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Abstract—Graphics Processing Units (GPUs) use caches to
provide on-chip bandwidth as a way to address the memory wall.
However, they are not always efficiently utilized for optimal GPU
performance. We find that the main source of this inefficiency
stems from the tightly-coupled design of cores with L1 caches.
First, such a design assumes a per-core private local L1 cache
in which each core independently caches the required data. This
allows the same cache line to get replicated across cores, which
wastes precious cache capacity. Second, due to the many-to-few
traffic pattern, the tightly-coupled design leads to low per-core
L1 bandwidth utilization while L2/memory is heavily utilized.

To address these inefficiencies, we renovate the conventional
GPU cache hierarchy by proposing a new DC-L1 (DeCoupled-
L1) cache – an L1 cache separated from the GPU core. We
show how decoupling the L1 cache from the GPU core provides
opportunities to reduce data replication across the L1s and
increase their bandwidth utilization. Specifically, we investigate
how to aggregate the DC-L1s; how to manage data placement
across the aggregated DC-L1s; and how to efficiently connect the
DC-L1s to the GPU cores and the L2/memory partitions. Our
evaluation shows that our new cache design boosts the useful
L1 cache bandwidth and achieves significant improvement in
performance and energy efficiency across a wide set of GPGPU
applications while reducing the overall NoC area footprint.

Index Terms—Bandwidth, GPUs, Locality, Network-on-Chip

I. INTRODUCTION

Graphics Processing Unit (GPU) architectures are a critical

component in most high-performance computing systems as

they provide faster and more energy efficient execution for

many general purpose applications. GPUs employ a conven-

tional two-level cache hierarchy where each core incorporates

a private L1 cache and all the GPU cores are connected via a

Network-on-Chip (NoC) to a shared and banked L2 cache. The

L1 and L2 caches are used to boost the on-chip bandwidth as

a means to address the well-known memory wall problem [1].

An increase in the on-chip bandwidth translates into perfor-

mance improvements for memory-sensitive applications [2]–

[5]. Therefore, prior research efforts developed hardware and

software schemes to improve cache performance [3], [6]–

[11]. However, we find that the conventional cache hierarchy

leads to inefficient utilization of the valuable on-chip caches.

Specifically, the tight coupling between the GPU cores and the

L1 caches results in the following two inefficiencies.

The first inefficiency stems from the many-to-few commu-

nication between the L1s and the L2 banks. This puts more

pressure on the few L2s and less pressure on the many per-

core L1s, which results in a low bandwidth utilization for

the per-core L1s [12]. The second inefficiency is due to the

private nature of the L1 caches. This may lead to high cache

line (data) replication across the L1 caches [3], [5], [13], [14]

as each GPU core may independently cache the same cache

line. Such replication effectively wastes the overall L1 cache

capacity, leading to lower L1 hit rates and hence reduces its

useful bandwidth. If cache line replication is reduced, then

the L1 caches can effectively provide more capacity to cache

more data, leading to higher hit rates, more delivered on-chip

bandwidth, and reduced pressure on the L2 and memory.

In this paper, we address these two inefficiencies by break-

ing the tight coupling between the GPU cores and the L1

caches. To achieve that, we renovate the GPU two-level cache

hierarchy and propose DeCoupled-L1 (DC-L1) caches, where

we separate the L1 caches from the GPU cores. The decoupled

nature of the DC-L1 caches enables aggregating the DC-

L1 caches into bigger caches (while maintaining the total

L1 cache capacity), in which each DC-L1 cache is accessed

by multiple GPU cores. Aggregating DC-L1 caches improves

their individual bandwidth utilizations and reduces data repli-

cation across the DC-L1s as more cores are accessing a given

DC-L1. Although extreme aggregation of DC-L1s (all cores

accessing one DC-L1) eliminates replication and improves

DC-L1 bandwidth utilization, it can drastically reduce the

overall peak L1 bandwidth and hence performance. In this

paper, we use the aggregation granularity as a knob to reduce

replication and improve cache bandwidth utilization while

managing the overall peak L1 bandwidth.

Once we achieve a suitable aggregation granularity, we

propose managing data placement across the DC-L1s to further

reduce replication. Specifically, we evaluate a shared DC-L1

cache design to eliminate replication across the DC-L1 caches.

With a shared DC-L1 cache design, each DC-L1 exclusively

caches a unique slice of the address range. This ensures only

one copy of data exists across DC-L1s, thereby eliminating

replication and making better use of the finite cache capacity.

However, we show that the shared DC-L1 cache design

requires all-to-all communication between the GPU cores

and the DC-L1s, which imposes significant NoC area/power

overheads and NoC scalability/clocking challenges. Therefore,

we propose to vary the sharing granularity using a Clustered

DC-L1 cache design to balance the trade-off between the

replication waste and the NoC overheads. With such a design,

we group the DC-L1 caches into clusters and enable the

shared cache organization only within each cluster instead of

enabling a fully shared cache across all DC-L1s. Therefore,

we eliminate replication within the DC-L1 cluster and reduce

replication across all the DC-L1s in a controlled fashion. This

improves overall GPU throughput while reducing the overall

GPU area and energy requirements.





















48 L2s, and 24 memory channels. We observe that perfor-

mance follows a similar trend to the evaluated 80-core system.

Specifically, we gain significant IPC improvement of 67% for

the replication-sensitive applications, and maintain the private

performance for the replication-insensitive applications.

Boosted Baseline. We investigate various boosted baselines

with 2× the per-core L1 cache capacity, 2× the NoC fre-

quency, and 5× the flit size, respectively. For the replication-

sensitive applications, we observe that these boosted baselines

achieve performance improvement of 33%-36% normalized

to the private L1 baseline. Such improvement is 22% lower

compared to the 75% improvement under Sh40+C10+Boost.

As for the replication-insensitive applications, the boosted

baselines can improve their performance by 2%-6% compared

to a slight <1% loss under Sh40+C10+Boost. However, these

boosted baselines incur significant overheads. Specifically,

using DSENT and CACTI, the cache-boosted baseline incurs

a cache area overhead of 84%, and the flit-boosted baseline

incurs a NoC area and static power overhead of 18.5× and

4.2×, respectively. As for the frequency-boosted baseline, the

80×32 crossbar cannot be operated using 2× the baseline fre-

quency. Finally, our proposed designs are expected to improve

performance with larger DC-L1s or boosted NoC resources.

IX. RELATED WORK

In this section, we briefly discuss works that are most

relevant to this study.

Intra-core Locality in GPUs. Prior works focused on exploit-

ing the locality that exists within a private L1 cache [6], [7],

[9], [29], [30]. In this work, we focus on the locality that exists

across L1 caches. Other works proposed CTA schedulers [28],

[31], [32] using different heuristics to exploit the locality

across CTAs and improve cache performance. However, these

schedulers are not ideal, and the problem of uncontrolled

replication across L1 caches persists. Our proposed designs

restrict replication to a preset limit (e.g., at most 10 copies with

Sh40+C10+Boost) and do not require any software support. In

general, prior L1 cache capacity management techniques [17],

[32]–[34] do not control replication across L1s. However, these

works can improve performance of each individual DC-L1,

while our designs facilitate coordination across DC-L1s for

their better utilization.

Inter-core Locality in GPUs. Prior works focused on improv-

ing the private L1 bandwidth utilization by exploiting inter-

core locality and enabling inter-core communication. This was

achieved by using a ring to connect the GPU cores [14] or

coherence-like mechanisms [35]. Ibrahim et al. [3] optimized

inter-core communication via data sharing prediction and

parallel probing schemes. These works do not reduce repli-

cation across L1s. However, our designs reduce replication

and eliminate the need for inter-core communication. Prior

work [36], [37] proposed sharing an L1 data cache across a

group of cores. This cache design is similar to the private

DC-L1 cache design (Section IV) which suffers from high

data replication compared to our design (Section VI). Zhao

et al. [10] utilized inter-core locality to address bandwidth

bottlenecks at L2 by replicating cache lines across different L2

slices. This work is complementary to our work as it targets

the L2 bandwidth, while ours improves the L1 capacity and

its bandwidth utilization.

Replication Control in CPUs. Prior CPU works investigated

the trade-offs between shared and private cache design for the

last-level caches [38]–[47]. These works focused on latency

as it is often the first-order challenge in CPU workloads.

However, to our knowledge, our work is the first to propose

replication control and clustered shared decoupled L1 cache

design in GPUs in order to boost on-chip bandwidth.

X. CONCLUSIONS

In this work, we showed that rethinking the cache hierarchy

and interconnect design in GPUs can be rewarding in terms

of performance, area, and energy. Specifically, we introduced

the DC-L1 cache, an L1 cache decoupled from the GPU core

to address the low bandwidth utilization of the L1s and the

wasted L1 cache capacity due to cache line replication across

the L1 caches. We used the DC-L1s and proposed a clustered-

based DC-L1 cache organization, where a cluster of GPU cores

access a cluster of shared DC-L1s. With a clustered shared

cache organization, we eliminated data replication within each

cluster and limited the overall replication in the GPU. Our

designs improve the effective L1 cache capacity, which sig-

nificantly boosts on-chip bandwidth and overall performance.
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