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Abstract
We consider the linear transport equations driven by an incompressible flow in
dimensions d ≥ 3. For divergence-free vector fields u ∈ L1

t W
1,q , the celebrated

DiPerna-Lions theory of the renormalized solutions established the uniqueness of the
weak solution in the class L∞

t L p when 1
p + 1

q ≤ 1. For such vector fields, we show

that in the regime 1
p + 1

q > 1, weak solutions are not unique in the class L1
t L

p. One

crucial ingredient in the proof is the use of both temporal intermittency and oscillation
in the convex integration scheme.

Keywords Transport equation · Nonuniquness · Convex integration
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1 Introduction

In this paper, we consider the linear transport equation on the torus Td

{
∂tρ + u · ∇ρ = 0

ρ|t=0 = ρ0,
(1.1)
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where ρ : [0, T ] × T
d → R is a scalar density function, u : [0, T ] × T

d → R
d is a

given vector field. We always assume u is incompressible, i.e.,

div u = 0.

By the linearity of the equation, even for very rough vector fields it is not difficult
to prove the existence of weak solutions that solves the equation in the sense of
distributions

ˆ
Td

ρ0ϕ(0, ·) dx =
ˆ T

0

ˆ
Td

ρ(∂tϕ + u · ∇ϕ) dxdt for all ϕ ∈ C∞
c ([0, T ) × T

d).

(1.2)
Our main focus is the uniqueness/nonuniqueness issue for weak solutions to (1.1).

More precisely, we investigate whether the DiPerna-Lions uniqueness result is sharp.

Theorem 1.1 (DiPerna-Lions [29])Let p, q ∈ [1,∞]and let u ∈ L1(0, T ;W 1,q(Td))

be a divergence-free vector field. For any ρ0 ∈ L p(Td), there exists a unique renor-
malized solution ρ ∈ C([0, T ]; L p(Td) to (1.1). Moreover, if

1

p
+ 1

q
≤ 1 (1.3)

then this solution ρ is unique among all weak solutions in class L∞(0, T ; L p(Td).

Based on scaling analysis and a close examination of the proof in [29], one can
speculate that if

1

p
+ 1

q
> 1, (1.4)

then the uniqueness may fail. More specifically,

Conjecture 1.2 Let p, q ∈ [1,∞]. Let u ∈ L1(0, T ;W 1,q(Td)) be a divergence-free
vector field.

(1) If 1
p + 1

q ≤ 1, then there exists a unique weak solution ρ ∈ L∞([0, T ]; L p(Td)

to (1.1).
(2) If 1

p + 1
q > 1, then weak solutions in the class L∞([0, T ]; L p(Td)) are not unique.

In this paper, we address the question (2) in Conjecture 1.2 and prove the following.

Theorem 1.3 Let d ≥ 3 and p, q ∈ [1,∞] satisfying p > 1 and (1.4). Then there
exists a divergence-free vector field

u ∈ L1(0, T ;W 1,q(Td)) ∩ L∞(0, T ; L p′
(Td)),

such that the uniqueness of (1.1) fails in the class

ρ ∈ L1(0, T ; L p(Td)).

Moreover, the initial data of such solutions ρ can be attained in the classical sense.
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This result is proved by the convex integration technique developed over the last
decade [11,15,31,32,38,42], in the spirit of [15] and using the formulation of [42].
One key ingredient is the use of both temporal intermittency and oscillations in the
convex integration scheme, which is implemented by oscillating stationary building
blocks intermittently in time.

1.1 Background andMain Results

It is known that for Lipschitz vector fields, smooth or classical solutions of (1.1)
can be obtained by solving the ordinary differential equation for the flow map X :
[0, T ] × T

d → T
d {

∂t X(t, x) = u(t, X(t, x))

X(0, x) = x,
(1.5)

and setting ρ(t, X) = ρ0(x). For instance, the wellposedness and uniqueness of (1.1)
can be deduced from the Cauchy- Lipschitz theory for (1.5). Moreover, for such vector
fields, the inverse flow map X−1(t) solves the transport equation

{
∂t X−1 + u · ∇X−1 = 0

X−1(0) = Id .

For vector fields that are not necessarily Lipschitz, the link between the PDE (1.1)
and the ODE (1.5) is less obvious. Even though one can prove the existence of weak
solutions fairly easily by the linearity of the equation, the uniqueness issue of (1.1)
becomes subtler for non-Lipschitz vector fields. The uniqueness class for the density
is generally related to the Sobolev/BV regularity of the vector field. The first result in
this direction dates back to the celebrated work of DiPerna-Lions [29] which used the
method of renormalization. Since then a lot of effort has been devoted to determining
how far the regularity assumption on the vector field can be relaxed. Profound ideas and
complex theories, that are beyond the scope of this paper, have been developed, in par-
ticular, the notion of regular Lagrangian flows introduced by Ambrosio [4]. We refer
to the works [4,12,16–18,22,24,39] and the surveys [5,30] for regularity/uniqueness
results in this direction and for related results of the continuity equation.

Very roughly speaking, there are currently two distinct methods of proving
nonuniqueness for (1.1). The first approach is Lagrangian, using the degeneration
of the flow map to show nonuniqueness at the ODE level; while the second approach
isEulerian, using convex integration to prove nonuniqueness directly at the PDE level.

In regard to the Lagrangian approach, in their original work [29], DiPerna and Lions
provided a counterexample u ∈ W 1,q with unbounded divergence and a divergence-
free counterexample u ∈ Ws,1 for all s < 1 but u /∈ W 1,1. Much later, Depauw
in [28] constructed nonuniqueness in the class ρ ∈ L∞

t,x for incompressible vector
fields L1

loc BV based on the example in [3]. This type of examples were revisited in
[2,24,48] in other contexts. More recently, in [27], Drivas, Elgindi, Iyer and Jeong
proved nonuniqueness in the class ρ ∈ L∞

t L2 for u ∈ L1
t C

1− based on anomalous
dissipation and mixing. We should emphasize that the Lagrangian approach is not
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suited for a construction of a divergence-free example with Sobolev regularity of one
full derivative, say u ∈ L1

t W
1,p.

On the Eulerian side, the first nonuniqueness result was obtained by Crippa, Gusev,
Spirito, and Wiedemann in [19] using the framework of [31]. However, the vector
field u was merely bounded and did not have an associated Lagrangian flow. The
first breakthrough result for the Sobolev vector field was obtained by Modena and
Székelyhidi [42]. Note that the Sobolev regularity L1

t W
1,p of the vector field implies

the uniqueness of a regular Lagrangian flow, see for example [1]. The contrast between
the Lagrangian and Eulerian wellposedness has also been studied in various contexts,
see for instance [21,30,46,47].

Starting with the groundwork work of Modena and Székelyhidi [42], the Eulerian
nonuniqueness issue of (1.1) has drawn a lot of research attention lately. Below are
the functional classes where the nonuniqueness has been achieved:

(1) [42] (Modena and Székelyhidi): ρ ∈ Ct L p when u ∈ CtW 1,q ∩Ct L p′
for 1

p + 1
q >

1 + 1
d−1 , p > 1 and d ≥ 3. Later in [43]: extension to the endpoint p = 1 and u

also being continuous.
(2) [44] (Modena and Sattig): ρ ∈ Ct L p when u ∈ CtW 1,q ∩Ct L p′

for 1
p + 1

q > 1+ 1
d

and d ≥ 2.
(3) [7] (Bruè, Colombo, and De Lellis): positive1 ρ ∈ Ct L p when u ∈ CtW 1,q for

1
p + 1

q > 1 + 1
d , p > 1 and d ≥ 2.

In light of the current state, it is then natural to ask whether one can close the gap
between the DiPerna-Lions regime 1

p + 1
q ≤ 1 and the Modena-Sattig-Székelyhidi

regime 1
p + 1

q > 1 + 1
d .

In this paper, we address this question and prove nonuniqueness in the full com-
plement of the DiPerna-Lions regime

1

p
+ 1

q
> 1

for weak solutions in the class ρ ∈ L1
t L

p, p > 1 for dimensions d ≥ 3.

Theorem 1.4 Let d ≥ 3 and p, q ∈ [1,∞] satisfying p > 1 and (1.4). For any ε > 0
and any time-periodic2 ρ̃ ∈ C∞([0, T ] × T

d) with constant mean

 
Td

ρ̃(t, x) dx =
 
Td

ρ̃(0, x) dx for all t ∈ [0, T ],

there exist a vector field u : [0, T ] × T
d → R

d and a density ρ : [0, T ] × T
d → R

such that the following holds.

(1) u ∈ L1(0, T ;W 1,q(Td)) ∩ L∞(0, T ; L p′
(Td)) and ρ ∈ L1(0, T ; L p(Td)).

(2) (ρ, u) is a weak solution to (1.1) in the sense of (1.2).
(3) The deviation of L p norm is small on average: ‖ρ − ρ̃‖L1

t L p ≤ ε.

1 Note that uniqueness result for positive ρ can go beyond the DiPerna-Lions range, see [7, Theorem 1.5]
2 We identify [0, T ] with an 1-dimensional torus.
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(4) ρ(t) is continuous in the sense of distributions and for t = 0, T , ρ(t) = ρ̃(t).
(5) The temporal supports satisfy suppt ρ ∪ suppt u ⊂ suppt ρ̃.

It is easy to deduce Theorem 1.3 from Theorem 1.4.

Proof of Theorem 1.3 Let ρ0 ∈ C∞
0 (Td) with ‖ρ0‖p = 1. We take ρ̃ = χ(t)ρ0(x)

whereχ ∈ C∞
c ([0, T ]) is such thatχ(t) = 1 if |t− T

2 | ≤ T
4 andχ = 0 if |t− T

2 | ≥ 3T
8 .

We apply Theorem 1.4 with ε = T
1000 . The obtained solution ρ cannot have a constant

L p norm due to ‖ρ− ρ̃‖L1L p ≤ ε, and thus is different from the renormalized solution
associated with the same vector field u emerging from the same initial data.

Since ρ̃ vanishes near t = 0, both the solution ρ and the vector field u also vanish
near t = 0 and hence the initial data is attained in the classical sense.

Remark 1.5 Several remarks are in order.

(1) In general, the non-renormalized solution ρ ∈ L1
t L

p in Theorem 1.4 attains its
initial data in the sense of distribution instead of in some strong L p topology as in
[7,42–44]. This is due to the artifact of fast temporal oscillations.

(2) For any k ∈ N the vector fieldu satisfies
´ T
0 ‖u(t)‖r

Wk,∞ < ∞ for some small r > 0

depending on k. The “bad” part of u concentrates on a small set3 in [0, T ] × T
d .

The density ρ also satisfies
´ T
0 ‖ρ(t)‖r∞ < ∞ for some r > 0.

(3) L1
t L

p is sharp in terms of the space regularity, but this is achieved at the expense
of time regularity by adding temporal intermittency. We discuss this below and in
detail in Section 5. The question of whether the nonuniqueness holds in the class
ρ ∈ L∞

t L p remains open.
(4) It seems possible to also cover the border case p = 1 by utilizing the technique in

[43](see also [9,11]).

1.2 Continuity-Defect Equation and the Convex Integration Scheme

Let us outline the main ideas and strategies of the proof. We follow the framework
of [42] to treat both ρ and u as unknowns and construct a sequence of approximate
solutions (ρn, un Rn) solving the continuity-defect equation{

∂tρn + un · ∇ρn = div Rn

div un = 0.
(1.6)

The vectors Rn are called the defect fields, which arise naturally when considering
weak solutions of (1.1). This framework allows us to use the interplay between the
density ρn and the vector field un as in a nonlinear equation.

The main goal is to design suitable perturbations θn := ρn − ρn−1 and wn :=
un − un−1 such that the defect fields Rn → 0 in an appropriate sense. The most
important step is to ensure the oscillation part

div Rosc := div(θnwn + Rn−1) (1.7)

3 In fact, the singular set of u is dense, and as a result, there is no local regularity outside the singular set,
cf. [8,20].
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consists of only high frequencies so that the new defect field Rn is much smaller than
Rn−1. This technique is now considered standard among the experts, and we refer
readers to [6,9,10,13,26,31,32,38,45] for more discussion on this technique in other
models.

In previous works [42–44], perturbations (ρn, wn) are designed so that (1.7) has
only high frequencies in space, and the error is canceled point-wise in time. In these
works, the defect field Rn → 0 in the norm L∞

t L1. In particular, the final solution is
homogeneous in time.

In this paper, we use a convex integration scheme that features both spatial and
temporal oscillations. This is done by adding in temporal oscillation when designing
(ρn, wn) such that, to the leading order, (1.7) can be split into two parts, one with high
spatial frequencies, and the otherwith high temporal frequencies. This idea is implicitly
rooted in the work [15], but it was not formulated to encode temporal intermittency
but rather to cancel a part of the error caused by adding spatial intermittency.

Based on the above discussion, on the technical side, the defect fields Rn shall be
measured in L1

t,x instead of L∞
t L1. In other words, the defect fields Rn are canceled

weakly in space-time, rather than pointwise in time and weakly in space. This relax-
ation allows us to exploit temporal intermittency and design the perturbations (ρn, wn)

with critical space regularity, which we discuss below.

1.3 Space–time Intermittency in the Convex Integration

Even though the concept of intermittency and its theoretical studies has been around
for many years [25,37,41] in hydrodynamic turbulence, it was only implemented with
convex integration very recently in the seminal work [15] of Buckmaster and Vicol.
We can summarize the difficulty as follows. At the heart of its argument, convex
integration relies on adding highly oscillatory perturbations to obtain weakly con-
verging solutions. A more intermittent perturbation carries a more diffused Fourier
side and introduces more interactions among oscillations. These harmful interactions
are difficult to control and cause the iteration scheme to break down. We refer to [9–
11,31–33,38] for the birth and development of this technique in the fluid dynamics
and [6,15,23,40,42,44] and the survey [14] for discussions on intermittency in convex
integration.

To fix ideas, let us denote by D the intermittency dimension (in space), cf. [37].
Roughly speaking, the solution is concentrated on a set of dimension D in space.
This is related to the development of “concentration” in the context of weak solutions,
[34,35].

However, for the transport equation, using only spacial intermittency in a convex
integration scheme is not enough to reach the full complement of DiPerna-Lions
regime. If the solution (ρ, u) is homogeneous in time, then by the duality ρ ∈ L∞

t L p

and u ∈ L∞
t L p′

imposed by the machinery of convex integration, we can see that

u ∈ L∞
t L p′ ⇒ u ∈ L∞

t W 1,q for
1

p
+ 1

q
> 1 + 1

d − D
. (1.8)

123



Nonuniqueness for Transport Equation at Critical Space Regularity Page 7 of 45 2

In other words, the Sobolev regularity u ∈ L∞W 1,q must come at the cost of
integrability in space if the vector field is homogeneous in time. This simple heuristics
works surprisingly well and explains the gap between the DiPerna-Lions regime 1

p +
1
q ≤ 1 and theModena-Sattig-Székelyhidi regime 1

p + 1
q > 1+ 1

d even when spatially

fully intermittent D = 0 building blocks were used in [7,44].
One of the most striking differences between previous schemes and the current

one is that intermittency in space plays a very little role. In fact, we use the “Mikado
densities” and “Mikado fields” in [42] which is not spatially fully intermittent but only
has a d − 1-dimensional concentration. Furthermore, the convex integration scheme
goes through as long as the stationary building blocks are not spatially homogeneous.

By contrast, the Sobolev regularity u ∈ L1
t W

1,q emerges entirely from the temporal
intermittency in our construction that does not rely on the fundamental heuristics
(1.8) as previous works. Instead, we take advantage of the duality ρ ∈ L1

t L
p and

u ∈ L∞
t L p′

, which is consistent with the decay of the defect field in L1
t,x rather than

L∞
t L1

x norm. The temporal intermittency of the vector field u allows us to improve
the space regularity as the expense of a worse time regularity, namely

u ∈ L∞
t L p′ ⇒ u ∈ L1

t W
1,q for

1

p
+ 1

q
> 1. (1.9)

Indeed, if u is fully intermittent in time, then L∞
t to L1

t embedding gains a full
derivative in time. By a dimensional analysis, u ∈ L1

t W
1,q can be achieved in (1.9)

as long as the associated temporal frequency is comparable to the spacial frequency,
since q < p′ by 1

p + 1
q > 1. Note that this approach requires a sharper estimate of the

error involving the time derivative since the temporal frequencies become as large as
spacial frequencies.We also emphasize that the heuristics (1.9) encodes no information
on spacial intermittency, which is fundamentally different from the heuristics (1.8).
In fact, the convex integration scheme works in a wide range of concentration and
oscillation parameters. We refer to Section 6 for the specific choice of parameters and
Lemma 8.1 for the sharp estimate of the temporal error.

1.4 Temporal Intermittency Via Oscillating Stationary Solutions

We will now describe the implementation of temporal intermittency needed to reach
the optimal spatial regularity. This is achieved via oscillating stationary building blocks
intermittently in time.

Current convex integration schemes employ spatially intermittent building blocks
that are either not stationary [7,44], or stationary [42] but only suitable for d ≥ 3.
Even though theoretically it seems to be possible to achieve temporal intermittency
using non-stationary building blocks [7,44] in d ≥ 2, such an approach, if possible,
would be less intuitive and significantly more complicated, and it is not clear to the
authors that one can reach the same nonuniqueness regime as in the current paper.
Our approach adheres closer to the original idea of adding space-time oscillations
to stationary solutions implemented in the pioneering work [31] that introduced the
convex integration technique to fluid dynamics for the first time.
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To perform convex integration on Td , d ≥ 3 we use the stationary Mikado density
�k and Mikado flow Wk on T

d , first introduced in [42]. With stationary building
blocks (�k,Wk) at hand, we implement the temporal intermittency as follows. On
one hand, we use temporal oscillations to relax the convex integration procedure from
pointwise toweak in time.Given a solution (ρ, u, R) of the continuity-defect equation,
we design a perturbation (θ, w) so that, to the leading order, it produces a high-high
to low cascade in space-time that balances the old defect field R in the sense that

div(θw + R) = High Spacial Freq. Term + High Temporal Freq. Term

+Lower Order Terms.

The terms with high temporal frequencies will be further balanced by the time deriva-
tive of a small corrector, similar to [15], while the other terms can be easily handled by
standard methods. On the other hand, the relaxation of convex integration to be done
weakly in time allows us to add temporal intermittency in the perturbations (θ, w).
The key is to ensure that (θ, w) is almost fully intermittent in time, which determines
the regularity of the final solution ρ ∈ L1

t L
p and u ∈ L∞

t L p′ ∩ L1
t W

1,q .
To summarize, in the proposed convex integration scheme, the perturbations consist

of space-time intermittent oscillatory building blocks. The temporal intermittency is
used to achieve the optimal range in (1.9), whereas the temporal oscillation allows us
to cancel the defect fields on average in space-time, consistent with the decay of Rn

in the norm L1
t,x . We refer to Section 5 for more details.

1.5 Organization of the Paper

The rest of the paper is organized as follows.

• We introduce the notations and many technical tools used throughout the paper in
Section 2.

• Section 3 is devoted to the proof of Theorem 1.4 by assuming themain proposition,
Proposition 3.1.

• In Section 4 we recall the periodic stationary solutions (�k,Wk) on Td , d ≥ 3 in
[42]. These pairs (�k,Wk)will be the main building blocks in space of the convex
integration scheme.

• Section 5 is a detailed explanation for the use of temporal oscillation and intermitet-
ncy in the convex integration scheme. In particular, we will define the temporal
oscillators g̃κ , gκ that we use to oscillate the building blocks (�k,Wk) in time.

• Section 6, 7, 8 constitute the proof of Proposition 3.1:

– In Section 6 we first define the perturbation density ρ and vector field w using
the building blocks (�k,Wk). And then the new defect field R is derived from
the perturbations θ and w, which is the core of our convex integration scheme.

– The estimates for the perturbations ρ and w are done in Section 7. Then we
conclude the proof of the perturbation part of Proposition 3.1.

– The new defect field R is estimated is Section 8. The rest of the proof of
Proposition 3.1 will be completed in the end.
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2 Preliminaries

The purpose of this section to collect the technical tools that will be used throughout
the paper. We keep this section relatively concise so that we are not distracted from
the main goal of proving the nonuniqueness result.

2.1 Notations

Throughout the manuscript, we use the following notations.

• T
d = R

d/Zd is the d-dimensional torus. For any function f : Td → Rwe denote
by f (σ ·) the σ−1

T
d -periodic function f (σ x).

• For any p ∈ [1,∞], its Hölder dual is denoted as p′. Throughout the paper, p is
fixed as in Theorem 1.4. We will use r for general Lr norm.

• For any 1 ≤ r ≤ ∞, the Lebesgue space is denoted by Lr . For any f ∈ L1(Td),
its spacial average is

 
Td

f dx =
ˆ
Td

f dx .

• For any function f : [0, T ] × T
d → R, denote by ‖ f (t)‖r the Lebesgue norm

on T
d (in space only) at a fixed time t . If the norm is taken in space-time, we use

‖ f ‖Lrt,x .
• The space C∞

0 (Td) is the set of periodic smooth functions with zero mean, and
C∞
c (Rd) is the space of smooth functions with compact support in Rd .

• We often use the same notations for scalar functions and vector functions. Some-
times we use C∞

0 (Td ,Rd) for the set of periodic smooth vector fields with zero
mean.

• We use ∇ to indicate full differentiation in space only, and space-time gradient is
denoted by ∇t,x . Also, ∂t is the partial derivative in the time variable.

• For any Banach space X , the Banach space Lr (0, T ; X) is equipped with the norm

( ˆ T

0
‖ · ‖rX dt

) 1
r
,

and we often use the short notations L p
t X and ‖ · ‖Lrt X .• We write X � Y if there exists a constant C > 0 independent of X and Y such

that X ≤ CY . If the constant C depends on quantities a1, a2, . . . , an we will write
X �a1,...,an or X ≤ Ca1,...,anY

2.2 Antidivergence OperatorsR andB onTd

We will use the standard antidivergence operator 
−1∇ on Td , which will be denoted
byR.
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It is well known that for any f ∈ C∞(Td) there exist a unique u ∈ C∞
0 (Td) such

that


u = f −
 

f .

For any smooth scalar function f ∈ C∞(Td), the standard anti-divergence operator
R : C∞(Td) → C∞

0 (Td ,Rd) can be defined as

R f := 
−1∇ f ,

which satisfies

div(R f ) = f −
 
Td

f for all f ∈ C∞(Td),

and

‖R(div u)‖r � ‖u‖r for all u ∈ C∞(Td ,Rd) and 1 < r < ∞.

The next result, which says that R is bounded on all Sobolev spaces Wk,p(Td), is
classical, see for instance [42, Lemma 2.2] for a proof.

Lemma 2.1 Let d ≥ 2. For every m ∈ N and r ∈ [1,∞], the antidivergence operator
R is bounded on Wm,r (Td) for any m ∈ N:

‖R f ‖Wm,r � ‖ f ‖Wm,r . (2.1)

Throughout the paper, we use heavily the following fact about R.

R f (σ ·) = σ−1R f for any f ∈ C∞
0 (Td) and any positive σ ∈ N.

We will also use its bilinear counterpart B : C∞(Td) × C∞(Td) → C∞(Td ,Rd)

defined by

B(a, f ) := aR f − R(∇a · R f ).

This bilinear version B has the additional advantage of gaining derivative from f
when f has zero mean and a very small period. See also higher order variants of B in
[44].

It is easy to see that B is a left-inverse of the divergence,

div(B(a, f )) = a f −
 
Td

a f dx provided that f ∈ C∞
0 (Td), (2.2)

which can be proved easily using integration by parts. The following estimate is a
direct consequence of Lemma 2.1.
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Lemma 2.2 Let d ≥ 2 and 1 ≤ r ≤ ∞. Then for any a, f ∈ C∞(Td)

‖B(a, f )‖r � ‖a‖C1‖R f ‖r .

Proof This follows from Hölder’s inequality and Lemma 2.1. ��
Remark 2.3 The assumption on f in Lemma 2.2 can be relaxed to f ∈ Lr (Td).

2.3 Improved Hölder’s inequality onTd

We recall the following result due toModena and Székelyhidi [42, Lemma 2.1], which
extends the first type of such result [15, Lemma 3.7].

Lemma 2.4 Let σ ∈ N and a, f : T
d → R be smooth functions. Then for every

r ∈ [1,∞], ∣∣∣‖a f (σ ·)‖r − ‖a‖r‖ f ‖r
∣∣∣ � σ− 1

r ‖a‖C1‖ f ‖r . (2.3)

This result allows us to achieve sharp Lr estimates when estimating the pertur-
bations in Section 7. Note that the error term on the right-hand side can be made
arbitrarily small by increasing the oscillation σ .

2.4 MeanValues and Oscillations

We use the following Riemann-Lebesgue type lemma.

Lemma 2.5 Let σ ∈ N and a, f : T
d → R be smooth functions such that f ∈

C∞
0 (Td). Then for all even n ≥ 0∣∣∣ 

Td
a(x) f (σ x) dx

∣∣∣ �n σ−n‖a‖Cn‖ f ‖2. (2.4)

Proof Since f has zero mean, by repeatedly integrating by parts we deduce that 
Td

a(x) f (σ x) dx = σ−n
 
Td


n/2a
−n/2 f (σ ·) dx .

On one hand, we have

‖
n/2a‖L2(Td ) � ‖a‖Cn(Td ).

On the other hand, since f is zero-mean, by the Plancherel theorem

‖
−n/2 f ‖L2(Td ) � ‖ f ‖L2(Td ).

Thus for any even n we have∣∣∣ 
Td

a(x) f (σ x) dx
∣∣∣ �n σ−n‖a‖Cn‖ f ‖2.

��
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3 TheMain Proposition and Proof of Theorem 1.4

3.1 Time-Periodic Continuity-Defect Equation

We follow the framework of [42] to obtain approximate solutions to the transport
equation by solving the continuity-defect equation

{
∂tρ + div(ρu) = div R

div u = 0,
(3.1)

where R : [0, T ]×T
d → R

d is called the defect field. In what follows, (ρ, u, R) will
denote a solution to (3.1).

Throughout the paper, we assume T = 1 and identify the time interval [0, 1] with
an 1-dimensional torus. As a result, we will only consider smooth solutions (ρ, u, R)

to (3.1) that are time-periodic as well, namely

ρ(t + k) = ρ(t), u(t + k) = u(t), R(t + k) = R(t) for any k ∈ Z.

For any r > 0, let

Ir := [r , 1 − r ].

We now state the main proposition of the paper and use it to prove Theorem 1.4.

Proposition 3.1 Let d ≥ 3 and p, q ∈ [1,∞] satisfying p > 1 and (1.4). There exist
a universal constant M > 0 and a large integer N ∈ N such that the following holds.

Suppose (ρ, u, R) is a smooth solution of (3.1) on [0, 1]. Then for any δ, ν > 0,
there exists another smooth solution (ρ1, u1, R1) of (3.1) on [0, 1] such that the density
perturbation θ := ρ1 − ρ and the vector field perturbation w = u1 − u verify the
estimates

‖θ‖L1
t L p ≤ νM‖R‖1/p

L1
t,x

, (3.2)

‖w‖L∞
t L p′ ≤ ν−1M‖R‖1/p′

L1
t,x

, (3.3)

‖w‖L1
t W 1,q ≤ δ. (3.4)

In addition, the density perturbation θ has zero spacial mean and satisfies

∣∣∣ˆ
Td

θ(t, x)ϕ(x) dx
∣∣∣ ≤ δ‖ϕ‖CN , for any t ∈ [0, 1] and any ϕ ∈ C∞(Td),

(3.5)

supp θ ⊂ Ir × T
d for some r > 0, and suppt θ ∪ suppt w ⊂ suppt R. (3.6)
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Moreover, the new defect field R1 satisfies

‖R1‖L1
t,x

≤ δ. (3.7)

3.2 Proof of Theorem 1.4

Proof We assume T = 1 without loss of generality. We will construct a sequence
(ρn, un, Rn), n = 1, 2 . . . of solutions to (3.1) as follows. For n = 1, we set

ρ1(t) := ρ̃,

u1(t) := 0,

R1(t) := R(
∂t ρ̃

)
.

Then (ρ1, u1, R1) solves (3.1) trivially by the constant mean assumption on ρ̃.
Next, we apply Proposition 3.1 inductively to obtain (ρn, un, Rn) for n = 2, 3 . . .

as follows. Let

ν = ε

2M
‖R1‖− 1

p

L1
t,x

, δn := 2−p(n−1)‖R1‖L1
t,x

,

where we note that 1 < p, p′ < ∞ by the assumptions on p, q.
Given (ρn, un, Rn), we apply Proposition 3.1 with parameters ν and δn to obtain a

new triple (ρn+1, un+1, Rn+1). Then the perturbations θn := ρn+1 − ρn and wn :=
un+1 − un verify

‖θn‖L1
t L p ≤ Mνδ

1
p
n , ‖wn‖L∞

t L p′ ≤ Mν−1δ

1
p′
n ,

and

‖wn‖L1
t W 1,q ≤ δn,

supp θn ⊂ Irn×T
d for some rn > 0,

for all n = 1, 2 . . . . So there exists (ρ, u) ∈ L1
t L

p × L∞
t L p′

such that

ρn −→ ρ in L1
t L

p, (3.8)

un −→ u in L∞
t L p′ ∩ L1

t W
1,q . (3.9)

It is standard to prove (ρ, u) is a weak solution to (1.1) since

ρnun −→ ρu in L1
t,x .
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Moreover,

‖ρ − ρ̃‖L1
t L p ≤

∑
n≥1

‖θn‖L1
t L p ≤

∑
n≥1

ε2−n ≤ ε.

To show that ρ(t) is continuous in the sense of distributions, let ϕ ∈ C∞
c (Td). It

follows that

〈ρ(t) − ρ(s), ϕ〉 ≤
∣∣∣〈ρ(t) − ρn(t), ϕ〉

∣∣∣ +
∣∣∣〈ρn(t) − ρn(s), ϕ〉

∣∣∣
+

∣∣∣〈ρn(s) − ρ(s), ϕ〉
∣∣∣.

Since by (3.4)∣∣∣〈ρ(t) − ρn(t), ϕ〉
∣∣∣ ≤

∑
k≥n+1

δn‖ϕ‖CN for all t ∈ [0, 1],

the continuity of ρ in distribution follows from the smoothness of ρn .
The claim that ρ(t) = ρ̃(t) for t = 0, 1 follows from the fact that ρn(0) = ρ(0)

and ρn(1) = ρ(1) for all n since

supp θn ⊂ Irn × T
d .

Finally, the claim that suppt ρ ∪ suppt u ⊂ suppt ρ̃ follows from the fact that
suppt R1 ⊂ suppt ρ̃. ��

4 Stationary Mikado Density andMikado Fields

In this section, we recall the construction of the stationaryMikado density andMikado
fields introduced byModena and Székelyhidi in [42] with its roots dating back to [36],
which will be used as the building blocks in space in the convex integration scheme.

Let d ≥ 3 be the spacial dimension. We fix a vector field 
 ∈ C∞
c (Rd−1,Rd−1)

such that

supp
 ∈ (0, 1)d−1,

and denote by φ ∈ C∞
c (Rd−1) the solution

div
 = φ.

The vector field 
 is also normalized such that
ˆ
Rd−1

φ2 = 1.

Throughout this section, for μ > 0, we denote φμ = ψ(μx) and 
μ = 
(μx).
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4.1 Non-periodic Mikado Densities8k andMikado FieldsWk

For each k = 1, . . . , d, we define

�k(x1, . . . , xd) = μ
d−1
p φμ(x1, . . . , xk−1, xk+1, . . . , xd), (4.1)

and

Wk(x1, . . . , xd) = μ
d−1
p′ φμ(x1, . . . , xk−1, xk+1, . . . , xd)ek, (4.2)

where ek is the k-th standard Euclidean basis and the exponents p, p′ ∈ (1,∞) are as
in Theorem 1.4.

Since �k and Wk effectively depend only on d − 1 coordinates, we have the fol-
lowing.

Theorem 4.1 (Exact stationary solution (�k,Wk)) Let d ≥ 3 and μ > 0. The density
�k : Rd → R and the vector field Wk : Rd → R

d , k = 1, . . . , d verify the following.

(1) �k,Wk ∈ C∞(Rd). Both �k and Wk have zero mean in the unit cube

ˆ
(0,1)d

�k =
ˆ

(0,1)d
Wk = 0.

(2) The Mikado fields are divergence-free:

divWk = 0,

and the pair (�k,Wk) solves the stationary transport equation

div(�kWk) = Wk · ∇�k = 0.

(3) There holds ˆ
(0,1)d

�kWk = ek . (4.3)

(4) There exists vector potentials 
k ∈ C∞(Rd ,Rd) such that

div
k = �k

and

‖
k‖Lr ((0,1)d ) � μ
−1+ d−1

p − d−1
r .

Proof The first three properties are standard and follow directly from the definition.
For the last property, let us define


k := μ
−1+ d−1

p 
μ(x1, . . . , xk−1, xk+1, . . . , xd).
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Then by the definition of φ and 
, we have

div(
k) = �k .

The estimate for 
k follows immediately

‖
k‖Lr ((0,1)d ) ≤ μ
−1+ d−1

p ‖
μ‖Lr (Rd−1)

� μ
−1+ d−1

p − d−1
r .

��

4.2 Geometric Setup and Periodization

Next, we use the obtained non-periodic solutions ((�k,Wk) to generate a family of d
pairs (�k,Wk) by translation and periodization. The goal is to make sure (�k,Wk)

centered at disjoint line in (0, 1)d that are parallel to the Euclidean basis ek .
We choose a collection of distinct points pk ∈ [1/4, 3/4]d for k = 1, . . . , d and a

number ε0 > 0 such that

⋃
k

Bε0(pk) ⊂ [0, 1]d ,

and
dist(lk, lk′) ≥ ε0 if k �= k′. (4.4)

where lk ⊂ R
d is the line passing through pk with direction k. The lines lk will be

the centers of our solutions (�k,Wk). We then choose translations Tk : Td → T
d for

k = 1, . . . , d,

Tk x := x + pk .

Now we are ready to introduce the periodic solution (�k,Wk) as the 1-periodic
extension of (�k,Wk).

Definition 4.2 (Periodic solutions) Let d ≥ 3. Define periodic density � : Td → R
d

and periodic vector fields Wk : Td → R
d by

�k(Tk x) =
∑
j∈Zd

jk=0

�k(x + j),

Wk(Tk x) =
∑
j∈Zd

jk=0

Wk(x + j),

123



Nonuniqueness for Transport Equation at Critical Space Regularity Page 17 of 45 2

and the periodic potential �k : Td → R
d by

�k(Tk x) :=
∑
j∈Zd

jk=0


k(x + j).

From the definition we immediately obtain Sobolev estimates for (�k,Wk).

Proposition 4.3 Let d ≥ 3. For any μ > 0, the following estimates hold for any
1 ≤ r ≤ ∞:

μ−m
∥∥∇m�k

∥∥
Lr (Td )

�m μ
d−1
p − d−1

r , m ∈ N,

μ−m
∥∥∇m�k

∥∥
Lr (Td )

�m μ
−1+ d−1

p − d−1
r , m ∈ N

μ−m
∥∥∇mWk

∥∥
Lr (Td )

�m μ
d−1
p′ − d−1

r , m ∈ N.

Proof These estimates follow immediately from rescaling. ��
Theorem 4.4 (Stationary periodic solution (�k,Wk)) Let d ≥ 3 and μ ≥ 2ε−1

0 . The
periodic solutions �k,Wk ∈ C∞

0 (Td) verify the following.

(1) The vector field Wk is divergence-free,

divWk = 0,

and the pair (�k,Wk) solves the stationary transport equation

div(�kWk) = Wk · ∇�k = 0. (4.5)

(2) The density �k is the divergence of the potential �k ,

div�k = �k . (4.6)

(3) There holds ˆ
Td

�kWk = ek (4.7)

and if k �= k′, then

supp�k ∩ suppWk′ = ∅. (4.8)

Proof The first property follows directly from Theorem 4.1 while the second property
follows from the definition.

The last property follows from the facts that supp� ⊂ (0, 1)d−1 and dist(li , l j ) ≥
ε0 if i �= j . ��
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5 Temporal Intermittency and Oscillation

Here we introduce one of the key ingredients of this paper, the use of both temporal
intermittency and oscillation. This allows us to kill the previous defect field in a space-
time average fashion instead of point-wise in time.

For convenience, we will treat the time interval [0, 1] as an 1-dimensional torus T.
In what follows we always write [0, 1] as an interval in time to distinguish it from the
periodicity in space.

5.1 Limitations of the Previous Schemes

We start by discussing how the Sobolev regularity was obtained in previous convex
integration schemes [42–44]. Assume that we have (ρ, u, R) the solution to the defect
equation

∂tρ + u · ∇ρ = div R,

the goal is to design suitable perturbations (θ, w) such that (ρ + θ, u + w) is a new
solution to the defect equation with a smaller defect field R1.

Typical in the convex integration scheme, the principle part of the perturbation
(θ, w) takes the form

θ =
∑
k

ak�k, w =
∑
k

bkWk . (5.1)

The coefficients ak, bk , depending on the previous defect field R, are chosen such that
the leading order high-high to low interaction balance the defect field R

∑
k

akbk

 
Td

�kWk dx + R ∼ 0.

Heuristically, without temporal intermittency, the duality given by the perturbation
is

θ ∈ L∞
t L p w ∈ L∞

t L p′
. (5.2)

To require Sobolev regularity of the vector fieldw, one has to trade in some integrability
in space to obtain

w ∈ L∞
t W 1,q for q such that

1

p
+ 1

q
> 1 + 1

d − D
(5.3)

where D is the intermittency dimension of (�k,Wk). This has been done in [42,43]
for D = 1 and in [7,44] for D = 0. So the approach of using only spacial intermittency
results in the nonuniqueness in the range

1

p
+ 1

q
> 1 + 1

d
.
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5.2 Convex Integration with Space-Time Intermittency and Oscillation

Our approach is to add in temporal intermittency and oscillations to the perturbation
(θ, w),

θ = g̃κ

∑
k

ak�k, w = gκ

∑
k

bkWk, (5.4)

where g̃κ , gκ : [0, 1] → R are intermittent functions in time with oscillations.
By imposing the duality

ˆ
[0,1]

g̃κgκ dt = 1,

we anticipate that the defect field is canceled weakly in space-time

∑
k

akbk

 
[0,1]×Td

g̃κgκ�kWk dxdt + R ∼ 0. (5.5)

This would allow us to obtain additional regularity in space at the expense of
regularity in time, which means that g̃κ and gκ have to have different scalings for
different L p norms. Indeed, with intermittency in time, we impose the duality between
θ and w to be

θ ∈ L1
t L

p, w ∈ L∞
t L p′

, (5.6)

which is also consistent with the ansatz (5.5).
The hope is that with enough temporal intermittency, we get

w ∈ L∞
t L p′ ⇒ w ∈ L1

t W
1,q for

1

p
+ 1

q
> 1. (5.7)

Note that temporal intermittency is the key difference between (5.3) and (5.7).
After performing convex integration in space, modulo an error term of high spacial

frequencies, the remaining error in (5.5) reduces to

R(g̃κgκ − 1), (5.8)

which is a term of high temporal frequency and thus can be canceled by adding a
temporal corrector θo such that to the leading order

∂tθo = −(g̃κgκ − 1) div R. (5.9)

To see that θo is indeed small compared to θ , note that the error term (5.8) has only
low frequencies in space, and thus we have

‖θo‖L1
t L p � 1,

provided θo oscillates much faster in time than the old defect filed R,
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5.3 Other Considerations

Introducing temporal intermittency and oscillations comes at the cost of worse bounds
in time for the perturbations θ and w. Of particular importance is the question of
whether the iteration scheme can go through, i.e. the defect field R can be made small
in L1

t,x . The most relevant part in the scheme is the term Rtem solving the equation

div Rtem = ∂tθ. (5.10)

It is clear that this term will impose certain constraints on the size of temporal fre-
quencies. In the end, it is the potential �k in Theorem 4.4 that saves the day: writing
θ as a divergence of a potential allows us to gain one full derivative in space. We can
also infer from (5.10) that the temporal frequency should be comparable to the spatial
frequency.

Notice that (5.7) does not require any intermittency in space but only intermittency
in time. It turns out that as long as θ and w are not homogeneous, i.e. just a little inter-
mittent in space, (5.7) can be achieved. The spacial intermittency is used to reconcile
(5.7) and (5.10) which is impossible when θ and w are completely homogeneous.

This is quite surprising and very different than the idea used in [7,42–44], where
more spacial intermittency for a solution yields improvements for the nonuniqueness
range.

5.4 Intermittent Functions in Time g̃� and g�

In this subsection we shall define the intermittent oscillatory functions g̃κ and gκ . We
take a profile function g ∈ C∞

c ([0, 1]) such that

ˆ
[0,1]

g2 dt = 1.

Let κ ≥ 1 be a temporal concentration parameter that will be fixed in the next
section. We introduce the temporal intermittency by adding a concentration utilizing
κ as follows.

Define gκ : R → R by

gκ(t) = g(κt). (5.11)

Note that κ ≥ 1 implies supp gκ ⊂ [0, 1]. By a slight abuse of notation, gκ will also
denote the 1-periodic extension of gκ by means of the Possion summation.

Next, we define

g̃κ = κgκ , (5.12)

so that gκ , g̃κ : [0, 1] → R are both 1-periodic.Wewill use g̃κ to oscillate the densities
�k , and gκ to oscillate the vectors Wk . Note the following important intermittency
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estimates
‖g̃κ‖Lr ([0,1]) � κ1− 1

r ,

‖gκ‖Lr ([0,1]) � κ− 1
r ,

(5.13)

and the normalization identity

ˆ
[0,1]

g̃κgκ dt = 1. (5.14)

Because of (5.13), for any k ∈ N we may choose r > 0 such that

ˆ 1

0
‖w(t)‖rWk,∞ dt � 1,

which confirms a note in Remark 1.5 that the vector field u will concentrate on a small
“bad” set in [0, 1] × T

d .

5.5 Temporal Correction Function h�

Finally, concerning the temporal corrector θo in (5.9), we define a periodic function
hκ : [0, 1] → R by

hκ(t) :=
ˆ t

0
(g̃κgκ − 1) dτ, (5.15)

so that
∂t hκ = g̃κgκ − 1. (5.16)

Note that by (5.14), hκ iswell-defined and an approximation of a saw-tooth function,
and we have the estimate

‖hκ‖L∞[0,1] ≤ 1, (5.17)

which holds uniformly in κ .
In other words, hκ is not intermittent at all for any κ > 0, and it will be used to

design the temporal corrector θo in the next section.

6 Proof of Proposition 3.1: Defining Perturbations and the Defect
Field

The main aim of this section is to define the perturbation density θ and velocity w, as
well as to solve for the new defect filed R1. This section is the core of the proof of
Proposition 3.1.

Let us summarize the main steps of this section as follows.

(1) We first fix all the parameters for the building blocks (�k,Wk) and g̃κ , gκ as
explicit powers of λ, whose value we shall fix in the end.
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(2) Next, we introduce a partition of the old defect field R to ensure the smoothness
of the perturbation.

(3) Then we define the perturbation (θ, w) which, to the leading order, consists of
linear combinations of the building blocks (�k,Wk) with suitable coefficients
that oscillate intermittently in time using the functions g̃κ , gκ defined in Section
5.

(4) Having defined the perturbations, we finally design the new defect field R1 so that
the new density ρ + θ and the new vector field u + w solve the continuity-defect
equation with the new defect field R1.

6.1 Defining the Parameters

Given p, q as in Proposition 3.1, there exists γ > 0 such that

min

{
1 − 1

p
,
1

q
− 1

p′

}
> 4γ. (6.1)

Let λ0 be the lower bound on μ given by Theorem 4.4. We fix the frequency
parameters λ,μ, κ, σ > 0 as follows:

• The major frequency parameter

λ ≥ λ0

will be fixed at the end depending on the previous solution (ρ, u, R) and the given
parameters δ, ν in Proposition 3.1.

• Concentration parameters μ, κ:

μ = κ = λ.

• Oscillation parameter σ ∈ N:

σ = �λγ �.

Note that the space and time periodicity require σ to be an integer. It is also worth
noting that both μ and σ can be any positive powers of λ. In contrast, the temporal
concentration κ has to be almost a full spacial derivative.

Below is a direct consequence of the choice of parameters.

Lemma 6.1 There exists r > 1 such that for any λ ≥ λ0, there holds

σμ
d−1
p′ − d−1

q ≤ λ−2γ ,

μ
d−1
p − d−1

r ≤ λ−γ .
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6.2 Defect Field Cutoff

To ensure smoothness of the perturbation (θ, w), we shall avoid the region where R
is small. To this end, we introduce cutoffs based on each component of R. Denote by
Rk the k-th component of the old defect field R, i.e., we write

R(t, x) =
∑

1≤k≤d

Rk(t, x)ek . (6.2)

We specify the constant r > 0 in Proposition 3.1 as follows. Fix r > 0 sufficiently
small such that

‖R‖L∞([0,1]×Td ) ≤ 1

4rd
. (6.3)

Next, we define smooth cutoff functions χk ∈ C∞
c ([0, 1] × T

d) such that

0 ≤ χk ≤ 1, χk(t, x) =
{
0 if |Rk | ≤ δ

8d or t /∈ Ir/2
1 if |Rk | ≥ δ

4d and t ∈ Ir .
(6.4)

where we recall the notation Ir = [r , 1 − r ] ⊂ [0, 1]. Note that by design each χk is
also time-periodic. Such cutoffs χk can easily be constructed by first cutting according
to the size of |Rk | and then multiplying by an additional cutoff in time. Also note that
bounds for χk depend on R and δ.

Now let us cut off Rk by introducing

R̃k = χk Rk . (6.5)

In what follows we often use the crude bounds

|∇n
t,x R̃k | �R,n,δ 1. (6.6)

6.3 Density andVelocity Perturbation (�,w)

The idea in the construction of the perturbation (θ, w) is the use of d-pairs of disjoint
(�k,Wk) to cancel each component Rk on average in time bymeans of the intermittent
oscillating factors in Section 5.

In summary, the perturbations (θ, w) are defined by

θ = θp + θc + θo

w = wp + wc

where θp andwp are principle parts of the perturbation, θc andwc are correctors for the
zero mean of θ and zero divergence of w respectively, and θo is a zero mean oscillator
that we use to balance a high temporal frequency error later.
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We first define the principle part of the perturbations. Let

θp(t, x) := ν−1g̃κ(σ t)
∑

1≤k≤d

‖R̃k(t)‖1−
1
p

1

‖R̃k‖1−
1
p

L1
t,x

sign(−Rk)χk |Rk |
1
p �k(σ x), (6.7)

wp(t, x) := νgκ(σ t)
∑

1≤k≤d

‖R̃k(t)‖
− 1

p′
1

‖R̃k‖
− 1

p′
L1
t,x

χk |Rk |
1
p′ Wk(σ x). (6.8)

The smoothness of θp and wp will be proved in Lemma 7.1. We take a moment to
analyze the role of each part involved in the definition.

• The factors ‖R̃k(t)‖1−
1
p

1 and ‖R̃k(t)‖
− 1

p′
1 are for the normalization to kill the old

defect field R via the high-high to low interactions in space .
• The cutoffs χk is to ensure smoothness by avoiding the regime where Rk is small.
Note that if ‖R̃k‖L1

t,x
= 0, then ‖R‖L∞

t,x
≤ δ and there is nothing to prove.

• The building blocks �k(σ x) andWk(σ x) are used to perform the convex integra-
tion in space, similar to the previous works.

• Finally, g̃κ(σ t) and gω(σ t) are factors that encode the temporal intermittency and
oscillations. We will then perform a “convex integration in time” to kill the error
of high temporal frequency.

For brevity, let us introduce shorthand notations

θp(t, x) = ν−1g̃κ(σ t)
∑

1≤k≤d

Ak(t, x)�k(σ x), (6.9)

wp(t, x) = νgκ(σ t)
∑

1≤k≤d

Bk(t, x)Wk(σ x), (6.10)

where

Ak(t, x) = ‖R̃k(t)‖1−
1
p

1

‖R̃k‖1−
1
p

L1
t,x

χk sign(−Rk)|Rk |
1
p , (6.11)

Bk(t, x) = ‖R̃k(t)‖
− 1

p′
1

‖R̃k‖
− 1

p′
L1
t,x

χk |Rk |
1
p′ . (6.12)

Note the important identity that motivates our choice of Ak and Bk :

Ak Bk = −χ2
k Rk for all k = 1, . . . , d. (6.13)
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In view of the zero-mean requirement for θ and the divergence-free condition for
w, we introduce correctors

θc(t) :=
 
Td

θp(t, x) dx, (6.14)

wc(t, x) := −νgκ(σ t)
∑

1≤k≤d

B(∇Bk,Wk(σ ·)). (6.15)

where B is the bilinear antidivergence operator in Lemma 2.2.
Since ∇Bk · Wk = div(BkWk) has zero mean, by a direct computation

divwc = −νgκ(σ t)
∑

1≤k≤d

divB(∇Bk,Wk(σ ·)) = − divwp.

Thanks to Theorem 4.4 and Lemma 2.2, these two correctors are small compared to
the principle parts θp and wp.

Finally, we take advantage of the temporal oscillations and define a temporal oscil-
lator

θo(t, x) := σ−1h(σ t)
∑

1≤k≤d

( 
Td

�kWk dx
)

· ∇(χ2
k Rk), (6.16)

which, thanks to Lemma 4.4, is equivalent to

θo = σ−1h(σ t) div
∑

1≤k≤d

χ2
k Rkek . (6.17)

The role of the temporal oscillator θo is to balance the high temporal frequency error
by its time derivative in the convex integration scheme, which will be done in Lemma
6.5. Note that by definition θo has zero spatial mean at each time.

6.4 The New Defect Field R1

Our next goal is to define a suitable defect field R1 such that the new density ρ1 and
vector field u1,

ρ1 := ρ + θ, u1 := u + w,

solve the continuity-defect equation

∂tρ1 + u1 · ∇ρ1 = div R1. (6.18)
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To do so, we will solve the divergence equations

div Rosc = div(θpwp + R) + ∂tθo,

div Rtem = ∂t (θp + θc),

div Rlin = div(θu + ρw),

div Rcor = div
(
θwc

) + div
(
(θo + θc)wp

)
,

so that R1 = Rosc + Rtem + Rlin + Rcor.
The choices for Rlin and Rcor are relatively straightforward.

Definition 6.2 The new defect field R1 is defined by

R1 = Rosc + Rlin + Rcor + Rtem,

where Rlin and Rcor are defined by

Rlin := θu + ρw,

Rcor := θwc + (θo + θc)w,

while Rtem and Rosc are defined in Lemma 6.3 and Lemma 6.5 respectively .

Next, we specify the choice for Rtem, which utilizes the bilinear antidivergence
operator B.
Lemma 6.3 Let

Rtem := ν−1∂t

(
g̃κ(σ t)

∑
1≤k≤d

B(Ak,�k(σ ·))
)
.

Then

∂t (θp + θc) = div Rtem.

Proof Note that

θp + θc = ν−1g̃κ(σ t)
∑

1≤k≤d

(
Ak�k(σ ·) −

 
Td

Ak�k(σ ·)).
Then the conclusion follows immediately from the definition of B and the fact that�k

has zero mean, cf. (2.2). ��

6.5 Convex Integration in Space-Time: Designing Rosc

This subsection is the core of our convex integration scheme. The main goal is to
design a suitable oscillation part Rosc of the defect field so that

div Rosc = div(θpwp + R) + ∂tθo.
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To this end, we first isolate terms in the nonlinearity div(θpwp + R) according
to their roles, and then use the temporal corrector ∂tθo to balance the part with high
temporal frequencies in div(θpwp + R).

Lemma 6.4 (Space-time oscillations) The following identity holds

div(θpwp + R) = div
(
Rosc,x + Rhi,t + Rrem

)
, (6.19)

where Rosc,x is the oscillation error in space

Rosc,x = g̃κ(σ t)gκ(σ t)
∑

1≤k≤d

B
(
∇(Ak Bk),

(
�kWk(σ x) −

 
Td

�kWk dx
))

,

Rhi,t is the error of high frequency in time

Rhi,t =
(
g̃κ(σ t)gκ(σ t) −

 
[0,1]

g̃κgκ

) ∑
1≤k≤d

Ak Bk

 
Td

�kWk dx,

and Rrem is the remainder error

Rrem =
∑

1≤k≤d

(1 − χ2
k )Rkek .

Proof By the definition of θp, we have

θpwp = g̃κ(σ t)gκ(σ t)
∑

1≤k≤d

Ak Bk�kWk(σ ·). (6.20)

Taking divergence, we have

div(θpwp + R) = g̃κ(σ t)gκ(σ t)
∑

1≤k≤d

div
(
Ak Bk�kWk(σ ·)) + div R. (6.21)

By the last point in Theorem 4.4,

div
(
Ak Bk�kWk(σ ·))

= div
(
Ak Bk

(
�kWk(σ ·) −

 
Td

�kWk
)) + div(Ak Bkek)

= Ak Bk div
(
�kWk(σ ·)) + ∇(Ak Bk) · (

�kWk(σ ·) −
 
Td

�kWk
)+div(Ak Bkek),
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where the first two terms combined together have zero mean. For this reason, thanks
to the definition of B, we may write

div
(
Ak Bk�kWk(σ ·))

= divB
(
Ak Bk, div

(
�kWk(σ ·)))

+ divB
(
∇(Ak Bk),

(
�kWk(σ ·) −

 
Td

�kWk
)) + div(Ak Bkek). (6.22)

Now it follows from (6.21) and (6.22) that

div(θpwp + R) = g̃κ(σ t)gκ(σ t)
∑

1≤k≤d

div(Ak Bkek) + div R + div Rosc,x. (6.23)

To see that div(θpwp + R) = div(Rosc,x + Rhi,t + Rrem), by an examination of
(6.23), we need to show that

Rrem = R +
 

[0,1]
g̃κgκ

∑
1≤k≤d

Ak Bk

 
Td

�kWk dx .

Indeed, using (5.14), Theorem 4.4, and (6.13) we obtain that

 
[0,1]

g̃κgκ

∑
1≤k≤d

Ak Bk

 
Td

�kWk dx =
∑

1≤k≤d

Ak Bkek, (6.24)

which implies that

R +
∑

1≤k≤d

Ak Bkek = R −
∑

1≤k≤d

χ2
k Rkek =

∑
1≤k≤d

(1 − χ2
k )Rkek = Rrem.

��
Due to the designed temporal corrector θo, the error of high frequency in time Rhi,t

is canceled to the leading order by ∂tθo. We complete the design of the oscillation
error Rosc in the following lemma.

Lemma 6.5 Let

Rosc := Rosc,x + Rosc,t + Rrem, (6.25)

where Rosc,x and Rrem are as in Lemma 6.4, and Rosc,t is the oscillation error in time

Rosc,t = σ−1h(σ t)R
∑

1≤k≤d

ek · ∂t∇(χ2
k Rk).
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Then the oscillation error Rosc satisfies the identity

div Rosc = div(θpwp + R) + ∂tθo.

Proof By the previous lemma, we only need to verify that

∂tθo + div Rhi,t = div Rosc,t.

By the definition of θo (6.17), we have

∂tθo = ∂t h(σ t)
∑

1≤k≤d

ek · ∇(χ2
k Rk) + σ−1h(σ t)

∑
1≤k≤d

ek · ∂t∇(χ2
k Rk).

It follows from (5.16) and (6.13) that

∂t h(σ t)
∑

1≤k≤d

ek · ∇(χ2
k Rk) =

(
g̃κ(σ t)gκ(σ t) −

 
[0,1]

g̃κgκ

)
∑

1≤k≤d

ek · ∇(−Ak Bk) = − div Rhi,t,

which implies that

∂tθo + div Rhi,t = div Rosc,t.

��

6.6 Verification of (u1, �1, R1) as a Solution of the Continuity-Defect Equation

We conclude this section by showing that the new solution (u1, ρ1, R1) is indeed a
solution to the continuity-defect equation.

Lemma 6.6 The density ρ1 = ρ + θ , vector field u1 = u + w, and defect field
R1 = Rlin + Rtem + Rcor + Rosc solve the equation

∂tρ1 + u1 · ∇ρ1 = div R1.

Moreover, the temporal support of the perturbation (θ, w) satisfies

suppt θ ∪ suppt w ⊂ suppt R.

Proof We compute

∂tρ1 + u1 · ∇ρ1 = (∂tρ + u · ∇ρ) + (∂tθ + div(θu) + div(θw) + div(ρw))

= div R + ∂tθ + div(θu) + div(θw) + div(ρw).
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Now the first claim follows from Definition 6.2, Lemma 6.3, and Lemma 6.5.
The second claim follows from the definitions (6.7), (6.14), and (6.16) since the

coefficients vanish whenever R(t) vanishes.

To complete the proof of Proposition 3.1, it remains to verify the estimates for
the perturbation (θ, w) and the new defect field R1. We do this in Section 7 for the
perturbation and in Section 8 for the new defect field respectively.

7 Proof of the Proposition 3.1: Estimates on the Perturbation

In this section, we will derive estimates for the perturbation (θ, w). The main tools
have been listed in Section 2. The main idea is to take the frequency parameter λ

sufficiently large depending on the previous solution (ρ, u, R) so that the error terms
are negligible. It is also worth noting that all implicit constants will not depend on
(ρ, u, R) unless otherwise indicated.

We start with the smoothness and time periodicity of the coefficients Ak, Bk , which
are necessary conditions for Lemma 2.4 and 2.5.

Lemma 7.1 (Smoothness of Ak, Bk) The coefficients Ak, Bk ∈ C∞([0, 1] × T
d) are

time-periodic on [0, 1], and the map

t �→ ‖R̃k(t)‖L1(Td ) (7.1)

is smooth on [0, 1]. In particular, all the perturbations θp, θc, θo and wp, wc are
smooth and time-periodic.

Moreover, the following estimates hold uniformly in time

‖Ak(t)‖L p(Td ) ≤ ‖R̃k‖−1+ 1
p

L1
t,x

‖R̃k(t)‖L1(Td ),

‖Bk(t)‖L p′ (Td )
≤ ‖R̃k‖

1
p′
L1
t,x

.

Proof Denote by R+
k = max{Rk, 0} and R−

k = min{Rk, 0}. Due to the cutoff χk , the
functions

χk R
±
k (7.2)

are smooth on [0, 1] × T
d . Thus the map

t �→ ‖R̃k(t)‖L1(Td ) =
ˆ

χk R
+
k − χk R

−
k dx

is smooth on [0, 1].
Next, let us show that the coefficients Ak and Bk are smooth on [0, 1]×T

d . Indeed,
due to the smoothness of ‖R̃k(t)‖1, the coefficients Ak, Bk are automatically smooth
at all points where ‖R̃k(t)‖1 > 0. On the other hand, for any point (t, x), where
‖Rk(t)‖1 = 0, there is a neighborhood of of that point where χk ≡ 0. Hence, Ak ≡
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Bk ≡ 0 in that neighborhood. Therefore, Ak, Bk ∈ C∞([0, 1] × T
d). Their time-

periodicity follows simply from the definitions.
Finally, we show the pointwise L p and L p′

estimates for Ak and Bk . For Ak we
have

‖Ak(t)‖L p(Td ) ≤ ‖R̃k(t)‖1−
1
p

1

‖R̃k‖1−
1
p

L1
t,x

‖χk |Rk |
1
p ‖L p(Td )

≤ ‖R̃k(t)‖1−
1
p

1

‖R̃k‖1−
1
p

L1
t,x

‖χ p
k Rk‖

1
p

L1(Td )

≤ ‖R̃k(t)‖1
‖R̃k‖1−

1
p

L1
t,x

,

where we have used the fact that p ∈ (1,∞). The estimate for Bk can be deduced in
the same way:

‖Bk(t)‖L p′ (Td )
≤ ‖R̃k(t)‖

− 1
p′

1

‖R̃k‖
− 1

p′
L1
t,x

‖χk |Rk |
1
p′ ‖L p′ (Td )

≤ ‖R̃k(t)‖
− 1

p′
1

‖R̃k‖
− 1

p′
L1
t,x

‖χ p′
k Rk‖

1
p′
L1(Td )

≤ ‖R̃k‖
1
p′
L1
t,x

.

��

7.1 Estimates for the Density�

Here and in what follows, CR represents a positive constant that depends on the old
defect field R that may change from line to line.

Lemma 7.2 (Estimate on θp) There holds

‖θp‖L1
t L p � ν‖R‖

1
p

L1
t,x

+ CRσ
− 1

p .

In particular, for λ sufficiently large,

‖θp‖L1
t L p � ν‖R‖

1
p

L1
t,x

.
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Proof We first take L p norm in space, using the shorthand notation

‖θp(t)‖L p(Td ) ≤ ν−1
∣∣̃gκ(σ t)

∣∣ ∑
1≤k≤d

∥∥Ak(t)�k(σ ·)∥∥L p(Td )
. (7.3)

Since for each fixed t , Ak(t, x) is smooth on T
d , by Lemma 2.4, we have

∥∥∥Ak(t)�k(σ ·)
∥∥∥
L p(Td )

≤ ∥∥Ak(t)
∥∥
L p(Td )

‖�k(σ ·)‖p + CRσ
− 1

p ‖�k‖p. (7.4)

By Proposition 4.3 and Lemma 7.1, combining (7.3) and (7.4) we obtain

‖θp(t)‖L p(Td ) � ν−1g̃κ(σ t)
∑

1≤k≤d

‖R̃k‖−1+ 1
p

L1
t,x

‖R̃k(t)‖1 + CRσ
− 1

p .

Now we take L1 in time to obtain

‖θp‖L1
t L p � ν−1

∑
1≤k≤d

‖R̃k‖−1+ 1
p

L1
t,x

ˆ
[0,1]

∣∣̃gκ(σ t)
∣∣‖R̃k(t)‖1 dt + CRσ

− 1
p . (7.5)

Given the smoothness of t → ‖R̃k(t)‖1 proven in Lemma 7.1, applying Lemma 2.4
once again (in time) gives

ˆ
[0,1]

∣∣̃gκ(σ t)
∣∣‖R̃k(t)‖1 dt � ‖R̃k‖L1

t,x

∥∥g̃κ

∥∥
L1([0,1]) + CRσ

− 1
p . (7.6)

Then it follows from (7.5) and (7.6) that

‖θp‖L1
t L p � ν−1

∑
1≤k≤d

‖Rk‖
1
p

L1
t,x

∥∥g̃κ

∥∥
L1([0,1]) + CRσ

− 1
p

� ν−1‖R‖
1
p

L1
t,x

+ CRσ
− 1

p ,

where we have also used (5.13).
Once we take λ sufficiently large such that the error term

CRσ−1 ≤ ν−1
∥∥R‖

1
p

L1
t,x

,

the desired bound follows

‖θp‖L1
t L p(Td ) � ν−1

∥∥R‖
1
p

L1
t,x

,

with an implicit constant independent of λ, R and ν. ��
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Lemma 7.3 (Estimate on θc) There holds

‖θc‖L1
t L p ≤ CRν−1σ−1.

In particular, for λ sufficiently large

‖θc‖L1
t L p ≤ ν−1

∥∥R‖
1
p

L1
t,x

.

Proof Since

θc = ν−1g̃κ(σ t)
∑

1≤k≤d

 
Td

Ak(t, x)�k(σ x) dx,

this follows directly from Lemma 2.5. ��
Lemma 7.4 (Estimate on θo) There holds

‖θo‖L∞
t,x

≤ CRσ−1.

In particular, for λ sufficiently large

‖θo‖L1
t L p ≤ ν−1

∥∥R‖
1
p

L1
t,x

.

Proof By (6.17), Hölder’s inequality and (5.17) we have

‖θo‖L∞
t,x

≤ σ−1
∥∥h(σ ·)∥∥L∞([0,1])

∑
1≤k≤d

∥∥ek · ∇Rk
∥∥
L∞
t,x

≤ CRσ−1.

7.2 Estimates for the Vector Fieldw

The vector field w can also be estimated using the tools in Section 2.

Lemma 7.5 (Estimate on wp) There holds

‖wp‖L∞
t L p′ � ν‖R‖

1
p′
L1
t,x

+ CRσ
− 1

p′

‖wp‖L1
t W 1,q ≤ νCRλ−γ .

In particular, for λ sufficiently large,

‖wp‖L∞
t L p′ � ν‖R‖

1
p′
L1
t,x

‖wp‖L1
t W 1,q ≤ δ/2.
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Proof We first prove the L∞
t L p′

estimate, and then the Sobolev estimate L1
t W

1,q .

(1) L∞
t L p′

estimates:

Taking the L p′
norm in space yields

‖wp(t)‖p′ ≤ ν
∣∣gκ(σ t)

∣∣ ∑
1≤k≤d

∥∥Bk(t)Wk(σ ·)∥∥p′ . (7.7)

Since x �→ Bk(t, x) is smooth on T
d for all fixed t ∈ [0, T ], by Lemma 2.4, we

have

∥∥∥Bk(t)Wk(σ ·)
∥∥∥
p′ ≤ ∥∥Bk(t)

∥∥
p′
∥∥Wk

∥∥
p′ + σ

− 1
p′ CR‖Wk‖p′ . (7.8)

Then from (7.7), (7.8), Lemma 7.1, and the fact that
∥∥Wk

∥∥
p′ ∼ 1, it follows that

‖wp(t)‖p′ � ν
∣∣gκ(σ t)

∣∣ ∑
1≤k≤d

‖Rk‖
1
p′
L1
t,x

+ σ
− 1

p′ CR . (7.9)

Now we simply take L∞ in time to obtain

‖wp‖L∞
t L p′ (Td )

� ν‖R‖
1
p′
L1
t,x

+ CRσ
− 1

p′ ,

where we have used (5.13).
Once we take λ sufficiently large such that the error term

CRσ−1 ≤ ν
∥∥R‖

1
p′
L1
t,x

,

the desired bound follows

‖wp‖L∞
t L p(Td ) � ν

∥∥R‖
1
p′
L1
t,x

.

(2) Sobolev estimate L1
t W

1,q :

Taking Sobolev norm W 1,q in space we have

‖wp(t)‖W 1,q (Td ) ≤ ν
∣∣gκ(σ t)

∣∣ ∑
1≤k≤d

∥∥∥Bk(t)Wk(σ ·)
∥∥∥
W 1,q (Td )

. (7.10)

Direct computation using Hölder’s inequality gives

∥∥∥Bk(t)Wk(σ ·)
∥∥∥
W 1,q (Td )

≤ CR

(∥∥Wk(σ ·)∥∥Lq (Td )
+ σ

∥∥∇Wk(σ ·)∥∥Lq (Td )

)
.
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From this, by Proposition 4.3, we get

∥∥∥Bk(t)Wk(σ ·)
∥∥∥
W 1,q (Td )

� CRσμ
1+ d−1

p′ − d−1
q . (7.11)

Thus from (7.10) and (7.11) we get

‖wp(t)‖W 1,q (Td ) ≤ νCRσμ
1+ d−1

p′ − d−1
q

∣∣gκ(σ t)
∣∣. (7.12)

Integrating (7.12) in time and using (5.13) we have

‖wp‖L1
t W 1,q ≤ νCRκ−1σμ

1+ d−1
p′ − d−1

q = νCRσμ
d−1
p′ − d−1

q .

Thanks to Lemma 6.1, it follows from the above that

‖wp‖L1
t W 1,q ≤ νCRλ−γ .

��
Lemma 7.6 (Estimate on wc) There holds

‖wc‖L∞
t L p′ ≤ CRνσ−1,

‖wc‖L1
t W 1,q ≤ CRνκ−1.

In particular, for λ sufficiently large

‖wc‖L∞
t L p′ ≤ ν‖R‖

1
q

L1
t,x

,

‖wc‖L1
t W 1,q ≤ δ/2.

Proof We first prove the L∞
t L p′

estimate, and then the Sobolev estimate L1
t W

1,q .

(1) L∞
t L p′

estimates: Taking L p′
norm in space we have

‖wc(t)‖p′ ≤ ν
∣∣gκ(σ t)

∣∣ ∑
1≤k≤d

∥∥∥B(∇Bk,Wk(σ ·))
∥∥∥
p′ . (7.13)

By Lemma 2.2 we get

∥∥∥B(∇Bk,Wk(σ ·))
∥∥∥
p′ ≤ CR

∥∥RWk(σ ·)∥∥p′ . (7.14)

Since the assumption on p, q implies that for 1 < p′ < ∞, we have

∥∥RWk(σ ·)∥∥p′ � σ−1.
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Then it follows from (7.13) and (7.14) that

‖wc(t)‖p′ ≤ CRνσ−1
∣∣gκ(σ t)

∣∣,
which implies the desired bound thanks to (5.13).

(2) L1
t W

1,q estimates:

We take W 1,q norm in space to obtain

‖wc(t)‖W 1,q ≤ ν
∣∣gκ(σ t)

∣∣ ∑
1≤k≤d

∥∥B(∇Bk,Wk(σ ·))∥∥W 1,q .

By Poincare’s inequality, we have

‖wc(t)‖W 1,q � ν
∣∣gκ(σ t)

∣∣ ∑
1≤k≤d

∥∥∇B(∇Bk,Wk(σ ·))∥∥q . (7.15)

In fact, a slight modification of the proof of Lemma 2.2 gives

‖∇B(∇a, f )‖r � ‖a‖C2

[
‖R f ‖r + ‖∇R f ‖r

]
for all 1

≤ r ≤ ∞ and a, f ∈ C∞(Td).

Due to the assumptions on p, q, 1 ≤ q < p′ < ∞, which in particular implies
that ∥∥∇B(∇Bk,Wk(σ ·))∥∥p′ ≤ CR, (7.16)

where we used the fact that ∇R is a Calderón-Zygmund operator on T
d .

Combining (7.15) and (7.16) we have

‖wc(t)‖W 1,q ≤ CRν
∣∣gκ(σ t)

∣∣,
which implies the desired bound after integrating in time thanks to (5.13).

��

7.3 Proof of the Perturbation Part of Proposition 3.1

Since the second part of (3.6) has been proved in Lemma 6.6, we finish proving
(3.2)–(3.7) of Proposition 3.1 in the lemma below.

Lemma 7.7 There exist a universal constant M and a large N ∈ N such that for all
λ(ν, δ, R) sufficiently large, the following holds.

(1) The density perturbation θ satisfies

ν−1‖θ‖L1
t L p ≤ M‖R‖1/p

L1
t,x

and supp θ ⊂ Ir × T
d .
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(2) The vector field perturbation w satisfies

ν‖w‖L∞
t L p′ ≤ M‖R‖1/p′

L1
t,x

and ‖w‖L1W 1,q ≤ δ.

(3) The density perturbation θ has zero mean, and for all t ∈ [0, T ] and ϕ ∈ C∞(Td)

ˆ
Td

θ(t, x)ϕ(x) dx ≤ δ‖ϕ‖CN .

Proof By Lemmas 7.2,7.3,7.4 and Lemmas 7.5 and 7.6, for λ sufficiently large, we
conclude that

‖θ‖L1
t L p � ν‖R‖1/p

L1
t,x

‖w‖L∞
t L p′ � ν−1‖R‖1/p′

L1
t,x

with implicit constants independent of λ and (ρ, u, R). We thus choose the constant
M to be maximum of the two implicit constants.

To see that supp θ ⊂ Ir ×T
d , we simply note that by (6.4), the coefficients Ak and

Bk in the definitions of θp, θc and θo all verify this property.
By Lemmas 7.5 and 7.6 again, for λ sufficiently large, we have

‖w‖L1
t W 1,q ≤ δ.

Finally, let us show the last property. Noticing that θp +θc has zero mean by default
and θo is a divergence, we conclude that the density perturbation θ is mean-free. To
show the last estimate, fix a test function ϕ ∈ C∞(Td). By definitions, we have

∣∣∣ˆ
Td

θϕ dx
∣∣∣ ≤

∣∣∣ˆ
Td

θpϕ dx
∣∣∣ +

∣∣∣ ˆ
Td

θcϕ dx
∣∣∣ +

∣∣∣ˆ
Td

θoϕ dx
∣∣∣.

We show the bounds for θp and θo since the argument can be adapted to bound θc as
well.

On one hand, applying Lemma 2.5 we have

∣∣∣ ˆ
Td

θpϕ dx
∣∣∣ � σ−N‖g̃κ‖∞

∑
1≤k≤d

‖Akϕ‖CN ‖�k‖2.

Recall that γ N > d + 1, and then

∣∣∣ˆ
Td

θpϕ dx
∣∣∣ ≤ CRλ−d−1κ‖�k‖2‖ϕ‖CN

≤ CRλ−1‖ϕ‖CN . (7.17)
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On the other hand, by Lemma 7.4, we have

∣∣∣ˆ
Td

θoϕ dx
∣∣∣ ≤ ‖θo‖L∞

t,x
‖ϕ‖∞

≤ CRσ−1‖ϕ‖∞. (7.18)

Putting (7.17) and (7.17) together and increasing the value of λ if necessary, we
obtain ∣∣∣ˆ

Td
θϕ dx

∣∣∣ ≤ δ‖ϕ‖CN .

��

8 Proof of the Proposition 3.1: Estimates on the NewDefect Field

We now turn to the final step of proving Proposition 3.1. Recall that we need to
estimates the terms that solve the divergence equations

div Rosc = ∂tθo + div(θpwp) + div R,

div Rtem = ∂tθp + ∂tθc,

div Rlin = div(θu + ρw),

div Rcor = div(θwc + (θo + θc)wp).

The linear error Rlin and correction error Rcor can be estimated easily by standard
methods. The temporal error Rtem is subtler and we need to exploit the derivative gain
given by the potential �k in Theorem 4.1. Such a difficulty is not present in [42,44].

For the oscillation error Rosc, we will use the decomposition done at the end of
Section 6, which reads

Rosc = Rosc,x + Rosc,t + Rrem.

We summarize how each part of Rosc will be estimated as follows.

(1) As typical in the literature, Rosc,x can be shown to be small due to a gain of σ−1

given by the antidivergence.
(2) The term Rosc,t is small by itself since it is the outcome of a temporal cancellation.
(3) Finally, Rrem is the leftover old defect field that is small due to our choice of cutoffs

χk in (6.4).

8.1 Temporal Error

Lemma 8.1 (Rtem estimate) For λ sufficiently large,

‖Rtem‖L1
t,x

≤ δ

16
.
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Proof We may rewrite it as

Rtem = ν−1
∑

1≤k≤d

∂t (g̃κ(σ t))B(Ak,�k(σ ·)) + g̃κ(σ t)B(∂t Ak,�k(σ ·))

:= Rtem,1 + Rtem,2.

We will treat the second term Rtem,2 as an error.

(1) Rtem,1 estimate:

Taking L1 in space, we get

‖Rtem,1(t)‖1 � ν−1σ |∂t g̃κ(σ t)|
∑
k

∥∥B(
Ak,�k(σ ·))∥∥1. (8.1)

Thanks to the potential �k , we have∥∥B(
Ak,�k(σ ·))∥∥1 = ∥∥B(

Ak, div�k(σ ·))∥∥1. (8.2)

Next, we apply Lemma 2.2 to obtain

∥∥B(
Ak, div�k(σ ·))∥∥1 ≤ CR

∥∥R(
div�k(σ ·))∥∥1

(by periodic rescaling) ≤ CRσ−1
∥∥R div�k(σ ·)∥∥1

(by definition of R) ≤ Cr ,Rσ−1‖�k‖r
(by Proposition 4.3) ≤ Cr ,Rσ−1μ−1μ

d−1
p − d−1

r ,

for any 1 < r < ∞. Then we fix r > 1 as in Lemma 6.1 so that

∥∥B(
Ak,�k(σ ·))∥∥1 �r CRσ−1μ−1λ−γ ,

which together with the bound

ˆ
[0,1]

|∂t g̃κ(σ t)| dt � κ,

implies that

‖Rtem,1‖L1
t,x

≤ CRκσμ−1σ−1λ−γ

≤ CRλ−γ ,

where we have also used Lemma 6.1.
Now for λ sufficiently large, we have

‖Rtem,1‖L1
t,x

≤ δ

32
.
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(2) Rtem,2 estimate:
We treat the second term Rtem,2 as an error and use Lemma 2.2 to obtain that

‖Rtem,2‖1 ≤ CR |̃gκ(σ t)|
∑
k

‖�k(σ ·)‖1.

Using Proposition 4.3 and (5.13), integrating in time gives

‖Rtem,2‖L1
t,x

≤ CRμ
d−1
p −(d−1)

.

Thanks to Lemma 6.1, for λ sufficiently large, we have

‖Rtem,2‖L1
t,x

≤ δ

32
.

��

8.2 Linear Error

Lemma 8.2 (Rlin estimate) For λ sufficiently large,

‖Rlin‖L1
t,x

≤ δ

16
.

Proof We start with Hölder’s inequality

∥∥Rlin
∥∥
L1
t,x

≤ ‖θ‖L1
t,x

‖u‖L∞
t,x

+ ‖ρ‖L∞
t,x

‖w‖L1
t,x

.

On one hand, by Hölder’s inequality we get

‖θp + θc‖L1
t,x

≤ CRν−1
∑

1≤k≤d

‖g̃κ(σ t)Ak(t, x)�k(σ x)‖L1
t,x

≤ CRν−1
∑

1≤k≤d

‖g̃κ‖L1([0,1])‖�k‖1

≤ CRν−1μ
d−1
p −d−1

.

(8.3)

By definition of θo (6.16) we have

‖θo‖L1
t,x

� CRσ−1‖h‖L1([0,1]) �R σ−1. (8.4)

On the other hand, since 1 ≤ q < ∞, by Lemma 7.5 and Lemma 7.6

‖w‖L1
t,x

≤ ‖wp‖L1
t W 1,q + ‖wc‖L1

t W 1,q

≤ CRν(σ−1 + κ−1).
(8.5)
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Combining (8.3), (8.4), and (8.5) we have

∥∥Rlin
∥∥
L1
t,x

≤ Cρ,u,R,ν

(
μ

d−1
p −d−1 + κ−1 + σ−1).

Thanks to Lemma 6.1, for sufficiently large λ we have

‖Rlin‖L1
t,x

≤ δ

16
. (8.6)

��

8.3 Correction Error

Lemma 8.3 (Rcor estimate) For λ sufficiently large,

‖Rcor‖L1
t,x

≤ δ

16
.

Proof By Hölder’s inequality we have

‖Rcor‖L1
t,x

≤ ‖θ‖L1L p‖wc‖L∞L p′ + (‖θo‖L1L p + ‖θc‖L1L p )‖wp‖L∞L p′ .

All terms have been estimated before, and by Lemma 7.2, 7.3, 7.4, 7.5, 7.6 we have

‖Rcor‖L1
t,x

�R ν−1‖wc‖L∞L p′ + ν(‖θo‖L1L p + ‖θc‖L1L p )

≤ CRσ−1(ν−1 + ν),

which concludes the proof. ��

8.4 Oscillation Errors

We will estimate Rosc according to the decomposition in Lemma 6.5.
For reference, we recall that

Rosc = Rosc,x + Rosc,t + Rrem,

where Rosc,x is the error of high frequency in space

Rosc,x = g̃κ(σ t)gκ(σ t)
∑

1≤k≤d

B
(
∇(Ak Bk),

(
�kWk(σ x) −

 
Td

�kWk dx
))

,

Rosc,t is the error of high frequency in time

Rosc,t = σ−1h(σ t)R
∑

1≤k≤d

ek · ∂t∇(χ2
k Rk),
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and Rrem is the remainder error

Rrem =
∑

1≤k≤d

(1 − χ2
k )Rkek .

We start with Rosc,x.

Lemma 8.4 (Rosc,x estimate) For λ sufficiently large,

‖Rosc,x‖L1
t,x

≤ δ

16
.

Proof Denote �k ∈ C∞
0 (Td) by

�k = �kWk −
 
Td

�kWk dx,

so that Rosc,x reads

Rosc,x = g̃κ(σ t)gκ(σ t)
∑

1≤k≤d

B
(
∇(Ak Bk),�k(σ ·)

)
.

We take L1 norm in space to obtain

‖Rosc,x(t)‖1 ≤ ∣∣̃gκ(σ t)gκ(σ t)
∣∣ ∑
1≤k≤d

∥∥B(∇(Ak Bk),�k(σ ·))∥∥1.
Applying Lemma 2.2 gives

∥∥∥B(∇(Ak Bk),�k(σ ·))∥∥∥
1

� CRσ−1‖R�k‖1.

It follows that

‖Rosc,x(t)‖1 ≤ CR
∣∣̃gκ(σ t)gκ(σ t)

∣∣σ−1.

So for L1
t,x norm we have

‖Rosc,x‖L1
t,x

≤ CRσ−1.

��
Lemma 8.5 (Rosc,t estimate) For λ sufficiently large,

‖Rosc,t‖L1
t,x

≤ δ

16
.
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Proof By Lemma 2.1, we have

‖Rosc,t‖L1
t,x

� σ−1
∥∥h(σ t)

∑
1≤k≤d

ek · ∂t∇(χ2
k Rk)

∥∥
L1
t,x

.

It follows from Hölder’s inequality that

‖Rosc,t‖L1
t,x

≤ CRσ−1
∥∥h(σ t)

∥∥
L1([0,1]) ≤ CRσ−1.

��
Lemma 8.6 (Rrem estimate) There holds

‖Rrem‖L1
t,x

≤ δ

2
.

Proof We need to estimate

‖Rrem‖L1
t,x

≤
∑

1≤k≤d

‖(1 − χ2
k )Rkek‖L1

t,x
.

Note that

(t, x) ∈ supp(1 − χ2
k ) ⇒ |Rk | ≤ δ

4d
or t ∈ I cr ,

and thus by (6.3) we have

‖Rrem‖L1
t,x

≤
∑

1≤k≤d

ˆ
|Rk |≤ δ

4d

(1 − χ2
k )|Rk | dxdt +

ˆ
t∈I cr

(1 − χ2
k )|Rk | dxdt

≤ d × (|[0, 1] × T
d | × δ

4d
+ 2r × ‖R‖L∞

t,x

) = δ

2
.

��

8.5 Conclusion of the Proof of Proposition 3.1

We can finish the proof of Proposition 3.1 by showing (3.7).
We take λ sufficiently large so that all lemmas in this section and Lemma 7.7 hold.

Then the new defect field R satisfies

‖R‖L1([0,1×Td ]) ≤ ‖Rtem‖L1
t,x

+ ‖Rlin‖L1
t,x

+ ‖Rcor‖L1
t,x

+ ‖Rosc,x‖L1
t,x

+ ‖Rosc,t‖L1
t,x

+ ‖Rrem‖L1
t,x

≤ 5 × δ

16
+ δ

2
≤ δ.
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