ANOMALOUS DISSIPATION, ANOMALOUS WORK, AND ENERGY BALANCE FOR THE
NAVIER-STOKES EQUATIONS

ALEXEY CHESKIDOV AND XIAOYUTAO LUO

ABSTRACT. In this paper, we study the energy balance for a class of solutions of the Navier-Stokes equations with
external forces in dimensions three and above. The solution and force are smooth on (0,7") and the total dissipation
and work of the force are both finite. We show that a possible failure of the energy balance stems from two effects. The
first is the anomalous dissipation of the solution, which has been studied in many contexts. The second is what we call
the anomalous work done by the force, a phenomenon that has not been analyzed before. There are numerous examples
of solutions exhibiting anomalous work, for which even a continuous energy profile does not rule out the anomalous
dissipation, but only implies the balance of the strengths of these two effects, which we confirm in explicit constructions.
More importantly, we show that there exist solutions exhibiting anomalous dissipation with zero anomalous work.

Hence the violation of the energy balance results from the nonlinearity of the solution instead of artifacts of the force.
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Such examples exist in the class u € L%‘B&OO and f € LffH —1, which implies the sharpness of many existing

conditions on the energy balance.

1. INTRODUCTION
The Navier-Stoke equations (NSE) for the incompressible viscous fluids are

Ou—vAu+diviu®u) +Vp=f

NSE
divu = 0, ( )

where u(x, t) is the unknown d-dimensional velocity field, p(z, t) is the scalar pressure, and f(x, t) is the external
force. We consider the equations on the d-dimensional torus T? for d > 3 with normalized viscosity coefficient
v = 1, but all the results can be extended to R% as well.

In this paper, we study the validity of the energy equality of the forced NSE. The goal is twofold: on one hand,
to identify possible causes for failure of energy balance; and on the other hand, to construct counterexamples
showing the sharpness of positive results. For instance, we prove that the regularity of solutions possessing
anomalous dissipation can be on the borderline of Onsager’s critical spaces, where the energy equality holds.

1.1. Background and previous works. If a solution of the NSE is regular enough, then the change of the energy
is equal to the work done by the force minus the total energy dissipation. This can be seen easily by multiplying
the equation (NSE) by u and integrating in space-time

1 1 h h
g\w(tl)n%—gllu(to)||§+/ \\Vu(t)ll%dt:/ {u, f) dt. (1.1)

to to

However, there is not enough regularity to justify this formal computation for weak solutions, and it is expected
that some weak solutions may not obey the energy balance. It was in fact conjectured by Onsager [Ons49] that
in 3-dimensional inviscid flows, solutions with Holder continuity « > 1/3 conserve energy, and the conservation
of energy may fail if & < 1/3. Such a failure of the energy conservation is often called anomalous dissipation
as it is due to the lack of smoothness of the velocity rather than the viscous dissipation. Onsager’s conjecture
for the Euler equations has been the topic of recent research activities and is generally considered solved in both
directions. See the works of Eyink [Eyi94], Constantin-E-Titi [CET94], Duchon-Robert [DRO0O] and Constantin-
Cheskidov-Friedlander-Shvydkoy [CCFS08] for the positive direction and the works of De Lellis-Szekelydihi
[DLS13, DLS14], Buckmaster-De Lellis-Isett-Szekelyhidi [BDLIS15] and Isett [Isel8, Ise17b] for the negative
direction.

In the context of the NSE, the existence/nonexistence of anomalous dissipation is still an open question. Pio-
neering results of Leray state that for any finite energy initial data there exists at least one weak solution satisfying
the energy inequality when there is no force, or more generally when the force f € L?H_ . Weak solutions
obeying the energy inequality are called Leray-Hopf solutions. The question of whether such solutions satisfy the
energy equality (1.1) is open, and only conditional criteria are available so far in the unforced case. Notably, Lions
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[Lio60] proved that u € L L2 implies the energy balance in 3D, which was extended to u € LY L4 for % + % =1
in all dimensions by Shinbrot [Shi74]. These two classical results can be recovered by the estimates in [CCFS08]
and interpolations. Recent works of Leslie and Shvydkoy [LS18a, LS18b] prove local-in-space results and energy
balance for a certain Type-I blowup of strong solutions at the first blowup time. Shortly later, the two authors of
current paper [CL20a] obtained weak-in-time improvement for Shinbrot’s condition showing that u € LY L4 for
% + % = 1 is enough for energy balance.

In contrast to the Euler equations, there are no known examples of anomalous dissipation for the unforced NSE.
There are constructions of wild solutions though, with arbitrary smooth energy profile by Buckmaster and Vicol
[BV19], wild solutions with some regularity in time by Buckmaster, Colombo and Vicol [BCV 18] and by the two
authors [CL20b]. However, the energy dissipation is infinite for all these wild solutions, i.e. they are not in the
L?H} class. Even though one can still identify forward or backward energy cascades in some of those solutions,
the energy balance equation does not make sense outside of the L7 H? class. For more results using the method of
convex integration in fluid dynamics, see for example [IV15, Isel7a, Luol9, MS18, Dail8, Nov20, BBV20] and
references therein.

1.2. The setup. To find genuine examples of anomalous dissipation in the viscous setting, here we consider the
simplest scenario: a possible violation of the energy balance at one point, while the solutions and forces under
consideration are smooth on (0,7") ! (see Section 2 for precise definitions). We do not assume f € LZ2H ™1,
but merely finite work done by the force. Such a relaxation is natural considering that a finite work done is the
minimal assumption for which the energy balance equation makes sense, and in fact, the energy equality (1.1)
holds automatically on (0, 7") for this class of smooth solutions.

One of our goals is to determine whether the energy balance still holds in these one-point singularity scenarios.
A heuristic in mind is that as the time approaches the possible singularity, a fixed amount of energy may move
to the infinite wave-number creating a jump in the energy profile, cf. the energy jump formula (3.7). If such a
heuristic is viable, it could lead to a surprising result: a smooth solution on (0, 7T") that does not obey the energy
balance on [0, 7). Note that all previous nonconservative Euler solutions in [DLS13, DLS14, BDLIS15, Isel8]
have a different mechanism from our one-point model.

It turns out that besides the anomalous dissipation, there is another possible cause of the failure of the energy
balance, which had not been studied in the past. The forces considered in this paper are smooth on (0,7) and
produce a finite energy input, but may not necessarily be in the class f € L7 H . This allows for a possibility of
a new phenomenon, what we call the anomalous work, which is elaborated below.

Denote by u<, the Littewood-Paley projection onto the frequencies < 29. Then the energy balance for u<,
reads

1 ) 1 ) t ) t t

sa®l = Shusalf + [ 1Vuzylidr == [ (- Vg uzg)dr + [ (s feg)dr a2
Since the solution has regularity v € L>L? N L?H!, the terms on the left side of (1.2) will converge to their
natural limits as ¢ — oo and only the terms on the right might cause the failure of the energy balance.

On one hand, as in [CCFS08], one says the anomalous dissipation occurs (over some time interval) if

/((U -Vu)<q,u<q)dr /0 as g — oo.

This motivates the following quantitative definition of the anomalous dissipation IT > 0 considered in the literature

T
IT = limsup ‘ / ((u- Vu)<q, u<q) dt|. (1.3)
T/2

q—0o0

On the other hand, since the solution v € LZH!, if the force f € L? H~!, then by the duality between L?H!
and LEH —1, the last term in (1.2) converges to its natural limit, the total work done by the force. However, if
f & L?H~1, then in general (on some time interval) it could happen that

/(ugq,f§q>d7 + /(u,f> dr asq— o (1.4)

and when (1.4) occurs, we say the force has anomalous work. -
Similar to the anomalous dissipation and motivated by (1.4), we can quantify the anomalous work ® of the
force by

i’:limsup’/T (u<q - f<q) - <u.f>)dt‘. (1.5)

g—ro0 T/2

IThere are technically two singular points ¢ — 0% and ¢ — T~ For consideration of energy balance, we focus on ¢t — T'~.
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This definition of anomalous work is consistent with (1.2) and in line with the classical definition of anomalous
dissipation (1.3).

Essentially, by allowing “rougher” forces, high-high interactions of the solution and the force can result in
nonzero anomalous work, which in turn can violate the energy balance without any energy cascade. Such examples
are abundant: take a smooth stationary Euler flow and push its frequency to infinity by a suitable force as t — T~
will produce a finite dissipation example with a jump in the energy at ¢ = T". However, such examples, considered
in Section 4, are not very interesting and more or less trivial.

Our main goal is to contract examples with genuine energy cascade, where the anomalous dissipation is
nonzero. First, in Section 5, we will focus on the class of solutions with no anomalous work, which we argue
are the physical ones, and were all the classical conditions for the energy balance, such as v € LY L4 for some
% + % = 1, still hold. In this class, we will construct examples of solutions violating the energy balance, and show
the sharpness of positive results. Second, in Section 6, we will construct an example where the energy equality
holds, but both anomalous work and anomalous dissipation are nonzero, in effect canceling each other.

We first present the main results to classify possible scenarios where the anomalous dissipation or anomalous
work persists.

1.3. Main results. Let us recall several key notations. Throughout the paper, we denote Q7 = T x (0,T) the
space-time domain, and N (Qr) = {(u, f)} the class of smooth solutions with smooth force and finite energy
input introduced in Definition 2.1. Note that even though the solutions (u, f) are smooth on @, they must blow
up near t = 0 or ¢ = T to develop nontrivial anomalous dissipation or anomalous work. The reader should note
that the notion of smoothness in this paper refers only to the interior of the time interval (0, 7).

Our positive results state as follows.

Theorem 1.1. Suppose (u, f) € N(Qr), then the following two conditions are equivalent.
(1) The energy is continuous: u € C([0,T]; L?).
(2) (u, f) satisfies the energy equality (1.1) on [0, T].
If one of the conditions holds, then the anomalous dissipation and the anomalous work are the same: 11 = ®.

Therefore, continuous energy only implies the same strength of anomalous dissipation and anomalous work,
which is different than in the unforced case or when f € L? H~!. In particular, Theorem 1.1 recovers a special
case of the following result.

Theorem 1.2. Suppose (u, f) € N(Qr) such that € LP(O,T;H_2+%)f0r some 1 < p < 2. Then the
anomalous work ® = 0. Moreover, if in addition u € C([0,T]; L?), then Tl = & = 0.

It is also worth noting that Theorem 1.2 is sharp, as will show that there are counterexamples when forcing
f € L7 °H™" for any ¢ > 0, see Theorem 1.6. We also remark that u € L%Bi o implies zero anomalous
dissipation IT = 0 as in the classical unforced settings, see Lemma 4.4.

Our next result concerns the uniqueness problem for solution class N (Qr). It is known that the classical
Ladyzhenskaya-Prodi-Serrin uniqueness criterion also holds in the forced case for f € L2 H~!. Note that there
are many refinements over the classical uniqueness results, notably [Ger06] by Germain, [Chel1] by Chemin and
[Bar18] by Barker. It is worth mentioning that the latter two results [Chell, Bar18] do not apply to our setting
since in our case the initial data uy € L? and there is no uniform regularity assumption for f. It seems that the
result of [Ger06] can be extended to our setting (see Remark 3.3, [Ger06]), however, we choose not to do so,
avoiding technicalities in harmonic analysis. We show that assuming only finite energy input, at least the classical
uniqueness results hold.

Theorem 1.3. Let (u, f), (v, f) € N(Qr) with the same force f and initial data u(0) = v(0) = uo. If in addition
uw € LYLL(Qr) with % + g = 1 and v is continuous in L* at t = 0, then u = v.

The result of Theorem 1.3 is expected considering that under such assumptions it can be seen as a weak-strong
uniqueness result for “Leray-Hopf weak solutions with finite energy input” in the spirit of Definition 2.1.

The next two theorems are our most surprising results. We construct solutions whose anomalous work is zero
while anomalous dissipation is not. In this case, the violation of energy balance stems from the solution itself
rather than the force. More importantly, these solutions can be made arbitrarily close to the borderline spaces of
energy balance, cf. [Lio60, Shi74, CCFS08, CL20a].

Theorem 1.4. For any ¢ > 0 and dimension d > 3, there exists a solution (u, f) € N(Qr) such that (u, f)
satisfies the energy equality on [0, T'), namely

1 1 h h
5 ()3 = Slulto) 3 + / IVu(®)l3 di = / (u,f) dt forallto,t: € [0,T), (1.6)
to

to
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the anomalous work vanishes

T
A ((u<q - f<q) = (u- f)) dt =0, (1.7
and the energy is jump discontinuous att =T,
lim [u(t)]3 > [lu(T)[3. (1.8)
t—T
1
Moreover, u is almost Onsager critical: u € L?B;yo; N LYLY for any % + % = 1+ ¢ and f is almost

Leray-Hopf: f € Li °H .

Now we note that in the class of zero anomalous work solutions @ = 0, classical positive results still hold: if

U € L?B?i oru € LYLY for some 212 _ 1 then the energy equality is satisfied. Indeed, if u is such a solution,
then Theorem 4.4 (cf. [CCFS08]) implies no anomalous dissipation and the energy jump formula 3.7 implies that
u is continuous in L? at t = T and hence the energy equality thanks to Theorem 1.1. These positive results do
not contain any conditions on the force, so the force by itself cannot create anomalous dissipation, which can only
come from the energy cascade when & = 0. Now thanks to Theorem 1.4, we know that these positive results are
sharp.

Corollary 1.5. Consider the class of solutions in N'(Qr) with zero anomalous work:

S ={(u, f) € N(QT) : = 0}.
(1) If (u, f) € S is such that u € L§B3%,00 oru € ILYLY for some % + % = 1, then the energy equality is
satisfied on (0, T).

1_
(2) For any € > 0, there exists (u, f) € S such that u € L?Bg”of N LY LY for any 12; + % = 1+ ¢ and the
energy equality is not satisfied on (0, T).

Our last result shows that Theorem 1.1 and Theorem 1.2 are sharp in another way. In the class of AN'(Qr),
continuous energy does not rule out anomalous dissipation due to the presence of anomalous work. These solutions
are also arbitrarily close to the borderline spaces of energy balance.

Theorem 1.6. For any € > 0 and dimension d > 3, there exists (u, f) € N (Qr) such that (u, f) satisfies energy
equality on [0, T]

1 1 h h
Sl = Slue) + [ IVu@dt= [ ws) dt porattonclo, a9
to to
but the anomalous dissipation still occurs
T
lim ’/ <(U~Vu)<q,u<q>dt‘ > 0. (1.10)
gl )2 T

1
In addition, u is almost Onsager critical: u € LfB:iOOE N LYLY for any 1% + % = 1+ ¢, and f is almost
Leray-Hopf: f € L3 °H .

1.4. Strategy of the proof. One of the main ingredients in the proof is a construction of a sequence of building
blocks, vector fields with the optimal energy flux, which we then glue together in time. We use two different
gluing mechanisms to achieve the positivity of the energy flux (1.10) for our solutions. In Theorem 1.4 all the
energy escapes to the infinite wavenumber as time ¢ — 7', resulting in a jump of the energy. This solution enjoys
the anomalous dissipation with no anomalous work. On the other hand, in Theorem 1.6, the energy does not
completely transfer to the next shell as the force injects energy at each frequency producing the anomalous work
(in addition to the regular work). This solution encounters both anomalous dissipation and anomalous work that
balance each other resulting in the energy equality. The designed vector fields are intermittent of dimension close
to d — 2 based on the heuristics in [CL20a], so that we also achieve finite dissipation. In Theorem 1.4 the gluing
in time is more delicate and the time scales are carefully designed so that the force has no anomalous work. Our
method of constructing such pathological solutions is very flexible and less restrictive than traditional methods
since no uniform regularity of the force is assumed.

In view of the energy cascade in the construction of Theorem 1.4, the force is designed so that it does not
interfere with the energy cascade but only helps the solution to keep the desired structure. This can be seen as
an implementation of a blow-up in Tao’s averaged NSE [Tao16] to the actual NSE, but with a force. The delay
mechanism is enforced via gluing building blocks with a positive flux. So at each time, the transfer of energy
occurs only at one particular scale. The intermittency of building blocks combined with the delay mechanism
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results in the optimal energy cascade to high modes, which allows us to construct examples with finite dissipation
and almost critical Onsager’s regularity.

1.5. Physical motivation. The effect of rough forces on the energy cascade in turbulent flows has been exten-
sively studied experimentally as well as numerically [QCV01, SMVvdWO03, MV04]. Experimental setups usually
involve a stirrer with a self-similar structure or a grid of a fractal dimension above two. In fractal forced direct
numerical simulations, rough forces are used to model fluid obstacles, such as grids. See for instance [MV04],
where the roughness of the force well surpassed the Leray-Hopf L? H_ ! class for obstacles of high fractal dimen-
sion. It has been shown that the energy spectrum of fractal forced turbulence deviates from Kolmogorov’s law and
the energy dissipation rate does not exhibit Kolmogorov scaling, but instead diverges at high Reynolds numbers,
which was also confirmed theoretically with rigorous upper bounds in [CDPO7].

Even though there is evidence that fractal obstacles should be modeled by rough forces, one can argue that such
forces should not exhibit any anomalous work. For instance, in the case of an elastic fractal grid we would expect
the force to satisfy

" fractal
: ractal
qlggo “ (ugq - F<g™) dt =0,
on sufficiently large time intervals [¢1, 3], so that the total work vanishes in the strong physical sense. This
combined with a driving (low mode, or Leray-Hopf) force F''*! in the experiment would result in @ = 0, were the
anomalous work @ is as in (1.5) computed for f = Fc@l  FLH gyer one interval since we only study the case
of a single time singularity.

As we assume zero anomalous work, i.e., no nonphysical mechanism to produce some pathological work
on small scales, we study whether solutions to the (NSE) can exhibit anomalous dissipation. Physically this
would correspond to a dissipation mechanism for high velocities on small scales where the equations are not valid
anymore. Such small scales cant get engaged if the energy cascade is stronger than the dissipation.

1.6. Concluding comments. The zero anomalous work construction of Theorem 1.4 is not specific to any par-
ticular Littlewood-Paley decomposition: the anomalous work of the force is zero for any dyadic Littlewood-Paley
cutoff such that each projection A, has frequencies in the range [2¢71, 2971]. In addition, the value of the anoma-
lous dissipation (1.3) is always equal to the energy jump at t = T, so it represents the energy balance defect, as in
the unforced case.

It is also worth noting that if one can strengthen Theorem 1.4 to f € L7 H !, then a suitable modification of the
proof would imply the nonuniqueness of Leray-Hopf weak solutions. Indeed, standard methods of constructing
Leray-Hopf weak solutions can be used to remove the jump, and thus create a new solution.

We finish our discussion by comparing our method of constructing solutions with convex integration that has
been developed for fluid dynamics in recent years. It is possible that by using convex integration and allowing for
forcing one can also construct solutions with zero anomalous work and nonzero anomalous dissipation. However,
it seems that with current techniques this is impossible in 3D and only works in very high dimensions. There
is at least one advantage of using convex integration: forcing given by convex integration solutions has small
low frequencies. So the force can be made arbitrarily small in LW ~11 or LW %P for sufficiently large k
depending on p € [1, o] 2. The examples given in this paper do not have such a property.

Organization of the paper. The rest of the paper is divided into the following sections.

e In Section 2 we introduce the solution class N (Q7) and discuss basic properties and its relationship with
other notion of solution. In particular, Theorem 1.3 is proved in Section 2.4.

e In Section 3 we formulate anomalous dissipation and anomalous work by a Littlewood—Paley decompo-
sition.

e Section 4 is devoted to both the positive results and the counterexamples. On one hand, we prove Theorem
1.1 and Theorem 1.2. On the other hand, we give simple examples of nonzero anomalous work.

o The last two sections are dedicated to constructing counterexamples. Using intermittent vector fields with
optimal energy flux, we prove Theorem 1.4 in Section 5 and Theorem 1.6 in Section 6.

2t seems also possible to reach f € L?Hflfs for any € > 0 by convex integration, which is different than the ones f € LE’EH*1
obtained here.
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2. SMOOTH SOLUTIONS WITH FINITE INPUT

2.1. Functional spaces and notations. Throughout the paper, we consider the (NSE) on Q = T for d > 3. The
space of test functions is denoted by D(€) or simply D. Respectively, the space of distributions is denoted by D’.
The Lebesgue norm is written as || - || »() = || - I,

For any f € D', its Fourier transform is denoted as for F f. For any distribution v € D, we will use the
Littlewood-Paley decomposition

u= Y Agu (2.1)
q>—1
where A, denotes the projection onto frequencies ~ A, := 29. Note that throughout the paper A, = 2¢ is the
dyadic number for any q € Z.

The notation X < Y means X < CY for some constant C' > 0. If the constant C' depends on certain
parameters ag, aj . . . an, then we write X <, 40...a,,- X 2 Y is defined similarly and X ~ Y means X <Y
and Y < X at the same time.

For any s € R, the Sobolev spaces H* consists of all distributions satisfying

> A2)|Agul3 < . (2.2)
g>—1
For any Banach space X, a function f : [0, 7] — X is called weakly continuous into X if (f,¢)x : [0,7] — R

is continuous for any g € X’. The space C,, (0, T’; X) consists of all functions weakly continuous into X.
The space £(0, T) consists of all f € L}, such that the limit

loc

lim / fdt exists.

a—0t b—>T—

In particular, the Lebesgue space L' is included, L' (0,7") C £(0,T). The space £(0,T) will be used to charac-
terize finite work done by the force.
In what follows, unless otherwise indicated, the notation (-, -) is reserved for the standard L2 inner product.

2.2. Smooth solutions with finite input. We now begin to introduce our class of smooth solutions A (Q7). Since
we are interested in the energy balance law, the solution should be of finite energy and the input from the force
should also be finite.

Definition 2.1 (Solutions class N'(Q7)). Let T > 0 and the space-time domain Qr = T? x (0,T). We say
(u, f) is a smooth solution with finite energy input, or (u, f) € N (Qr) for simplicity, if all of the followings are
satisfied

o u€ 05 (Qr)NL>(0,T; L*(Q)), f € C=(Qr);

e v and f satisfies (NSE) for any (t,x) € Qr;

o (u, f)e L(0,T);

o The limits of f(t) existin D’ ast — 0 and t — T~.

Remark 2.2. Here are a few comments concerning the solution class (u, f) € N (Qr).

o As discussed in the introduction, we only assume the smoothness of (u, f) on (0,T), not [0, T|. The only
uniform regularity we have is u € L°°(0,T; L*(2)).

o The assumption that | can be extended to a continuous distribution on [0,T) is mainly for the compati-
bility of a weak solution. Without such an assumption, u can not be extended to a weak solution on [0, T,
see Lemma 2.6.

o The finite energy input condition {u, f) € L£(0,T) is the minimal assumption for which the energy in-
equality makes sense on (0, T. This includes the usual case f € L>H~1 of the Leray-Hopf solutions.

Remark 2.3. There are two potential singular points for solutions in N(Qr): t — 0T and t — T~. The latter
case t — T~ is where we study possible failure of energy balance while t — 07 is where possible non-uniqueness
may emerge. Note that failure of energy balance att — 07 is the worst-case scenario of nonuniqueness, whereas
the possible non-unique solutions considered in [JS15] satisfy the energy balance att — 0.

The following lemma shows that possible discontinuities of energy profile of such solutions can only be jumps.

Lemma 2.4. Assume that (u, f) is a smooth solution of (NSE) on Qr and u € L*(0,T; H'). Then (u, f) €
N(Qr) if and only lfhlg llu(s)||3 exists for t = 0% and T~
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Proof. Indeed, since (u, f) is smooth on (0, T), the energy equality holds:

1 1 t t
Sl = 5l = [ Ivalgar+ [wpyan  o<w<t<T
0

to
Since u € L?H*, the limits of ||u(#)||3 at 0 and T~ exist if and only if (u, f) € £(0,T). O

The next theorem shows that all the terms in the energy balance equation are finite on the closed interval [0, T7].
Theorem 2.5. If (u, f) € N(Qr), then the energy dissipation is finite: u € L*(0,T; H').

Proof. Again, this is a simple consequence of the energy equality for u(¢) on (0, T), according to which the energy
dissipation is given by

t t
1 1
/tIIVUIlﬁdT:§IIU(to)H§*§HU(t)II§+/t<u,f>dﬂ 0<to<t<T.
0 0

Using u € L°°(0,T; L?) and the definition of '(Q7), we can take the limsup as ¢ty — 0~ and ¢t — T'" of both
sides to obtain the desired result. O

2.3. Relation to weak solutions. The aim here is to compare our class of solutions N (Qr) with weak and
Leray-Hopf solutions. First, recall that a weak solution of the NSE on [0, T'] is a weakly continuous and weakly
divergence-free vector field u € C,, ([0, T]; L?) solving (NSE) in the sense of distributions.

Lemma 2.6. If (u, f) € N(Qr), then weak limits of u(t) in L* existast — 0T andt — T~.

Proof. Thanks to the incompressibility, it suffices to consider divergence-free test functions. By the weak formu-
lation of the NSE, for 0 < ¢ < ¢; < T and divergence-free ¢ € D we have
ty

(ult), ¢) = (u(tr), o) — / (u, Ag) dr + / (wou: Ve)dr - / (f, o) dr. 2.3)

Sending t — 0% or ¢t — T, we need to show that the limits of all terms on the right-hand side exist. This easily
follows from our finite energy assumption L$°L? of u and the assumption that the limits of f as a distribution
exists (see Definition 2.1). O

Thanks to Lemma 2.6 we can extend u(t) to [0, T'] by weak continuity in L2, So u(0) and u(T') will always
denote weak limits u(t) as t — 0+ and ¢ — T'— respectively. Since the extended u(t) is weakly continuous on
[0, T7, it is a weak solution of (NSE) on [0, T7].

Weak solutions satisfying the energy inequality are called Leray-Hopf weak solutions. We can show that
solutions in N'(Q7) are Leray-Hopf solutions for positive times.

Lemma 2.7. If (u, f) € N(Qr), then for any € > 0, (u, f) is a Leray-Hopf weak solution on [, T, namely the
energy inequality

1 ¢ 1 ¢
Sl + [ I1Vular < St + [ (. ar 4
to

to
is satisfied for all to,t € [e,T], t > to.

Proof. This immediately follows from the fact that the energy equality is satisfied on (0,7"), and the lower semi-
continuity of ||u||2 at t — 7'~ which is a consequence of weak continuity of u(t). O

Remark 2.8. Here, by Leray-Hopf weak solution we mean a weak solution u € C,,([0,T]; L*) N L2H(Qr)
satisfying the energy inequality, without any assumption on the regularity of the force on [0, T).

Remark 2.9. Note that in general (u, f) € N (Qr) is not a Leray-Hopf weak solution on [0, T|. The energy may
be discontinuous at t = 0 which is forbidden if energy inequality is satisfied starting at to = 0. This is the reason
that in Theorem 1.3 we need to assume the L?-continuity at t = 0.

2.4. Uniqueness results for N'(Qr). In the last part of this section, we briefly touch on the uniqueness result in
the class N'(Qr). We follow classical strategies of proving uniqueness. Suppose we have two smooth solutions
(u, f), (v, f) € N(Qr) for the same force f, and v is a “strong solution”. Let w := u — v be the difference, the
energy space £ be

Er = LEL*NL2HY(Qr)
and the trilinear operator 7 be

T
T :(a,b,c) — (a- Vb, c)dt. (2.5)
0
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There are mainly two key points in the classical argument. First, we need the energy inequality on [0, T for
both solutions. Second, we need one strong solution in some path space Py C L}, .(Qr) such that the trilinear
operator T is continuous on £ X Er X Pr, namely

[T(a.b.)| < llalle, Bl el 7. 2.6)

With these in hand, one can then use a continuity argument and Proposition 2.10 to show that ||w||g, < 0,
hence uniqueness.
For Pr = Lqu(QT), % + % = 1, the estimate (2.6) is classical for the 3D NSE (see for example [Pro59]), it

is also standard to extend it to other dimensions. To prove Theorem 1.3 we only need to justify the following >
stability estimate of the difference w.

Proposition 2.10. Under the assumptions of Theorem 1.3, the following equality holds
t t
w(®)]3 + 2/ |Vw(r)|3dr = 2/ (w-Vw,vydr forallt € [0,T).
0 0

Proof. Since u and v are smooth on @), the difference w satisfies
ow—Aw+w-Vw+v-Vwo+w-Vo+Vr=0 forall0<t<T. 2.7)
Multiplying (2.7) by w and integrating, we get

t t
lw @113 = llwto)3 + 2/ IVe(r)|l3 dr = 2/ (w- Vw,v)dr forallto,t € (0,T).
to tU
Since u € LYLI(Qr) with % + % = 1 and v is bounded in L? at t = 0, the trilinear term make sense when
to — 01, namely

t
/ (w - Vw,v)dr < co.
0

Moreover, the space LY L2 (Qr) is Onsager subcritical (see Theorem 4.4), so u satisfies the energy balance and
is continuous in L2 at t = 0. Since v is also continuous in L? at ¢ = 0 by the standing assumption, we have
|lw(to)||3 — 0 asty — 0, which concludes the proof.

(]

3. ANOMALOUS DISSIPATION AND ANOMALOUS WORK

In this section, we formulate the concept of anomalous dissipation and anomalous work through the Littlewood—
Paley decomposition. As briefly discussed in the introduction, these two quantities arise naturally when studying
the energy balance of the NSE. Note that for our solution class N (Q7), these two quantities do not depend on
the particular decomposition used here, which is the same as in the unforced case or f € L?H !, see the energy
jump formula (3.7) below.

3.1. Littlewood—Paley decomposition. We briefly introduce a Littlewood—Paley decomposition on T¢. Through-
out the paper we use the notation \, = 29 for all ¢ € Z. Let radially non-increasing x(¢) € C°(R?) be such
that x(¢) = 1 for |¢] < 1/2 and xy = 0 for [¢] > 1. Let p(¢) = x (A '€) — x(€) and define for any ¢ € N
Xq(&) = x(A;1€) and 4 (&) = (A, '€). Then we have the partition

XE) + wg) =1. 3.1)
q=0

We then let A, be the Littlewood-Paley projection with symbol ¢, (&) for ¢ > 0 or x(&) if ¢ = —1. For any
distribution u € D(T?) one has
u= Z Agu

q=-1
in the sense of distribution. We also use notations A<, := >
telescoping identity

r<q Ars ug = Agu and u<q == A<qu. From the

XEO+ Y 0r(&) = xg11(9), (3.2)
0<r<q
it follows that A<, is the Littlewood—Paley projection with symbol x4+1(§).
Let us recall that for any s € R, p,q € [1, 00|, the (in-homogeneous) Besov space B, , is equipped with the
following norm

[|ul By, = H(>\2||uqu)q271H@q(Z)'

It is known that B3 , = H*.
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We refer readers to [Can04] for more background on harmonic analysis applying to fluid dynamics.

3.2. Energy flux. We will use the Littlewood—Paley decomposition to formulate our definitions of the anomalous
dissipation and anomalous work for (u, ) € N (Qr). We focus on the endpoint ¢ — 7'~ and start with the cutoff
energy equality and let (T' — h,T") C (0,T).

Multiplying (NSE) by (u<,)<, and integrating on T¢ x (T — h, T') gives

1 Nk
Slusa (I3,

Since (u, f) € N(Qr), we have u € L2 H" thanks to Theorem 2.5. So the limit of the right-hand side as ¢ — oo
always exists. However, as discussed in the introduction, the two energy flux terms on the right-hand side may not
converge to the work [(u, f) dt, resulting a failure of energy balance. Let I, (¢, k) and ® (¢, h) be defined by

I, (t, h) := / / (u®u): V(ucgg)<qdadr, 3.4)
[t—h,t+h]N[0,T] J T4

=T

T T
+/’Hv%Am@m:—/“<mew@ka+w9J@wh (3.3)
T—h

=T—h T—h

and respectively

®,(t,h) ::/ / (u<q - f<qg—u- f) dzdr. (3.5)
[t—h,t+h]N[0,T) JTd

In what follows, we will simply refer to I1, and @, as flux terms. The energy balance through wavenumber A,
can then be written as

1 Nk
sy 01
Sluso®I],

One particular usage of the two quantities 11, and ®,, is to measure the possible jump discontinuity of the
energy. Indeed, by taking a limit as 4 — 071 and using the fact that w € L?H', we obtain the formula for the
energy jump att — T~

=T

T T
+/’nw@@ﬁm:/ (w, fydr +T,(T,h) + B4(T. ). (3.6)
=T—h T—h T—h

1 2 . 1 2 _ 1
Sl =l S ()3 = lim [1L,(T.R) + ©,(T, ). (3.7)

In the literature (see [CCFSO08] for example), Il is called the energy flux through wavenumber A\, which is
used to capture the anomalous dissipation of the solution. In the unforced case, limsup |II;| = 0 immediately
implies the energy equality. The conclusion also holds if we assume f € L2 H ! in the forced case.

However, for solutions in N'(Qr), the flux term ®,, in (3.6) may not converges to 0 because we no longer have
the bound f € L?H . The failure of energy balance is due to the high-high interaction between the solution and
the force. In Section 4 we will show that many such examples can be obtained.

Based on the discussion above, it is natural to introduce the following.

Definition 3.1 (Anomalous dissipation and anomalous work). Let (u, f) € N(Qr). For any t € [0,T] the
anomalous dissipation I1(t) at time t is defined by

T0I(t) = limsup |1, (¢, k)|,

q—00
and the anomalous work ®(t) at time t is defined by
®(t) = limsup |®,(t, )],

q—o0

where 11,(t, h) and ®,(t, h) are as in (3.4) and (3.5). By a slight abuse of notation, we simply write 11 = T1(T)
and ® = ®(T).

Note that in the definition, we did not specify the value of the parameter h > 0. The next lemma shows that
any 7' > h > 0 will give the same definition.

Lemma 3.2. The anomalous dissipation I1(t) and the anomalous work ®(t) are well-defined.

Proof. We need to show that limsup,_, . |Tl;(¢, h)| = limsup,_, ., [II,(¢,~)| for any h,h" > 0, and mutatis
mutandis for ®(¢). We only show this for II(T"). Assuming k' > h > 0, it suffices to show

T—h
/ / (u-V)u- (u<q)<qdzdt] — 0, as ¢ — 00 (3.8)
T—h Jrd

Since u is smooth on (0, T"), in particular this implies that

”u”Ctlyw([T—h/,T—h]xQ) < 00.
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It is easy to see that u € C} , N LY°L? N L7 H' implies (3.8) immediately.
U

It is straightforward to verify that II(t) = ®(t) = 0 for any solution (u, f) € N (Qr) and any t € (0,T). In
what follows we are only interested in the nontrivial case ¢t — 71~ .

4. POSITIVE RESULTS AND SIMPLE EXAMPLES

The goal of this section is two-fold. On one hand, we provide positive results to classify possible scenarios of
the violation of the energy balance. This is reflected by the loss of continuity of the energy. On the other hand, we
provide simple examples with positive anomalous work.

4.1. Positive results. We prove several positive results in this subsection. In particular, these results would imply
Theorem 1.1 and thus Theorem 1.2.

First, let us show that for the solution class N'(Qr), the continuity of energy is equivalent to the energy equality
on [0, 7.

Lemma 4.1. Suppose (u, f) € N(Qr), then u € C([0,T]; L?) if and only if (u, f) satisfies the energy equality
on [0, 7).

Proof. Since u € L>?H*! and (u, f) € L£(0,T), the sufficiency is easy. Let us show the necessity. In this case one
can then use the energy equality on (0, 7") and pass to the limit thanks to u € C([0, T; L?). O

Next, we finish the proof of Theorem 1.1. In the unforced cases, it is expected that solutions exhibiting anoma-
lous dissipation would have a discontinuous energy. However, when a force f ¢ L7 H ~! is present, there might be
cancellations between anomalous dissipation and anomalous work. Thus the continuity of the energy only implies
that these two effects are of the same strength.

Lemma 4.2. Let (u, f) € N(Qr). Ifu € C([0,T); L?), then 11 = ®.
Proof. By the energy jump formula (3.7),

. 1 o1
lim [T1,(T, 1) + (T, 0)] = 5 [u(T)§ — Tim s [lu(t)]3 =0,

q—o0
due to the continuity of v in L?. This immediately implies IT = ®. O

Note that by Lemma 4.1 and Lemma 4.2, we have thus obtained Theorem 1.1.

When the force is in the Leray-Hopf class f € L%(0,T; H _D, there is no anomalous work. In addition, any
subsequence of |II,| will converge to the anomalous dissipation II in this case.
Lemma 4.3. Suppose (u, f) € N(Qr) is such that f € Lp(O,T;H_2+%)f0r some 1 < p < 2. Then the

anomalous work is zero: ® = 0.
Moreover, the anomalous dissipation satisfies

TI(t) = lim |IL,(t,h)| foranyt € [0,T).
q—00

Proof. Since (u, f) € N(Qr), we have u € L°L? N L?H", and hence u € L{ H®, where q is the dual Holder
exponent of p and o := 2 — %. Since also f € LY H~%, by duality and interpolation, we have

T T
| [ s sey = gy dwar) < [ fusyllae ool de @)
T—h JTd —h
S lusgllamell f>gllor o 4.2)
=0, (4.3)

as ¢ — 0o, and the anomalous work is zero Pd=0 by definition (3.5).
As for the second claim, we only show this for £ = T". Due to the energy jump formula (3.7), the limit

lim [I1,(T,h) + ®,(T, h)]
q—00
exists. Since @ = 0, we also have that lim,_, o, ®,(T, k) = 0, and hence lim,_, |IL,(7T, h)| exists, and is equal
to IL.
(]

Finally, we note that Bg/o?; is the Onsager’s space as in the unforced setting. This follows immediately from
the estimates on the flux in [CCFS08] since the definition of the anomalous dissipation is the same.
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Theorem 4.4 ((CCFS08, Theorem 6.1]). If (u, f) € N(Qr) and
uwe L3BY?

3,007
then I = 0.

We also quote the positive result of [CL20a] in our settings which improves upon the condition of Shinbrot
[Shi74].

Theorem 4.5 (|[CL20a, Theorem 1.11). Let (u, f) € N(Qr) and 1 < < p < oo such that 2 + 4 < 1. If*

242
we LA (4.4)
then II = 0.

Remark 4.6. Note that Theorem 4.5 requires finite dissipation while Theorem 4.4 holds true for any weak solutions
(u, f). Even though Theorem 4.5 relies on the flux estimates in [CCFS08], there is no mutual implication between
these two conditions, see [CL20a, Section 5] for details.

4.2. Trivial examples. We now switch from the positive results to discussing various examples with anomalous
work. As one shall see, anomalous work is perhaps the simplest way to produce a jump discontinuity in the energy.

4.2.1. Oscillations. The first example is based on shear flows glued together by a partition in time. We show that
anomalous work can be caused by pure oscillations.
Given T' > 0, let us choose a sequence of smooth cutoffs h; € C2°(R) such that

supp h; C [T — 27 PGV 7 — 9=AG+DT),

and
D hi(t)*=1 forte[0,T).

Example 4.7. Let k,1 € 7% so that k - | = 0 and 3 > 2. Consider the NSE on torus T? for d > 3 and define the
solution
u(a,t) =23 hi(t)sin(2'0 - 2)k,
i>1
fort € [0,T) and the force
ft,x) :== Opu — Au.

In this case, obviously u and f are smooth on Q7. Due to the choice of time cutoffs we also have ||u(t)||3 = 1
for ¢ > 0, and hence 4 ||u(t)||3 = 0. Since 8 > 2, it is easy to verify that w € L2H" and due to the smoothness
of u and f as well as the energy equality on (0, T") we get

(u, f) = |Vu(t)||? forall0 <t <T, (4.5)

which implies (u, f) € £(0,T) (in fact L'(0,7)). It is also easy to see that weak L? limits of u exists as
t — 07,7, and the latter one is zero. Therefore the energy is discontinuous at t = T'. Also, the limits of f()
existin D" ast — 0" and t — T~. Thus (u, f) € N(Qr).

We claim that the jump discontinuity at ¢t = T is caused by the anomalous work. Indeed, it is not hard to see
that u € Lg%, (Qr) or even div(u ® u) = 0, and hence the anomalous dissipation IT = 0 for this solution.

4.2.2. Concentration. The next example shows that the development of concentrations can also lead to anomalous
work. Here we use the Concentrated Mikado flows used in [Luol19] which was based on the Mikado flows
introduced by Daneri and Székelyhidi, Jr. in [DS17].

Recall that for dimension d > 3 and k& € Z¢ Concentrated Mikado flows Wi, e Cg° (T?) are periodic pipe
flows whose supported pipes have small radius of size p~! with direction k; See Section 2 in [Luo19] for the
exact definition.

Let us fix some constant 0 < o < % and introduce a time-dependent concentration parameter

1
t) i = ———.
Example 4.8. Consider the NSE on T¢ for d > 3. Let Wi e C§°(T4) be a Concentrated Mikado flow. Define
the solution
u(a,t) = Wit
and the forcing f(x,t) := Oyu — Au on (0,T).

3Note that LP+% denotes the weak Lebesgue space.
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Since div(u®@u) = 0forall t € (0,7), (u, f) € N(Qr). As before, u and f are smooth on Q7 and the weak
L? limit of u(t) is zero as t — T'~. So the energy is discontinuous at t = T'. Note that due to the scaling property
of the Concentrated Mikado flow, | Vv (#)||3 = cu? for some fix constant ¢, which implies v € L?(0,T; H') since
0 < a < 1. Note that ||u(t)||3 is a constant on (0, T), and due to the energy equality on (0,7’) we get

(u, f) = |Vu(t)||3 forall0 <t <T, (4.6)

which implies (u, f) € £(0,T). So (u, f) € N(Qr). Itis obvious that the energy flux IT = 0 since div(u®u) =
0. Therefore, the discontinuity of the energy must be caused by the anomalous work.

4.2.3. Tao’s blowup solution of averaged NSE. In a remarkable paper [Tao16], Tao proved a finite time blowup of
a smooth solution to an averaged NSE, which satisfies many classical harmonic analysis estimates of the original
NSE. Here, we show that this solution is also in our solution class A/ (Qr) for the original NSE.

Letu : [0,T*) — C°(IR?) be the blowup solution * to the averaged NSE in [Tao16, Theorem 1.5]. So, u is a
classical solution to dyu — Au + B (u,u) = 0 that blows up at time T with a Schwartz initial data u.

Example 4.9. Consider the forcing f := B(u,u) — B(u,u). Then (u,f) € N(Qr~) and {u, f) = 0 for all
t € [0,7%).

The weak L? limit of u exists as t — T by the weak formulation of the average NSE. Therefore by a standard
argument, one can show that the force f = B(u,u) — B (u,w) can also be extended to t = T™ as a continuous
distribution. All conditions in Definition 2.1 has been verified, and thus (u, f) € N (Q7~).

Since the averaged bilinear operator B still fulfills the orthogonality (E (u,v),v) = 0, then by construction
(u, f)y =0forallt € [0,T*).

Remark 4.10. In the above example, the work is zero for (u, f). However, at the moment it is not known whether
the energy has a jump at t — T~ since only the blowup of higher Sobolev norms is shown >, see [Tao16, Propo-
sition 6.3 1. It is also not clear whether anomalous work ® = 0 or even anomalous dissipation I1 = 0 as the
solution u was not designed to saturate the energy flux for the original NSE.

4.2.4. Concentration with zero input. In this last example, we show that one can also achieve zero work done
in Example 4.8 by incorporating the decay of heat flow. Denote by v(zx,t) the solution in Example 4.8. Let
h € C>(R™) be the unique solution of ODE

dh )
= = ~2lVe@)lIzh(D) 4.7

with initial data h(0) = 1. As before, ||Vv(t)||3 = cpu? for some fix constant c. We thus obtain explicitly
h(t) = W(T)em5 (T=0"*
Example 4.11. Consider the NSE on T? for d > 3 and define a solution
u(z,t) = hz t)v(z,t) and f:= O — Au, (4.8)
fort € (0,T). Then (u, f) € N(Qy), {u, f) =0 forallt € (0,T) and the energy has a jump art = T.

Arguing as in Example 4.8, u € L?H' since h(t) < 1. Since h solves the ODE (4.7),

d
= lul3 = ~20Vul3.
This implies (u, f) = 0 due to the energy equality on (0, 7).
The energy has a jump at t = T as in Example 4.8 because u(T") = 0, but the limit of the energy is positive as
h(T) > 0.

5. EXAMPLES WITH ZERO ANOMALOUS WORK

In this section, we will finish the proof of Theorem 1.4. The idea is to glue vector fields with large flux in a
way that the leading cancellation in ®,, at the level of energy results in zero anomalous work. The construction
of vector fields is inspired in part by Eyink’s example in [Eyi94] and by the constructions in [CS10] by Shvydkoy
and the first author. It is also worth noting that there is no cancellation in the final solution (u, f), which is the
main reason that the force f ¢ L?H 1.

4One may notice that  is only F'0 as stated in [Tao16], however, smoothness can be obtained by bootstrapping as the initial data is Schwartz
and B satisfies the same estimates as B on every Sobolev space WP for 1 < p < oo. See the discussion after Remark 1.4 in [Tao16].
51t seems that the energy is continuous since the blowup portion of the solution has energy tending to zero according to [Tao19].
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5.1. Positive energy flux through each shell. We start with constructing vector fields supported in dyadic Fourier
shells with optimal energy flux. The goal is to arrange Fourier modes so that the energy flux is saturated. Since
we are dealing with the NSE, intermittent flows take place of homogeneous ones comparing to [Eyi94, CCFS08].

Lemma 5.1. For any dimension d > 3 and 0 < 3 < d, there exist N € N and vector fields w, € C"’O(']Td) for
n > N with the following properties.

(1) The Fourier support of wy, is in a shell of radius \,,:
supp Fw, C {k A < k| < )\n+1}; (5.1)
(2) L? norm is normalized: ||wy||2 = 1, and the LP scaling
[wnllp ~p )\;1/2_1/1,)5’ (5.2)
holds for all p € (1, o0];
(3) The energy flux through Littlewood-Paley shells satisfies

3

. -1-£
lim A\, 2
n— oo

/ div(wp, @ wp)<n - (Wn)<n dz =2, (5.3)
Td
and |1, div(w, @ wn)<q - (Wn)<q = 0 when q # n.
Remark 5.2. Note that the construction of w,, does not depend on the choice of Littlewood—Paley cutoffs as long
as Ay has frequencies supported in [Ap,—1, Ant1)-
8
Proof of Lemma 5.1. Let p, = \i. Note that 1 < p,, < A, and A\, 1p,, — 0 as n — oo for the given range of 3.
For n € N, define the integer blocks A,,, B,, and C,, by
A = [, An + 2ptn] X [~ i, ] N Z

By, = [~fin, pn] X [\/§>‘n — 4fin, \/g)‘n — 2pn] X [_/in»/in]d72 aVA

C,:=A, +B,.
Note that we can choose NN large enough so that for n > N all the wavenumbers k € A, U B,, U C,, satisfy
A% < K1 < [ +20)% + (d = D] + [(VBA2 = 2p0)% + (d = 1) ] (5.4)
<ANZ =2, (5.5)

because A, ', — 0 asn — oo.
Now, for k € Z%, define vector-valued functions a.,b. and c. by

1 k®k
= Id— )
T ( A
1 E®k
by, = (Id— ) ( ,
g\ ) 6o
1 k®k
- Id —
* ICnI%( EE )ed’
where e; = (1,...,0),eq = (0,...,1) and |A,|,| B,| and |C,,| denote the counting measures. Then define
Wy, 1= Z (iaklAn — iaklA; + iblen — ible; +ickle, — Z'Cklcjl)eik.w. 6.7

kezd

From (5.6) it is clear that w,, is divergence-free. From (5.4) we also see that if IV is sufficiently large, we have the
desired Fourier support property

supp]-'wnc{k‘:)\n§|k;|§)\n+1}, n> N.

Next, we show that w,, enjoys the LP scaling (5.2). Estimates for all the blocks are the same, so we show them
for aj x 4, only. Using (5.6), the L? boundedness of the Leray projection, and L? estimate for the Dirichlet kernel,
we get

liax1a,e™ ||, < uE 114, €™l (5.8)
n

< prm? (5.9)

~
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Applying such an estimate to all the other blocks, we obtain

-1y (3-3)8

1
||wn||p S =An

It is worth noting that the implied constant depends on c if p # 2. Note that w,, does not have a unit L? norm, but
it can be fixed in the end once the parameter c is determined.

Finally let us show (5.3). First, thanks to the Fourier support bound (5.1), if ¢ > n, then (w,)<q = wy,. In this
case, there is no flux thanks to the incompressibility. In addition, if ¢ < n, then (wn)gq = 0 and the flux is zero
as well. We thus only need to consider n = q.

Denoting by w(k) the Fourier coefficients of w,, we have

/ div(wg, ® wg)<q - (wg)<q =i Z (@(kl) : k2) (@(k2) : @(kS)XiJrl(kB))a (5.10)
T k1+ka+k3z=0

where )41 is the cutoff function we used in Section 3.1 for the Littlewood-Paley decomposition, cf. (3.2).
Since w, only has frequencies in three regions A = A, U A7, B = B, U By, and C' = C, U Cy, we only need
to consider the following cases
k1+k2+k3€Aq+Bq+Cg and k1+k2+k}3€AZ+B;+Oq,

as all the other combinations do not allow for k; + k2 + k3 = 0. Thus denoting E, := A,UB,UC}, by symmetry
and (5.10) we have

/ div(w, @ wg)eq - ()g =2 S (@(k1) - ko) (@(ka) - D(ks)x2 i (k). (5.1D)
T¢ ki EE,Yj
k1+ko+kz=0

Notice that if k; ¢ By, due to (5.6), W(k1) is almost orthogonal to kp. More precisely, for all k; € E, with
ki1 + ke + k3 =0,

B(k) ks S A7 gl @(k1)| S b whenever ky ¢ By

Using this observation, the fact that the number of combinations satisfies the estimate

[{(ky, ko, ks) € Z% x Z% x 2% : Vj kj € Eq and ky + ka + ks = 0}] = [A4]| By| < p2?, (5.12)
and the bound @W(ks) - W(ks) < |Aq|_%|Bq|_%, we get®
. P Y 1+¢
ST (@(k) - ko) (Dka) - k)3 (ks))] = Oy ). (5.13)
k]‘GEq,k‘lng
k1+ko+k3=0
It follows from (5.11) and (5.13) that
d
/ div(wy @ wy)<q - (wy)<q = 2i > +2i > +O(ug " ?). (5.14)
T4 k1 €Bq k€A, ks €CT k1 €B ks €C k€A,
k1+ko+k3z=0 k1+ko+k3z=0
By anti-symmetry,
o (@) k) (@(ke) B(ke) =~ D0 (@(k1) - ke) (@(ka) - D(R)),
k1€Bq,k2€Aq,k3€C] k1€Bq,k2€C kz€Aq
ki1+ko+k3=0 ki1+ko+kz=0

so we need to analyze the value of xq41(ks). When k3 € Ay, we have |ks] is about A, and hence x2, | (k3) is
about 1. When k3 € C7, then |ks| is about 2\, and X7, (k) is close to 0 when ¢ is sufficiently large. More
precisely,

1
k)~ 1S5 ke d,
q
and
X 41 (ks)| S )Tqa ks € Cy,
q

®Here and in what follows, we write O(Y’) for some quantity X = O(Y) such that | X| < C'Y for some C > 0.
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with constants depending on the Lipschitz constant of x2. Therefore, from (5.14) we get

A;mwh®%gmwm@=—m0+oofwn 3 (@ (k1) - ko) (@ (k) - D(ks))

k1€Bg,k2€Aq,k3€C]

k1+ko+kz=0
1+4
+O0(pg ?).
(5.15)
It remains to estimate the summation in (5.15). Notice that for indexes in the allowed range
i\ 1
W(ky) ko = —1(1+0! and  @(ky) - W(ks) = ——— (1 4+ O\ pg)).
(k) ko = 1oty (14 OO ) (ka)+ D(ka) = gy (1400 )
Therefore, we obtain
R R R iAg(14+ O\ ug))?
> (W(k1) - k) (ko) - W(ks)) = qA = é £ > 1
k1€Bg,ka€Agks€C) ([4ql[ BqllCql)? k1€Bg,k2€Aq,k3€Cy (5.16)
k14+ko+k3=0 ki1+ko+k3=0

= iXg (1 OO 11))* | A # | B[ *1Cy| 2
Note that |A,|2 [By|2|Cy|2 = (2uq) (4p1q) "% + O(,uq%_l). Then combining (5.12), (5.15) and (5.16) we
obtain

/Ed div(wg ® wq)<q - (wg)<q = 2(1 + O()‘q_lﬂq))3(1 + O(chl))‘qﬂﬁ + O((Nq)l—i_%)- (5.17)

18
Multiplying by Aq "2 and taking the limit as ¢ — oo, we obtain (5.3). O

5.2. Anomalous dissipation without anomalous work. With Lemma 5.1 in hand, we can use a simple gluing
argument to prove Theorem 1.4. The key is to design the life span of each frequency according to the size of the
flux term @, so that the final anomalous work P =0.

First we apply Lemma 5.1 with a fixed 8 such that 2 < 3 < 2 + ¢/4 to obtain w,,. The choice of 3 is dictated
by the intermittency dimension d — 2 for the energy balance (see Section 2 in [CL20a] for a discussion). Note
that, in particular, these functions satisfy the LP scaling estimates listed in Lemma 5.1.

Let

A, =2 div(wy, @ wp)<n - (W) <p dz. (5.18)
Td
Then there exists a sufficiently large N € N such that (5.18) is positive and strictly increasing when n > N.
_1_8
Taking T’ = %)\nl 2 we aim to construct a solution (u, f) on (0, 7).
Next, we construct time cutoffs x,, for n > N as follows. We start with time scales 7,, defined by

_1_B8 _1_B8
k>n
Note that
li_>m A1 =1, (5.20)

due to Lemma 5.1. Moreover, there exists a small constant ¢y > 0 depending on € such that
Tn > Tnt+1 + CoT:L/_,il foralln > N. (5.21)

Then we introduce smooth cutoffs h,, € C°°(R) as follows. First, we fix h € C°°(RR) such that h(¢) = 0 when
t < —1andh(t) =1 when ¢ > 0 and both 2 and (1 — h)2 are smooth. Next we define

imu)zh(tfi>.

CoTn

Clearly h,, € C*°(R) and satisfies
/4

t< —1—cort .
hn(t) = {(1) t > -1 o | S T, (5.22)

where the constant in the derivative bound depends only on the profile /& and the constant ¢y > 0.
With all these in hand, for n > N we define x,, by

30 () = [ (= T)/7) = hga (¢ = T)/70)] . (5:23)
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Thanks to a simple telescoping and the fact that 7v = 27 we have Y, .y x2 = 1 fort € (0,7). By the
definition, we see that B

l €
[ho((t —T) /)], ST T - cori
Xn(t) = [1 _hn+1((t_T)/Tn+1)]§7 tZT_Tn
1, T—TngtST—Tn+1—COT}lI§/4

where we have used (5.21) for the third line.
Now we claim that x,, € C°(R). Indeed, if t > T —1pp1 01t < T — 7, — corylﬁs/‘l, then x, = 0. The
smoothness of y,, follows from that of 2/ and (1 — h)'/? since h,, is defined through a translation and rescaling

of h. Note that to estimate the derivative of y,, we only need to count the leading order rescaling factors from h
to xn, and hence by (5.22) and (5.23)

Nl S (5.24)
Now we are in the position to construct the force and solution of the NSE. Let
U= Z XnWn and f:= dwu — Au+ div(u ® u). (5.25)

n>N

In the remainder of this section, we are going to show that the solution given by (5.25) satisfies the statement
of Theorem 1.4.

Lemma 5.3. The constructed solution (5.25) satisfies the following: (u, f) € N(Qr),
te€0,T), and

lu(®)|l2 = 1 for all

lim (u(t),) =0 forall¢ € L?. (5.26)

t—T—

Proof. Tt is easy to see u and f are smooth on (0,T). Due to disjoint Fourier supports of w,, and Plancherel’s
formula we get

lu@®I3 =D Ixawall3 = Y xa() =1 vte[0,T). (527)
n>N n>N
Applying Plancherel’s formula again we have

T T
/ IV dt= 3 / n Va3 dt S 37 22 / 1S S AZACL
0 0 s

n>N n>N UPP Xn n>N

Recall from (5.18) and Lemma 5.1 that A,, ~ P+ Since B > 2, this implies that w € L2H"'. In addition,
lin% ||lu(s)||3 exists (and are equal to 1) for t = 0 and 7~ due to (5.27). So by Lemma 2.4, (u, f) € N(Q7).
S—r

Finally, (5.26) follows from the LP scaling of w,, for p < 2. (]

This lemma establishes that the energy has a jump as ¢ — T'~. Now we are going to show that the anomalous
work vanishes.

Lemma 5.4. The anomalous work of f is zero:

@ = limsup |®,(T, k)| = 0.

q— o0

Proof. Thanks to the previous lemma, we can use the energy jump formula (3.7) to compute

. 1 .1
lim [T1,(T’ h) + @¢(T, h)] = Sllw(T)]l3 = Tim S flu(®)]3

q—00 T—
1
=3
So in order to show that the anomalous work is zero it suffices to prove that

1
lim T, (T, h) = ——.
Jim (T, h) 5

By definition (5.23), the time cutoffs have disjoint support in the sense that x,, N x, = @ if [m —n| > 1. Then
thanks to the bound on the Fourier support of w,, (5.1), for each ¢ there is n such that

supp Fu(t) C {k A1 < k| < )\n+1}.
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So if ¢ > n, then u<4(t) = u(t), and there is no flux thanks to the incompressibility. In addition, if ¢ < n — 1,
then u<4(t) = 0 and the flux is zero as well. Hence,

div(u ® u)<q - (u)<q dz = Xg(t)/ div(wy @ wy)<q - (Wq)<q dx + Igp, (5.28)
Td Td

where the error term is defined by

IErr(t):/Ed diV( Z 1wy ® Z Xlwl)<q'< Z szl)< dx

q—1<i1<q+1 q—1<i<qg+1 - q—1<I<q+1 =4
X0 [ divtuy © )y - (w))<, da
T

By (5.3), w; only has nonzero flux through shell \;. So when the index [ is equal to ¢ — 1 or ¢ + 1 in all three
sums in the error term, the integral is zero. Hence, using the estimate (5.2) in Lemma 5.1, we have the following
estimate for Ig;:

[T (®)] S A (xam1(8) + X1 (0) xa0): (529
Now integrating (5.28) in time and using the definition of A, (5.18) we obtain
T A (T T
II,(T,h) = 7/ / div(u ® u)<q - u<q dr dt = 77‘1 xﬁ(t) dt + / I (t) dt. (5.30)
T—h JTd T—h T—h

Recall that our goal is to prove that II,(T', h) — —%. To this end, due to (5.30), it suffices to show

T T
A, / Xodt —1 and / Tge(t) dt — 0.
T—h T—h

First notice that
lm 77 {t: xe(t) =1} =1,

q—o0 q

. 3 _
qlgroloAqu_l Xy dt =1
due to (5.20). In addition, from (5.22) and (5.23) it follows that
[{t:0 < xq(t) < 1}| <27} %,

and hence

so for ¢ large enough,

T
Aq/ Xg dt = Aq/
T—h X

as the second term converges to zero thanks to (5.20).
By (5.29), a similar argument shows that

/ ' Ten(t) dt

T—h

ngt—l—Aq/ ngt—>1, as g — oo,
0<xq<1

=1

B4 541 c
§A5+/ 1dt§)\q2+7';+/4—>0 as ¢ — oo.
Supp X ¢Msupp Xq—1

At last, we verify the functional classes for v and f, concluding the proof of Theorem 1.4.

1_
Lemma 5.5. The solution u is almost Onsager critical: u € LfBg”o:“ N LY L2 for any p, q with % + % =1+4¢
and the force f € L7 *H~L.

Proof. Thanks to (5.2) in Lemma 5.1 and (5.23), we can compute

1_
J 1Ol st < Y Iswppallwnl® . S 3 (7 = musa) NN
3,

1
1
oo n>N 3,00 n>N

olw

]3
. —B/o— L .
Since 7, ~ A Lo, /2 1, the summation is indeed finite.

To verify the membership in L L9 we use (5.2) once again to obtain

8

B_q1_Bp,.
JACCIRTED S{ETS AT Pt ay 531)

Recall that 2 < 8 < 2+¢/4. Noticing that the powers obey g —-1- %5 <(i- %)5 < 0, we conclude u € LY L4
forany%—k% =1l+e.
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To estimate the force f, we just compute each part separately:
/||f 3 28dt</(||8tu||2 2 (IVull3 + lu e ul37) dt. (5.32)

where we have used the fact |[V|~! div is L? — L? bounded. Since u € L2H?", the second term is under control.
For the nonlinear part, we again obtain

/||u®u||2 25dt</||u||4 4Edt</Z|suppx,n||\wnuj—4fdt, (5.33)

where we have used the fact that supp, x, have only finite overlaps. Using the L? scaling in Lemma 5.1, the
desired bound follows from (5.33), the fact that 7,, ~ A\, Ple-1 ,and 8 < 2 4 ¢/4:

B(4—4e)

/Hu@uHQ 2€dt<ZTn)\n T < oo (5.34)

At last, we check the time derivative. From the Fourier support of w,, and the temporal support of ,, it follows

that
/ o S 3 7% / G272 dt
S YN [P
n

Using bound (5.24), 7, ~ A;l due to (5.19), and A,, ~ )\2/2—&-1 from Lemma 5.1, we obtain

_1 e 1+4¢ 14e 8241
‘Xn‘ ~ Tn+1 /4 NAn+1/4 ~ /\£L+1/4)( /2 ),

and conclude that
/||3tuH2 Zdt < g P 25)\(1 135/2 FRED) < E A% < oo
H-1 ~ n n-+ ~ n .

6. VIOLATING ENERGY BALANCE WITH CONTINUOUS ENERGY

This section is devoted to the proof of Theorem 1.6. Comparing with the example in Section 5, here the energy
does not completely transfer to the next shell. Instead, the force also injects energy into larger and larger shells
when t — T'~. Towards this end, we first construct intermittent vector fields with large flux, similar to Lemma
5.1, and then apply a time-dependent wavenumber cutoff to obtain the final solution. These vector fields can be
viewed as intermittent versions of the example in [Eyi94].

6.1. Positive energy flux through each sphere.

Lemma 6.1. For any integer d > 3, there exist constants C > 0 and N € N such that for any 0 < < d, there
exists a divergence free vector fields w € L*(T?) with the following properties.
(1) Forany q € N, the bound holds
lwgllp Sp /\(1/2 Vp)ﬁ (6.1)
foralll < p < oo;

(2) For any q > N, the energy flux through wavenumber )\, satisfies

/ div(w @ w)<g - (W)<qdx > C)\z/?“. (6.2)
Td
+65
Proof of Lemma 6.1. First, we introduce a small parameter € := W Let pg = Ag ¢ . Note that 1 < p, < )
for the given range of 5 and €. Let
51:(170703"'70) 52:(0717070) 53:(1a1,07"'70) 54:(1771703"'70) (6.3)

and
e1 =(0,0,—-1,0,...,0) ey =1(1,0,1,0,...,0) e3=(0,0,1,0,...,0) es=(1,1,-1,0,...,0). (6.4)

Note that {; - ¢; = 0, which is needed for the divergence free condition, as e¢; will be the direction of the Fourier
coefficient w(k) for k ~ &;.
Define the set

Qg = {N& + K1k € [—pg pgl? NZY, (6.5)
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and Q; . = —Qg.;. Note that Q,; C Z* and for all k; € Q,, ;
ki =&l = O(hq)- (6.6)

For g € Z, 1 < j < 4, define vector-valued functions a, ; : Z¢ — C% by

—i 2 (T3 Je; ifk € Ry
>|\9ng|2
a0 (k) = iy (1a-58k)e; ifkeqy, ©6.7)
0 otherwise,

where |2, ;| denote the counting measure of €2, ;. Since for each j, the set €, ; has the same size, we will simply
write |2] in what follows. Also note that due to the Leray projection Id — ’r,?f, each ag ; satisfies aq (k) - k = 0.

With coefficients a4 ; in hand, we define the vector field w on the Fourier side as

wi=Y Y > ag (k)T =Y @(k)e (6.8)

q>11<j<4 kezd K€L

where the Fourier coefficient w (k) satisfies

From (6.7) it is clear that w is real-valued and divergence-free. The LP scaling of w, for ¢ € N is obtained along
the same lines as in the proof of Lemma 5.1, and thus omitted. In particular, w € L? thanks to the decay factor
A < in (6.7).

Finally, let us compute the energy flux. Given that there are no interactions between different shells, on the
Fourier side we have

/Td diviw @w)<q - (w)<g =i Y (@(k1) - ka) (@(ko) - D(ks) X511 (k3))

k1,ko,kseZ?
k1+ko+ks=0

=i > (@(k1) - ko) (@(k2) - D(k3) X241 (k3))

ki1,k2,k3€U;(Qq,;URY ;)
k1+k2+k3=0

We claim that this sum is equal to
i3 (@) ko) (@(ka) - Bks)xG (Ks))
k1+ko+k3=0

=i > (D&  Eru ) (BNEk,) - BNgEry X241 (Agry)) + O1g|Q2),
k1+ka+k3=0

(6.9)

where we define §;, = &; if k € Qq; and £, = —&; if k € Q ;, s0 &, is in the center of the cube that k belongs
to, and is equal to the corresponding &; in (6.3). Indeed, since the number of nontrivial interactions is bounded by
|2, |, the claim follows from (6.6), (6.7), and the continuity of the dot product and Leray projection.

Following the argument in [Eyi94, p.13], the only nonzero terms in (6.9) are as follows. For brevity of the
notation, we simply write 2; = €, ; and Q} = Qy ..

For &5 — &1 — & = 0, the first group

2i > Ag(BN&2) - &) (D(AgE1) - B(—Ag€3)) (X1 (Ngs) — X241 (M)

k1€EQo, k2€Q, kgEQ;

3 3a (6.10)
=2 > ATEIQTE((1/261) — XP(V2/201)) 2 3 Aty *

k1€Qs, ko €Q, kzeQ k1€Qs, ko €Q1, k3 €

For &4 — & + & = 0, the second group
2 Z Aq ({J(Aqu) : 54) (@O‘q@l) ’ '@(*Aqfl))(X2+1()‘q§1) - X3+1()‘q§4))

kIEQQ,k2€Q4,k3€QI (6 11)
3d :

— Y AT R020) - P(V22e) 2 Y A

k1€Q2, k2 €Q4, k3€Q] k1€Q2, k2 €Q4, k3 €Q]



20 ALEXEY CHESKIDOV AND XIAOYUTAO LUO

and finally for 2&; — &3 — &4 = 0 and 2&5 — &3 + &4 = 0, the third group

2 Z Agr1 (W(=Agéa) - €1) (B(Ag161) - B(—=g€3)) (X1 (Ag€t) — Xos1(Ag€a))
k1€Q}, ka€Q1, k3 €Q3
=23 AT TR (VR 20) — X (en) 612

k1€, k2€Q1, k3 €Q3
_3d

E 2
Z >\qu )

k1€Q}, ka€Q1, k3 €82

and respectively the forth group

2i > Agi1 (0(Ag€a) - &) (B(Ag+1&2) - D(=Ae€3)) (Xa11(Ma€3) = Xa11(Ng162))
k1€Q4, ko €Qo, k3€Q}
— > AN 19 21|72 (0 (V2/201) = xP(en) (6.13)

k1€EQ4, k2 €Q2, ]i)3€Q§
_ 3d

2 Z Aghg *

k1€Q4q, ka€Q2, k3€Q]

Now it remains to count the number of interactions in (6.10)—(6.13). A very rough lower bound suffices due to
the positivity of the summands. By considering two cubes with half the length, there are at least (3 [1¢])?x (% |1])?
many interactions. Therefore, we have

/ div(w ® w)<q - (w)<qdx > CAgug + O(/lq|Q|%)v (6.14)
Td

where C'is an absolute constant. The conclusion follows from the fact that lim,_, o g A 7 L —0. O

6.2. Anomalous dissipation with continuous energy. We proceed to construct the solution using the vector
field w in Lemma 6.1. Here we use a different type of argument from the previous section. We simply use a
time-dependent wavenumber to apply frequency cutoff.

Let y € C(RY) be the cutoff function in defining the Littlewood-Paley decomposition. We introduce a
time-dependent wavenumber by

At) = (T —t)"=, 6.15)

where € > 0 can be arbitrary. Let P, be the projection into frequencies < A(t) by a multiplier with symbol
x(EA(t)~1). Applying Lemma 6.1 with 2 < 3 < 2 + £, we define the solution and the force by

u:=Pw and f:=0u— Au+div(u® u). (6.16)
We first show that the solution u verifies all properties stated in Theorem 1.6.
Lemma 6.2. For any € > 0, the solution given by (6.16) is in the class N (Qr) and u € C([0,T]; L?).

Proof. Let us show (u, f) € N(Qr). Smoothness of » and f on (0,7T) follows directly from the compactness
of Fourier support. Thus (u, f) solves the NSE in classical sense. In view of Lemma 2.4, to prove that (u, f) €
L(0,T) it suffices to show

u€ C([0,T]; L*) N L*(0,T; HY).

For any 0 < s <t < T, by Plancherel’s formula we have
lut) —wI3S Y w3, (6.17)
S—l—gSQqSt—l—s

which together with w € L? implies |Ju(t) — u(s)|2 — 0as s — t. So we getu € C([0,T7]; L?). To show the
finite dissipation, using Plancherel’s formula again gives

T T T
/ |\vu\\§dt§/ A(t)th:/ (T —t)"'*edt < 0. (6.18)
0 0 0

Therefore, by Lemma 2.4 it follows that (u, f) € £(0,T).
O

Lemma 6.3. The anomalous dissipation of u is nonzero:

II = lim II,(T,h) > 0.

q—ro0
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Proof. Thank to Lemma 3.2 we may compute II with h = % Since by definition u = P,w, we have

T T
[ avtusng g = [0 S (@) k) @) 8k (b)) el b ),
T/2 JTd T/2 b 4kot+ks=0

where x(k1, k2, k3) = x(k1/A)x(ke/A)x(ks/A). From the proof of Lemma 6.1, we see that k; ~ A, for all
nonzero interactions. Using the definition of A(Z) (6.15) and the fact that 3 < 2 4 §, we obtain the bound

T _lte 4 _B_4
/ Xt(k1, ko k3)dt ~Xg 75 T > Ag 2 . (6.19)
T/2

On the other hand, by Lemma 6.1,

iy (@) ko) (@(ka) - D(ks)xgsr (k3)) = | div(w @ w)<y - (w)<q
k1 +ka+hs=0 T

O\ +1

AV
Rl

Then by Fubini’s theorem we have

B_1q 541

T
Hq(T7T/2) :/ / div(u@u)<q-u<q Z)\;2 )\qz =1.
T/2 JTd N N

O

The rest of this section is devoted to proving the stated regularity of w and f. We start with estimating « in

1
spaces near L3 B3 _ and near LY L4 for % + % =1

1
Lemma 6.4. The solution w is almost Onsager critical: u € LfB?i Oog and v € LYLY for any % + % =1+e

1_
3—¢€
3,00

Proof. First, recall that A € L? due to (6.15). By definition of the Besov space B and (6.1), we have

T T
ful®, dt < | Az (6.20)
0 B; . T Jo
which is indeed finite thanks to 8 < 2 + % and hence g + 1 — 3¢ < 2. Similarly, we also obtain

T T -
/ Hu||gdt§/ APG=D gt (6.21)
0 0

Using % + % = 1+ ¢ and again 8 < 2 + {, it is not hard to show 3(§ — 2) < 2, which together with A € L?

implies
T
/ [|ul|f dt < oco.
0

Next, we estimate the forcing f. To do so let us introduce a general lemma for the projection P;.

Lemma 6.5. Suppose g(t) is a smooth function on [0,T) such that g > 1. Let Py be the frequency localized

operator with symbol X(ﬁ)' For any u € L*(T?) and s € R, there holds

/
tL gl Hs s 77191 .
JocEyu) - 5. 1ol 622)
where Pyu(t) denotes the evaluation of Pyu at time t.

Proof. By chain rule, on Fourier side we have

o —1¢) . !
P — _Vx(g 26) £’
9

Due to the choice of cutoff function , we see that the multiplier 8,5]/3; satisfies
Vx(g~'¢) - &9’

supp ——— 5 C {¢: 39 <Iél < g},
and consequently
‘Vx(glé)fg’ <9l
92 ~ gl
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The result follows from Plancherel’s formula.

Lemma 6.6. The forcing f defined in (6.16) satisfies
feri g

Proof. As in Theorem 1.4, we just compute each part of the force separately
T T
= (= A e PR

By the same argument as in the proof of Theorem 1.4, we have [ (||Vu||§_28 +lu® u||§_28) dt < oo. Thus we
only focus on the time derivative part. Applying Lemma 6.5 with g(¢) = A(¢) and using (6.15), we immediately
get

T T T
/ Hatuni;,?fdtg/ (T—t)<—%—%><2—26>dt5/ (T — 1)~ dt < oo,
0 0 0
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