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Abstract

We consider the linear transport equations driven by an incompressible flow in
dimensions d > 3. For divergence-free vector fields u € L}Wl’q, the celebrated
DiPerna-Lions theory of the renormalized solutions established the uniqueness of the
weak solution in the class L°L” when % + % < 1. For such vector fields, we show

that in the regime % + % > 1, weak solutions are not unique in the class L L”. One

crucial ingredient in the proof is the use of both temporal intermittency and oscillation
in the convex integration scheme.
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1 Introduction

In this paper, we consider the linear transport equation on the torus T¢

op+u-Vp=20

(1.1)
Pli=0 = po,
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where p : [0, T] x T4 — R is a scalar density function, u : [0, T] x T > RYisa
given vector field. We always assume u is incompressible, i.e.,

divu = 0.

By the linearity of the equation, even for very rough vector fields it is not difficult
to prove the existence of weak solutions that solves the equation in the sense of
distributions

T
/11‘61 0090, Ydx = /0 /Td p (¢ +u-Ve)dxdr forall ¢ € CZ(0,T) x T4).

(1.2)
Our main focus is the uniqueness/nonuniqueness issue for weak solutions to (1.1).
More precisely, we investigate whether the DiPerna-Lions uniqueness result is sharp.

Theorem 1.1 (DiPerna-Lions [29])Let p, q € [1, oo]landletu € L' (0, T; W14 (T4))
be a divergence-free vector field. For any py € LP(T?), there exists a unique renor-
malized solution p € C([0, T1; L?(T¢) to (1.1). Moreover if

11
—+-=1 (1.3)
P q

then this solution p is unique among all weak solutions in class L (0, T; L? (T9).

Based on scaling analysis and a close examination of the proof in [29], one can

speculate that if

1 1
—+->1, (1.4)
P q

then the uniqueness may fail. More specifically,

Conjecture 1.2 Let p,q € [1, 00]. Letu € L'(0, T; W4 (T%)) be a divergence-free
vector field.

(1) If% + é < 1, then there exists a unique weak solution p € L*°([0, T]; LP(T%)
to (1.1).
(2) If% + % > 1, then weak solutions in the class L ([0, T1; L? (T%)) are not unique.

In this paper, we address the question (2) in Conjecture 1.2 and prove the following.

Theorem 1.3 Let d > 3 and p,q € [1, oo] satisfying p > 1 and (1.4). Then there
exists a divergence-free vector field

we L', T; Wh(T4) N L=, T; L¥ (T%)),
such that the uniqueness of (1.1) fails in the class
p € LY(0, T; LP(T%).
Moreover, the initial data of such solutions p can be attained in the classical sense.
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This result is proved by the convex integration technique developed over the last
decade [11,15,31,32,38,42], in the spirit of [15] and using the formulation of [42].
One key ingredient is the use of both temporal intermittency and oscillations in the
convex integration scheme, which is implemented by oscillating stationary building
blocks intermittently in time.

1.1 Background and Main Results

It is known that for Lipschitz vector fields, smooth or classical solutions of (1.1)
can be obtained by solving the ordinary differential equation for the flow map X :
[0, T] x T¢ — T¢

(1.5)

0 X(t,x) =u(t, X(t, x))
X0, x) = x,

and setting p (¢, X) = po(x). For instance, the wellposedness and uniqueness of (1.1)
can be deduced from the Cauchy- Lipschitz theory for (1.5). Moreover, for such vector
fields, the inverse flow map X ~!(¢) solves the transport equation

X '+u-vx'1=0
X 10)=1d.

For vector fields that are not necessarily Lipschitz, the link between the PDE (1.1)
and the ODE (1.5) is less obvious. Even though one can prove the existence of weak
solutions fairly easily by the linearity of the equation, the uniqueness issue of (1.1)
becomes subtler for non-Lipschitz vector fields. The uniqueness class for the density
is generally related to the Sobolev/BV regularity of the vector field. The first result in
this direction dates back to the celebrated work of DiPerna-Lions [29] which used the
method of renormalization. Since then a lot of effort has been devoted to determining
how far the regularity assumption on the vector field can be relaxed. Profound ideas and
complex theories, that are beyond the scope of this paper, have been developed, in par-
ticular, the notion of regular Lagrangian flows introduced by Ambrosio [4]. We refer
to the works [4,12,16-18,22,24,39] and the surveys [5,30] for regularity/uniqueness
results in this direction and for related results of the continuity equation.

Very roughly speaking, there are currently two distinct methods of proving
nonuniqueness for (1.1). The first approach is Lagrangian, using the degeneration
of the flow map to show nonuniqueness at the ODE level; while the second approach
is Eulerian, using convex integration to prove nonuniqueness directly at the PDE level.

Inregard to the Lagrangian approach, in their original work [29], DiPerna and Lions
provided a counterexample u € W4 with unbounded divergence and a divergence-
free counterexample u € W*! forall s < 1 but u ¢ W', Much later, Depauw

in [28] constructed nonuniqueness in the class p € LY, for incompressible vector
fields L 110 BV based on the example in [3]. This type of examples were revisited in
[2,24,48] in other contexts. More recently, in [27], Drivas, Elgindi, Iyer and Jeong
proved nonuniqueness in the class p € L®L? for u € L!C'~ based on anomalous

dissipation and mixing. We should emphasize that the Lagrangian approach is not
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suited for a construction of a divergence-free example with Sobolev regularity of one
full derivative, say u € L} wlr,

On the Eulerian side, the first nonuniqueness result was obtained by Crippa, Gusev,
Spirito, and Wiedemann in [19] using the framework of [31]. However, the vector
field ¥ was merely bounded and did not have an associated Lagrangian flow. The
first breakthrough result for the Sobolev vector field was obtained by Modena and
Székelyhidi [42]. Note that the Sobolev regularity L} W7 of the vector field implies
the uniqueness of a regular Lagrangian flow, see for example [1]. The contrast between
the Lagrangian and Eulerian wellposedness has also been studied in various contexts,
see for instance [21,30,46,47].

Starting with the groundwork work of Modena and Székelyhidi [42], the Eulerian
nonuniqueness issue of (1.1) has drawn a lot of research attention lately. Below are
the functional classes where the nonuniqueness has been achieved:

(1) [42] (Modena and Székelyhidi): p € C;L? whenu € C;W"4NC,L? for%—i—é >
1+ lel, p > 1 and d > 3. Later in [43]: extension to the endpoint p = 1 and u
also being continuous.

(2) [44] (Modena and Sattig): p € C;L” whenu € C,W"4NC,L? for 441 > 14
and d > 2.

(3) [7] (Brug, Colombo, and De Lellis): positive! p € C,LP when u € C; W4 for
%+%> 1+%,p> landd > 2.

In light of the current state, it is then natural to ask whether one can close the gap

between the DiPerna-Lions regime % + [ll < 1 and the Modena-Sattig-Székelyhidi

regimel+$> 1+$.
In this paper, we address this question and prove nonuniqueness in the full com-
plement of the DiPerna-Lions regime

for weak solutions in the class p € L}L”, p > 1 for dimensions d > 3.

Theorem 1.4 Letd > 3 and p, q € [1, oo] satisfying p > 1 and (1.4). For any ¢ > 0
and any time—periodic2 0 € C™(0,T] x T9Y) with constant mean

][ o(t, x)dx =][ 00, x)dx forall t €[0,T],
Td Td

there exist a vector field u : [0, T] x T - RY and a density p : [0, T] x T - R
such that the following holds.

(1) ue L', T; Wha(T9)) N L, T; LP (T9)) and p € L' (0, T; L?(T9)).

(2) (p,u) is a weak solution to (1.1) in the sense of (1.2).

(3) The deviation of L? norm is small on average: ||p — 5||L’1Lp <e.

I Note that uniqueness result for positive p can go beyond the DiPerna-Lions range, see [7, Theorem 1.5]

2 We identify [0, 7] with an 1-dimensional torus.
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(4) p(t) is continuous in the sense of distributions and fort = 0, T, p(t) = p(t).
(5) The temporal supports satisfy supp, p U supp, u C supp, p-

It is easy to deduce Theorem 1.3 from Theorem 1.4.

Proof of Theorem 1.3 Let py € C{° (T?) with looll, = 1. We take p = x (1) po(x)
where x € C2°([0, T])issuchthat x (1) = 1if[—Z| < Zand x = 0if|r—Z| > 3.
We apply Theorem 1.4 with ¢ = %. The obtained solution p cannot have a constant
L? normdueto ||p—pllz17» < €, and thus is different from the renormalized solution
associated with the same vector field # emerging from the same initial data.

Since p vanishes near ¢+ = 0, both the solution p and the vector field u also vanish

near ¢t = 0 and hence the initial data is attained in the classical sense.

Remark 1.5 Several remarks are in order.

(1) In general, the non-renormalized solution p € L}LP in Theorem 1.4 attains its
initial data in the sense of distribution instead of in some strong L” topology as in
[7,42—44]. This is due to the artifact of fast temporal oscillations.

(2) Foranyk € Nthe vector field u satisfies fOT [lu(@®)]
depending on k. The “bad” part of u concentrates on a small set® in [0, 7] x T¢.
The density p also satisfies fOT lo®)|5 < oo for some r > 0.

(3) L}LP is sharp in terms of the space regularity, but this is achieved at the expense
of time regularity by adding temporal intermittency. We discuss this below and in
detail in Section 5. The question of whether the nonuniqueness holds in the class
p € LY°L? remains open.

(4) It seems possible to also cover the border case p = 1 by utilizing the technique in
[43](see also [9,11]).

Whoo < 00forsomesmallr > 0

1.2 Continuity-Defect Equation and the Convex Integration Scheme

Let us outline the main ideas and strategies of the proof. We follow the framework
of [42] to treat both p and u as unknowns and construct a sequence of approximate
solutions (p,, u, R,) solving the continuity-defect equation

8{,0,, +u,-Vp, =divR, (1.6)
divu, =0.
The vectors R, are called the defect fields, which arise naturally when considering
weak solutions of (1.1). This framework allows us to use the interplay between the
density p, and the vector field u,, as in a nonlinear equation.
The main goal is to design suitable perturbations 6, := p, — p,—1 and w, =
u, — uy—1 such that the defect fields R, — 0 in an appropriate sense. The most
important step is to ensure the oscillation part

div Rose := div(@uwy + Ru_1) (1.7)

3 In fact, the singular set of « is dense, and as a result, there is no local regularity outside the singular set,
cf. [8,20].
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consists of only high frequencies so that the new defect field R;, is much smaller than
R,,—1. This technique is now considered standard among the experts, and we refer
readers to [6,9,10,13,26,31,32,38,45] for more discussion on this technique in other
models.

In previous works [42-44], perturbations (p,, w,) are designed so that (1.7) has
only high frequencies in space, and the error is canceled point-wise in time. In these
works, the defect field R, — 0 in the norm L;X’Ll. In particular, the final solution is
homogeneous in time.

In this paper, we use a convex integration scheme that features both spatial and
temporal oscillations. This is done by adding in temporal oscillation when designing
(pn, wy) such that, to the leading order, (1.7) can be split into two parts, one with high
spatial frequencies, and the other with high temporal frequencies. This idea is implicitly
rooted in the work [15], but it was not formulated to encode temporal intermittency
but rather to cancel a part of the error caused by adding spatial intermittency.

Based on the above discussion, on the technical side, the defect fields R,, shall be
measured in L ,1 . instead of L®L!. In other words, the defect fields R, are canceled
weakly in space-time, rather than pointwise in time and weakly in space. This relax-
ation allows us to exploit temporal intermittency and design the perturbations (o, w;,)
with critical space regularity, which we discuss below.

1.3 Space-time Intermittency in the Convex Integration

Even though the concept of intermittency and its theoretical studies has been around
for many years [25,37,41] in hydrodynamic turbulence, it was only implemented with
convex integration very recently in the seminal work [15] of Buckmaster and Vicol.
We can summarize the difficulty as follows. At the heart of its argument, convex
integration relies on adding highly oscillatory perturbations to obtain weakly con-
verging solutions. A more intermittent perturbation carries a more diffused Fourier
side and introduces more interactions among oscillations. These harmful interactions
are difficult to control and cause the iteration scheme to break down. We refer to [9—
11,31-33,38] for the birth and development of this technique in the fluid dynamics
and [6,15,23,40,42,44] and the survey [14] for discussions on intermittency in convex
integration.

To fix ideas, let us denote by D the intermittency dimension (in space), cf. [37].
Roughly speaking, the solution is concentrated on a set of dimension D in space.
This is related to the development of “concentration” in the context of weak solutions,
[34,35].

However, for the transport equation, using only spacial intermittency in a convex
integration scheme is not enough to reach the full complement of DiPerna-Lions
regime. If the solution (p, u) is homogeneous in time, then by the duality p € L{°L?
andu € L°LP / imposed by the machinery of convex integration, we can see that

, 1 1 1
uel®LY = ue LW for — 4 — > 1+n. (1.8)
P q -
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In other words, the Sobolev regularity # € L®°W!¢ must come at the cost of
integrability in space if the vector field is homogeneous in time. This simple heuristics

works surprisingly well and explains the gap between the DiPerna-Lions regime % +

[ll < I and the Modena-Sattig-Székelyhidi regime % + % > 1+ % even when spatially
fully intermittent D = 0 building blocks were used in [7,44].

One of the most striking differences between previous schemes and the current
one is that intermittency in space plays a very little role. In fact, we use the “Mikado
densities” and “Mikado fields” in [42] which is not spatially fully intermittent but only
has a d — 1-dimensional concentration. Furthermore, the convex integration scheme
goes through as long as the stationary building blocks are not spatially homogeneous.

By contrast, the Sobolev regularity u € Lrl W14 emerges entirely from the temporal
intermittency in our construction that does not rely on the fundamental heuristics
(1.8) as previous works. Instead, we take advantage of the duality p € L,le and
u € L®LP', which is consistent with the decay of the defect field in L,l’x rather than
L;’OL}C norm. The temporal intermittency of the vector field u allows us to improve
the space regularity as the expense of a worse time regularity, namely

, 11
uelL®LP =uelLllWh for — +— > 1. (1.9)
P q

Indeed, if « is fully intermittent in time, then L7° to L} embedding gains a full
derivative in time. By a dimensional analysis, u € Ltl W4 can be achieved in (1.9)
as long as the associated temporal frequency is comparable to the spacial frequency,
since g < p’ by % + é > 1. Note that this approach requires a sharper estimate of the

error involving the time derivative since the temporal frequencies become as large as
spacial frequencies. We also emphasize that the heuristics (1.9) encodes no information
on spacial intermittency, which is fundamentally different from the heuristics (1.8).
In fact, the convex integration scheme works in a wide range of concentration and
oscillation parameters. We refer to Section 6 for the specific choice of parameters and
Lemma 8.1 for the sharp estimate of the temporal error.

1.4 Temporal Intermittency Via Oscillating Stationary Solutions

We will now describe the implementation of temporal intermittency needed to reach
the optimal spatial regularity. This is achieved via oscillating stationary building blocks
intermittently in time.

Current convex integration schemes employ spatially intermittent building blocks
that are either not stationary [7,44], or stationary [42] but only suitable for d > 3.
Even though theoretically it seems to be possible to achieve temporal intermittency
using non-stationary building blocks [7,44] in d > 2, such an approach, if possible,
would be less intuitive and significantly more complicated, and it is not clear to the
authors that one can reach the same nonuniqueness regime as in the current paper.
Our approach adheres closer to the original idea of adding space-time oscillations
to stationary solutions implemented in the pioneering work [31] that introduced the
convex integration technique to fluid dynamics for the first time.
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2 Page8of45 A. Cheskidov, X. Luo

To perform convex integration on T¢, d > 3 we use the stationary Mikado density
®; and Mikado flow W, on T¢, first introduced in [42]. With stationary building
blocks (®;, Wy) at hand, we implement the temporal intermittency as follows. On
one hand, we use temporal oscillations to relax the convex integration procedure from
pointwise to weak in time. Given a solution (p, u, R) of the continuity-defect equation,
we design a perturbation (6, w) so that, to the leading order, it produces a high-high
to low cascade in space-time that balances the old defect field R in the sense that

div(fw + R) = High Spacial Freq. Term + High Temporal Freq. Term

+Lower Order Terms.

The terms with high temporal frequencies will be further balanced by the time deriva-
tive of a small corrector, similar to [15], while the other terms can be easily handled by
standard methods. On the other hand, the relaxation of convex integration to be done
weakly in time allows us to add temporal intermittency in the perturbations (6, w).
The key is to ensure that (6, w) is almost fully intermittent in time, which determines
the regularity of the final solution p € L!L” and u € L?OLP/ NLIwha,

To summarize, in the proposed convex integration scheme, the perturbations consist
of space-time intermittent oscillatory building blocks. The temporal intermittency is
used to achieve the optimal range in (1.9), whereas the temporal oscillation allows us
to cancel the defect fields on average in space-time, consistent with the decay of R,
in the norm L},x. We refer to Section 5 for more details.

1.5 Organization of the Paper

The rest of the paper is organized as follows.

e We introduce the notations and many technical tools used throughout the paper in
Section 2.

e Section 3 is devoted to the proof of Theorem 1.4 by assuming the main proposition,
Proposition 3.1.

e In Section 4 we recall the periodic stationary solutions (®;, W) on T¢,d > 3in
[42]. These pairs (®, W) will be the main building blocks in space of the convex
integration scheme.

e Section 5 is a detailed explanation for the use of temporal oscillation and intermitet-
ncy in the convex integration scheme. In particular, we will define the temporal
oscillators g, g, that we use to oscillate the building blocks (®;, W) in time.

e Section 6, 7, 8 constitute the proof of Proposition 3.1:

— In Section 6 we first define the perturbation density p and vector field w using
the building blocks (®;, Wy). And then the new defect field R is derived from
the perturbations 6 and w, which is the core of our convex integration scheme.

— The estimates for the perturbations p and w are done in Section 7. Then we
conclude the proof of the perturbation part of Proposition 3.1.

— The new defect field R is estimated is Section 8. The rest of the proof of
Proposition 3.1 will be completed in the end.
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2 Preliminaries

The purpose of this section to collect the technical tools that will be used throughout
the paper. We keep this section relatively concise so that we are not distracted from
the main goal of proving the nonuniqueness result.

2.1 Notations

Throughout the manuscript, we use the following notations.

T? = R?/Z¢ is the d-dimensional torus. For any function f : T¢ — R we denote
by f(o-) the J_le-periodic function f(ox).

For any p € [1, oo], its Holder dual is denoted as p’. Throughout the paper, p is
fixed as in Theorem 1.4. We will use r for general L” norm.

For any 1 < r < oo, the Lebesgue space is denoted by L”. For any f € L'(T9),

its spacial average is
][ fdx = / fdx.
Td T4

For any function f : [0, T] x T¢ — R, denote by || f ()]l the Lebesgue norm
on T¢ (in space only) at a fixed time . If the norm is taken in space-time, we use

10y -

The space C3° (T9) is the set of periodic smooth functions with zero mean, and
cx (R?) is the space of smooth functions with compact support in R?.

We often use the same notations for scalar functions and vector functions. Some-
times we use C3° (T4, R?) for the set of periodic smooth vector fields with zero
mean.

We use V to indicate full differentiation in space only, and space-time gradient is
denoted by V; .. Also, 9; is the partial derivative in the time variable.

For any Banach space X, the Banach space L" (0, T'; X) is equipped with the norm

1

([ 1ar)”

and we often use the short notations L” X and || - || LIX-

We write X < Y if there exists a constant C > 0 independent of X and Y such
that X < CY. If the constant C depends on quantities aj, az, . . ., a, we will write
X Sal,...,an or X < Ca1 a,,Y

.....

2.2 Antidivergence Operators R and 3 on T

We will use the standard antidivergence operator A~!'V on T¢, which will be denoted
by R.
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It is well known that for any f € C*°(T?) there exist a unique u € Cy° (T?) such

that
Au:f—][f.

For any smooth scalar function f € C°(T¢), the standard anti-divergence operator
R : C®(T?) — C§°(T?, RY) can be defined as

Rf:=A"V/,
which satisfies
div(Rf) = f—]id f forall f e C®(TY),
and

IRdivu)ll, < flull, forall ueC®(M¢ R?Y and 1 <r < oo.

The next result, which says that R is bounded on all Sobolev spaces W* 7 (T9), is
classical, see for instance [42, Lemma 2.2] for a proof.

Lemma 2.1 Letd > 2. Foreverym € Nandr € [1, o], the antidivergence operator
R is bounded on Wm”(Td)for anym € N:

IR fllwmr S LS liwmr. (2.1
Throughout the paper, we use heavily the following fact about .
Rf(o-) = O’_lRf forany f € Cf)’o('JI‘d) and any positive o € N.

We will also use its bilinear counterpart B : C®(T¢) x C*®(T%) — C®(T¢, R?)
defined by

B(a, f) :==aRf — R(Va - Rf).

This bilinear version B has the additional advantage of gaining derivative from f
when f has zero mean and a very small period. See also higher order variants of 53 in
[44].

It is easy to see that B is a left-inverse of the divergence,

div(B(a, f)) = af —][ af dx provided that f € Cgo(']l‘d), 2.2)
Td

which can be proved easily using integration by parts. The following estimate is a
direct consequence of Lemma 2.1.
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Lemma2.2 Letd >2and 1 <r < oo. Then for any a, f € C‘X’(']I‘d)

1B, - < llallet IR f -

Proof This follows from Holder’s inequality and Lemma 2.1. O

Remark 2.3 The assumption on f in Lemma 2.2 can be relaxed to f € L"(T9).

2.3 Improved Hélder’s inequality on T¢

We recall the following result due to Modena and Székelyhidi [42, Lemma 2.1], which
extends the first type of such result [15, Lemma 3.7].

Lemma24 Let 0 € Nand a, f : TY — R be smooth functions. Then for every
r € [l, o00],

laf @l — lall 11| S o lallcrll - (2.3)

This result allows us to achieve sharp L” estimates when estimating the pertur-
bations in Section 7. Note that the error term on the right-hand side can be made
arbitrarily small by increasing the oscillation o.

2.4 Mean Values and Oscillations

We use the following Riemann-Lebesgue type lemma.

Lemma25 Let 0 € Nand a, f : T¢ — R be smooth functions such that f €
Cgo(Td). Then for all evenn > 0

(]fr a() f(@x) dx| Sp o " allerl 1. 2.4)
Proof Since f has zero mean, by repeatedly integrating by parts we deduce that

][ a(x) f(ox)dx =a—”][ A2 A" f(o-) dx.
Td Td

On one hand, we have

2
IA"2al| 2 pay < Nallen pay,-

On the other hand, since f is zero-mean, by the Plancherel theorem

A2 fll2emay S 1S p2eray-
Thus for any even n we have
|, a0 @0 dx] S o lallen 1
T

O
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3 The Main Proposition and Proof of Theorem 1.4
3.1 Time-Periodic Continuity-Defect Equation

We follow the framework of [42] to obtain approximate solutions to the transport
equation by solving the continuity-defect equation

d;p + div(pu) = divR

3.1
divu =0, G-D

where R : [0, T'] x T4 — R is called the defect field. In what follows, (p, u, R) will
denote a solution to (3.1).

Throughout the paper, we assume 7 = 1 and identify the time interval [0, 1] with
an 1-dimensional torus. As a result, we will only consider smooth solutions (p, u, R)
to (3.1) that are time-periodic as well, namely

p(t+k)y=p(t), ult+k)=u(), R(t+k)=R(t) forany k e€Z.
For any r > 0, let
I, =1[r,1—r].

We now state the main proposition of the paper and use it to prove Theorem 1.4.

Proposition 3.1 Letd > 3 and p, q € [1, o] satisfying p > 1 and (1.4). There exist
a universal constant M > 0 and a large integer N € N such that the following holds.

Suppose (p, u, R) is a smooth solution of (3.1) on [0, 1]. Then for any §,v > 0,
there exists another smooth solution (p1, u1, R1) of (3.1) on [0, 1] such that the density
perturbation 6 := p| — p and the vector field perturbation w = uj — u verify the
estimates

1
100,10 < vMIRI) . (3.2)
— 1/p
Il < v MIRI. (3.3)
”w”L}Wl,q <3é. 3.4

In addition, the density perturbation 6 has zero spacial mean and satisfies

)/ 0(t, x)p(x)dx| < éllellcy, forany te[0,1] andany ¢ € Coo(Td),
Td
3.5
suppb C I, x T¢ for some r >0, and supp, 8 U supp, w C supp, R. (3.6)
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Moreover, the new defect field R\ satisfies

[Rilly =38 3.7

3.2 Proof of Theorem 1.4

Proof We assume T = 1 without loss of generality. We will construct a sequence
(onstn, Ry),n=1,2... of solutions to (3.1) as follows. For n = 1, we set

p1(t) == p,
ui(t) :==0,
Ri(t) :==R(:7).

Then (p1, u1, Ry) solves (3.1) trivially by the constant mean assumption on p.
Next, we apply Proposition 3.1 inductively to obtain (p,, u,, R,) forn =2,3...
as follows. Let

1

r

. n—ph-1)
Ly O =2 ”RIHLE,X’

"R
V= —
om '

where we note that 1 < p, p’ < oo by the assumptions on p, ¢.

Given (o, u,, Ry), we apply Proposition 3.1 with parameters v and §,, to obtain a
new triple (pp+1, Un+1, Rn+1). Then the perturbations 6, := p,4+1 — pn and w, =
Up41 — Up verify

1 1
1 i
1Oullpipe = MVSw,  llwall ooy, < MV 87,

and

||wn||L['Wl,q < du,

supp 6, C Ir,,XTd for some r, > 0,

foralln = 1,2.... So there exists (o, u) € L} L? x L;’OL”/ such that

on —> p inL!LP, (3.8)
Uy — u in LLY nLIwhe. (3.9)

It is standard to prove (p, u) is a weak solution to (1.1) since
PnUp —> pu in Ltl’x.
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Moreover,

o= Bllipe <D M6allipp <D 827" <.

n>1 n>1

To show that p () is continuous in the sense of distributions, let ¢ € C2° (’]I‘d). It
follows that

(o) = (), 9) = [(0(0) = a0, @)| + [(0n(D) = pu(s). @)
+ |(on(s) = 0). 01

Since by (3.4)

(o) = o). 9)| = " Sullgllen forall 1e[0,1],
k>n+1

the continuity of p in distribution follows from the smoothness of pj,.

The claim that p(¢) = p(¢) for t = 0, 1 follows from the fact that p, (0) = p(0)

and p,, (1) = p(1) for all n since
supp6, C I, x .

Finally, the claim that supp, p U supp,u C supp, p follows from the fact that
supp, R1 C supp; p. O
4 Stationary Mikado Density and Mikado Fields
In this section, we recall the construction of the stationary Mikado density and Mikado
fields introduced by Modena and Székelyhidi in [42] with its roots dating back to [36],
which will be used as the building blocks in space in the convex integration scheme.

Let d > 3 be the spacial dimension. We fix a vector field Q € C°(RI~! RI-1)
such that

supp Q € (0, )47,
and denote by ¢ € C° (Rd_l) the solution

divQ = ¢.

The vector field 2 is also normalized such that

/ »* =1.
Rd-1

Throughout this section, for u > 0, we denote ¢"* = 1 (ux) and Q* = Q (ux).
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4.1 Non-periodic Mikado Densities @, and Mikado Fields W,

Foreachk =1, ..., d, we define

d—1
qu('xl?"'?xd):M P ¢M('x17'-'axkflaxk+17~"axd)7

and

.1

-1
Wi(Xt, oo xg) = P @H (X1, ooy X1, Xk41s - - - » Xa) €k, 4.2)

where ey is the k-th standard Euclidean basis and the exponents p, p’ € (1, co) are as

in Theorem 1.4.

Since ®; and W; effectively depend only on d — 1 coordinates, we have the fol-

lowing.

Theorem 4.1 (Exact stationary solution (®y, Wy)) Let d > 3 and i > 0. The density
@y : RY — R and the vector field Wy : RY — R? k =1, ..., d verify the following.

(1) ®p, Wi € C®(R?). Both ®; and Wy, have zero mean in the unit cube

/ b, = / W, = 0.
(0,1)4 0,1)¢

(2) The Mikado fields are divergence-free:
div W, =0,
and the pair (O, Wy) solves the stationary transport equation
div(®Wy) = Wy - VO, = 0.

(3) There holds

/ O Wi = eg.
(0.,1)¢

(4) There exists vector potentials Q € C®°([R?, RY) such that
div Q; = Py

and

d—1_d—1
-5

12l 7 0,190y S 1

4.3)

Proof The first three properties are standard and follow directly from the definition.

For the last property, let us define

_1+d;1 w
Qpi=pu QX1 e Xk Xk 1y - e Xd).
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Then by the definition of ¢ and €2, we have
div(2;) = by

The estimate for 24 follows immediately

,]4,4:l
12N 27 (0,1)8) = 1 71928 N L a1y

d—1__d—1
5T

Su

4.2 Geometric Setup and Periodization

Next, we use the obtained non-periodic solutions ((®, W) to generate a family of d
pairs (®, Wy) by translation and periodization. The goal is to make sure (®;, Wy)
centered at disjoint line in (0, 1)? that are parallel to the Euclidean basis ey.

We choose a collection of distinct points py € [1/4,3/4]% fork =1,...,d and a
number g9 > 0 such that

U Beo(po) C 10, 117,
k

and
dist(ly, ly) > g9 ifk #Kk'. “4.4)

where [; C R is the line passing through p; with direction k. The lines /; will be
the centers of our solutions (®;, Wy). We then choose translations ¥y, : T4 — T for
k=1,...,d,

TkX = X + pr.

Now we are ready to introduce the periodic solution (®;, Wy) as the 1-periodic
extension of (®y, Wy).

Definition 4.2 (Periodic solutions) Let 4 > 3. Define periodic density ® : T¢ — R4
and periodic vector fields Wy : T¢ — R? by

Op(Tyx) = Y Dilx + j).
jezd
Jk=0

Wi(Tx) = ) Wilx + ),
jezd
Jk=0
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and the periodic potential & : T — R by

Qu(Thx) = Y Uux + j).
jezd
Jk=0

From the definition we immediately obtain Sobolev estimates for (®;, Wy).

Proposition 4.3 Let d > 3. For any u > 0, the following estimates hold for any
1<r <oo:

d—1_d-—1

m M P ", mGN,

A

H—m ” A\ (I)k

L (Td) ~

wr vaQkHL'"(Td) Sm MiH%*#, meN

d=1_d-1

u " ||Vka Smp? 7, meN.

L7 (Td)
Proof These estimates follow immediately from rescaling. O

Theorem 4.4 (Stationary periodic solution (®y, Wy)) Let d > 3 and i > 280_1. The
periodic solutions ®;, Wy € C§° (T?) verify the following.

(1) The vector field Wy is divergence-free,
divW; =0,
and the pair (®, Wy) solves the stationary transport equation
div(®;Wy) = Wy - Vo, = 0. 4.5)

(2) The density ®y, is the divergence of the potential S,

div Q; = &y (4.6)
(3) There holds
/ W, =e; “@.7
Td
and ifk # k', then
supp @ N supp Wy = 0. 4.8)

Proof The first property follows directly from Theorem 4.1 while the second property
follows from the definition.
The last property follows from the facts that supp ® c (0, 1)¢~! and dist(l;, [ i) =

eoifi # j. O
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5 Temporal Intermittency and Oscillation

Here we introduce one of the key ingredients of this paper, the use of both temporal
intermittency and oscillation. This allows us to kill the previous defect field in a space-
time average fashion instead of point-wise in time.

For convenience, we will treat the time interval [0, 1] as an 1-dimensional torus T.
In what follows we always write [0, 1] as an interval in time to distinguish it from the
periodicity in space.

5.1 Limitations of the Previous Schemes

We start by discussing how the Sobolev regularity was obtained in previous convex
integration schemes [42—44]. Assume that we have (p, u, R) the solution to the defect
equation

dp+u-Vp=divR,

the goal is to design suitable perturbations (6, w) such that (p + 6, u + w) is a new
solution to the defect equation with a smaller defect field R;.

Typical in the convex integration scheme, the principle part of the perturbation
(6, w) takes the form

9=Zak<l>k, w:Zkak. (5.1)
k

k

The coefficients ay, by, depending on the previous defect field R, are chosen such that
the leading order high-high to low interaction balance the defect field R

Zakbk][ @, Widx+ R ~0.
Td
k

Heuristically, without temporal intermittency, the duality given by the perturbation
is
6 e L®LP welL®LV. (5.2)
To require Sobolev regularity of the vector field w, one has to trade in some integrability
in space to obtain

corlg 1 1 1
weL~W> forqsuchthat;+a>1+d_—D (5.3)

where D is the intermittency dimension of (®;, Wy). This has been done in [42,43]
for D = 1andin [7,44] for D = 0. So the approach of using only spacial intermittency
results in the nonuniqueness in the range

1+1 1+1
-+ - > —.
P q d
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5.2 Convex Integration with Space-Time Intermittency and Oscillation

Our approach is to add in temporal intermittency and oscillations to the perturbation
0, w),

=8> a®, w=gy bW, (54)
k k

where g, g : [0, 1] — R are intermittent functions in time with oscillations.
By imposing the duality

/ Segedt =1,
[0,1]

we anticipate that the defect field is canceled weakly in space-time

;akbk ]{0,1

This would allow us to obtain additional regularity in space at the expense of
regularity in time, which means that g, and g, have to have different scalings for
different L? norms. Indeed, with intermittency in time, we impose the duality between
6 and w to be

. 28 ®Widxdt + R ~ 0. (5.5)

1x

OeLlLr,  welL®LV, (5.6)

which is also consistent with the ansatz (5.5).
The hope is that with enough temporal intermittency, we get

, 1 1
wel®L? =>welL!Wh for —4 - >1. (5.7)
P q

Note that temporal intermittency is the key difference between (5.3) and (5.7).
After performing convex integration in space, modulo an error term of high spacial
frequencies, the remaining error in (5.5) reduces to

R(gcgc — 1), (5.8)

which is a term of high temporal frequency and thus can be canceled by adding a
temporal corrector 6, such that to the leading order

90, = — (8 gk — 1) div R. (5.9)

To see that 9, is indeed small compared to 6, note that the error term (5.8) has only
low frequencies in space, and thus we have

”90”L,1LP <1,
provided 6, oscillates much faster in time than the old defect filed R,
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5.3 Other Considerations

Introducing temporal intermittency and oscillations comes at the cost of worse bounds
in time for the perturbations 6 and w. Of particular importance is the question of
whether the iteration scheme can go through, i.e. the defect field R can be made small
in L tl - The most relevant part in the scheme is the term Ryep, solving the equation

div Riem = 9;6. (5.10)

It is clear that this term will impose certain constraints on the size of temporal fre-
quencies. In the end, it is the potential £; in Theorem 4.4 that saves the day: writing
0 as a divergence of a potential allows us to gain one full derivative in space. We can
also infer from (5.10) that the temporal frequency should be comparable to the spatial
frequency.

Notice that (5.7) does not require any intermittency in space but only intermittency
in time. It turns out that as long as 6 and w are not homogeneous, i.e. just a little inter-
mittent in space, (5.7) can be achieved. The spacial intermittency is used to reconcile
(5.7) and (5.10) which is impossible when 6 and w are completely homogeneous.

This is quite surprising and very different than the idea used in [7,42-44], where
more spacial intermittency for a solution yields improvements for the nonuniqueness
range.

5.4 Intermittent Functions in Time g, and g,

In this subsection we shall define the intermittent oscillatory functions g, and g,. We
take a profile function g € C2°([0, 1]) such that

/ gzdt =1.
[0,1]

Let k > 1 be a temporal concentration parameter that will be fixed in the next
section. We introduce the temporal intermittency by adding a concentration utilizing
k as follows.

Define g, : R — R by

8ic(t) = g(k1). (5.11)

Note that « > 1 implies supp g, C [0, 1]. By a slight abuse of notation, g, will also
denote the 1-periodic extension of g, by means of the Possion summation.
Next, we define

~

8 = K&, (5.12)

sothat g, g, : [0, 1] — Rare both 1-periodic. We will use g to oscillate the densities
@, and g, to oscillate the vectors Wy. Note the following important intermittency
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estimates 1
I llzrqo.ny S x'77, 5.13)
lgellLrqoay S k™7
and the normalization identity
/ egedt = 1. (5.14)
[0,1]

Because of (5.13), for any k € N we may choose » > 0 such that

1
/ lw @l yx00 dt < 1,
0

which confirms a note in Remark 1.5 that the vector field u will concentrate on a small
“pad” set in [0, 1] x T?.

5.5 Temporal Correction Function h,
Finally, concerning the temporal corrector 6, in (5.9), we define a periodic function
he : [0,1] - R by
t
he(t) = / (gegv — D dr, (5.15)
0
so that
Ohe = gegie — 1. (5.16)
Note thatby (5.14), k. is well-defined and an approximation of a saw-tooth function,
and we have the estimate

17Nl Loofo, 1) < 1, (5.17)

which holds uniformly in «.
In other words, &, is not intermittent at all for any « > 0, and it will be used to
design the temporal corrector 6, in the next section.

6 Proof of Proposition 3.1: Defining Perturbations and the Defect
Field

The main aim of this section is to define the perturbation density 6 and velocity w, as
well as to solve for the new defect filed R;. This section is the core of the proof of
Proposition 3.1.

Let us summarize the main steps of this section as follows.

(1) We first fix all the parameters for the building blocks (®;, Wy) and g, g as
explicit powers of A, whose value we shall fix in the end.
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(2) Next, we introduce a partition of the old defect field R to ensure the smoothness
of the perturbation.

(3) Then we define the perturbation (6, w) which, to the leading order, consists of
linear combinations of the building blocks (®;, W;) with suitable coefficients

that oscillate intermittently in time using the functions g, g, defined in Section
5.

(4) Having defined the perturbations, we finally design the new defect field R; so that
the new density p + 6 and the new vector field u + w solve the continuity-defect
equation with the new defect field R;.

6.1 Defining the Parameters

Given p, g as in Proposition 3.1, there exists y > 0 such that
i 11 1
min 1——,———/ > 4y. 6.1)
P

Let A9 be the lower bound on p given by Theorem 4.4. We fix the frequency
parameters A, u, k, o > 0 as follows:

e The major frequency parameter
A > Ao

will be fixed at the end depending on the previous solution (p, u, R) and the given
parameters §, v in Proposition 3.1.
e Concentration parameters [, k':

=Kk =RA.
e Oscillation parameter o € N:
o= |AV].

Note that the space and time periodicity require ¢ to be an integer. It is also worth
noting that both i and o can be any positive powers of A. In contrast, the temporal
concentration « has to be almost a full spacial derivative.

Below is a direct consequence of the choice of parameters.

Lemma 6.1 There exists r > 1 such that for any A > X, there holds

Y
|
T

-“\
<
IA

k]

A
AT

T T
L
":‘L
BN
Sl
IA
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6.2 Defect Field Cutoff

To ensure smoothness of the perturbation (6, w), we shall avoid the region where R
is small. To this end, we introduce cutoffs based on each component of R. Denote by
Ry the k-th component of the old defect field R, i.e., we write

R(t,x) = Z Ry (f, x)ex. 6.2)

I<k=d

We specify the constant » > 0 in Proposition 3.1 as follows. Fix » > 0 sufficiently

small such that !

IRl o0, 17xT4) = Ird (6.3)

Next, we define smooth cutoff functions x; € C2°([0, 1] x T9) such that

0 if [Rl<gortél

1 if |Re|> 2 andt € I,.

O=xx=1 @ x)= (6.4)

where we recall the notation 7, = [r, 1 — r] C [0, 1]. Note that by design each xi is
also time-periodic. Such cutoffs y; can easily be constructed by first cutting according
to the size of | Ri| and then multiplying by an additional cutoff in time. Also note that
bounds for x; depend on R and §.

Now let us cut off Ry by introducing

Ri = Xi Rk- (6.5)
In what follows we often use the crude bounds
IV Rel Srans 1. (6.6)

6.3 Density and Velocity Perturbation (0, w)

The idea in the construction of the perturbation (6, w) is the use of d-pairs of disjoint
(®x, Wy) to cancel each component Ry on average in time by means of the intermittent
oscillating factors in Section 5.

In summary, the perturbations (6, w) are defined by

0=6,+06.+6,

W= wp+ W

where 6, and w, are principle parts of the perturbation, 6. and w, are correctors for the
zero mean of 6 and zero divergence of w respectively, and 6, is a zero mean oscillator
that we use to balance a high temporal frequency error later.

@ Springer



2 Page24of45 A. Cheskidov, X. Luo

We first define the principle part of the perturbations. Let

_1

1R,
Op(t.x) =07 (0r) Y —11 sign(—Ro) xRl 7 ®i(ox),  (6.7)
tsksd IRyl

1

R g 1
wy(t.x) == vge(o) Y. %mmkw Wi(ox). (6.8)

7

1sk=d ||Rk|| '

The smoothness of 6, and w ), will be proved in Lemma 7.1. We take a moment to
analyze the role of each part involved in the definition.

_1 1

/

e The factors || Ek (1) || i 7 and | Rk (1) ||1 are for the normalization to kill the old
defect field R via the high-high to low interactions in space .

e The cutoffs yi is to ensure smoothness by avoiding the regime where Ry is small.
Note that if ||Rk||L1 = 0, then ||R||Loo < § and there is nothing to prove.

e The building blocks P (ox) and Wy (o x) are used to perform the convex integra-
tion in space, similar to the previous works.

e Finally, g, (o) and g, (ot) are factors that encode the temporal intermittency and
oscillations. We will then perform a “convex integration in time” to kill the error
of high temporal frequency.

For brevity, let us introduce shorthand notations

Op(t,x) = v 'Zelot) Y Aplt, )@s (o), (6.9)
1<k=<d
wy(t,x) =vg(ot) Z B (t, x)Wi(ox), (6.10)
1<k<d
where
IR, 1
Ax(t, x) = —1 K sign(—Rp)| Ry |7, (6.11)
A !
L/
IRl i
Bi(t,x) = ———'— Xl Rel 7. (6.12)
||Rk|| ’

Note the important identity that motivates our choice of Ay and By:
ArBr = —x; Rk forall k=1,...,d. (6.13)
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In view of the zero-mean requirement for 6 and the divergence-free condition for
w, we introduce correctors

0c(1) = ][d 0,(t, x)dx, (6.14)
T
we(t, x) = —vgc(o1) Z B(V By, Wi(o-)). (6.15)
1<k<d

where B is the bilinear antidivergence operator in Lemma 2.2.
Since V By - Wy = div(B; W) has zero mean, by a direct computation

divw, = —vgi(ot) Z div B(VBi, Wi(o) = —divw,.
1<k<d

Thanks to Theorem 4.4 and Lemma 2.2, these two correctors are small compared to
the principle parts 6, and w,.

Finally, we take advantage of the temporal oscillations and define a temporal oscil-
lator

Op(t. ) =0 h(or) Y (][d & W, dx) V(X2 R, (6.16)
T

1<k<d

which, thanks to Lemma 4.4, is equivalent to

0, = o 'h(ot) div Z xZ Riex. 6.17)
1<k=<d

The role of the temporal oscillator 9, is to balance the high temporal frequency error
by its time derivative in the convex integration scheme, which will be done in Lemma
6.5. Note that by definition 6, has zero spatial mean at each time.

6.4 The New Defect Field R,

Our next goal is to define a suitable defect field R such that the new density p; and
vector field u,

pL:=p+06, uy:=u+w,
solve the continuity-defect equation

dp1 +uy - Vpi =divRy. (6.18)
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To do so, we will solve the divergence equations

div Rose = div(0,w, + R) + 8,6,

div Reem = () + 6,),

div Rjip, = div(Ou + pw),

div Reor = div (Qwe) + div ((6, + 6)w)),

so that Ry = Rosc + Riem + Riin + Reor.
The choices for Ryin and Rcor are relatively straightforward.

Definition 6.2 The new defect field R; is defined by
Rl = Rosc + Rlin + Rcor + Rtemy
where Ry, and Rgor are defined by

Rjin 1= 0u + pw,
Reor :=0we + (6, + 0)w,

while Riem and Ry are defined in Lemma 6.3 and Lemma 6.5 respectively .

Next, we specify the choice for Rem, which utilizes the bilinear antidivergence
operator B.

Lemma 6.3 Ler

Rem =079, (Felon) Y Bl @4(0).

I<k<d

Then
0:(0p +6:) = div Riem.

Proof Note that

48 = Bulon) Y (Aci(e) — £ Aduco)

1<k<d

Then the conclusion follows immediately from the definition of B and the fact that &y
has zero mean, cf. (2.2). ]

6.5 Convex Integration in Space-Time: Designing R,

This subsection is the core of our convex integration scheme. The main goal is to
design a suitable oscillation part R, of the defect field so that

div Rose = div(Bpw, + R) + 36,.
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To this end, we first isolate terms in the nonlinearity div(f,w, + R) according
to their roles, and then use the temporal corrector 9,6, to balance the part with high
temporal frequencies in div(0,w, + R).

Lemma 6.4 (Space-time oscillations) The following identity holds
diV(epwp + R) =div (Rosc,x + Rpis + Rrem)a (6.19)

where R,y is the oscillation error in space

Ruscr = Bulon)geon) - B(VABL. (8Witom) — | 8 Wed)).

I<k=<d T

Rpi; is the error of high frequency in time

Ruir = (?x(m)gx(ffl) - ][o §Kgx> > AvBy ]frd ;W dx,
[0.1]

1<k<d

and Riem 1S the remainder error

Rem= Y (1= x{)Reex.
1<k<d

Proof By the definition of 6, we have

Opwp =g (ot)gc(ot) Z ArBr®; Wy (o). (6.20)
1<k=<d

Taking divergence, we have

div(@pw, + R) = Ze(00gc(0r) Y div (AcBr®Wi(0-)) +divR.  (6.21)
1<k<d

By the last point in Theorem 4.4,

div (AkBkCI)ka (0))

= div (A B (@4 Wi(0) ]frd DLW, ) + div(Ax Bie)

= ArBy div (®xWi (o)) + V(ArBi) - (R Wi (o) — ]{Td @ Wi)+div(Ag Brey),
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where the first two terms combined together have zero mean. For this reason, thanks
to the definition of BB, we may write

div (Ax By ®; Wy (o))
= div B(AkBk, div (<1>ka(0~)))

+ diVB(V(AkBk), (<I>ka(o-) - ][ <I>ka)> + div(Ag Breg). (6.22)
Td
Now it follows from (6.21) and (6.22) that

div(@p,wp + R) = ge(ot)ge(ot) Z div(Ag Brer) + div R 4+ div Rose x.  (6.23)
1<k<d

To see that div(f,w), + R) = div(Roscx + Rhit + Rrem), by an examination of
(6.23), we need to show that

Rrem=R+][ Zes Y AkBk][ @ Wi dx.
[0,1] I<k<d Td

Indeed, using (5.14), Theorem 4.4, and (6.13) we obtain that

][ S8 Z A By ]frd QWi dx = Z Ay Brey, (6.24)
[0,1]

1<k=<d 1<k<d

which implies that

R+ > ABex=R— Y xiRiee= Y (I—x})Rie = Reem.
1<k<d 1<k<d 1<k<d

(]
Due to the designed temporal corrector 6,, the error of high frequency in time Ry; ¢
is canceled to the leading order by 9,6,. We complete the design of the oscillation

error R in the following lemma.

Lemma 6.5 Let
Rosc := Rosex + Rose,t + Reem (6.25)

where Ryscx and Rrem are as in Lemma 6.4, and R, is the oscillation error in time

Roser =0 "h(oOR Y e+ 8 V(x{Ro).
1<k<d
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Then the oscillation error Ry satisfies the identity
div Rosc = div(0pw) + R) + 0,0,.
Proof By the previous lemma, we only need to verify that
0:0p + div Rpi; = div Rosc s

By the definition of 6, (6.17), we have

3,6, = 0;h(ot) Z er - V(xPRe) + o 'h(or) Z er - 9 V(xZRy).
I1<k=<d 1<k<d

It follows from (5.16) and (6.13) that

wh(et) Y e VOER) = (Zelonge(on) ~ fmgkgx)

1<k=<d

D e V(—AeBy) = —div Ry,
1<k<d

which implies that

8[90 + div Rhi,[ = div ROSC,t'

6.6 Verification of (u1, p1, Rq) as a Solution of the Continuity-Defect Equation

We conclude this section by showing that the new solution (u1, p1, R1) is indeed a
solution to the continuity-defect equation.

Lemma 6.6 The density py = p + 0, vector field uy = u + w, and defect field
Ri = Riin + Riem + Rcor + Rosc solve the equation

d;p1 +uy - Vpp =div Ry.
Moreover, the temporal support of the perturbation (6, w) satisfies
supp, 0 U supp, w C supp, R.
Proof We compute

orp1 +up-Vpr = @Orp+u-Vp)+ (0,0 + div(fu) + div(Qw) + div(pw))
=div R + 9,60 4+ div(fu) + div(Qw) + div(pw).
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Now the first claim follows from Definition 6.2, Lemma 6.3, and Lemma 6.5.
The second claim follows from the definitions (6.7), (6.14), and (6.16) since the
coefficients vanish whenever R(¢) vanishes.

To complete the proof of Proposition 3.1, it remains to verify the estimates for
the perturbation (6, w) and the new defect field R;. We do this in Section 7 for the
perturbation and in Section 8 for the new defect field respectively.

7 Proof of the Proposition 3.1: Estimates on the Perturbation

In this section, we will derive estimates for the perturbation (6, w). The main tools
have been listed in Section 2. The main idea is to take the frequency parameter A
sufficiently large depending on the previous solution (p, u, R) so that the error terms
are negligible. It is also worth noting that all implicit constants will not depend on
(p, u, R) unless otherwise indicated.

We start with the smoothness and time periodicity of the coefficients Ay, Bi, which
are necessary conditions for Lemma 2.4 and 2.5.

Lemma 7.1 (Smoothness of Ay, By) The coefficients Ay, By € C*([0, 1] x ’]Td) are
time-periodic on [0, 1], and the map

t > | Rl L1 (pe) 7.1

is smooth on [0, 1]. In particular, all the perturbations 6, 6,0, and wp, w. are
smooth and time-periodic.
Moreover, the following estimates hold uniformly in time

~ =141
Ak @Il Lp Ty < ||Rk||L} "R ()| L1 (7a)
1
Bi(Oll ) oras < IIREN” .
1B ey < IR,

Proof Denote by R,j = max{Ry, 0} and R, = min{Ry, 0}. Due to the cutoff xx, the
functions
xeRiE (7.2)

are smooth on [0, 1] x T<. Thus the map

t = |Re() |l 1 ey = /XkRk+ = Xk Ry dx

is smooth on [0, 1].

Next, let us show that the coefficients A and By are smooth on [0, 1] x T¢. Indeed,
due to the smoothness of ||§k(t) l1, the coefficients Ay, By are automatically smooth
at all points where ||Ri(¢)||1 > 0. On the other hand, for any point (¢, x), where
IRk (t)]l1 = 0, there is a neighborhood of of that point where x; = 0. Hence, Ay =
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B = 0 in that neighborhood. Therefore, Ax, B € C°°([0, 1] x ’]I‘d). Their time-
periodicity follows simply from the definitions.

Finally, we show the pointwise L” and L” estimates for Ay and By. For Ay we
have

||Rk()||1

||Rk||

IA

I Ak @)l Lo (e ||Xk|Rk|" Il 2o (Tay

||Rk(l)||1 K B
=< —1” k Rk“Ll(Td)
||Rk||

IIRk(t)Ill

1

~ 1-1
R P
IRl

where we have used the fact that p € (1, 0o). The estimate for By can be deduced in
the same way:

L
I

IR L
1Bkl 1 opay < —71%||Xk|Rk|p st (zay
IRk,
4,
Ol
< —%u "RknLl )
IRl
~ L
I/
< IRl -

7.1 Estimates for the Density 8

Here and in what follows, Cr represents a positive constant that depends on the old
defect field R that may change from line to line.

Lemma 7.2 (Estimate on 0),) There holds

1 1
||9p||L;Lp5V||R||£1 + Cro ».
fx

In particular, for ) sufficiently large,

10pll e S VIIRIIP

t,x
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Proof We first take L? norm in space, using the shorthand notation

16, Lrepay < v Ze@D] D AL B - (7.3)
1<k<d

Since for each fixed ¢, Ag(z, x) is smooth on T, by Lemma 2.4, we have
_1
[ac@u@)] = A0 || Bl + Cro TN ®ulp (T4

By Proposition 4.3 and Lemma 7.1, combining (7.3) and (7.4) we obtain

e ~ =141 1
109 llrcrty S v 'Bel0r) Y IR,y " IR + Cro 7.

1<k=d

X

Now we take L! in time to obtain

_ ~ -1+ - ~ _1
16p e SV Y IR, / |3 @D|IIR (D)1 dt + Cro 7. (1.5)
l§k§d f,x [0’1]

Given the smoothness of t — ||§k (®)|l1 proven in Lemma 7.1, applying Lemma 2.4
once again (in time) gives

/[0 | Ze@D| IR di S IRl |7l 1oy +CrO7. (1.6)

Then it follows from (7.5) and (7.6) that

1 1

-1 2: ~ -1

||9[7||L[|LP 5 % ”Rk”z}/\”gk ”Ll([o,l]) +CR(7 P
1<k<d '

1 1

1 _1

SVUIRIT, +CroTr
t,x

where we have also used (5.13).
Once we take A sufficiently large such that the error term

1
—1 —1 2
Cro™ ' < v 'RI,
1,x
the desired bound follows
X 1
- V4
16012t zorey S VRIS

with an implicit constant independent of A, R and v. O
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Lemma 7.3 (Estimate on 0,.) There holds
16cll 1 < Crv ™'

In particular, for A sufficiently large
1 1
||9C||L}Lp <v ”R”II:,IY
Proof Since

1~
c = K A 5 P s
0, Vg (ot) Z ]’[ﬂ‘d (@, x)®r(ox)dx

1<k<d

this follows directly from Lemma 2.5. O

Lemma 7.4 (Estimate on 6,) There holds
106l L3, < Cro ™.

In particular, for A sufficiently large
| 1
HGOHL}L” v ”RHE}X
Proof By (6.17), Holder’s inequality and (5.17) we have

1011255, < 0~ R @) | ooy D e VR
1<k<d '

< CRo‘il.

7.2 Estimates for the Vector Field w

The vector field w can also be estimated using the tools in Section 2.
Lemma 7.5 (Estimate on w)) There holds
£ 1
lwpllpers S VIRIJY +Cro ¥
”wp”Lthl,q <vCrr77.
In particular, for A sufficiently large,

1
-

lwpll oo S VIR,
1,x

”wp ”L,IWL‘I <4é/2.
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Proof We first prove the L;’OLP/ estimate, and then the Sobolev estimate L! W4,

ey

2

/ .
L°LP estimates:

Taking the L?' norm in space yields

lwy Ol < v]|ge@n] > (1.7

I<k=d

Since x — By(t, x) is smooth on T for all fixed ¢ € [0, T], by Lemma 2.4, we
have

oW < Ho T CRIWily. (8)

Wil ,

Then from (7.7), (7.8), Lemma 7.1, and the fact that HWk || e 1, it follows that

v 1
lwplly < v|ge(on)] 2: | Rell? L. to 7 CRg. (7.9)
l1<k<d b

Now we simply take L°° in time to obtain

1

—i—CRO_IT/,

1
rd
”wp”LOCLp ('ﬂ‘d) < V”R” tl

where we have used (5.13).
Once we take A sufficiently large such that the error term

1

-1 v
Cro™ < V”R”L}J,
the desired bound follows
||wp||L[°0Lp('11‘d) ~ VHRHP

Sobolev estimate Lt1 wla.

Taking Sobolev norm W4 in space we have

lwp® oy < vlge@n] Y |BoWaee)| (7.10)
1<k=<d

Direct computation using Holder’s inequality gives

| BeoWito| (W@ acry + 1 TWe @) 1aroy )

wha(Tdy — CR(‘
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From this, by Proposition 4.3, we get

14451421
| BeOWeion)| ) S Cron T (.11)

Thus from (7.10) and (7.11) we get

d—1

14t ol
lwy () llwraray < vCrou 7~ 1 |ge(a1)]. (7.12)

Integrating (7.12) in time and using (5.13) we have

d—1_d—1 d—1_d—1

_1 1+7/_7 / —
< q9 = q
||wp||L[1W1,q <vCgrk op P vCroW ? .
Thanks to Lemma 6.1, it follows from the above that

”wp ”L,l wla = vCrATY.

Lemma 7.6 (Estimate on w.) There holds
lwel oo < CrVO™,

—1
||w€||L,1W1~’1 < Cprvk ™.

In particular, for A sufficiently large

1
q

lwell o < VIR,

”wC”L,l wha = §/2.
Proof We first prove the L>°L”" estimate, and then the Sobolev estimate L W4,

(1) L;’OLP/ estimates: Taking L?' norm in space we have

lee®ly < vlgcton] 3o BB W] . (113
I<k=<d

By Lemma 2.2 we get

|Bv 5. Wk(a-»Hp, < Cr|[RWi(o) (7.14)

p’
Since the assumption on p, ¢ implies that for 1 < p’ < oo, we have

[RW(o)

~1
p,ga .
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2

Then it follows from (7.13) and (7.14) that

lwe()lly < Crvo ! ge(o1)

3

which implies the desired bound thanks to (5.13).
LIW4 estimates:

We take W!-4 norm in space to obtain

lwe@lwra < v|ge(o)] Z |B(V By, Wi(0) | y1.q-

I<k=d
By Poincare’s inequality, we have
lwe@®llwra S vlge@n] Y [VBVBL, W), (.15
I<k<d

In fact, a slight modification of the proof of Lemma 2.2 gives

IVB(Va, )l S lallcz[IRS 1 + IVR S, ] forall 1
<r<ooanda, f € C®(TY).
Due to the assumptions on p, g, 1 < g < p’ < oo, which in particular implies

that
|VB(V B, Wi(o))

» = Cr, (7.16)

where we used the fact that VR is a Calderén-Zygmund operator on T¢.
Combining (7.15) and (7.16) we have

)

lwe@)llwia < Crv|g(o?)

which implies the desired bound after integrating in time thanks to (5.13).

7.3 Proof of the Perturbation Part of Proposition 3.1

Since the second part of (3.6) has been proved in Lemma 6.6, we finish proving
(3.2)—(3.7) of Proposition 3.1 in the lemma below.

Lemma 7.7 There exist a universal constant M and a large N € N such that for all
A(v, 8, R) sufficiently large, the following holds.

(1) The density perturbation 0 satisfies

_ 1
vl < M||R||L/}P and supp6 C I, x T¢.

X
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(2) The vector field perturbation w satisfies

1/p
U”w”LZOOLp/ < M||R||L1 and |wllpiyig < 4.

tox

(3) The density perturbation 0 has zero mean, and for allt € [0, T]1and ¢ € C*(T%)

/W 6(t, V)p(x) dx < Sllgllcn.

Proof By Lemmas 7.2,7.3,7.4 and Lemmas 7.5 and 7.6, for A sufficiently large, we
conclude that

~

1
16110 S VIR
1x

-1 1/p
Il o S v IRI

1,x

with implicit constants independent of A and (p, u, R). We thus choose the constant
M to be maximum of the two implicit constants.

To see that supp & C I, x T?, we simply note that by (6.4), the coefficients A and
By in the definitions of 6, 6. and 6, all verify this property.

By Lemmas 7.5 and 7.6 again, for A sufficiently large, we have

”w”Ltlwl,q <3é.

Finally, let us show the last property. Noticing that 6, 46, has zero mean by default

and 6, is a divergence, we conclude that the density perturbation 6 is mean-free. To
show the last estimate, fix a test function ¢ € C*(T%). By definitions, we have

‘/ Ggpdx‘f‘/ Gpwdx‘—i-‘/ 06<pdx‘+‘/ 90<pdx‘.
Td Td Td Td

We show the bounds for 6, and 6, since the argument can be adapted to bound 6, as
well.
On one hand, applying Lemma 2.5 we have

| [Loods] So Ml 3 1coler i@l
T 1<k<d

Recall that y N > d + 1, and then

| /T Oppdx| < CrA e @l gy

< CrA 7 Mgllen. (7.17)
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On the other hand, by Lemma 7.4, we have

| [ ewpdx| < 1600175 ol
Td '
< Cro ™ [¢]loc. (7.18)

Putting (7.17) and (7.17) together and increasing the value of A if necessary, we
obtain

| [ owax| <sligtcy.
Td

8 Proof of the Proposition 3.1: Estimates on the New Defect Field

We now turn to the final step of proving Proposition 3.1. Recall that we need to
estimates the terms that solve the divergence equations

div Rose = 9,0, + div(f,w)) + div R,
div Rem = 9,0, + 9:6c,

div Rjjp, = div(Ou + pw),

div Reor = div(Owe + (8, + Oc)wp).

The linear error R}, and correction error Rg, can be estimated easily by standard
methods. The temporal error Rp, is subtler and we need to exploit the derivative gain
given by the potential €2 in Theorem 4.1. Such a difficulty is not present in [42,44].

For the oscillation error Ry, we will use the decomposition done at the end of
Section 6, which reads

Rose = Rosc,x + Rosc,t + Rrem.

We summarize how each part of Rys will be estimated as follows.

(1) As typical in the literature, Rys x can be shown to be small due to a gain of o1
given by the antidivergence.

(2) The term Ry is small by itself since it is the outcome of a temporal cancellation.

(3) Finally, Ryen is the leftover old defect field that is small due to our choice of cutoffs
Xk in (6.4).

8.1 Temporal Error

Lemma 8.1 (R estimate) For ) sufficiently large,

1)
||Rtem||L11_x = I

@ Springer



Nonuniqueness for Transport Equation at Critical Space Regularity Page390f45 2

Proof We may rewrite it as

Rem=v"" Y 8(Z(01)B(Ar, ®(0-)) + Ze (01)B(0; Ar, Pr(0+)
1<k<d

= Rtem,l + Rtem,2.

We will treat the second term Riem 2 as an error.

(1) Riem,1 estimate:

Taking L' in space, we get

| Rem 1Ol S v 0138 @0 Y | B(A. @) |- @.1)
k

Thanks to the potential 4, we have
|B(Ax. @x(0)||, = | B(Ax. div (o)) ], (8.2)
Next, we apply Lemma 2.2 to obtain

|B(Ar. div (o) |, < Cr|R(div (o)),
(by periodic rescaling) < Cgro ™' | R div (o) | .
(by definition of R) < C, go |||l

d—1 _d—1

(by Proposition 4.3) < C,’Ra_lu_lu [
forany 1 <r < oo. Then we fix r > 1 as in Lemma 6.1 so that
|B(Ak. @), < Cro~tu 7,

which together with the bound

/ 10,8 (ot)|dt <k,
[0,1]

implies that
R <C oIy
I tem,l”Ltl_X = CRkou 0
< Crr77,

where we have also used Lemma 6.1.
Now for A sufficiently large, we have

8

| Remtll;) <

- 32
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(2) Rtem’z estimate:
We treat the second term Riem 2 as an error and use Lemma 2.2 to obtain that

IRem. 211 < CrIZc (0] Y 19x(0)]1.
k

Using Proposition 4.3 and (5.13), integrating in time gives

d—1
S-—(d-1)
|Riemall1 < Cai'? 70,

Thanks to Lemma 6.1, for A sufficiently large, we have

8
”Rtem,Z”L,lJ_ = ﬁ
O
8.2 Linear Error
Lemma 8.2 (Ryi, estimate) For X sufficiently large,
[ Riinll 1 = >
lin Lll,): =16
Proof We start with Holder’s inequality
”Rlin“Ltl’X = 101z Nullzes + ol wlyy -
On one hand, by Holder’s inequality we get
16y +0cll 1 < Crv™' D" Ze(on) Aclt, 1) @p(o) 1
' I<k<d '
<Crv™" Y 1Zelpo, IRkl (8.3)
I<k<d
d-1
< CRU_luT_d_l.
By definition of 6, (6.16) we have
160111 S Cro Ml 1o,y Sk o (8.4)
On the other hand, since 1 < g < 0o, by Lemma 7.5 and Lemma 7.6
”w”["l,x = ”wp”L}Wl.q + ”wc”LtIWlﬂ 8.5)

< Crv(@ t+«7h.
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Combining (8.3), (8.4), and (8.5) we have

d—1
g1

”Rlin ”Lzlx = Cp,u,R,u(,Uv +K_1 + O'_l).

Thanks to Lemma 6.1, for sufficiently large A we have

)
[ Rinll ) = =< e (8.6)
8.3 Correction Error

Lemma 8.3 (R.or estimate) For X sufficiently large,

”RCOYHL},X = 16
Proof By Holder’s inequality we have
[Reorllzr = 101l e llwell ooy + (ollLrpr + 16cll o) 1wWpll ooy pr-

All terms have been estimated before, and by Lemma 7.2, 7.3, 7.4, 7.5, 7.6 we have

—1
IReorll 1 o v well oo + 6ol 120 + N6ell110)

< Cro ' 4 ),
which concludes the proof. O

8.4 Oscillation Errors

We will estimate Rqgc according to the decomposition in Lemma 6.5.
For reference, we recall that

Rosc = Rosc,x + Rosc,t + Rremy

where Rogcx is the error of high frequency in space

Rosc,x = §K(at)g,((at) Z B<V(AkBk)a (d’ka(ox) - ][

P, W, dx)),
Td
1<k<d

Rosc,t 18 the error of high frequency in time

Rosci =0 "h(oHR Y e+ 8V (x( R0,
1<k=<d
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and Rpem 1s the remainder error

Riem = Z (- sz)Rkek-
1<k<d

We start with Rogc x.

Lemma 8.4 (R, estimate) For A sufficiently large,

8
Il Rusc,x”LllJ =< R

Proof Denote ®; € C°(T?) by

O = q’ka—][

D, W, dx,
Td

so that Rogc x reads

Roscx = Be(on)ge(on) Y B(V(ABL), Ox(0r).
1<k<d

We take L' norm in space to obtain

IRosex(Dll1 < [Zc(ot)gic(ot)| D | B(V(AkBL). Ox(0-)) |-
1<k<d

Applying Lemma 2.2 gives
|B(VAB, ©109) || S Cro RO
It follows that
IRosex (Dl < CrZe(@ng(@n)|o™".
So for L}  norm we have

-1
I Rosc,x Il Lll.x <Cro™ .

Lemma 8.5 (R, estimate) For A sufficiently large,

8

< —

”ROSCJ”L,IX =16 .
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Proof By Lemma 2.1, we have

IRoscll S o7 [hon) Y- e VOERO ) -
I<k<d "

It follows from Holder’s inequality that

”ROSC,t”LtlJ = C‘RO—_1 |‘h(0’f) ”LI([O,I]) = (jRO‘_l

O
Lemma 8.6 (Riem estimate) There holds
1)
||Rrem||Lt"X =< 5
Proof We need to estimate
IReemllpr < Y 110 = X Reexll s -
T 1<k=d
Note that
2 8 c
(t, x) € supp(1 — x;) = |Rk| < 1 or tel,
and thus by (6.3) we have
IRenlly, = 3 [ (= adiRidrdr+ [ (1= gpiRadxar
g IRy relf
<d x (][0, 1] x T xi+2rx IRl oo)=§
= ’ 4d Lia) = o
O

8.5 Conclusion of the Proof of Proposition 3.1

We can finish the proof of Proposition 3.1 by showing (3.7).
We take A sufficiently large so that all lemmas in this section and Lemma 7.7 hold.
Then the new defect field R satisfies

IRN L1 qo,1xme)) = I Reemllzy  + I Rinllzr 4 1 Reorll

+ ||Rosc,x||L1 + ||Rosc,t||L1 + ||Rrem||L1 i
t,x t,x t,x
1) 1)

<5x — —
= X16+2

<.
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