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ABSTRACT. In this paper, we study the energy balance for a class of solutions of the Navier-Stokes equations with
external forces in dimensions three and above. The solution and force are smooth on (0, T ) and the total dissipation
and work of the force are both finite. We show that a possible failure of the energy balance stems from two effects. The
first is the anomalous dissipation of the solution, which has been studied in many contexts. The second is what we call
the anomalous work done by the force, a phenomenon that has not been analyzed before. There are numerous examples
of solutions exhibiting anomalous work, for which even a continuous energy profile does not rule out the anomalous
dissipation, but only implies the balance of the strengths of these two effects, which we confirm in explicit constructions.
More importantly, we show that there exist solutions exhibiting anomalous dissipation with zero anomalous work.
Hence the violation of the energy balance results from the nonlinearity of the solution instead of artifacts of the force.
Such examples exist in the class u ∈ L3

tB
1/3−
3,∞ and f ∈ L2−

t H−1, which implies the sharpness of many existing
conditions on the energy balance.

1. INTRODUCTION

The Navier-Stoke equations (NSE) for the incompressible viscous fluids are{
∂tu− ν∆u+ div(u⊗ u) +∇p = f

div u = 0,
(NSE)

where u(x, t) is the unknown d-dimensional velocity field, p(x, t) is the scalar pressure, and f(x, t) is the external
force. We consider the equations on the d-dimensional torus Td for d ≥ 3 with normalized viscosity coefficient
ν = 1, but all the results can be extended to Rd as well.

In this paper, we study the validity of the energy equality of the forced NSE. The goal is twofold: on one hand,
to identify possible causes for failure of energy balance; and on the other hand, to construct counterexamples
showing the sharpness of positive results. For instance, we prove that the regularity of solutions possessing
anomalous dissipation can be on the borderline of Onsager’s critical spaces, where the energy equality holds.

1.1. Background and previous works. If a solution of the NSE is regular enough, then the change of the energy
is equal to the work done by the force minus the total energy dissipation. This can be seen easily by multiplying
the equation (NSE) by u and integrating in space-time

1

2
‖u(t1)‖22 −

1

2
‖u(t0)‖22 +

ˆ t1

t0

‖∇u(t)‖22 dt =

ˆ t1

t0

〈u, f〉 dt. (1.1)

However, there is not enough regularity to justify this formal computation for weak solutions, and it is expected
that some weak solutions may not obey the energy balance. It was in fact conjectured by Onsager [Ons49] that
in 3-dimensional inviscid flows, solutions with Hölder continuity α > 1/3 conserve energy, and the conservation
of energy may fail if α < 1/3. Such a failure of the energy conservation is often called anomalous dissipation
as it is due to the lack of smoothness of the velocity rather than the viscous dissipation. Onsager’s conjecture
for the Euler equations has been the topic of recent research activities and is generally considered solved in both
directions. See the works of Eyink [Eyi94], Constantin-E-Titi [CET94], Duchon-Robert [DR00] and Constantin-
Cheskidov-Friedlander-Shvydkoy [CCFS08] for the positive direction and the works of De Lellis-Szekelydihi
[DLS13, DLS14], Buckmaster-De Lellis-Isett-Szekelyhidi [BDLIS15] and Isett [Ise18, Ise17b] for the negative
direction.

In the context of the NSE, the existence/nonexistence of anomalous dissipation is still an open question. Pio-
neering results of Leray state that for any finite energy initial data there exists at least one weak solution satisfying
the energy inequality when there is no force, or more generally when the force f ∈ L2

tH
−1
x . Weak solutions

obeying the energy inequality are called Leray-Hopf solutions. The question of whether such solutions satisfy the
energy equality (1.1) is open, and only conditional criteria are available so far in the unforced case. Notably, Lions
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[Lio60] proved that u ∈ L4
tL

4
x implies the energy balance in 3D, which was extended to u ∈ LptLqx for 2

p + 2
q = 1

in all dimensions by Shinbrot [Shi74]. These two classical results can be recovered by the estimates in [CCFS08]
and interpolations. Recent works of Leslie and Shvydkoy [LS18a, LS18b] prove local-in-space results and energy
balance for a certain Type-I blowup of strong solutions at the first blowup time. Shortly later, the two authors of
current paper [CL20a] obtained weak-in-time improvement for Shinbrot’s condition showing that u ∈ Lp,wt Lqx for
2
p + 2

q = 1 is enough for energy balance.
In contrast to the Euler equations, there are no known examples of anomalous dissipation for the unforced NSE.

There are constructions of wild solutions though, with arbitrary smooth energy profile by Buckmaster and Vicol
[BV19], wild solutions with some regularity in time by Buckmaster, Colombo and Vicol [BCV18] and by the two
authors [CL20b]. However, the energy dissipation is infinite for all these wild solutions, i.e. they are not in the
L2
tH

1
x class. Even though one can still identify forward or backward energy cascades in some of those solutions,

the energy balance equation does not make sense outside of the L2
tH

1
x class. For more results using the method of

convex integration in fluid dynamics, see for example [IV15, Ise17a, Luo19, MS18, Dai18, Nov20, BBV20] and
references therein.

1.2. The setup. To find genuine examples of anomalous dissipation in the viscous setting, here we consider the
simplest scenario: a possible violation of the energy balance at one point, while the solutions and forces under
consideration are smooth on (0, T ) 1 (see Section 2 for precise definitions). We do not assume f ∈ L2

tH
−1,

but merely finite work done by the force. Such a relaxation is natural considering that a finite work done is the
minimal assumption for which the energy balance equation makes sense, and in fact, the energy equality (1.1)
holds automatically on (0, T ) for this class of smooth solutions.

One of our goals is to determine whether the energy balance still holds in these one-point singularity scenarios.
A heuristic in mind is that as the time approaches the possible singularity, a fixed amount of energy may move
to the infinite wave-number creating a jump in the energy profile, cf. the energy jump formula (3.7). If such a
heuristic is viable, it could lead to a surprising result: a smooth solution on (0, T ) that does not obey the energy
balance on [0, T ]. Note that all previous nonconservative Euler solutions in [DLS13, DLS14, BDLIS15, Ise18]
have a different mechanism from our one-point model.

It turns out that besides the anomalous dissipation, there is another possible cause of the failure of the energy
balance, which had not been studied in the past. The forces considered in this paper are smooth on (0, T ) and
produce a finite energy input, but may not necessarily be in the class f ∈ L2

tH
−1. This allows for a possibility of

a new phenomenon, what we call the anomalous work, which is elaborated below.
Denote by u≤q the Littewood-Paley projection onto the frequencies . 2q . Then the energy balance for u≤q

reads
1

2
‖u≤q(t)‖22 −

1

2
‖u≤q(t0)‖22 +

ˆ t

t0

‖∇u≤q(τ)‖22 dτ = −
ˆ t

t0

〈(u · ∇u)≤q, u≤q〉 dτ +

ˆ t

t0

〈u≤q, f≤q〉 dτ. (1.2)

Since the solution has regularity u ∈ L∞L2 ∩ L2H1, the terms on the left side of (1.2) will converge to their
natural limits as q →∞ and only the terms on the right might cause the failure of the energy balance.

On one hand, as in [CCFS08], one says the anomalous dissipation occurs (over some time interval) ifˆ
〈(u · ∇u)≤q, u≤q〉 dτ 6→ 0 as q →∞.

This motivates the following quantitative definition of the anomalous dissipation Π > 0 considered in the literature

Π = lim sup
q→∞

∣∣∣ ˆ T

T/2

〈(u · ∇u)≤q, u≤q〉 dt
∣∣∣. (1.3)

On the other hand, since the solution u ∈ L2
tH

1, if the force f ∈ L2
tH
−1, then by the duality between L2

tH
1

and L2
tH
−1, the last term in (1.2) converges to its natural limit, the total work done by the force. However, if

f 6∈ L2
tH
−1, then in general (on some time interval) it could happen thatˆ

〈u≤q, f≤q〉 dτ 6→
ˆ
〈u, f〉 dτ as q →∞ (1.4)

and when (1.4) occurs, we say the force has anomalous work.
Similar to the anomalous dissipation and motivated by (1.4), we can quantify the anomalous work Φ of the

force by

Φ = lim sup
q→∞

∣∣∣ ˆ T

T/2

(
〈u≤q · f≤q〉 − 〈u · f〉

)
dt
∣∣∣. (1.5)

1There are technically two singular points t→ 0+ and t→ T−. For consideration of energy balance, we focus on t→ T−.
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This definition of anomalous work is consistent with (1.2) and in line with the classical definition of anomalous
dissipation (1.3).

Essentially, by allowing “rougher” forces, high-high interactions of the solution and the force can result in
nonzero anomalous work, which in turn can violate the energy balance without any energy cascade. Such examples
are abundant: take a smooth stationary Euler flow and push its frequency to infinity by a suitable force as t→ T−

will produce a finite dissipation example with a jump in the energy at t = T . However, such examples, considered
in Section 4, are not very interesting and more or less trivial.

Our main goal is to contract examples with genuine energy cascade, where the anomalous dissipation is
nonzero. First, in Section 5, we will focus on the class of solutions with no anomalous work, which we argue
are the physical ones, and were all the classical conditions for the energy balance, such as u ∈ LptLqx for some
2
p + 2

q = 1, still hold. In this class, we will construct examples of solutions violating the energy balance, and show
the sharpness of positive results. Second, in Section 6, we will construct an example where the energy equality
holds, but both anomalous work and anomalous dissipation are nonzero, in effect canceling each other.

We first present the main results to classify possible scenarios where the anomalous dissipation or anomalous
work persists.

1.3. Main results. Let us recall several key notations. Throughout the paper, we denote QT = Td × (0, T ) the
space-time domain, and N (QT ) = {(u, f)} the class of smooth solutions with smooth force and finite energy
input introduced in Definition 2.1. Note that even though the solutions (u, f) are smooth on QT , they must blow
up near t = 0 or t = T to develop nontrivial anomalous dissipation or anomalous work. The reader should note
that the notion of smoothness in this paper refers only to the interior of the time interval (0, T ).

Our positive results state as follows.

Theorem 1.1. Suppose (u, f) ∈ N (QT ), then the following two conditions are equivalent.
(1) The energy is continuous: u ∈ C([0, T ];L2).

(2) (u, f) satisfies the energy equality (1.1) on [0, T ].
If one of the conditions holds, then the anomalous dissipation and the anomalous work are the same: Π = Φ.

Therefore, continuous energy only implies the same strength of anomalous dissipation and anomalous work,
which is different than in the unforced case or when f ∈ L2

tH
−1. In particular, Theorem 1.1 recovers a special

case of the following result.

Theorem 1.2. Suppose (u, f) ∈ N (QT ) such that f ∈ Lp(0, T ;H−2+ 2
p ) for some 1 ≤ p ≤ 2. Then the

anomalous work Φ = 0. Moreover, if in addition u ∈ C([0, T ];L2), then Π = Φ = 0.

It is also worth noting that Theorem 1.2 is sharp, as will show that there are counterexamples when forcing
f ∈ L2−ε

t H−1 for any ε > 0, see Theorem 1.6. We also remark that u ∈ L3
tB

1
3
3,∞ implies zero anomalous

dissipation Π = 0 as in the classical unforced settings, see Lemma 4.4.
Our next result concerns the uniqueness problem for solution class N (QT ). It is known that the classical

Ladyzhenskaya-Prodi-Serrin uniqueness criterion also holds in the forced case for f ∈ L2
tH
−1. Note that there

are many refinements over the classical uniqueness results, notably [Ger06] by Germain, [Che11] by Chemin and
[Bar18] by Barker. It is worth mentioning that the latter two results [Che11, Bar18] do not apply to our setting
since in our case the initial data u0 ∈ L2 and there is no uniform regularity assumption for f . It seems that the
result of [Ger06] can be extended to our setting (see Remark 3.3, [Ger06]), however, we choose not to do so,
avoiding technicalities in harmonic analysis. We show that assuming only finite energy input, at least the classical
uniqueness results hold.

Theorem 1.3. Let (u, f), (v, f) ∈ N (QT ) with the same force f and initial data u(0) = v(0) = u0. If in addition
u ∈ LptLqx(QT ) with 2

p + d
q = 1 and v is continuous in L2 at t = 0, then u = v.

The result of Theorem 1.3 is expected considering that under such assumptions it can be seen as a weak-strong
uniqueness result for “Leray-Hopf weak solutions with finite energy input” in the spirit of Definition 2.1.

The next two theorems are our most surprising results. We construct solutions whose anomalous work is zero
while anomalous dissipation is not. In this case, the violation of energy balance stems from the solution itself
rather than the force. More importantly, these solutions can be made arbitrarily close to the borderline spaces of
energy balance, cf. [Lio60, Shi74, CCFS08, CL20a].

Theorem 1.4. For any ε > 0 and dimension d ≥ 3, there exists a solution (u, f) ∈ N (QT ) such that (u, f)
satisfies the energy equality on [0, T ), namely

1

2
‖u(t1)‖22 −

1

2
‖u(t0)‖22 +

ˆ t1

t0

‖∇u(t)‖22 dt =

ˆ t1

t0

〈u, f〉 dt for all t0, t1 ∈ [0, T ), (1.6)
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the anomalous work vanishes

lim
q→∞

ˆ T

T/2

(
〈u≤q · f≤q〉 − 〈u · f〉

)
dt = 0, (1.7)

and the energy is jump discontinuous at t = T ,

lim
t→T−

‖u(t)‖22 > ‖u(T )‖22. (1.8)

Moreover, u is almost Onsager critical: u ∈ L3
tB

1
3−ε
3,∞ ∩ L

p
tL

q
x for any 2

p + 2
q = 1 + ε and f is almost

Leray-Hopf: f ∈ L2−ε
t H−1.

Now we note that in the class of zero anomalous work solutions Φ = 0, classical positive results still hold: if
u ∈ L3

tB
1
3
3,∞ or u ∈ LptLqx for some 2

p + 2
q = 1, then the energy equality is satisfied. Indeed, if u is such a solution,

then Theorem 4.4 (cf. [CCFS08]) implies no anomalous dissipation and the energy jump formula 3.7 implies that
u is continuous in L2 at t = T and hence the energy equality thanks to Theorem 1.1. These positive results do
not contain any conditions on the force, so the force by itself cannot create anomalous dissipation, which can only
come from the energy cascade when Φ = 0. Now thanks to Theorem 1.4, we know that these positive results are
sharp.

Corollary 1.5. Consider the class of solutions in N (QT ) with zero anomalous work:

S = {(u, f) ∈ N (QT ) : Φ = 0}.

(1) If (u, f) ∈ S is such that u ∈ L3
tB

1
3
3,∞ or u ∈ LptLqx for some 2

p + 2
q = 1, then the energy equality is

satisfied on (0, T ].

(2) For any ε > 0, there exists (u, f) ∈ S such that u ∈ L3
tB

1
3−ε
3,∞ ∩ L

p
tL

q
x for any 2

p + 2
q = 1 + ε and the

energy equality is not satisfied on (0, T ].

Our last result shows that Theorem 1.1 and Theorem 1.2 are sharp in another way. In the class of N (QT ),
continuous energy does not rule out anomalous dissipation due to the presence of anomalous work. These solutions
are also arbitrarily close to the borderline spaces of energy balance.

Theorem 1.6. For any ε > 0 and dimension d ≥ 3, there exists (u, f) ∈ N (QT ) such that (u, f) satisfies energy
equality on [0, T ]

1

2
‖u(t1)‖22 −

1

2
‖u(t0)‖22 +

ˆ t1

t0

‖∇u(t)‖22 dt =

ˆ t1

t0

〈u, f〉 dt for all t0, t1 ∈ [0, T ], (1.9)

but the anomalous dissipation still occurs

lim
q→∞

∣∣∣ ˆ T

T/2

〈(u · ∇u)≤q, u≤q〉 dt
∣∣∣ > 0. (1.10)

In addition, u is almost Onsager critical: u ∈ L3
tB

1
3−ε
3,∞ ∩ L

p
tL

q
x for any 2

p + 2
q = 1 + ε, and f is almost

Leray-Hopf: f ∈ L2−ε
t H−1.

1.4. Strategy of the proof. One of the main ingredients in the proof is a construction of a sequence of building
blocks, vector fields with the optimal energy flux, which we then glue together in time. We use two different
gluing mechanisms to achieve the positivity of the energy flux (1.10) for our solutions. In Theorem 1.4 all the
energy escapes to the infinite wavenumber as time t→ T−, resulting in a jump of the energy. This solution enjoys
the anomalous dissipation with no anomalous work. On the other hand, in Theorem 1.6, the energy does not
completely transfer to the next shell as the force injects energy at each frequency producing the anomalous work
(in addition to the regular work). This solution encounters both anomalous dissipation and anomalous work that
balance each other resulting in the energy equality. The designed vector fields are intermittent of dimension close
to d − 2 based on the heuristics in [CL20a], so that we also achieve finite dissipation. In Theorem 1.4 the gluing
in time is more delicate and the time scales are carefully designed so that the force has no anomalous work. Our
method of constructing such pathological solutions is very flexible and less restrictive than traditional methods
since no uniform regularity of the force is assumed.

In view of the energy cascade in the construction of Theorem 1.4, the force is designed so that it does not
interfere with the energy cascade but only helps the solution to keep the desired structure. This can be seen as
an implementation of a blow-up in Tao’s averaged NSE [Tao16] to the actual NSE, but with a force. The delay
mechanism is enforced via gluing building blocks with a positive flux. So at each time, the transfer of energy
occurs only at one particular scale. The intermittency of building blocks combined with the delay mechanism
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results in the optimal energy cascade to high modes, which allows us to construct examples with finite dissipation
and almost critical Onsager’s regularity.

1.5. Physical motivation. The effect of rough forces on the energy cascade in turbulent flows has been exten-
sively studied experimentally as well as numerically [QCV01, SMVvdW03, MV04]. Experimental setups usually
involve a stirrer with a self-similar structure or a grid of a fractal dimension above two. In fractal forced direct
numerical simulations, rough forces are used to model fluid obstacles, such as grids. See for instance [MV04],
where the roughness of the force well surpassed the Leray-Hopf L2

tH
−1
x class for obstacles of high fractal dimen-

sion. It has been shown that the energy spectrum of fractal forced turbulence deviates from Kolmogorov’s law and
the energy dissipation rate does not exhibit Kolmogorov scaling, but instead diverges at high Reynolds numbers,
which was also confirmed theoretically with rigorous upper bounds in [CDP07].

Even though there is evidence that fractal obstacles should be modeled by rough forces, one can argue that such
forces should not exhibit any anomalous work. For instance, in the case of an elastic fractal grid we would expect
the force to satisfy

lim
q→∞

ˆ t2

t1

〈u≤q · F fractal
≤q 〉 dt = 0,

on sufficiently large time intervals [t1, t2], so that the total work vanishes in the strong physical sense. This
combined with a driving (low mode, or Leray-Hopf) force F LH in the experiment would result in Φ = 0, were the
anomalous work Φ is as in (1.5) computed for f = F fractal + F LH over one interval since we only study the case
of a single time singularity.

As we assume zero anomalous work, i.e., no nonphysical mechanism to produce some pathological work
on small scales, we study whether solutions to the (NSE) can exhibit anomalous dissipation. Physically this
would correspond to a dissipation mechanism for high velocities on small scales where the equations are not valid
anymore. Such small scales cant get engaged if the energy cascade is stronger than the dissipation.

1.6. Concluding comments. The zero anomalous work construction of Theorem 1.4 is not specific to any par-
ticular Littlewood-Paley decomposition: the anomalous work of the force is zero for any dyadic Littlewood-Paley
cutoff such that each projection ∆q has frequencies in the range [2q−1, 2q+1]. In addition, the value of the anoma-
lous dissipation (1.3) is always equal to the energy jump at t = T , so it represents the energy balance defect, as in
the unforced case.

It is also worth noting that if one can strengthen Theorem 1.4 to f ∈ L2
tH
−1, then a suitable modification of the

proof would imply the nonuniqueness of Leray-Hopf weak solutions. Indeed, standard methods of constructing
Leray-Hopf weak solutions can be used to remove the jump, and thus create a new solution.

We finish our discussion by comparing our method of constructing solutions with convex integration that has
been developed for fluid dynamics in recent years. It is possible that by using convex integration and allowing for
forcing one can also construct solutions with zero anomalous work and nonzero anomalous dissipation. However,
it seems that with current techniques this is impossible in 3D and only works in very high dimensions. There
is at least one advantage of using convex integration: forcing given by convex integration solutions has small
low frequencies. So the force can be made arbitrarily small in L∞t W

−1,1 or L∞t W
−k,p for sufficiently large k

depending on p ∈ [1,∞] 2. The examples given in this paper do not have such a property.

Organization of the paper. The rest of the paper is divided into the following sections.

• In Section 2 we introduce the solution classN (QT ) and discuss basic properties and its relationship with
other notion of solution. In particular, Theorem 1.3 is proved in Section 2.4.

• In Section 3 we formulate anomalous dissipation and anomalous work by a Littlewood–Paley decompo-
sition.

• Section 4 is devoted to both the positive results and the counterexamples. On one hand, we prove Theorem
1.1 and Theorem 1.2. On the other hand, we give simple examples of nonzero anomalous work.

• The last two sections are dedicated to constructing counterexamples. Using intermittent vector fields with
optimal energy flux, we prove Theorem 1.4 in Section 5 and Theorem 1.6 in Section 6.

2It seems also possible to reach f ∈ L2
tH
−1−ε for any ε > 0 by convex integration, which is different than the ones f ∈ L2−ε

t H−1

obtained here.
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2. SMOOTH SOLUTIONS WITH FINITE INPUT

2.1. Functional spaces and notations. Throughout the paper, we consider the (NSE) on Ω = Td for d ≥ 3. The
space of test functions is denoted by D(Ω) or simply D. Respectively, the space of distributions is denoted by D′.
The Lebesgue norm is written as ‖ · ‖Lp(Ω) = ‖ · ‖p

For any f ∈ D′, its Fourier transform is denoted as f̂ or Ff . For any distribution u ∈ D, we will use the
Littlewood-Paley decomposition

u =
∑
q≥−1

∆qu (2.1)

where ∆q denotes the projection onto frequencies ∼ λq := 2q . Note that throughout the paper λq = 2q is the
dyadic number for any q ∈ Z.

The notation X . Y means X ≤ CY for some constant C > 0. If the constant C depends on certain
parameters a0, a1 . . . an, then we write X .a0,a0...an . X & Y is defined similarly and X ∼ Y means X . Y
and Y . X at the same time.

For any s ∈ R, the Sobolev spaces Hs consists of all distributions satisfying∑
q≥−1

λ2
q‖∆qu‖22 <∞. (2.2)

For any Banach spaceX , a function f : [0, T ]→ X is called weakly continuous intoX if 〈f, g〉X : [0, T ]→ R
is continuous for any g ∈ X ′. The space Cw(0, T ;X) consists of all functions weakly continuous into X .

The space L(0, T ) consists of all f ∈ L1
loc such that the limit

lim
a→0+,b→T−

ˆ b

a

f dt exists.

In particular, the Lebesgue space L1 is included, L1(0, T ) ⊂ L(0, T ). The space L(0, T ) will be used to charac-
terize finite work done by the force.

In what follows, unless otherwise indicated, the notation 〈·, ·〉 is reserved for the standard L2 inner product.

2.2. Smooth solutions with finite input. We now begin to introduce our class of smooth solutionsN (QT ). Since
we are interested in the energy balance law, the solution should be of finite energy and the input from the force
should also be finite.

Definition 2.1 (Solutions class N (QT )). Let T > 0 and the space-time domain QT := Td × (0, T ). We say
(u, f) is a smooth solution with finite energy input, or (u, f) ∈ N (QT ) for simplicity, if all of the followings are
satisfied

• u ∈ C∞t,x(QT ) ∩ L∞(0, T ;L2(Ω)), f ∈ C∞(QT );

• u and f satisfies (NSE) for any (t, x) ∈ QT ;

• 〈u, f〉 ∈ L(0, T );

• The limits of f(t) exist in D′ as t→ 0+ and t→ T−.

Remark 2.2. Here are a few comments concerning the solution class (u, f) ∈ N (QT ).
• As discussed in the introduction, we only assume the smoothness of (u, f) on (0, T ), not [0, T ]. The only

uniform regularity we have is u ∈ L∞(0, T ;L2(Ω)).

• The assumption that f can be extended to a continuous distribution on [0, T ] is mainly for the compati-
bility of a weak solution. Without such an assumption, u can not be extended to a weak solution on [0, T ],
see Lemma 2.6.

• The finite energy input condition 〈u, f〉 ∈ L(0, T ) is the minimal assumption for which the energy in-
equality makes sense on (0, T ]. This includes the usual case f ∈ L2H−1 of the Leray-Hopf solutions.

Remark 2.3. There are two potential singular points for solutions in N (QT ): t → 0+ and t → T−. The latter
case t→ T− is where we study possible failure of energy balance while t→ 0+ is where possible non-uniqueness
may emerge. Note that failure of energy balance at t→ 0+ is the worst-case scenario of nonuniqueness, whereas
the possible non-unique solutions considered in [JS15] satisfy the energy balance at t→ 0+.

The following lemma shows that possible discontinuities of energy profile of such solutions can only be jumps.

Lemma 2.4. Assume that (u, f) is a smooth solution of (NSE) on QT and u ∈ L2(0, T ;H1). Then (u, f) ∈
N (QT ) if and only if lim

s→t
‖u(s)‖22 exists for t = 0+ and T−.
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Proof. Indeed, since (u, f) is smooth on (0, T ), the energy equality holds:

1

2
‖u(t)‖22 =

1

2
‖u(t0)‖22 −

ˆ t

t0

‖∇u‖22 dτ +

ˆ t

t0

〈u, f〉 dτ, 0 < t0 < t < T.

Since u ∈ L2H1, the limits of ‖u(t)‖22 at 0+ and T− exist if and only if 〈u, f〉 ∈ L(0, T ). �

The next theorem shows that all the terms in the energy balance equation are finite on the closed interval [0, T ].

Theorem 2.5. If (u, f) ∈ N (QT ), then the energy dissipation is finite: u ∈ L2(0, T ;H1).

Proof. Again, this is a simple consequence of the energy equality for u(t) on (0, T ), according to which the energy
dissipation is given byˆ t

t0

‖∇u‖22 dτ =
1

2
‖u(t0)‖22 −

1

2
‖u(t)‖22 +

ˆ t

t0

〈u, f〉 dτ, 0 < t0 < t < T.

Using u ∈ L∞(0, T ;L2) and the definition of N (QT ), we can take the limsup as t0 → 0− and t → T+ of both
sides to obtain the desired result. �

2.3. Relation to weak solutions. The aim here is to compare our class of solutions N (QT ) with weak and
Leray-Hopf solutions. First, recall that a weak solution of the NSE on [0, T ] is a weakly continuous and weakly
divergence-free vector field u ∈ Cw([0, T ];L2) solving (NSE) in the sense of distributions.

Lemma 2.6. If (u, f) ∈ N (QT ), then weak limits of u(t) in L2 exist as t→ 0+ and t→ T−.

Proof. Thanks to the incompressibility, it suffices to consider divergence-free test functions. By the weak formu-
lation of the NSE, for 0 < t < t1 < T and divergence-free ϕ ∈ D we have

〈u(t), ϕ〉 = 〈u(t1), ϕ〉 −
ˆ t1

t

〈u,∆ϕ〉 dτ +

ˆ t1

t

〈u⊗ u : ∇ϕ〉 dτ −
ˆ t1

t

〈f, ϕ〉 dτ. (2.3)

Sending t→ 0+ or t→ T−, we need to show that the limits of all terms on the right-hand side exist. This easily
follows from our finite energy assumption L∞t L

2 of u and the assumption that the limits of f as a distribution
exists (see Definition 2.1). �

Thanks to Lemma 2.6 we can extend u(t) to [0, T ] by weak continuity in L2. So u(0) and u(T ) will always
denote weak limits u(t) as t → 0+ and t → T− respectively. Since the extended u(t) is weakly continuous on
[0, T ], it is a weak solution of (NSE) on [0, T ].

Weak solutions satisfying the energy inequality are called Leray-Hopf weak solutions. We can show that
solutions in N (QT ) are Leray-Hopf solutions for positive times.

Lemma 2.7. If (u, f) ∈ N (QT ), then for any ε > 0, (u, f) is a Leray-Hopf weak solution on [ε, T ], namely the
energy inequality

1

2
‖u(t)‖22 +

ˆ t

t0

‖∇u‖22 dτ ≤
1

2
‖u(t0)‖22 +

ˆ t

t0

〈u, f〉 dτ (2.4)

is satisfied for all t0, t ∈ [ε, T ], t ≥ t0.

Proof. This immediately follows from the fact that the energy equality is satisfied on (0, T ), and the lower semi-
continuity of ‖u‖2 at t→ T− which is a consequence of weak continuity of u(t). �

Remark 2.8. Here, by Leray-Hopf weak solution we mean a weak solution u ∈ Cw([0, T ];L2) ∩ L2
tH

1(QT )
satisfying the energy inequality, without any assumption on the regularity of the force on [0, T ].

Remark 2.9. Note that in general (u, f) ∈ N (QT ) is not a Leray-Hopf weak solution on [0, T ]. The energy may
be discontinuous at t = 0 which is forbidden if energy inequality is satisfied starting at t0 = 0. This is the reason
that in Theorem 1.3 we need to assume the L2-continuity at t = 0.

2.4. Uniqueness results for N (QT ). In the last part of this section, we briefly touch on the uniqueness result in
the class N (QT ). We follow classical strategies of proving uniqueness. Suppose we have two smooth solutions
(u, f), (v, f) ∈ N (QT ) for the same force f , and v is a “strong solution”. Let w := u − v be the difference, the
energy space ET be

ET := L∞t L
2 ∩ L2

tH
1(QT )

and the trilinear operator T be

T : (a, b, c)→
ˆ T

0

〈a · ∇b, c〉 dt. (2.5)
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There are mainly two key points in the classical argument. First, we need the energy inequality on [0, T ] for
both solutions. Second, we need one strong solution in some path space PT ⊂ L1

loc(QT ) such that the trilinear
operator T is continuous on ET × ET × PT , namely∣∣T (a, b, c)

∣∣ . ‖a‖ET ‖b‖ET ‖c‖PT . (2.6)

With these in hand, one can then use a continuity argument and Proposition 2.10 to show that ‖w‖ET ≤ 0,
hence uniqueness.

For PT = LptL
q(QT ), 2

p + d
q = 1, the estimate (2.6) is classical for the 3D NSE (see for example [Pro59]), it

is also standard to extend it to other dimensions. To prove Theorem 1.3 we only need to justify the following L2

stability estimate of the difference w.

Proposition 2.10. Under the assumptions of Theorem 1.3, the following equality holds

‖w(t)‖22 + 2

ˆ t

0

‖∇w(τ)‖22 dτ = 2

ˆ t

0

〈w · ∇w, v〉 dτ for all t ∈ [0, T ].

Proof. Since u and v are smooth on QT , the difference w satisfies

∂tw −∆w + w · ∇w + v · ∇w + w · ∇v +∇π = 0 for all 0 < t < T . (2.7)

Multiplying (2.7) by w and integrating, we get

‖w(t)‖22 − ‖w(t0)‖22 + 2

ˆ t

t0

‖∇w(τ)‖22 dτ = 2

ˆ t

t0

〈w · ∇w, v〉 dτ for all t0, t ∈ (0, T ).

Since u ∈ LptL
q
x(QT ) with 2

p + d
q = 1 and v is bounded in L2 at t = 0, the trilinear term make sense when

t0 → 0+, namely ˆ t

0

〈w · ∇w, v〉 dτ <∞.

Moreover, the space LptL
q
x(QT ) is Onsager subcritical (see Theorem 4.4), so u satisfies the energy balance and

is continuous in L2 at t = 0. Since v is also continuous in L2 at t = 0 by the standing assumption, we have
‖w(t0)‖22 → 0 as t0 → 0+, which concludes the proof.

�

3. ANOMALOUS DISSIPATION AND ANOMALOUS WORK

In this section, we formulate the concept of anomalous dissipation and anomalous work through the Littlewood–
Paley decomposition. As briefly discussed in the introduction, these two quantities arise naturally when studying
the energy balance of the NSE. Note that for our solution class N (QT ), these two quantities do not depend on
the particular decomposition used here, which is the same as in the unforced case or f ∈ L2

tH
−1, see the energy

jump formula (3.7) below.

3.1. Littlewood–Paley decomposition. We briefly introduce a Littlewood–Paley decomposition on Td. Through-
out the paper we use the notation λq = 2q for all q ∈ Z. Let radially non-increasing χ(ξ) ∈ C∞c (Rd) be such
that χ(ξ) = 1 for |ξ| ≤ 1/2 and χ = 0 for |ξ| ≥ 1. Let ϕ(ξ) = χ(λ−1

1 ξ) − χ(ξ) and define for any q ∈ N
χq(ξ) = χ(λ−1

q ξ) and ϕq(ξ) = ϕ(λ−1
q ξ). Then we have the partition

χ(ξ) +
∑
q≥0

ϕq(ξ) = 1. (3.1)

We then let ∆q be the Littlewood–Paley projection with symbol ϕq(ξ) for q ≥ 0 or χ(ξ) if q = −1. For any
distribution u ∈ D(Td) one has

u =
∑
q≥−1

∆qu

in the sense of distribution. We also use notations ∆≤q :=
∑
r≤q ∆r, uq := ∆qu and u≤q := ∆≤qu. From the

telescoping identity
χ(ξ) +

∑
0≤r≤q

ϕr(ξ) = χq+1(ξ), (3.2)

it follows that ∆≤q is the Littlewood–Paley projection with symbol χq+1(ξ).
Let us recall that for any s ∈ R, p, q ∈ [1,∞], the (in-homogeneous) Besov space Bsp,q is equipped with the

following norm
‖u‖Bsp,q :=

∥∥(λsq‖uq‖p)q≥−1

∥∥
`q(Z)

.

It is known that Bs2,2 = Hs.
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We refer readers to [Can04] for more background on harmonic analysis applying to fluid dynamics.

3.2. Energy flux. We will use the Littlewood–Paley decomposition to formulate our definitions of the anomalous
dissipation and anomalous work for (u, f) ∈ N (QT ). We focus on the endpoint t→ T− and start with the cutoff
energy equality and let (T − h, T ) ⊂ (0, T ).

Multiplying (NSE) by (u≤q)≤q and integrating on Td × (T − h, T ) gives

1

2
‖u≤q(t)‖22

∣∣∣t=T
t=T−h

+

ˆ T

T−h
‖∇u≤q(s)‖22 dτ = −

ˆ T

T−h
〈u · ∇u, (u≤q)≤q〉+ 〈u≤q, f≤q〉 dτ. (3.3)

Since (u, f) ∈ N (QT ), we have u ∈ L2H1 thanks to Theorem 2.5. So the limit of the right-hand side as q →∞
always exists. However, as discussed in the introduction, the two energy flux terms on the right-hand side may not
converge to the work

´
〈u, f〉 dt, resulting a failure of energy balance. Let Πq(t, h) and Φq(t, h) be defined by

Πq(t, h) :=

ˆ
[t−h,t+h]∩[0,T ]

ˆ
Td

(u⊗ u) : ∇(u≤q)≤q dx dτ, (3.4)

and respectively

Φq(t, h) :=

ˆ
[t−h,t+h]∩[0,T ]

ˆ
Td

(u≤q · f≤q − u · f) dx dτ. (3.5)

In what follows, we will simply refer to Πq and Φq as flux terms. The energy balance through wavenumber λq
can then be written as

1

2
‖u≤q(t)‖22

∣∣∣t=T
t=T−h

+

ˆ T

T−h
‖∇u≤q(s)‖22 dτ =

ˆ T

T−h
〈u, f〉 dτ + Πq(T, h) + Φq(T, h). (3.6)

One particular usage of the two quantities Πq and Φq is to measure the possible jump discontinuity of the
energy. Indeed, by taking a limit as h → 0+ and using the fact that u ∈ L2H1, we obtain the formula for the
energy jump at t→ T−

1

2
‖u(T )‖22 − lim

t→T−

1

2
‖u(t)‖22 = lim

q→∞
[Πq(T, h) + Φq(T, h)] . (3.7)

In the literature (see [CCFS08] for example), Πq is called the energy flux through wavenumber λq which is
used to capture the anomalous dissipation of the solution. In the unforced case, lim sup |Πq| = 0 immediately
implies the energy equality. The conclusion also holds if we assume f ∈ L2

tH
−1 in the forced case.

However, for solutions inN (QT ), the flux term Φq in (3.6) may not converges to 0 because we no longer have
the bound f ∈ L2

tH
−1. The failure of energy balance is due to the high-high interaction between the solution and

the force. In Section 4 we will show that many such examples can be obtained.
Based on the discussion above, it is natural to introduce the following.

Definition 3.1 (Anomalous dissipation and anomalous work). Let (u, f) ∈ N (QT ). For any t ∈ [0, T ] the
anomalous dissipation Π(t) at time t is defined by

Π(t) = lim sup
q→∞

|Πq(t, h)|,

and the anomalous work Φ(t) at time t is defined by

Φ(t) = lim sup
q→∞

|Φq(t, h)|,

where Πq(t, h) and Φq(t, h) are as in (3.4) and (3.5). By a slight abuse of notation, we simply write Π = Π(T )

and Φ = Φ(T ).

Note that in the definition, we did not specify the value of the parameter h > 0. The next lemma shows that
any T > h > 0 will give the same definition.

Lemma 3.2. The anomalous dissipation Π(t) and the anomalous work Φ(t) are well-defined.

Proof. We need to show that lim supq→∞ |Πq(t, h)| = lim supq→∞ |Πq(t, h
′)| for any h, h′ > 0, and mutatis

mutandis for Φ(t). We only show this for Π(T ). Assuming h′ > h > 0, it suffices to show∣∣∣∣∣
ˆ T−h

T−h′

ˆ
Td

(u · ∇)u · (u≤q)≤q dx dt

∣∣∣∣∣→ 0, as q →∞ (3.8)

Since u is smooth on (0, T ), in particular this implies that

‖u‖C1
t,x([T−h′,T−h]×Ω) <∞.
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It is easy to see that u ∈ C1
t,x ∩ L∞t L2 ∩ L2

tH
1 implies (3.8) immediately.

�

It is straightforward to verify that Π(t) = Φ(t) = 0 for any solution (u, f) ∈ N (QT ) and any t ∈ (0, T ). In
what follows we are only interested in the nontrivial case t→ T−.

4. POSITIVE RESULTS AND SIMPLE EXAMPLES

The goal of this section is two-fold. On one hand, we provide positive results to classify possible scenarios of
the violation of the energy balance. This is reflected by the loss of continuity of the energy. On the other hand, we
provide simple examples with positive anomalous work.

4.1. Positive results. We prove several positive results in this subsection. In particular, these results would imply
Theorem 1.1 and thus Theorem 1.2.

First, let us show that for the solution classN (QT ), the continuity of energy is equivalent to the energy equality
on [0, T ].

Lemma 4.1. Suppose (u, f) ∈ N (QT ), then u ∈ C([0, T ];L2) if and only if (u, f) satisfies the energy equality
on [0, T ].

Proof. Since u ∈ L2H1 and 〈u, f〉 ∈ L(0, T ), the sufficiency is easy. Let us show the necessity. In this case one
can then use the energy equality on (0, T ) and pass to the limit thanks to u ∈ C([0, T ];L2). �

Next, we finish the proof of Theorem 1.1. In the unforced cases, it is expected that solutions exhibiting anoma-
lous dissipation would have a discontinuous energy. However, when a force f 6∈ L2

tH
−1 is present, there might be

cancellations between anomalous dissipation and anomalous work. Thus the continuity of the energy only implies
that these two effects are of the same strength.

Lemma 4.2. Let (u, f) ∈ N (QT ). If u ∈ C([0, T ];L2), then Π = Φ.

Proof. By the energy jump formula (3.7),

lim
q→∞

[Πq(T, h) + Φq(T, h)] =
1

2
‖u(T )‖22 − lim

t→T−

1

2
‖u(t)‖22 = 0,

due to the continuity of u in L2. This immediately implies Π = Φ. �

Note that by Lemma 4.1 and Lemma 4.2, we have thus obtained Theorem 1.1.
When the force is in the Leray-Hopf class f ∈ L2(0, T ;H−1), there is no anomalous work. In addition, any

subsequence of |Πq| will converge to the anomalous dissipation Π in this case.

Lemma 4.3. Suppose (u, f) ∈ N (QT ) is such that f ∈ Lp(0, T ;H−2+ 2
p ) for some 1 ≤ p ≤ 2. Then the

anomalous work is zero: Φ = 0.
Moreover, the anomalous dissipation satisfies

Π(t) = lim
q→∞

|Πq(t, h)| for any t ∈ [0, T ].

Proof. Since (u, f) ∈ N (QT ), we have u ∈ L∞t L2 ∩ L2
tH

1, and hence u ∈ LqtHα, where q is the dual Hölder
exponent of p and α := 2− 2

p . Since also f ∈ LptH−α, by duality and interpolation, we have∣∣∣∣∣
ˆ T

T−h

ˆ
Td

(u≤q · f≤q − u · f) dx dτ

∣∣∣∣∣ ≤
ˆ T

T−h
‖u≥q‖Hα‖f≥q‖H−α dt (4.1)

. ‖u≥q‖LqtHα‖f≥q‖LptH−α (4.2)
→ 0, (4.3)

as q →∞, and the anomalous work is zero Φ = 0 by definition (3.5).
As for the second claim, we only show this for t = T . Due to the energy jump formula (3.7), the limit

lim
q→∞

[Πq(T, h) + Φq(T, h)]

exists. Since Φ = 0, we also have that limq→∞Φq(T, h) = 0, and hence limq→∞ |Πq(T, h)| exists, and is equal
to Π.

�

Finally, we note that B1/3
3,∞ is the Onsager’s space as in the unforced setting. This follows immediately from

the estimates on the flux in [CCFS08] since the definition of the anomalous dissipation is the same.
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Theorem 4.4 ([CCFS08, Theorem 6.1]). If (u, f) ∈ N (QT ) and

u ∈ L3
tB

1/3
3,∞,

then Π = 0.

We also quote the positive result of [CL20a] in our settings which improves upon the condition of Shinbrot
[Shi74].

Theorem 4.5 ([CL20a, Theorem 1.1]). Let (u, f) ∈ N (QT ) and 1 ≤ β < p ≤ ∞ such that 2
p + 1

β < 1. If 3

u ∈ Lβ,wt B
2
β+ 2

p−1
p,∞ , (4.4)

then Π = 0.

Remark 4.6. Note that Theorem 4.5 requires finite dissipation while Theorem 4.4 holds true for any weak solutions
(u, f). Even though Theorem 4.5 relies on the flux estimates in [CCFS08], there is no mutual implication between
these two conditions, see [CL20a, Section 5] for details.

4.2. Trivial examples. We now switch from the positive results to discussing various examples with anomalous
work. As one shall see, anomalous work is perhaps the simplest way to produce a jump discontinuity in the energy.

4.2.1. Oscillations. The first example is based on shear flows glued together by a partition in time. We show that
anomalous work can be caused by pure oscillations.

Given T > 0, let us choose a sequence of smooth cutoffs hi ∈ C∞c (R) such that

supphi ⊂ [T − 2−β(i−1)T, T − 2−β(i+1)T ],

and ∑
hi(t)

2 = 1 for t ∈ [0, T ).

Example 4.7. Let k, l ∈ Zd so that k · l = 0 and β > 2. Consider the NSE on torus Td for d ≥ 3 and define the
solution

u(x, t) := 2
∑
i≥1

hi(t) sin(2il · x)k,

for t ∈ [0, T ) and the force
f(t, x) := ∂tu−∆u.

In this case, obviously u and f are smooth on QT . Due to the choice of time cutoffs we also have ‖u(t)‖22 = 1
for t > 0, and hence d

dt‖u(t)‖22 = 0. Since β > 2, it is easy to verify that u ∈ L2H1 and due to the smoothness
of u and f as well as the energy equality on (0, T ) we get

〈u, f〉 = ‖∇u(t)‖22 for all 0 < t < T, (4.5)

which implies 〈u, f〉 ∈ L(0, T ) (in fact L1(0, T )). It is also easy to see that weak L2 limits of u exists as
t → 0+, T−, and the latter one is zero. Therefore the energy is discontinuous at t = T . Also, the limits of f(t)
exist in D′ as t→ 0+ and t→ T−. Thus (u, f) ∈ N (QT ).

We claim that the jump discontinuity at t = T is caused by the anomalous work. Indeed, it is not hard to see
that u ∈ L∞t,x(QT ) or even div(u⊗ u) = 0, and hence the anomalous dissipation Π = 0 for this solution.

4.2.2. Concentration. The next example shows that the development of concentrations can also lead to anomalous
work. Here we use the Concentrated Mikado flows used in [Luo19] which was based on the Mikado flows
introduced by Daneri and Székelyhidi, Jr. in [DS17].

Recall that for dimension d ≥ 3 and k ∈ Zd Concentrated Mikado flows Wµ
k ∈ C∞0 (Td) are periodic pipe

flows whose supported pipes have small radius of size µ−1 with direction k; See Section 2 in [Luo19] for the
exact definition.

Let us fix some constant 0 < α < 1
2 and introduce a time-dependent concentration parameter

µ(t) :=
1

(T − t)α
.

Example 4.8. Consider the NSE on Td for d ≥ 3. Let Wµ
k ∈ C∞0 (Td) be a Concentrated Mikado flow. Define

the solution
u(x, t) = Wµ(t)

k

and the forcing f(x, t) := ∂tu−∆u on (0, T ).

3Note that Lp,w denotes the weak Lebesgue space.
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Since div(u⊗ u) = 0 for all t ∈ (0, T ), (u, f) ∈ N (QT ). As before, u and f are smooth on QT and the weak
L2 limit of u(t) is zero as t→ T−. So the energy is discontinuous at t = T . Note that due to the scaling property
of the Concentrated Mikado flow, ‖∇v(t)‖22 = cµ2 for some fix constant c, which implies u ∈ L2(0, T ;H1) since
0 < α < 1

2 . Note that ‖u(t)‖22 is a constant on (0, T ), and due to the energy equality on (0, T ) we get

〈u, f〉 = ‖∇u(t)‖22 for all 0 < t < T, (4.6)

which implies 〈u, f〉 ∈ L(0, T ). So (u, f) ∈ N (QT ). It is obvious that the energy flux Π = 0 since div(u⊗u) =
0. Therefore, the discontinuity of the energy must be caused by the anomalous work.

4.2.3. Tao’s blowup solution of averaged NSE. In a remarkable paper [Tao16], Tao proved a finite time blowup of
a smooth solution to an averaged NSE, which satisfies many classical harmonic analysis estimates of the original
NSE. Here, we show that this solution is also in our solution class N (QT ) for the original NSE.

Let u : [0, T ∗) → C∞(R3) be the blowup solution 4 to the averaged NSE in [Tao16, Theorem 1.5]. So, u is a
classical solution to ∂tu−∆u+ B̃(u, u) = 0 that blows up at time T ∗ with a Schwartz initial data u0.

Example 4.9. Consider the forcing f := B(u, u) − B̃(u, u). Then (u, f) ∈ N (QT∗) and 〈u, f〉 = 0 for all
t ∈ [0, T ∗).

The weak L2 limit of u exists as t→ T ∗ by the weak formulation of the average NSE. Therefore by a standard
argument, one can show that the force f = B(u, u) − B̃(u, u) can also be extended to t = T ∗ as a continuous
distribution. All conditions in Definition 2.1 has been verified, and thus (u, f) ∈ N (QT∗).

Since the averaged bilinear operator B̃ still fulfills the orthogonality 〈B̃(u, v), v〉 = 0, then by construction
〈u, f〉 = 0 for all t ∈ [0, T ∗).

Remark 4.10. In the above example, the work is zero for (u, f). However, at the moment it is not known whether
the energy has a jump at t → T− since only the blowup of higher Sobolev norms is shown 5, see [Tao16, Propo-
sition 6.3 ]. It is also not clear whether anomalous work Φ = 0 or even anomalous dissipation Π = 0 as the
solution u was not designed to saturate the energy flux for the original NSE.

4.2.4. Concentration with zero input. In this last example, we show that one can also achieve zero work done
in Example 4.8 by incorporating the decay of heat flow. Denote by v(x, t) the solution in Example 4.8. Let
h ∈ C∞(R+) be the unique solution of ODE

dh

dt
= −2‖∇v(t)‖22h(t) (4.7)

with initial data h(0) = 1. As before, ‖∇v(t)‖22 = cµ2 for some fix constant c. We thus obtain explicitly

h(t) = h(T )e
2c

1−2α (T−t)1−2α

.

Example 4.11. Consider the NSE on Td for d ≥ 3 and define a solution

u(x, t) := h
1
2 (t)v(x, t) and f := ∂tu−∆u, (4.8)

for t ∈ (0, T ). Then (u, f) ∈ N (Qt), 〈u, f〉 = 0 for all t ∈ (0, T ) and the energy has a jump at t = T .

Arguing as in Example 4.8, u ∈ L2H1 since h(t) ≤ 1. Since h solves the ODE (4.7),

d

dt
‖u‖22 = −2‖∇u‖22.

This implies 〈u, f〉 = 0 due to the energy equality on (0, T ).
The energy has a jump at t = T as in Example 4.8 because u(T ) = 0, but the limit of the energy is positive as

h(T ) > 0.

5. EXAMPLES WITH ZERO ANOMALOUS WORK

In this section, we will finish the proof of Theorem 1.4. The idea is to glue vector fields with large flux in a
way that the leading cancellation in Φn at the level of energy results in zero anomalous work. The construction
of vector fields is inspired in part by Eyink’s example in [Eyi94] and by the constructions in [CS10] by Shvydkoy
and the first author. It is also worth noting that there is no cancellation in the final solution (u, f), which is the
main reason that the force f 6∈ L2

tH
−1.

4One may notice that u is only H10 as stated in [Tao16], however, smoothness can be obtained by bootstrapping as the initial data is Schwartz
and B̃ satisfies the same estimates as B on every Sobolev space W s,p for 1 < p <∞. See the discussion after Remark 1.4 in [Tao16].
5It seems that the energy is continuous since the blowup portion of the solution has energy tending to zero according to [Tao19].
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5.1. Positive energy flux through each shell. We start with constructing vector fields supported in dyadic Fourier
shells with optimal energy flux. The goal is to arrange Fourier modes so that the energy flux is saturated. Since
we are dealing with the NSE, intermittent flows take place of homogeneous ones comparing to [Eyi94, CCFS08].

Lemma 5.1. For any dimension d ≥ 3 and 0 ≤ β < d, there exist N ∈ N and vector fields wn ∈ C∞(Td) for
n ≥ N with the following properties.

(1) The Fourier support of wn is in a shell of radius λn:

suppFwn ⊂
{
k : λn ≤ |k| ≤ λn+1

}
; (5.1)

(2) L2 norm is normalized: ‖wn‖2 = 1, and the Lp scaling

‖wn‖p ∼p λ(1/2−1/p)β
n , (5.2)

holds for all p ∈ (1,∞];

(3) The energy flux through Littlewood-Paley shells satisfies

lim
n→∞

λ
−1− β2
n

ˆ
Td

div(wn ⊗ wn)≤n · (wn)≤n dx = 2, (5.3)

and
´
Td div(wn ⊗ wn)≤q · (wn)≤q = 0 when q 6= n.

Remark 5.2. Note that the construction of wn does not depend on the choice of Littlewood–Paley cutoffs as long
as ∆q has frequencies supported in [λn−1, λn+1].

Proof of Lemma 5.1. Let µn = λ
β
d
n . Note that 1 ≤ µn ≤ λn and λ−1

n µn → 0 as n→∞ for the given range of β.
For n ∈ N, define the integer blocks An, Bn and Cn by

An := [λn, λn + 2µn]× [−µn, µn]d−1 ∩ Zd

Bn := [−µn, µn]× [
√

3λn − 4µn,
√

3λn − 2µn]× [−µn, µn]d−2 ∩ Zd

Cn := An +Bn.

Note that we can choose N large enough so that for n ≥ N all the wavenumbers k ∈ An ∪Bn ∪ Cn satisfy

λ2
n ≤ |k|2 ≤

[
(λn + 2µn)2 + (d− 1)µ2

n

]
+
[
(
√

3λn − 2µn)2 + (d− 1)µ2
n

]
(5.4)

≤ 4λ2
n = λ2

n+1, (5.5)

because λ−1
n µn → 0 as n→∞.

Now, for k ∈ Zd, define vector-valued functions a·, b· and c· by

ak = − 1

|An|
1
2

(
Id−k ⊗ k

|k|2
)
ed

bk =
1

|Bn|
1
2

(
Id−k ⊗ k

|k|2
)

(e1 + ed)

ck =
1

|Cn|
1
2

(
Id−k ⊗ k

|k|2
)
ed,

(5.6)

where e1 = (1, . . . , 0), ed = (0, . . . , 1) and |An|,|Bn| and |Cn| denote the counting measures. Then define

wn :=
∑
k∈Zd

(iak1An − iak1A∗n + ibk1Bn − ibk1B∗n + ick1Cn − ick1C∗n)eik·x. (5.7)

From (5.6) it is clear that wn is divergence-free. From (5.4) we also see that if N is sufficiently large, we have the
desired Fourier support property

suppFwn ⊂
{
k : λn ≤ |k| ≤ λn+1

}
, n ≥ N.

Next, we show that wn enjoys the Lp scaling (5.2). Estimates for all the blocks are the same, so we show them
for akχAn only. Using (5.6), the Lp boundedness of the Leray projection, and Lp estimate for the Dirichlet kernel,
we get

‖iak1Aneik·x‖p .
1

|An|
1
2

‖1Aneik·x‖p (5.8)

. µ
( 1
2−

1
p )d

n . (5.9)
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Applying such an estimate to all the other blocks, we obtain

‖wn‖p . µ
( 1
2−

1
p )d

n = λ
( 1
2−

1
p )β

n .

It is worth noting that the implied constant depends on c if p 6= 2. Note that wn does not have a unit L2 norm, but
it can be fixed in the end once the parameter c is determined.

Finally let us show (5.3). First, thanks to the Fourier support bound (5.1), if q > n, then (wn)≤q = wn. In this
case, there is no flux thanks to the incompressibility. In addition, if q < n, then (wn)≤q = 0 and the flux is zero
as well. We thus only need to consider n = q.

Denoting by ŵ(k) the Fourier coefficients of wq , we haveˆ
Td

div(wq ⊗ wq)≤q · (wq)≤q = i
∑

k1+k2+k3=0

(
ŵ(k1) · k2

)(
ŵ(k2) · ŵ(k3)χ2

q+1(k3)
)
, (5.10)

where χq+1 is the cutoff function we used in Section 3.1 for the Littlewood-Paley decomposition, cf. (3.2).
Since wq only has frequencies in three regions A = Aq ∪A∗q , B = Bq ∪B∗q , and C = Cq ∪C∗q , we only need

to consider the following cases

k1 + k2 + k3 ∈ Aq +Bq + C∗q and k1 + k2 + k3 ∈ A∗q +B∗q + Cq,

as all the other combinations do not allow for k1 +k2 +k3 = 0. Thus denotingEq := Aq∪Bq∪C∗q , by symmetry
and (5.10) we haveˆ

Td
div(wq ⊗ wq)≤q · (wq)≤q = 2i

∑
kj∈Eq∀j

k1+k2+k3=0

(
ŵ(k1) · k2

)(
ŵ(k2) · ŵ(k3)χ2

q+1(k3)
)
. (5.11)

Notice that if k1 6∈ Bq , due to (5.6), ŵ(k1) is almost orthogonal to k2. More precisely, for all kj ∈ Eq with
k1 + k2 + k3 = 0,

ŵ(k1) · k2 . (λ−1
q µq)λq|ŵ(k1)| . µ1− d2

q whenever k1 6∈ Bq.

Using this observation, the fact that the number of combinations satisfies the estimate

|{(k1, k2, k3) ∈ Zd × Zd × Zd : ∀j kj ∈ Eq and k1 + k2 + k3 = 0}| = |Aq||Bq| . µ2d
q , (5.12)

and the bound ŵ(k2) · ŵ(k3) . |Aq|−
1
2 |Bq|−

1
2 , we get6∑

kj∈Eq,k1 6∈Bq
k1+k2+k3=0

∣∣(ŵ(k1) · k2

)(
ŵ(k2) · ŵ(k3)χ2

q+1(k3)
)∣∣ = O(µ

1+ d
2

q ). (5.13)

It follows from (5.11) and (5.13) thatˆ
Td

div(wq ⊗ wq)≤q · (wq)≤q = 2i
∑

k1∈Bq,k2∈Aq,k3∈C∗q
k1+k2+k3=0

+2i
∑

k1∈Bq,k2∈C∗q k3∈Aq
k1+k2+k3=0

+O(µ
1+ d

2
q ). (5.14)

By anti-symmetry,∑
k1∈Bq,k2∈Aq,k3∈C∗q

k1+k2+k3=0

(
ŵ(k1) · k2

)(
ŵ(k2) · ŵ(k3)

)
= −

∑
k1∈Bq,k2∈C∗q k3∈Aq

k1+k2+k3=0

(
ŵ(k1) · k2

)(
ŵ(k2) · ŵ(k3)

)
,

so we need to analyze the value of χq+1(k3). When k3 ∈ Aq , we have |k3| is about λq , and hence χ2
q+1(k3) is

about 1. When k3 ∈ C∗q , then |k3| is about 2λq , and χ2
q+1(k3) is close to 0 when q is sufficiently large. More

precisely, ∣∣χ2
q+1(k3)− 1

∣∣ . µq
λq
, k3 ∈ Aq,

and ∣∣χ2
q+1(k3)

∣∣ . µq
λq
, k3 ∈ C∗q ,

6Here and in what follows, we write O(Y ) for some quantity X = O(Y ) such that |X| ≤ CY for some C > 0.
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with constants depending on the Lipschitz constant of χ2. Therefore, from (5.14) we getˆ
Td

div(wq ⊗ wq)≤q · (wq)≤q = −2i
(

1 +O
(
λ−1
q µq

)) ∑
k1∈Bq,k2∈Aq,k3∈C∗q

k1+k2+k3=0

(
ŵ(k1) · k2

)(
ŵ(k2) · ŵ(k3)

)

+O
(
µ

1+ d
2

q

)
.

(5.15)

It remains to estimate the summation in (5.15). Notice that for indexes in the allowed range

ŵ(k1) · k2 =
iλq

|Bq|
1
2

(1 +O(λ−1
q µq)) and ŵ(k2) · ŵ(k3) =

1

|Aq|
1
2 |Cq|

1
2

(1 +O(λ−1
q µq)).

Therefore, we obtain∑
k1∈Bq,k2∈Aq,k3∈C∗q

k1+k2+k3=0

(
ŵ(k1) · k2

)(
ŵ(k2) · ŵ(k3)

)
=
iλq(1 +O(λ−1

q µq))
2

(|Aq||Bq||Cq|)
1
2

∑
k1∈Bq,k2∈Aq,k3∈C∗q

k1+k2+k3=0

1

= iλq(1 +O(λ−1
q µq))

2|Aq|
1
2 |Bq|

1
2 |Cq|−

1
2 .

(5.16)

Note that |Aq|
1
2 |Bq|

1
2 |Cq|−

1
2 = (2µq)

d(4µq)
− d2 + O(µ

d
2−1
q ). Then combining (5.12), (5.15) and (5.16) we

obtain ˆ
Td

div(wq ⊗ wq)≤q · (wq)≤q = 2(1 +O(λ−1
q µq))

3(1 +O(µ−1
q )λqµ

d
2
q +O((µq)

1+ d
2 ). (5.17)

Multiplying by λ−1− β2
q and taking the limit as q →∞, we obtain (5.3). �

5.2. Anomalous dissipation without anomalous work. With Lemma 5.1 in hand, we can use a simple gluing
argument to prove Theorem 1.4. The key is to design the life span of each frequency according to the size of the
flux term Φq , so that the final anomalous work Φ = 0.

First we apply Lemma 5.1 with a fixed β such that 2 < β < 2 + ε/4 to obtain wn. The choice of β is dictated
by the intermittency dimension d − 2 for the energy balance (see Section 2 in [CL20a] for a discussion). Note
that, in particular, these functions satisfy the Lp scaling estimates listed in Lemma 5.1.

Let

Λn := 2

ˆ
Td

div(wn ⊗ wn)≤n · (wn)≤n dx. (5.18)

Then there exists a sufficiently large N ∈ N such that (5.18) is positive and strictly increasing when n ≥ N .

Taking T = 1
8λ
−1− β2
n , we aim to construct a solution (u, f) on (0, T ).

Next, we construct time cutoffs χn for n ≥ N as follows. We start with time scales τn defined by

τn := (1− 2−1− β2 )−14−1
∑
k≥n

λ
−1− β2
k = 4−1λ

−1− β2
n . (5.19)

Note that
lim
n→∞

Λnτn = 1, (5.20)

due to Lemma 5.1. Moreover, there exists a small constant c0 > 0 depending on ε such that

τn > τn+1 + c0τ
ε/4
n+1 for all n ≥ N . (5.21)

Then we introduce smooth cutoffs hn ∈ C∞(R) as follows. First, we fix h ∈ C∞(R) such that h(t) = 0 when
t ≤ −1 and h(t) = 1 when t ≥ 0 and both h

1
2 and (1− h)

1
2 are smooth. Next we define

hn(t) = h

(
t+ 1

c0τ
ε/4
n

)
.

Clearly hn ∈ C∞(R) and satisfies

hn(t) =

{
0, t ≤ −1− c0τ

ε/4
n

1, t ≥ −1,
|h′n| . τ−

ε/4
n , (5.22)

where the constant in the derivative bound depends only on the profile h and the constant c0 > 0.
With all these in hand, for n ≥ N we define χn by

χn(t) =
[
hn((t− T )/τn)− hn+1((t− T )/τn+1)

] 1
2 . (5.23)
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Thanks to a simple telescoping and the fact that τN = 2T we have
∑
n≥N χ

2
n = 1 for t ∈ (0, T ). By the

definition, we see that

χn(t) =


[
hn((t− T )/τn)

] 1
2 , t ≤ T − τn+1 − c0τ1+ε/4

n+1 ,[
1− hn+1((t− T )/τn+1)

] 1
2 , t ≥ T − τn

1, T − τn ≤ t ≤ T − τn+1 − c0τ1+ε/4
n+1

where we have used (5.21) for the third line.
Now we claim that χn ∈ C∞c (R). Indeed, if t ≥ T − τn+1 or t ≤ T − τn − c0τ1+ε/4

n , then χn = 0. The
smoothness of χn follows from that of h1/2 and (1−h)1/2 since hn is defined through a translation and rescaling
of h. Note that to estimate the derivative of χn we only need to count the leading order rescaling factors from h
to χn, and hence by (5.22) and (5.23)

|χ′n| . τ
−1−ε/4
n+1 . (5.24)

Now we are in the position to construct the force and solution of the NSE. Let

u :=
∑
n≥N

χnwn and f := ∂tu−∆u+ div(u⊗ u). (5.25)

In the remainder of this section, we are going to show that the solution given by (5.25) satisfies the statement
of Theorem 1.4.

Lemma 5.3. The constructed solution (5.25) satisfies the following: (u, f) ∈ N (QT ), ‖u(t)‖2 = 1 for all
t ∈ [0, T ), and

lim
t→T−

〈u(t), φ〉 = 0 for all φ ∈ L2 . (5.26)

Proof. It is easy to see u and f are smooth on (0, T ). Due to disjoint Fourier supports of wn and Plancherel’s
formula we get

‖u(t)‖22 =
∑
n≥N

‖χnwn‖22 =
∑
n≥N

χ2
n(t) = 1 ∀t ∈ [0, T ). (5.27)

Applying Plancherel’s formula again we have
ˆ T

0

‖∇u(t)‖22 dt =
∑
n≥N

ˆ T

0

‖χn∇wn‖22 dt .
∑
n≥N

λ2
n

ˆ
suppχn

1 dt .
∑
n≥N

λ2
nΛ−1

n .

Recall from (5.18) and Lemma 5.1 that Λn ∼ λ
β/2+1
n . Since β > 2, this implies that u ∈ L2H1. In addition,

lim
s→t
‖u(s)‖22 exists (and are equal to 1) for t = 0+ and T− due to (5.27). So by Lemma 2.4, (u, f) ∈ N (QT ).

Finally, (5.26) follows from the Lp scaling of wn for p < 2. �

This lemma establishes that the energy has a jump as t→ T−. Now we are going to show that the anomalous
work vanishes.

Lemma 5.4. The anomalous work of f is zero:

Φ = lim sup
q→∞

|Φq(T, h)| = 0.

Proof. Thanks to the previous lemma, we can use the energy jump formula (3.7) to compute

lim
q→∞

[Πq(T, h) + Φq(T, h)] =
1

2
‖u(T )‖22 − lim

t→T−

1

2
‖u(t)‖22

= −1

2
.

So in order to show that the anomalous work is zero it suffices to prove that

lim
q→∞

Πq(T, h) = −1

2
.

By definition (5.23), the time cutoffs have disjoint support in the sense that χm ∩χn = ∅ if |m−n| > 1. Then
thanks to the bound on the Fourier support of wn (5.1), for each t there is n such that

suppFu(t) ⊂
{
k : λn−1 ≤ |k| ≤ λn+1

}
.
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So if q > n, then u≤q(t) = u(t), and there is no flux thanks to the incompressibility. In addition, if q < n − 1,
then u≤q(t) = 0 and the flux is zero as well. Hence,ˆ

Td
div(u⊗ u)≤q · (u)≤q dx = χ3

q(t)

ˆ
Td

div(wq ⊗ wq)≤q · (wq)≤q dx+ IErr, (5.28)

where the error term is defined by

IErr(t) =

ˆ
Td

div
( ∑
q−1≤l≤q+1

χlwl ⊗
∑

q−1≤l≤q+1

χlwl

)
≤q
·
( ∑
q−1≤l≤q+1

χlwl

)
≤q
dx

− χ3
q(t)

ˆ
Td

div(wq ⊗ wq)≤q · (wq)≤q dx.

By (5.3), wl only has nonzero flux through shell λl. So when the index l is equal to q − 1 or q + 1 in all three
sums in the error term, the integral is zero. Hence, using the estimate (5.2) in Lemma 5.1, we have the following
estimate for IErr: ∣∣IErr(t)

∣∣ . λ β2 +1
n

(
χq−1(t) + χq+1(t)

)
χq(t). (5.29)

Now integrating (5.28) in time and using the definition of Λq (5.18) we obtain

Πq(T, h) = −
ˆ T

T−h

ˆ
Td

div(u⊗ u)≤q · u≤q dx dt = −Λq
2

ˆ T

T−h
χ3
q(t) dt+

ˆ T

T−h
IErr(t) dt. (5.30)

Recall that our goal is to prove that Πq(T, h)→ − 1
2 . To this end, due to (5.30), it suffices to show

Λq

ˆ T

T−h
χ3
q dt→ 1 and

ˆ T

T−h
IErr(t) dt→ 0.

First notice that
lim
q→∞

τ−1
q

∣∣{t : χq(t) = 1}
∣∣ = 1,

and hence
lim
q→∞

Λq

ˆ
χq=1

χ3
q dt = 1

due to (5.20). In addition, from (5.22) and (5.23) it follows that∣∣{t : 0 < χq(t) < 1}
∣∣ ≤ 2τ1+ε/4

q ,

so for q large enough,

Λq

ˆ T

T−h
χ3
q dt = Λq

ˆ
χq=1

χ3
q dt+ Λq

ˆ
0<χq<1

χ3
q dt→ 1, as q →∞,

as the second term converges to zero thanks to (5.20).
By (5.29), a similar argument shows that∣∣∣∣∣

ˆ T

T−h
IErr(t) dt

∣∣∣∣∣ . λ β2 +1
q

ˆ
suppχq∩suppχq−1

1 dt . λ
β
2 +1
q τ1+ε/4

q → 0 as q →∞.

�

At last, we verify the functional classes for u and f , concluding the proof of Theorem 1.4.

Lemma 5.5. The solution u is almost Onsager critical: u ∈ L3
tB

1
3−ε
3,∞ ∩ L

p
tL

q for any p, q with 2
p + 2

q = 1 + ε,
and the force f ∈ L2−εH−1.

Proof. Thanks to (5.2) in Lemma 5.1 and (5.23), we can computeˆ
‖u(t)‖3

B
1
3
−ε

3,∞

dt ≤
∑
n≥N

| suppχn|‖wn‖3
B

1
3
−ε

3,∞

.
∑
n≥N

(τn − τn+1)
[
λ

1
3−ε
n λ

β
6
n

]3
.

Since τn ∼ Λ−1
n ∼ λ

−β/2−1
n , the summation is indeed finite.

To verify the membership in LptL
q we use (5.2) once again to obtainˆ

‖u(t)‖pq dt .
∑
n

∣∣ suppχn
∣∣‖wn‖pq ∼∑

n

λ
β
2−1− βp2 ε
n . (5.31)

Recall that 2 < β < 2+ε/4. Noticing that the powers obey β
2 −1− βp

2 ε < ( 1
8−

βp
2 )ε < 0, we conclude u ∈ LptLq

for any 2
p + 2

q = 1 + ε.
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To estimate the force f , we just compute each part separately:ˆ
‖f(t)‖2−2ε

H−1 dt .
ˆ (
‖∂tu‖2−2ε

H−1 + ‖∇u‖2−2ε
2 + ‖u⊗ u‖2−2ε

2

)
dt. (5.32)

where we have used the fact |∇|−1 div is L2 → L2 bounded. Since u ∈ L2H1, the second term is under control.
For the nonlinear part, we again obtainˆ

‖u⊗ u‖2−2ε
2 dt .

ˆ
‖u‖4−4ε

4 dt .
ˆ ∑

n

| suppχn|‖wn‖4−4ε
4 dt, (5.33)

where we have used the fact that suppt χn have only finite overlaps. Using the Lp scaling in Lemma 5.1, the
desired bound follows from (5.33), the fact that τn ∼ λ−

β/2−1
n , and β < 2 + ε/4:ˆ

‖u⊗ u‖2−2ε
2 dt .

∑
n

τnλ
β(4−4ε)

4
n <∞. (5.34)

At last, we check the time derivative. From the Fourier support of wn and the temporal support of χn it follows
that ˆ

‖∂tu‖2−2ε
H−1 dt .

∑
n

‖wn‖2−2ε
H−1

ˆ
|χ′n|2−2ε dt

.
∑
n

λ−2+2ε
n

ˆ
|χ′n|2−2ε dt.

Using bound (5.24), τn ∼ Λ−1
n due to (5.19), and Λn ∼ λ

β/2+1
n from Lemma 5.1, we obtain

|χ′n| . τ
−1−ε/4
n+1 ∼ Λ

1+ε/4
n+1 ∼ λ

(1+ε/4)(β/2+1)
n+1 ,

and conclude that ˆ
‖∂tu‖2−2ε

H−1 dt .
∑
n

λ−2+2ε
n λ

(1−3ε/2−ε2/2)(β/2+1)
n+1 .

∑
n

λ−2ε
n <∞.

�

6. VIOLATING ENERGY BALANCE WITH CONTINUOUS ENERGY

This section is devoted to the proof of Theorem 1.6. Comparing with the example in Section 5, here the energy
does not completely transfer to the next shell. Instead, the force also injects energy into larger and larger shells
when t → T−. Towards this end, we first construct intermittent vector fields with large flux, similar to Lemma
5.1, and then apply a time-dependent wavenumber cutoff to obtain the final solution. These vector fields can be
viewed as intermittent versions of the example in [Eyi94].

6.1. Positive energy flux through each sphere.

Lemma 6.1. For any integer d ≥ 3, there exist constants C > 0 and N ∈ N such that for any 0 ≤ β < d, there
exists a divergence free vector fields w ∈ L2(Td) with the following properties.

(1) For any q ∈ N, the bound holds
‖wq‖p .p λ(1/2−1/p)β

q , (6.1)
for all 1 < p ≤ ∞;

(2) For any q ≥ N , the energy flux through wavenumber λq satisfiesˆ
Td

div(w ⊗ w)≤q · (w)≤q dx ≥ Cλ
β/2+1
q . (6.2)

Proof of Lemma 6.1. First, we introduce a small parameter ε := d−β
100d . Let µq = λ

β+6ε
d

q . Note that 1 ≤ µq ≤ λq
for the given range of β and ε. Let

ξ1 = (1, 0, 0, . . . , 0) ξ2 = (0, 1, 0 . . . , 0) ξ3 = (1, 1, 0, . . . , 0) ξ4 = (1,−1, 0, . . . , 0) (6.3)

and

e1 = (0, 0,−1, 0, . . . , 0) e2 = (1, 0, 1, 0, . . . , 0) e3 = (0, 0, 1, 0, . . . , 0) e4 = (1, 1,−1, 0, . . . , 0). (6.4)

Note that ξj · ej = 0, which is needed for the divergence free condition, as ej will be the direction of the Fourier
coefficient ŵ(k) for k ∼ ξj .

Define the set
Ωq,j = {λqξj + κ : κ ∈ [−µq, µq]d ∩ Zd}, (6.5)
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and Ω∗q,j = −Ωq,j . Note that Ωq,i ⊂ Zd and for all kj ∈ Ωp,j

|kj − ξj | = O(µq). (6.6)

For q ∈ Z, 1 ≤ j ≤ 4, define vector-valued functions aq,j : Zd → Cd by

aq,j(k) =


−i λ−εq

|Ωq,j |
1
2

(
Id−k⊗k|k|2

)
ej if k ∈ Ωq,j

i
λ−εq

|Ωq,j |
1
2

(
Id−k⊗k|k|2

)
ej if k ∈ Ω∗q,j

0 otherwise,

(6.7)

where |Ωq,j | denote the counting measure of Ωq,j . Since for each j, the set Ωq,j has the same size, we will simply
write |Ω| in what follows. Also note that due to the Leray projection Id−k⊗k|k|2 , each aq,j satisfies aq,j(k) · k = 0.

With coefficients aq,j in hand, we define the vector field w on the Fourier side as

w :=
∑
q≥1

∑
1≤j≤4

∑
k∈Zd

aq,j(k)eik·x =
∑
κ∈Zd

ŵ(κ)eiκ·x, (6.8)

where the Fourier coefficient ŵ(κ) satisfies

ŵ(κ) =
∑
q≥1

∑
1≤j≤4

aq,j(κ).

From (6.7) it is clear that w is real-valued and divergence-free. The Lp scaling of wq for q ∈ N is obtained along
the same lines as in the proof of Lemma 5.1, and thus omitted. In particular, w ∈ L2 thanks to the decay factor
λ−εq in (6.7).

Finally, let us compute the energy flux. Given that there are no interactions between different shells, on the
Fourier side we haveˆ

Td
div(w ⊗ w)≤q · (w)≤q = i

∑
k1,k2,k3∈Zd
k1+k2+k3=0

(
ŵ(k1) · k2

)(
ŵ(k2) · ŵ(k3)χ2

q+1(k3)
)

= i
∑

k1,k2,k3∈∪j(Ωq,j∪Ω∗q,j)

k1+k2+k3=0

(
ŵ(k1) · k2

)(
ŵ(k2) · ŵ(k3)χ2

q+1(k3)
)

We claim that this sum is equal to

i
∑

k1+k2+k3=0

(
ŵ(k1) · k2

)(
ŵ(k2) · ŵ(k3)χ2

q+1(k3)
)

= i
∑

k1+k2+k3=0

(
ŵ(λqξk1) · ξk2λq

)(
ŵ(λqξk2) · ŵ(λqξk3)χ2

q+1(λqξk3)
)

+O(µq|Ω|
1
2 ),

(6.9)

where we define ξk = ξj if k ∈ Ωq,j and ξk = −ξj if k ∈ Ω∗q,j , so ξk is in the center of the cube that k belongs
to, and is equal to the corresponding ξj in (6.3). Indeed, since the number of nontrivial interactions is bounded by
|Ωq|2, the claim follows from (6.6), (6.7), and the continuity of the dot product and Leray projection.

Following the argument in [Eyi94, p.13], the only nonzero terms in (6.9) are as follows. For brevity of the
notation, we simply write Ωj = Ωq,j and Ω∗j = Ω∗q,j .

For ξ3 − ξ1 − ξ2 = 0, the first group

2i
∑

k1∈Ω2, k2∈Ω1, k3∈Ω∗3

λq
(
ŵ(λqξ2) · ξ1

)(
ŵ(λqξ1) · ŵ(−λqξ3)

)
(χ2
q+1(λqξ3)− χ2

q+1(λqξ1))

=2
∑

k1∈Ω2, k2∈Ω1, k3∈Ω∗3

λ1−3ε
q |Ωq|−

3
2 (χ2(1/2e1)− χ2(

√
2/2e1)) &

∑
k1∈Ω2, k2∈Ω1, k3∈Ω∗3

λqµ
− 3d

2
q .

(6.10)

For ξ4 − ξ1 + ξ2 = 0, the second group

2i
∑

k1∈Ω2, k2∈Ω4, k3∈Ω∗1

λq
(
ŵ(λqξ2) · ξ4

)(
ŵ(λqξ4) · ŵ(−λqξ1)

)
(χ2
q+1(λqξ1)− χ2

q+1(λqξ4))

=2
∑

k1∈Ω2, k2∈Ω4, k3∈Ω∗1

λ1−3ε
q |Ωq|−

3
2 (χ2(1/2e1)− χ2(

√
2/2e1)) &

∑
k1∈Ω2, k2∈Ω4, k3∈Ω∗1

λqµ
− 3d

2
q

(6.11)
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and finally for 2ξ1 − ξ3 − ξ4 = 0 and 2ξ2 − ξ3 + ξ4 = 0, the third group

2i
∑

k1∈Ω∗4 , k2∈Ω1, k3∈Ω∗3

λq+1

(
ŵ(−λqξ4) · ξ1

)(
ŵ(λq+1ξ1) · ŵ(−λqξ3)

)
(χ2
q+1(λqξ1)− χ2

q+1(λqξ4))

=2
∑

k1∈Ω∗4 , k2∈Ω1, k3∈Ω∗3

λ1−ε
q+1λ

−2ε
q |Ωq|−1|Ωq+1|−

1
2 (χ2(

√
2/2e1)− χ2(e1))

&
∑

k1∈Ω∗4 , k2∈Ω1, k3∈Ω∗3

λqµ
− 3d

2
q ,

(6.12)

and respectively the forth group

2i
∑

k1∈Ω4, k2∈Ω2, k3∈Ω∗3

λq+1

(
ŵ(λqξ4) · ξ2

)(
ŵ(λq+1ξ2) · ŵ(−λqξ3)

)
(χ2
q+1(λqξ3)− χ2

q+1(λq+1ξ2))

=2
∑

k1∈Ω4, k2∈Ω2, k3∈Ω∗3

λ1−ε
q+1λ

−2ε
q |Ωq|−1|Ωq+1|−

1
2 (χ2(

√
2/2e1)− χ2(e1))

&
∑

k1∈Ω4, k2∈Ω2, k3∈Ω∗3

λqµ
− 3d

2
q ,

(6.13)

Now it remains to count the number of interactions in (6.10)–(6.13). A very rough lower bound suffices due to
the positivity of the summands. By considering two cubes with half the length, there are at least ( 1

2bµc)
d×( 1

2bµc)
d

many interactions. Therefore, we haveˆ
Td

div(w ⊗ w)≤q · (w)≤q dx ≥ Cλqµ
d
2
q +O(µq|Ω|

1
2 ), (6.14)

where C is an absolute constant. The conclusion follows from the fact that limq→∞ µqλ
−1
q = 0. �

6.2. Anomalous dissipation with continuous energy. We proceed to construct the solution using the vector
field w in Lemma 6.1. Here we use a different type of argument from the previous section. We simply use a
time-dependent wavenumber to apply frequency cutoff.

Let χ ∈ C∞c (Rd) be the cutoff function in defining the Littlewood-Paley decomposition. We introduce a
time-dependent wavenumber by

Λ(t) := (T − t)−
1−ε
2 , (6.15)

where ε > 0 can be arbitrary. Let Pt be the projection into frequencies . Λ(t) by a multiplier with symbol
χ(ξΛ(t)−1). Applying Lemma 6.1 with 2 < β < 2 + ε

4 , we define the solution and the force by

u := Ptw and f := ∂u−∆u+ div(u⊗ u). (6.16)

We first show that the solution u verifies all properties stated in Theorem 1.6.

Lemma 6.2. For any ε > 0, the solution given by (6.16) is in the class N (QT ) and u ∈ C([0, T ];L2).

Proof. Let us show (u, f) ∈ N (QT ). Smoothness of u and f on (0, T ) follows directly from the compactness
of Fourier support. Thus (u, f) solves the NSE in classical sense. In view of Lemma 2.4, to prove that 〈u, f〉 ∈
L(0, T ) it suffices to show

u ∈ C([0, T ];L2) ∩ L2(0, T ;H1).

For any 0 ≤ s ≤ t ≤ T , by Plancherel’s formula we have

‖u(t)− u(s)‖22 .
∑

s−1−ε.2q.t−1−ε

‖wq‖22, (6.17)

which together with w ∈ L2 implies ‖u(t) − u(s)‖2 → 0 as s → t. So we get u ∈ C([0, T ];L2). To show the
finite dissipation, using Plancherel’s formula again givesˆ T

0

‖∇u‖22 dt .
ˆ T

0

Λ(t)2 dt =

ˆ T

0

(T − t)−1+ε dt <∞. (6.18)

Therefore, by Lemma 2.4 it follows that 〈u, f〉 ∈ L(0, T ).
�

Lemma 6.3. The anomalous dissipation of u is nonzero:

Π = lim
q→∞

Πq(T, h) > 0.
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Proof. Thank to Lemma 3.2 we may compute Π with h = T
2 . Since by definition u = Ptw, we haveˆ T

T/2

ˆ
Td

div(u⊗ u)≤q · u≤q =

ˆ T

T/2

i
∑

k1+k2+k3=0

(
ŵ(k1) · k2

)(
ŵ(k2) · ŵ(k3)χ2

q+1(k3)
)
χt(k1, k2, k3) dt,

where χt(k1, k2, k3) = χ(k1/Λ)χ(k2/Λ)χ(k3/Λ). From the proof of Lemma 6.1, we see that ki ∼ λq for all
nonzero interactions. Using the definition of Λ(t) (6.15) and the fact that β < 2 + ε

4 , we obtain the boundˆ T

T/2

χt(k1, k2, k3) dt ∼ λ−
1+ε
1−ε−1

q ≥ λ−
β
2−1

q . (6.19)

On the other hand, by Lemma 6.1,

i
∑

k1+k2+k3=0

(
ŵ(k1) · k2

)(
ŵ(k2) · ŵ(k3)χ2

q+1(k3)
)

=

ˆ
Td

div(w ⊗ w)≤q · (w)≤q

≥ Cλ
β
2 +1
q .

Then by Fubini’s theorem we have

Πq(T, T/2) =

ˆ T

T/2

ˆ
Td

div(u⊗ u)≤q · u≤q & λ
− β2−1
q · λ

β
2 +1
q = 1.

�

The rest of this section is devoted to proving the stated regularity of u and f . We start with estimating u in
spaces near L3

tB
1
3
3,∞ and near LptL

q
x for 2

p + 2
q = 1.

Lemma 6.4. The solution u is almost Onsager critical: u ∈ L3
tB

1
3−ε
3,∞ and u ∈ LptLqx for any 2

p + 2
q = 1 + ε.

Proof. First, recall that Λ ∈ L2 due to (6.15). By definition of the Besov space B
1
3−ε
3,∞ and (6.1), we have

ˆ T

0

‖u‖3
B

1
3
−ε

3,∞

dt .
ˆ T

0

Λ
β
2 +1−3ε dt, (6.20)

which is indeed finite thanks to β < 2 + ε
4 and hence β

2 + 1− 3ε < 2. Similarly, we also obtainˆ T

0

‖u‖pq dt .
ˆ T

0

Λβ( p2−
p
q ) dt. (6.21)

Using 2
p + 2

q = 1 + ε and again β < 2 + ε
4 , it is not hard to show β(p2 −

p
q ) < 2, which together with Λ ∈ L2

implies ˆ T

0

‖u‖pq dt <∞.

�

Next, we estimate the forcing f . To do so let us introduce a general lemma for the projection Pt.

Lemma 6.5. Suppose g(t) is a smooth function on [0, T ) such that g ≥ 1. Let Pg be the frequency localized
operator with symbol χ( ξ

g(t) ). For any u ∈ L2(Td) and s ∈ R, there holds

‖∂tPgu(t)‖Hs .s
|g′|
|g|
|g|s, (6.22)

where Pgu(t) denotes the evaluation of Pgu at time t.

Proof. By chain rule, on Fourier side we have

∂tP̂gu = −∇χ(g−1ξ) · ξg′

g2
û.

Due to the choice of cutoff function χ, we see that the multiplier ∂tP̂g satisfies

supp
∇χ(g−1ξ) · ξg′

g2
⊂ {ξ : 1

2g ≤ |ξ| ≤ g},

and consequently ∣∣∣∣∇χ(g−1ξ) · ξg′

g2

∣∣∣∣ . |g′||g| .
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The result follows from Plancherel’s formula.
�

Lemma 6.6. The forcing f defined in (6.16) satisfies

f ∈ L2−ε
t H−1.

Proof. As in Theorem 1.4, we just compute each part of the force separatelyˆ T

0

‖f(t)‖2−2ε
H−1 dt .

ˆ T

0

(
‖∂tu‖2−2ε

H−1 + ‖∇u‖2−2ε
2 + ‖u⊗ u‖2−2ε

2

)
dt.

By the same argument as in the proof of Theorem 1.4, we have
´ (
‖∇u‖2−2ε

2 + ‖u⊗ u‖2−2ε
2

)
dt <∞. Thus we

only focus on the time derivative part. Applying Lemma 6.5 with g(t) = Λ(t) and using (6.15), we immediately
get ˆ T

0

‖∂tu‖2−2ε
H−1 dt .

ˆ T

0

(T − t)(− 1
2−

ε
2 )(2−2ε) dt .

ˆ T

0

(T − t)−1+ε2 dt <∞.

�

ACKNOWLEDGEMENT

The authors were partially supported by the NSF grants DMS–1517583 and DMS–1909849. We thank the
anonymous referees for many helpful comments which greatly improve the quality of the paper.

REFERENCES

[Bar18] T. Barker. Uniqueness results for weak Leray-Hopf solutions of the Navier-Stokes system with initial values in critical spaces.
J. Math. Fluid Mech., 20(1):133–160, 2018.

[BBV20] Rajendra Beekie, Tristan Buckmaster, and Vlad Vicol. Weak solutions of ideal MHD which do not conserve magnetic helicity.
Ann. PDE, 6(1):Paper No. 1, 40, 2020.

[BCV18] Tristan Buckmaster, Maria Colombo, and Vlad Vicol. Wild solutions of the Navier-Stokes equations whose singular sets in
time have Hausdorff dimension strictly less than 1. arXiv:1809.00600, 2018.

[BDLIS15] Tristan Buckmaster, Camillo De Lellis, Philip Isett, and László Székelyhidi, Jr. Anomalous dissipation for 1/5-Hölder Euler
flows. Ann. of Math. (2), 182(1):127–172, 2015.

[BV19] Tristan Buckmaster and Vlad Vicol. Nonuniqueness of weak solutions to the Navier-Stokes equation. Ann. of Math. (2),
189(1):101–144, 2019.

[Can04] Marco Cannone. Harmonic analysis tools for solving the incompressible Navier-Stokes equations. In Handbook of mathemat-
ical fluid dynamics. Vol. III, pages 161–244. North-Holland, Amsterdam, 2004.

[CCFS08] A. Cheskidov, P. Constantin, S. Friedlander, and R. Shvydkoy. Energy conservation and Onsager’s conjecture for the Euler
equations. Nonlinearity, 21(6):1233–1252, 2008.

[CDP07] Alexey Cheskidov, Charles R. Doering, and Nikola P. Petrov. Energy dissipation in fractal-forced flow. Journal of Mathematical
Physics, 48(6):065208, 2007.

[CET94] P. Constantin, W. E, and E. S. Titi. Onsager’s conjecture on the energy conservation for solutions of Euler’s equation. Comm.
Math. Phys., 165(1):207–209, 1994.

[Che11] Jean-Yves Chemin. About weak-strong uniqueness for the 3D incompressible Navier-Stokes system. Comm. Pure Appl. Math.,
64(12):1587–1598, 2011.

[CL20a] Alexey Cheskidov and Xiaoyutao Luo. Energy equality for the Navier–Stokes equations in weak-in-time Onsager spaces.
Nonlinearity, 33(4):1388–1403, 2020.

[CL20b] Alexey Cheskidov and Xiaoyutao Luo. Sharp nonuniqueness for the Navier-Stokes equations. arXiv:2009.06596, 2020.
[CS10] A. Cheskidov and R. Shvydkoy. Ill-posedness of the basic equations of fluid dynamics in Besov spaces. Proc. Amer. Math.

Soc., 138(3):1059–1067, 2010.
[Dai18] Mimi Dai. Non-uniqueness of Leray-Hopf weak solutions of the 3D Hall-MHD system. arXiv:1812.11311, 2018.
[DLS13] Camillo De Lellis and László Székelyhidi, Jr. Dissipative continuous Euler flows. Invent. Math., 193(2):377–407, 2013.
[DLS14] Camillo De Lellis and László Székelyhidi, Jr. Dissipative Euler flows and Onsager’s conjecture. J. Eur. Math. Soc. (JEMS),

16(7):1467–1505, 2014.
[DR00] Jean Duchon and Raoul Robert. Inertial energy dissipation for weak solutions of incompressible Euler and Navier-Stokes

equations. Nonlinearity, 13(1):249–255, 2000.
[DS17] Sara Daneri and László Székelyhidi, Jr. Non-uniqueness and h-principle for Hölder-continuous weak solutions of the Euler

equations. Arch. Ration. Mech. Anal., 224(2):471–514, 2017.
[Eyi94] Gregory L. Eyink. Energy dissipation without viscosity in ideal hydrodynamics. I. Fourier analysis and local energy transfer.

Phys. D, 78(3-4):222–240, 1994.
[Ger06] Pierre Germain. Multipliers, paramultipliers, and weak-strong uniqueness for the Navier-Stokes equations. J. Differential Equa-

tions, 226(2):373–428, 2006.
[Ise17a] Philip Isett. Nonuniqueness and existence of continuous, globally dissipative Euler flows. arXiv:1710.11186, 2017.
[Ise17b] Philip Isett. On the Endpoint Regularity in Onsager’s Conjecture. arXiv:1706.01549, 2017.
[Ise18] Philip Isett. A proof of Onsager’s conjecture. Ann. of Math. (2), 188(3):871–963, 2018.
[IV15] Philip Isett and Vlad Vicol. Hölder continuous solutions of active scalar equations. Ann. PDE, 1(1):Art. 2, 77, 2015.

https://arxiv.org/abs/1809.00600
https://arxiv.org/abs/2009.06596
https://arxiv.org/abs/1812.11311
https://arxiv.org/abs/1706.01549


ANOMALOUS WORK FOR THE NSE 23

[JS15] Hao Jia and Vladimír Sverák. Are the incompressible 3d Navier-Stokes equations locally ill-posed in the natural energy space?
J. Funct. Anal., 268(12):3734–3766, 2015.

[Lio60] J. L. Lions. Sur la régularité et l’unicité des solutions turbulentes des équations de Navier Stokes. Rend. Sem. Mat. Univ.
Padova, 30:16–23, 1960.

[LS18a] Trevor M. Leslie and Roman Shvydkoy. Conditions implying energy equality for weak solutions of the Navier-Stokes equa-
tions. SIAM J. Math. Anal., 50(1):870–890, 2018.

[LS18b] Trevor M. Leslie and Roman Shvydkoy. The energy measure for the Euler and Navier-Stokes equations. Arch. Ration. Mech.
Anal., 230(2):459–492, 2018.

[Luo19] Xiaoyutao Luo. Stationary solutions and nonuniqueness of weak solutions for the Navier-Stokes equations in high dimensions.
Arch. Ration. Mech. Anal., 233(2):701–747, 2019.

[MS18] Stefano Modena and László Székelyhidi, Jr. Non-uniqueness for the transport equation with Sobolev vector fields. Ann. PDE,
4(2):Art. 18, 38, 2018.

[MV04] B. MAZZI and J. C. VASSILICOS. Fractal-generated turbulence. Journal of Fluid Mechanics, 502:65–87, 2004.
[Nov20] Matthew Novack. Nonuniqueness of weak solutions to the 3 dimensional quasi-geostrophic equations. SIAM J. Math. Anal.,

52(4):3301–3349, 2020.
[Ons49] L. Onsager. Statistical hydrodynamics. Nuovo Cimento (9), 6(Supplemento, 2 (Convegno Internazionale di Meccanica

Statistica)):279–287, 1949.
[Pro59] G. Prodi. Un teorema di unicità per le equazioni di navier-stokes. Ann. Mat. Pura ed Appl., 48(1):173–182, 1959.
[QCV01] D. Queiros-Conde and J. C. Vassilicos. Intermittency in Turbulent Flows. Cambridge University Press, 2001.
[Shi74] Marvin Shinbrot. The energy equation for the Navier-Stokes system. SIAM J. Math. Anal., 5:948–954, 1974.
[SMVvdW03] Adrian Staicu, Biagio Mazzi, J. C. Vassilicos, and Willem van de Water. Turbulent wakes of fractal objects. Phys. Rev. E,

67:066306, Jun 2003.
[Tao16] Terence Tao. Finite time blowup for an averaged three-dimensional Navier-Stokes equation. J. Amer. Math. Soc., 29(3):601–

674, 2016.
[Tao19] Terence Tao. Personal Communication, 2019.

DEPARTMENT OF MATHEMATICS, STATISTICS AND COMPUTER SCIENCE, UNIVERSITY OF ILLINOIS AT CHICAGO, CHICAGO, ILLI-
NOIS 60607

Email address: acheskid@uic.edu

DEPARTMENT OF MATHEMATICS, DUKE UNIVERSITY, DURHAM, NC 27708
Email address: xiaoyutao.luo@duke.edu


	1. Introduction
	1.1. Background and previous works
	1.2. The setup
	1.3. Main results
	1.4. Strategy of the proof
	1.5. Physical motivation
	1.6. Concluding comments
	Organization of the paper

	2. Smooth solutions with finite input
	2.1. Functional spaces and notations
	2.2. Smooth solutions with finite input
	2.3. Relation to weak solutions
	2.4. Uniqueness results for N(QT)

	3. Anomalous dissipation and anomalous work
	3.1. Littlewood–Paley decomposition
	3.2. Energy flux

	4. Positive results and simple examples
	4.1. Positive results
	4.2. Trivial examples

	5. Examples with zero anomalous work
	5.1. Positive energy flux through each shell
	5.2. Anomalous dissipation without anomalous work

	6. Violating energy balance with continuous energy
	6.1. Positive energy flux through each sphere
	6.2. Anomalous dissipation with continuous energy

	Acknowledgement
	References

