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Abstract—Graphics Processing Units (GPUs) have become the
default choice of acceleration in a wide range of application
domains. To keep up with computational demands, the GPU
memory system is constantly being innovated from both the
cache and DRAM perspectives. Such innovations can adversely
affect GPU reliability and in fact, can lead to an increase
in the number of multi-bit faults. To address this problem,
we systematically study a wide range of GPGPU applications
and find that usually, only a small percentage of data needs
protection to increase application resilience. This data is highly
accessed and shared (constitutes hot memory), which implies
that faults in this space can often lead to incorrect application
output. An in-depth analysis of application code shows that
information of such data can be passed on to the hardware to
guide low-overhead detection/correction schemes. In this vein,
we developed low-overhead partial data replication schemes that
exploit latency tolerance in GPUs. Overall, this data-centric
approach dramatically improves GPGPU application resilience,
with a minimal additional average performance overhead of 1.2%
for detection-only and 3.4% for detection-and-correction.

Keywords—GPUs; Reliability; Multi-bit Faults; Application
Resilience

I. INTRODUCTION

Graphics Processing Units (GPUs) have become an inevitable

part of every computing system due to their ability to provide

large improvements in performance and energy efficiency

compared to CPUs [2]–[4], [7], [28], [30]–[32], [37], [57],

[62], [65]. Consequently, they have become the default choice

for accelerating innovations in various fields such as high-

performance computing (HPC), artificial intelligence (AI), and

even reliability-critical autonomous vehicle software [14], [49]–

[51], [53], [55], [59], [61], [65]. The emerging computing

needs of these domains have fueled the growth of GPU

architectures. Especially, the growing focus on deep learning

has increased GPU demands tremendously. Almost every year

AMD and NVIDIA unveil new GPU designs that incorporate

significant innovations to their GPUs leading to improved

performance and energy efficiency. For example, the latest

Ampere architecture [54] has an L2 cache size that is 10x larger

comparing to previous generations and new high bandwidth

memories are being incorporated into almost all new GPUs.

The effect of the above innovations on GPU reliability is not

yet well-understood. For example, advanced DRAM architec-

tures make single-bit and multi-bit faults more common [44]–

[46], [64], [66]. Similarly, low voltage cache design proposals

(i.e., AMD Killi [17] or IBM Dante [6]) for managing power

consumption of large last-level caches in GPUs [17], [54] can

cause an increased number of multi-bit faults. These multi-

bit faults can lead to catastrophic failures, such as accidents

of autonomous vehicles [10], [24], [35], [56]. Unfortunately,

the existing ECC mechanisms cannot correct multi-bit faults.

SECDED is only capable of detecting up to two-bit faults

and of correcting one-bit fault only. Other mechanisms such

as ChipKill [11] are currently not feasible in GPUs [29].

Popular methods such as check-pointing [19], [29], [48] come

with significant overhead costs due to the large amounts of

data the GPGPU applications typically process [25]. Similarly,

redundant computation techniques, if not carefully performed,

can lead to significant overheads in terms of both performance

and energy [13], [20], [40], [69], [70].

In order to provide low-overhead reliability in GPUs,

especially in the context of multi-bit faults, we take a data-

centric approach. Based on our extensive application-level

analysis, we find that for a large number of applications, only

a limited amount of data needs additional reliability protection

compared to the baseline SECDED. Such data constitutes

a small fraction of the entire application memory, is read-

only, and is highly accessed and shared across the majority

of concurrently executing warps. We show that if this data is

subject to multi-bit faults, it can lead to incorrect application

output (e.g., high mis-classifications errors in the case of neural

networks) as the faulty data is accessed by multiple thread

instructions across the majority of warps. Interestingly, we

observe that this critical portion of the data can be profiled

and this information can then be passed on to hardware for

developing low-overhead correction and detection mechanisms.

To the best of our knowledge, this is the first work that takes

a data-centric approach towards improving GPU reliability

while incurring low overhead. In summary, this paper makes

the following contributions:

• We perform detailed application-level analysis to show that

a small fraction of critical data (hot memory blocks) used by a

large number of GPGPU application threads can dramatically

increase thread vulnerability to multi-bit faults. This data is

usually read-only and can be profiled with low-overhead.

• We develop both detection and correction schemes for

application resilience that prioritize reliability fortification of

this identified critical data. Our resilience schemes leverage

data information obtained from the application source code

and access pattern for replicating only the hot memory blocks.

• Our reliability management schemes exhibit very limited

overhead due to the small fraction of data that gets replicated

and to the fact that the performance overhead of additional

checks (and associated memory accesses) is largely hidden













TABLE III: Input data objects to the GPU applications. Data objects are sorted based on the number of accesses incurred (Highest
to Lowest). The emboldened data objects are classified as hot data objects (highly accessed and shared).

Application Input Data Objects Size of hot memory blocks normal-

ized to the total application mem-

ory (in percentage)

Percentage of accesses to hot mem-

ory blocks w.r.t. the total number of

accesses

C-NN Layer1 Weights, Layer2 Weights, Layer3 Weights, Layer4 Weights, Images 2.15 34.99

P-BICG p, r, A 0.064 5.7

P-GESUMMV x, A, B 0.025 4.8

P-MVT y1, y2, a 0.048 5.8

A-Laplacian Filter, Filter Height, Filter Width, Image 0.001 73

A-Meanfilter Filter Height, Filter Width, Image 0.0001 39.89

A-Sobel Filter, Filter Height, Filter Width, Image 0.001 73

A-SRAD i N, i S, i E, i W, Image 0.86 39.67

Note that this analysis can be adapted for other applications

using available binary instrumentation tools for GPUs [1], [68].

The binary instrumentation tools offer two useful functionalities:

First, the memory tracing functionality can be extended to

identify the hot memory blocks. Second, the application

instruction profiling at the binary level can help to identify the

hot data objects. The access pattern and source code analyses

are done once offline, and therefore, have no runtime overhead.

Listing 3: Filter Kernel in A-Laplacian.

1 __global__ void LaplacianFilter(Pixel* g_DataIn, Pixel* g_DataOut,

2 int* width, int* height, float* d LaplacianMatrix)

3 {

4 __shared__ Pixel sharedMem[BLOCK_HEIGHT*BLOCK_WIDTH];

5 int x = blockIdx.x * TILE_WIDTH + threadIdx.x;

6 int y = blockIdx.y * TILE_HEIGHT + threadIdx.y;

7 if( x < FILTER_RADIUS || x > *width - FILTER_RADIUS - 1 || y <

FILTER_RADIUS || y > *height - FILTER_RADIUS - 1)

8 {

9 int index = y * (*width) + x;

10 g_DataOut[index] = g_DataIn[index];

11 return;

12 }

13 int index = y * (*width) + x;

14 int sharedIndex = threadIdx.y * blockDim.y + threadIdx.x;

15 sharedMem[sharedIndex] = g_DataIn[index];

16 __syncthreads();

17 if( threadIdx.x >= FILTER_RADIUS && threadIdx.x < BLOCK_WIDTH -

FILTER_RADIUS && threadIdx.y >= FILTER_RADIUS && threadIdx.y <

BLOCK_HEIGHT - FILTER_RADIUS)

18 {

19 float sum = 0;

20 for(int dy = -FILTER_RADIUS; dy <= FILTER_RADIUS; ++dy)

21 for(int dx = -FILTER_RADIUS; dx <= FILTER_RADIUS; ++dx)

22 {

23 float centerPixel = (float)(sharedMem[sharedIndex + (dy *

blockDim.x + dx)]);

24 sum += centerPixel * d LaplacianMatrix[(dy + FILTER_RADIUS)

* FILTER_DIAMETER + (dx+FILTER_RADIUS)];

25 }

26 Pixel res = max(0, min((Pixel)sum, 255));

27 g_DataOut[index] = res;

28 }

29 }

B. Detection and Correction Resilience Schemes

We leverage the information related to hot memory blocks

(Observations I, II, and IV) to devise detection/correction

schemes. We particularly focus on Observation III that demon-

strates that the hot data objects must be prioritized for protection

against multi-bit faults. As discussed in Section III, the

proposed resilience schemes target multi-bit faults in L2-cache

and DRAM. Our resilience schemes complement the existing

SECDED-ECC protection.

1) Multi-bit Fault Detection: As the read-only hot data

objects prioritized for protection are smaller in size compared

to the total application memory (refer to Table III), we replicate

the hot data objects for “protection”. Replication allows to

easily identify the multi-bit faults by comparing their two

copies.

Given an application, we first sort the data objects based on

the number of their accesses and identify the hot data objects

(this is done with a one-time offline source code analysis as

described in Section IV-A). For the applications studied in this

work, Table III lists all the data objects per application sorted

from high to low number of accesses. The hot data objects to

be prioritized for reliability protection are emboldened.

Next, we duplicate the selected data objects in the GPU

DRAM at two distinct locations. During the application

execution, if a memory access to the data memory blocks

of one of the reliability-protected data objects is an L1-cache

hit, then the normal operation takes place where the data is

returned to the corresponding SM core. However, if the access

is an L1-cache miss, then the LD/ST unit at the L1-cache

generates two accesses, each to one of the two copies of the

data memory block. Once both accesses return data to L1-

cache, the copies of data are compared bit-wise to identify

any multi-bit faults. If a bit mismatch is identified, then our

reliability scheme generates a terminate signal to the GPU

application causing the application to exit early and notify the

user. In this case, the user is expected to rerun the application.

Since the detection-only scheme duplicates the L1-cache

missed accesses to the data memory blocks of selected read-

only data objects, the main source of performance loss is

the additional accesses going to the L2-cache and DRAM.

To minimize performance loss, we leverage the fact that

this is a detection-only scheme: if the protected data is

corrupted, then the application is terminated. Therefore, it is

not necessary to wait for both copies of the data to arrive

before proceeding with the application execution. Instead,

we devise a lazy bit comparison: once we receive the first

data copy for a corresponding load instruction, the execution

moves forward. As soon as the second copy is received,

then the lazy comparison is performed to check for multi-

bit faults. Consequently, any performance loss is minimized as

the execution is not stalled.

2) Multi-bit Fault Detection-and-Correction: We next de-

scribe the second resilience scheme which not only detects

multi-bit faults but also corrects them. To detect and correct

the multi-bit faults, we employ a majority vote mechanism that

is implemented via data triplication. Each copy is stored at

a distinct location in the GPU DRAM with distinct memory

addresses. For each L1-cache missed access for the data object

covered under the reliability scheme, we generate three accesses
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to the L2-cache. Once all three accesses are returned to the

LD/ST unit at the L1-cache, we perform a three-way bitwise

comparison on the received data copies. During the comparison,

if all the data copies have the same bits indicating no bit fault,

then the application execution moves forward. If a bit mismatch

is observed in one of the copies indicating a bit fault, then based

on the majority vote the offending bit is changed to the correct

value. The corrected bit value is used for the computation. Since

the data copies are stored at distinct locations, the probability of

the same bit fault occurring in all three data copies is minimal.

In this detection and correction scheme, we wait for all

three data copies to be received in order to perform the three-

way comparison for data correction. Consequently, the two

sources of performance loss are 1) the increased number of

memory accesses due to the three accesses to the data and 2)

the stall times when the LD/ST unit at L1-cache waits for all

three accesses to return with data. For the set of applications

examined here, we do not observe a significant performance

loss, because the size of the input data objects prioritized for

the reliability improvement is small as shown in Table III.

C. Implementation Overhead

In Section IV-A, we identified the hot data objects via manual

application of source code analysis. For an unknown application,

the same access pattern analysis can be automated with the

assistance of binary instrumentation tools, such as NVBit [68].

Note that this information collection is a one-time process and

typically done offline. Based on the profiled information, the

following steps are performed.

First, we replicate the data objects protected by our resilience

schemes in GPU DRAM (either two or three times, depending

on our target). We store the start addresses of each copy of

the data object. These start addresses are used to generate the

replication accesses to the required data index within the data

object. To do so, we add the memory offset calculated for the

original memory access to the respective start address. For

each data object, we need either 32 bits or (2×32 =) 64 bits

to store the start addresses in the detection-only and detection-

and-correction, respectively. We allocate 128 bytes for the start

address storage, which accommodates (128B/(32×4) =) 32

and (128B/(2×32×4) =) 16 data objects for detection and

detection/correction, respectively. In our analysis, the maximum

number of data objects to a GPU application never exceeds

five (Table III). We use a 32-bit adder to compute the data

index mentioned above for the copy accesses.

Second, to replicate the L1-cache missed accesses to the pro-

tected data objects, we track their respective load instructions.

To do so, we store the addresses of load instructions to the

corresponding data objects in the LD/ST unit near L1-cache.

Each load instruction needs 32 bits to store its address. We

allocate 128 bytes for the instruction address storage, which

accommodates (128B/(32×4) =) 32 load instruction addresses.

In our applications, the number of load instructions does not

exceed 22. The LD/ST unit checks the program counter to see

if one of the load instructions to the protected data objects

experiences a miss, in which case, additional accesses are

generated to the copies of data objects. To compare the data

copies, we use a 256-bit wide comparator for comparing the

data at 32B granularity. Lastly, we allocate 128 bytes to store at

most 32 load instructions awaiting the comparison of their data

copies at the LD/ST unit. Note that all overheads associated

with the data movement and stalls are modeled and final results

already include these overheads.

V. EXPERIMENTAL RESULTS

In this section, we experimentally evaluate the proposed

detection-only and detection-and-correction resilience schemes

using the applications listed in Table II.

A. Performance Evaluation

Note that the results presented in this subsection come from

one profiling run only. Figure 7 plots for each application

a) the execution time for each application and b) the L1-

cache missed accesses. All metrics in Figure 7 are plotted

normalized to the baseline case (i.e., the baseline execution

with no resilience scheme). Therefore, the “1.0” value on

the y-axis in each plot represents the baseline value. Note

that the numeric values on the x-axis correspond to the

cumulative number of data objects covered under the resilience

schemes. The data objects covered are by their order of

importance as shown in Table III. For example, for C-NN, “1”

corresponds to Layer1_weights, while “2” corresponds to

Layer1_weights and Layer2_weights, and so on.

1) Detection-Only: For evaluating performance, we focus

on the overhead due to the duplication of accesses in the

detection-only resilience scheme. Therefore, we ignore the

cases where data memory errors result in application crashes.

From Figure 7, we make the following observations. First,

across all applications, as the number of data objects covered

by the detection-only resilience scheme increases, the respective

application execution times increase. This loss in performance

is consistent with the increase in L1-cache missed accesses due

to duplication. Second, the L1-cache missed accesses increase

fractionally when we cover only the hot data objects, which

is attributed to their small memory footprint in addition to

their spatial and temporal locality (Observation IV). Lastly, the

detection-only scheme implements a lazy bit-wise evaluation,

where application execution proceeds when any copy of the

duplicated data arrives at the LD/ST unit of L1-cache. (Recall

that the execution does not stall awaiting both accesses to

arrive.) Therefore, when only the hot data objects are protected,

the corresponding performance loss on average is only 1.2%,

see Figure 7. In contrast, when all data objects are protected,

the average performance loss becomes 40.65% due to the steep

increase in duplicated accesses.

2) Detection-and-Correction: We make the following obser-

vations from Figure 7 regarding the detection-and-correction

scheme. First, similar to the detection-only scheme, as the

number of protected data objects increases, the L1-cache missed

accesses increase but this increase is larger comparing to

detection-only. This is expected as accesses are now triplicated.

In addition, to correct the fault(s), execution is stalled for all
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most vulnerable to multi-bit errors compared to the rest of GPU

hardware. Furthermore, two independent studies demonstrate

the necessity of improved ECC, such as Chipkill, instead of

SECDED due to increasing multi-bit errors in DRAMs [41],

[63]. Due to increasing cache sizes, several efforts have been

developed to operate caches at low voltage to improve power

efficiency. Recent works have demonstrated experimentally

that bit faults increase as the operating voltage of the cache

reduces [6], [17], [18]. In this paper, we address these multi-bit

faults in cache/memory via low-overhead detection/correction

mechanisms.

Error Injection Studies. GPU-Qin injects fault at the micro-

architecture level to simulate transient faults in GPUs, excluding

caches and memory [15], [16]. LLFI [36] is an LLVM

compiler-based fault injection framework for GPUs, where

an intermediate representation is modified to simulate error

injection. SASSIFI [22] directly injects faults into low-level

SASS instructions. PCFI [60] inject errors in different parts

of instructions to simulate errors in the GPU register files and

memory. Unlike the compiler-based methods used in GPU-Qin

and SASSIFI, Tselonis et al. [67] propose GUFI to validate

the feasibility of using the commonly used GPGPU simulator,

GPGPU-Sim [5] to study the reliability of GPGPU applications.

Nie et al. [47] propose a fault-site pruning mechanism that

dramatically reduces the number of required fault-injection

experiments in GPGPU applications to obtain results of high

statistical significance, this pruning methodology is also adapted

for multi-bit faults [71]. SUGAR [72] speeds up the evaluation

of GPGPU application error resilience by judicious input sizing

and illustrates how analyzing a small fraction of the input is

sufficient to estimate application resilience with high accuracy

while dramatically reducing experimentation time.

Reliability Solutions. Redundant computations by modifying

source code are explored for fault tolerance as GPUs have a

large number of on-chip cores [13]. Thread remapping into

reliable and unreliable warps can facilitate partial replication

mechanisms for error detection/correction at the warp level

and shows superior performance to standard duplication/tripli-

cation [70]. Nie et al. [43] show that when a quantifiable

loss in output quality is acceptable to the user, one can

reduce the overhead of protection/recovery mechanisms by

taking advantage of resilience patterns of threads at different

hierarchies (i.e., kernel/thread-block/warp). Compiler-based

redundant multithreading (RMT) compares the outputs from

replicated computations for error detection, albeit with a highly

variable performance loss [20], [69]. Mahmoud et al. [40]

introduce a replication algorithm to duplicate select GPU

instructions while maintaining low performance loss. Another

approach for fault-tolerance is checkpoint-restart, where upon

the fault occurrence the application restarts from the last

checkpoint [19], [48]. However, the associated overhead of the

checkpoint-restart mechanism is prohibitive [29].

For caches operating at low voltage, Killi [17] offers a

variable ECC mechanism for a subset of L2 cache lines, while

disabling the cache lines with more than one fault at the cost of

cache capacity. Chandramoorthy et al. [6] implement a boosted

SRAM cache, where the cache voltage is boosted for each read

and write operation.

Prior works suggest heterogeneous reliability solutions for

CPU workloads [21], [23], [34], [38], [39]. Hukerikar et al. [23]

devise a software-based parity mechanism to improve the

reliability of critical program objects in HPC applications. Luo

et al. [39] show that applications exhibit different memory error

resiliency based on the error location in DRAM and propose a

hardware/software mechanism to enhance memory reliability.

Li et al. [34] profile scientific applications to relate changes in

application behavior and the location and frequency of error.

SDCTune [38] identifies and protects SDC-prone program data

based on static and dynamic features. Hari et al. [21] deploy

low-cost program detectors in the SDC-crucial section of the

program to identify and reduce SDCs. Ranger [9] restricts

output values of selected layers in CNNs to minimize error

propagation to improve CNN resilience.

The schemes proposed in this work complement the

SECDED ECC by detecting and correcting multi-bit faults in

the GPU L2 cache and DRAM. To the best of our knowledge,

this is the first work that identifies the most vulnerable data

in the context of GPGPU application resilience. Based on this

information, our schemes protect the highly-used input data

objects and provide improved reliability at a low overhead.

VII. CONCLUSIONS

Multi-bit faults are typically an unwanted side-effect of GPU

memory performance innovations. In this paper, we perform an

in-depth application-level analysis of memory access patterns

and show that a large number of applications work on a

limited number of hot data objects of highly-accessed data,

which are also shared by a majority of warps. Such highly

accessed and shared data is vulnerable to faults potentially

leading to silent data corruption in the application output. We

show that as hot data objects constitute a small fraction of the

total memory footprint, protecting them against faults is an

inexpensive solution that provides high application resilience

in the presence of multi-bit faults.
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