevier.com/S1383-7621(21)00128-4/sb20
http://refhub.elsevier.com/S1383-7621(21)00128-4/sb20
http://refhub.elsevier.com/S1383-7621(21)00128-4/sb20
http://refhub.elsevier.com/S1383-7621(21)00128-4/sb20
http://refhub.elsevier.com/S1383-7621(21)00128-4/sb20
http://refhub.elsevier.com/S1383-7621(21)00128-4/sb20
http://refhub.elsevier.com/S1383-7621(21)00128-4/sb21
http://refhub.elsevier.com/S1383-7621(21)00128-4/sb21
http://refhub.elsevier.com/S1383-7621(21)00128-4/sb21
http://refhub.elsevier.com/S1383-7621(21)00128-4/sb21
http://refhub.elsevier.com/S1383-7621(21)00128-4/sb21
http://refhub.elsevier.com/S1383-7621(21)00128-4/sb21
http://refhub.elsevier.com/S1383-7621(21)00128-4/sb21
http://refhub.elsevier.com/S1383-7621(21)00128-4/sb22
http://refhub.elsevier.com/S1383-7621(21)00128-4/sb22
http://refhub.elsevier.com/S1383-7621(21)00128-4/sb22
http://refhub.elsevier.com/S1383-7621(21)00128-4/sb22
http://refhub.elsevier.com/S1383-7621(21)00128-4/sb22
http://refhub.elsevier.com/S1383-7621(21)00128-4/sb23
http://refhub.elsevier.com/S1383-7621(21)00128-4/sb23
http://refhub.elsevier.com/S1383-7621(21)00128-4/sb23
http://refhub.elsevier.com/S1383-7621(21)00128-4/sb23
http://refhub.elsevier.com/S1383-7621(21)00128-4/sb23
http://refhub.elsevier.com/S1383-7621(21)00128-4/sb24
http://refhub.elsevier.com/S1383-7621(21)00128-4/sb24
http://refhub.elsevier.com/S1383-7621(21)00128-4/sb24
http://refhub.elsevier.com/S1383-7621(21)00128-4/sb24
http://refhub.elsevier.com/S1383-7621(21)00128-4/sb24
http://refhub.elsevier.com/S1383-7621(21)00128-4/sb25
http://refhub.elsevier.com/S1383-7621(21)00128-4/sb25
http://refhub.elsevier.com/S1383-7621(21)00128-4/sb25
http://refhub.elsevier.com/S1383-7621(21)00128-4/sb25
http://refhub.elsevier.com/S1383-7621(21)00128-4/sb25
http://refhub.elsevier.com/S1383-7621(21)00128-4/sb26
http://refhub.elsevier.com/S1383-7621(21)00128-4/sb26
http://refhub.elsevier.com/S1383-7621(21)00128-4/sb26
http://refhub.elsevier.com/S1383-7621(21)00128-4/sb27
http://refhub.elsevier.com/S1383-7621(21)00128-4/sb27
http://refhub.elsevier.com/S1383-7621(21)00128-4/sb27
http://refhub.elsevier.com/S1383-7621(21)00128-4/sb27
http://refhub.elsevier.com/S1383-7621(21)00128-4/sb27
http://refhub.elsevier.com/S1383-7621(21)00128-4/sb27
http://refhub.elsevier.com/S1383-7621(21)00128-4/sb27
http://refhub.elsevier.com/S1383-7621(21)00128-4/sb29
http://refhub.elsevier.com/S1383-7621(21)00128-4/sb29
http://refhub.elsevier.com/S1383-7621(21)00128-4/sb29
http://refhub.elsevier.com/S1383-7621(21)00128-4/sb29
http://refhub.elsevier.com/S1383-7621(21)00128-4/sb29
http://refhub.elsevier.com/S1383-7621(21)00128-4/sb30
http://refhub.elsevier.com/S1383-7621(21)00128-4/sb30
http://refhub.elsevier.com/S1383-7621(21)00128-4/sb30
http://refhub.elsevier.com/S1383-7621(21)00128-4/sb30
http://refhub.elsevier.com/S1383-7621(21)00128-4/sb30
http://refhub.elsevier.com/S1383-7621(21)00128-4/sb31
http://refhub.elsevier.com/S1383-7621(21)00128-4/sb31
http://refhub.elsevier.com/S1383-7621(21)00128-4/sb31
http://refhub.elsevier.com/S1383-7621(21)00128-4/sb31
http://refhub.elsevier.com/S1383-7621(21)00128-4/sb31
http://refhub.elsevier.com/S1383-7621(21)00128-4/sb32
http://refhub.elsevier.com/S1383-7621(21)00128-4/sb32
http://refhub.elsevier.com/S1383-7621(21)00128-4/sb32
http://refhub.elsevier.com/S1383-7621(21)00128-4/sb32
http://refhub.elsevier.com/S1383-7621(21)00128-4/sb32
http://refhub.elsevier.com/S1383-7621(21)00128-4/sb32
http://refhub.elsevier.com/S1383-7621(21)00128-4/sb32
http://refhub.elsevier.com/S1383-7621(21)00128-4/sb33
http://refhub.elsevier.com/S1383-7621(21)00128-4/sb33
http://refhub.elsevier.com/S1383-7621(21)00128-4/sb33
http://refhub.elsevier.com/S1383-7621(21)00128-4/sb33
http://refhub.elsevier.com/S1383-7621(21)00128-4/sb33
http://refhub.elsevier.com/S1383-7621(21)00128-4/sb34
http://refhub.elsevier.com/S1383-7621(21)00128-4/sb34
http://refhub.elsevier.com/S1383-7621(21)00128-4/sb34
http://refhub.elsevier.com/S1383-7621(21)00128-4/sb34
http://refhub.elsevier.com/S1383-7621(21)00128-4/sb34
http://refhub.elsevier.com/S1383-7621(21)00128-4/sb34
http://refhub.elsevier.com/S1383-7621(21)00128-4/sb34

	An Analyzable Inter-core Communication Framework for High-Performance Multicore Embedded Systems
	Introduction
	Related work and DRAM background 
	DRAM background and related work
	Background on partitioning shared resources

	System model and assumptions
	Architectural/hardware assumptions
	Proposed model
	Motivating example
	Application task model

	Bounding interfering memory requests in the proposed system
	Interference caused by CC
	Interference caused by other ACs to AC under analysis
	Total interference caused to AC under analysis

	Response time analysis
	Contention latency
	Latency computation

	Implementation
	Evaluation
	Experimental setup and benchmarks
	Task WCET with different memory regulation budget assignment
	Throughput of the CT
	CCM and CBC
	Analytical bound and measurement

	Discussion and future work
	Conclusion
	Acknowledgments
	References


