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Susan Friedlander received her undergraduate de-
gree in Mathematics from University College London,
in 1967. Having been awarded one of the prestigious
Kennedy Scholarships to study at Massachusetts In-
stitute of Technology, Friedlander moved to the US,
and earned her MS degree at MIT in 1970. She subse-
quently started her PhD studies at Princeton Univer-
sity, completing her doctorate thesis under the title
“Spin Down in a Rotating Stratified Fluid” in 1972
with the supervision of the fluid dynamicist Louis
Norberg Howard. After being a visiting member at
New York University’s Courant Institute of Mathe-
matical Sciences, Friedlander moved to the University
of Illinois at Chicago, where she worked until 2008.
Since then, Friedlander is a Professor and the Direc-
tor of Center for Applied Mathematical Sciences at
University of Southern California.

Throughout her career, Friedlander has focused on
the mathematical analysis of partial differential equa-
tions (PDEs) arising in fluid dynamics. While the
fundamental models are several centuries old, to date
fluid dynamics remains the source of some of the most
fascinating and challenging problems at the intersec-
tion of mathematics and physics. Without a doubt,
the phenomenon of “turbulence” is chief among them.
A unifying theme in Friedlander’s research is an em-
phasis on problems of clear physical interest and im-
portance.

Friedlander’s impact on the field of mathematical
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Figure 1: Friedlander lecturing at the Fields Institute
in 2008.

fluid dynamics, and on the mathematical community
as a whole, extends far beyond her research contri-
butions. Prior to ’89, she has opened bridges to the
fluids communities behind the iron curtain. Since the
early 90s she has served in several leadership positions
at the American Mathematical Society, including as
Associate Secretary. For the past 15 years Friedlan-
der is the Editor in Chief of the Bulletin of the AMS,
and more recently Friedlander was one of the key fig-
ures in the founding of the Mathematical Council of
the Americas.

Susan is an exceptional mentor. Since early stages
of our careers, the authors of this paper were for-
tunate enough to collaborate with Susan, benefiting
from her guidance, academic generosity, and perspec-
tive on mathematics as a whole. Susan has helped



shape both our careers and our views of mathemat-
ics, and we are truly thankful for her inspiration,
thoughtful guidance and limitless positive energy.

In this review celebrating Friedlander’s contribu-
tions we will focus on her work on hydrodynamic
instability as it relates to the transition from lami-
nar to turbulent flow, on dyadic models in fluid dy-
namics and Onsager’s conjecture analyzing the trans-
fer of energy in turbulent flows, and on magneto-
hydrodynamics as it relates to large scale motions
in Earth’s fluid core.

1 Equations of fluid dynamics

The fundamental partial differential equations that
describe the macroscopic properties of the motion of
an incompressible, inviscid fluid with constant den-
sity are the Euler equations:

ou
E-l—(wV)u—i—Vp—O,

V-u=0,

(1)
(2)

with the initial condition

u(x,0) = up(x), (3)
for the unknown velocity vector field u = u(z,t) € R?
and the pressure p = p(x,t) € R, where z € R?
and ¢t € [0,00) and d = 2,3. Despite the fact that
Leonhard Euler introduced them in 1757, many ba-
sic questions concerning Euler equations in d = 3 are
still unresolved. For example, it is an outstanding
problem to find out if solutions of the 3D Euler equa-
tions form singularities in finite time, from smooth
initial data.

The equations modeling the macroscopic proper-
ties of viscous, incompressible, homogeneous fluids
were formulated by Claude-Louis Navier (1822) and
Sir George Stokes (1845). The Navier-Stokes equa-
tions that they derived are written as:

%—I—(u-V)u—!—Vp:VAu,

V-u=0,

(4)
(5)

with the initial condition

u(z,0) = ugp(z), (6)

and appropriate boundary conditions. As with the
FEuler equations the theory of the Navier-Stokes equa-
tions in three dimensions is far from being complete.
One of the major open problems are global existence
and uniqueness of smooth solutions to the Navier-
Stokes equations in 3D. This is one of Millennium
Problems of the Clay Mathematics Institute.

Beyond the Navier-Stokes and Euler equations
many other models animate modern research in
mathematical fluid dynamics. Of particular in-
terest in Friedlander’s work are the magneto-
hydrodynamics equations (cf. (34)—(37) below) and
other equations arising in geophysics.

2 Instabilities

The late 70s and early 80s were marked by the dis-
covery of a new type of instability in incompressible
fluids — the so called shortwave or broad-band insta-
bility. Such instabilities occur when a fluid rushes
through a pipe leading to the formation of ellipti-
cal vortices near the walls. Although such vortices
themselves are two dimensional, and in fact stable
under two dimensional perturbations, they are man-
ifestly unstable when perturbed in the direction of
their axes of rotation. Moreover, the frequency x of
unstable modes corresponding to the same exponen-
tial rate A,

Ly~ X, v=e "Tp(x),

corresponds to a range of values k > kg instead of
being uniquely determined by a dispersive relation
k = k(A). Hence, the term “broad-band”. Grounded
in numerous physical works by Orszag, Patera, Bayly,
Pierrehumbert, Craik, Criminale, and others, these
novel instabilities lacked a rigorous foundation pre-
senting a unique challenge for the mathematical com-
munity in the early 1980’s.

2.1 The fast dynamo problem

A similar type of instability appears in the kinematic
dynamo problem. This problem seeks to describe



persistent growth of a magnetic field H(z,t) trans-
ported by a given velocity field of electrically con-
ducting fluid u(z, t) in the limit of vanishing magnetic
resistivity. Specifically, for H satisfying the system

%:—u-VH+H~Vu+eAH (7)
V-H=0, (8)

the dynamo is called fast if one has

limsupw. > 0,
e—0

9)

where w, is the exponential type of the Cy-semigroup
G} generated by (7)-(8). Similar to the fluid problem
such instabilities are expected to be of highly oscil-
latory nature as the corresponding spectral problem
L.H. = M\.H. would require an increasing range of
frequencies as € — 0.

In groundbreaking works [FV91, FV92, VF93],
which marked the beginning of a productive collab-
oration with Misha Vishik, Friedlander developed a
novel approach to the fast dynamo problem, which
later proved to be a universal tool to tackle a range
of instability questions in fluids, geophysics, and
magneto-hydrodynamics. The approach is based on
studying shortwave asymptotic expansions of the cor-
responding evolution semigroup or the associated
Green’s function. Here the general methodology is to
reduce the evolution of an infinite dimensional sys-
tem to the leading order “core” dynamics. Remark-
ably in many cases the reduced dynamics is governed
by a finite dimensional system of ODEs.

In the context of the fast dynamo problem (7)—(9),
the Green function G(x,y,t) of the evolution opera-
tor Gj can be represented in Lagrangian coordinates

atﬁpt(x) = U(Lﬂt<l’),ﬁ), G(th(x)a:%t) = F(J?,y,t)
as the Fourier integral operator

1 i(z—y)-&

27_[_\/5 R € vE b($7 5’ t? \/g) df’

where the symbol b has an asymptotic expansion

T(z,y,t) =

b € tvE) = 3 bl £ (10)
n=0

Here the principal symbol by which plays the deter-
mining role in exponential growth of the dynamics is
obtained by

dbg

P Ou(ept, )b,

the tangent push-forward transport map.

(11)

The technical analysis of the asymptotic series (10)
is rather involved. Ultimately it connects the limiting
exponential rate of G§ as € — 0 over the energy space
L? to that of the inviscid problem, and hence to the
ODE (11). At the same time, the asymptotic behav-
ior of (11) is well-known. For steady states it is sim-
ply determined by the largest Lyapunov-Oseledets
exponent of the underlying velocity field ug:

1
wo = lim - logsup 01 ()],

(or otherwise the exponent of the corresponding co-
cycle family), which is positive if and only if the flow-
map ¢(z) exhibits exponential stretching of its tra-
jectories. The main result of [FV91] reads as follows.

Theorem 2.1. If the system (7)-(8) has a fast dy-
namo (9) then necessarily wy > 0, and in fact

lim sup we < wy.
e—0

Thus, a necessary condition for a fast dynamo is the
presence of an instability in the underlying conduct-
ing fluid itself.

2.2 The geometric optics method

As we already described above the asymptotic meth-
ods developed by Friedlander and Vishik in attacking
the fast dynamo problem proved to be applicable to a
wide range of problems arising in fluid dynamics. In-
deed, the works [VF93,FV92] laid the foundation to
what is now called the geometric optics approach to
shortwave instabilities, a particular case of which is
the elliptic instability we mentioned in the beginning
of this section.

To describe the method in more detail let us con-
sider the example of the classical incompressible Eu-



ler system linearized around a given steady state ug:

%:—u(yV?}—’U'VUO—va (12)
V.u=0. (13)

where v is the linear perturbation of ug and p is the
perturbed pressure, which plays the role of projecting
the right side of (12) onto the space of divergent-
free fields. We consider (12) with periodic boundary
conditions, x € T, or the whole space x € R", n >
2. The method seeks to find effective dynamics of
a localized oscillatory wave written in the form of a
geometric optics ansatz

v(z,t) = b(x, ) @D/E L O(e). (14)

If initially b(0) = by is localized near position xq, and
the frequency of initial oscillation is &, i.e. S(0) =
Sy = & - x, we obtain a new wave at time ¢ ap-
proximately localized near the Lagrangian particle
z(t) = pi(zp). Plugging this ansatz into the Euler
system (12) one reads off the leading order evolution
of the amplitude b and phase S in the Lagrangian
coordinates of the underlying field ug:
ds db

§
— =0, —=-0 b+ 2,0 b) =,
dt dt uo )b +2(¢, Juo () >I£\2
where £ = VS is the frequency covector. To write
the system in closed form we replace the transport of
S by the transport of the frequency vector, and the

resulting system reads

d

d—j uo(x),

d

d—f = -0 ug(z)¢, (15)
= Ol -+ 26 Duo (w1

supplemented by initial conditions z(0) = zg, £(0) =
&0, b(0) = bp, and the incompressibility constraint
bg - & = 0. This is a so-called bicharacteristic-
amplitude system (BAS for short). From a dynamical
viewpoint the first two equations represent a bichar-
acteristic flow on the tangent bundle of the fluid do-
main Q = T*T", denoted x:(z, &), and the last am-
plitude equation represents evolution of a vector b

on the fibre bundle over Q with fibers given by or-
thogonal planes 7~ *(z,&) = {b : b- & = 0}. Thus,
b(xo, &0, bo,t) = Bi(x, £)bg is a cocycle family of maps
over the flow x.

The asymptotic expansion of the Euler semigroup
G, defined by (12)-(13), is dominated by the B-
cocycle playing the role of the principle symbol

G: =P2; Op[B;] + K,

where P is the Leray projection onto the divergence-
free fields, ®v = v o p_y,

Op[B,Ju(x) = / EDEB, (y, O)o(y) dy dé

is the leading order pseudo-differential operator, and
K; is a similar operator of order —1. For the high
frequency waves the frequency localization of pseudo-
differential operator Op[B;] leads precisely to the
ansatz (14) which becomes justified a posteriori.

The shortwave instabilities can now be studied
by looking into the Lyapunov spectrum of the BAS
whose maximal exponent is given by

1
p= lim - log sup
t—o0

20,80,b0-£0=0,|bo|=1

| Bt (0, &0)bo-

The main result of [VF93] establishes a direct rela-
tionship between the growth rate of the BAS and
the growth rate of the Euler dynamics in the energy
space.

Theorem 2.2. Let wy denote the exponential rate of
the semigroup Gy in L?. Then

wo 2 W

The high frequency asymptotic relationship be-
tween G; and B; makes it possible to relate short-
wave instabilities to the essential spectrum of the
semigroup. The BAS was found to be fully descrip-
tive of the essential spectrum in later works. For
particular flows, however, Theorem 2.2 proved to be
extremely versatile in many different situations. For
example, for the aforementioned elliptic vortices, lo-
cally given by ug = (a?y, —b%x,0), the growth of BAS
system becomes a Floquet problem over time peri-
odic elliptic trajectories. This case was also studied



in works of Lifschitz and Hameiri around the same
time. The amplitudes b become unstable in direc-
tions pointing off of the zy-plain, which is consistent
with the empirical observations of Orszag, Patera,
and others. A systematic study of BAS and various
dynamic scenarios leading to instabilities was per-
formed in [FV92]. First, in 2D, the quantity |b||¢] is
conserved. Hence, u is related precisely to the expo-
nential stretching of the underlying field uy. Here the
cotangent cocycle associated with the &-equation has
the same Lyapunov spectrum as that of the tangent
cocycle (11). Thus, u = wp in this case. In particu-
lar, all parallel shear flows are shortwave stable. In
3D, the analogue of this law is conservation of the
volume

Vol(t/,b",€) = (b x b) - ¢

for any pair of amplitudes b’,b” over the same fre-
quency &. Hence, in 3D we obtain

1
W= swo.

2

In any case, exponential stretching makes the flow
spectrally unstable. On the other hand, some inte-
grable flows ug where uy x (V X up) = VB, on non-
degenerate level tori of the Bernoulli function B are
found to be stable, namely u = 0. Geometric in-
stability criteria for vortex rings without swirl were
provided as well.

In several subsequent works, see [Fri01, FS05] and
references therein, Friedlander expanded the geomet-
ric optics method to a range of models appearing the
geophysics and magnetohydrodynamics. In all these
cases the underlying bicharacteristic flow remains the
same but the amplitude equation changes according
to a simple recipe — it captures the principal symbol
of the linearization:

db

a = ao(x,ﬁ)b, L= _UO'V+Op[a’O]+Op[a1]+'”
Thus, for the Surface Quasi-Geostrophic equation de-
scribing evolution of a potential temperature on hor-

izontal surface the b-equation reads

db _ & Vbo(a)

= b,
dt [3

where 6y is the underlying steady temperature. In
this case the essential spectrum is neutral ;= 0. For
density stratified fluids we have

% = <2§|<§|>2£ - id) ou(z)b+r (id—ggf> Vo(z),
d
diz; =—b-Vpo().

Here & is the graviational potential. The kinematic
dynamo falls under the same scheme and yields (11).
Camassa-Holm (Euler-«) gives

db (5 ®¢ £0¢
e\ [¢? €12
Inviscid systems of non-relativistic superconductiv-
ity:

% = (2?226 - id) ou(x)b+ <id—§|g®f) B xb.
Numerous other applications of the theory were found

to non-Newtonian fluids also. The reach of the
method proved to be truly astonishing.

- id) ou' (x)b + ou(z)b.

2.3 From linear to nonlinear instabil-
ity

Justification of the linearization procedure for invis-
cid fluids remains a very challenging problem to this
day. Providing an explicit bound on the ”"bad” es-
sential part of the spectrum given by exponent u is a
helpful tool to prove a range to sufficient conditions
for the analogue of the Lyapunov theory — going from
linear to non-linear instability. In several subsequent
works Friedlander established several pioneering re-
sults in this direction. First, in 2D if there is a point
spectrum (exact eigenvalue) beyond p, i.e.

Lv =X v, Rel>pu,

then the underlying steady flow wug is unstable in
the energy norm, [VF03]. Construction of flows with
oscillatory laminar regions that fulfill this condition
have been provided in Friedlander’s works with Yu-
dovich. In the region outside of the essential spec-
trum, in fact one can also construct unstable invari-
ant manifolds by analogy with finite-dimensional the-
ory and dissipative systems as was done later in works



of Lin and Zeng. Next, for the linearized Navier-
Stokes system

% = 7u0.vv—v~Vuopr+€A”U, (16)

both in 2D and in 3D, those dominant eigenvalues
reappear for small viscosities € — 0 in a strong spec-
tral limit: for any eigenvalue of the linearized Eu-
ler system with ReA > u and e sufficiently small the
Navier-Stokes system gains point spectrum in a vicin-
ity of A with the same multiplicity, and moreover the
Riesz projection P¢ corresponding to those spectral
subspaces near A tends to that of the Euler equa-
tion PY in the uniform operator topology. This re-
sult proves to be particularly interesting in view of
the fact that the nonlinear Navier-Stokes system in-
herits instability in L? (and in fact any LP, for p > 1)
from the linearization, a classical result of Yudovich.
Thus, any steady flow in 3D that has inviscid spec-
trum beyond p becomes non-linearly unstable in the
vanishing viscosity sense.

3 Dyadic models

One way to gain an understanding of certain aspects
of the equations of fluid motion is to introduce toy
models which share properties with the actual equa-
tions, but are simpler to analyze. During last two
decades, the work of Friedlander has shaped stud-
ies of so called dyadic models of the fluid equations,
which simulate the energy cascade through dyadic
frequency shells'. In these models, the nonlinearity
of the Euler equations (u - V)u is simplified so that
only local interactions between neighboring scales are
considered. However, simplifications of the nonlinear
term vary, and as a consequence the models differ.
Some of the first examples of models of this type were
derived by Desnyanskiy and Novikov in the context
of oceanography, and by Gledzer, whose model was

ISpecifically, a jt* dyadic shell refers to a region where the
Fourier frequency € lies in the annular domain 2971 < [€] < 27.
The fluid velocity in the j** dyadic shell is modeled with a
single representative, u;.

subsequently generalized by Ohkitani and Yamada
(and is now known as the GOY model).

The dyadic models that Friedlander explored are
designed to share with the actual equations of fluid
motion the scaling of the nonlinear term in 3D (which
we motivate in the next subsection) and the following
properties:

e A skew-symmetry property of the nonlinear
term,
((u-V)u,u)p2mgs) = 0. (18)
e Conservation of energy for the classical solutions
to the Euler equations,

lu(, T)IZ> = lluoll, (19)

which is a consequence of (18) and divergence
free condition, as can be be seen by pairing in
L? sense the Euler equation (1) with w.

e Decay of energy for classical solutions to the
Navier-Stokes equations (4)-(6),

lu(, D122 = lluolZ — 21//0 (=A)u,u). (20)

Broadly speaking, dyadic models provide a frame-
work for studying specific aspects of turbulence the-
ory, while being mathematically accessible. More-
over, in some instances these models motivated re-
sults on actual equations of fluid motion, as was the
case in e.g. [CCFS08].

3.1 Introducing a dyadic model

Let us now recall a version of a dyadic model from
[CFPO7]. This model was inspired by a wavelets
model introduced in [KP02] as a tool to help guide
a partial regularity result for actual Navier-Stokes
equations with hyper-dissipation. We start by briefly
revisiting the wavelets model.

First, we recall some terminology from [KP02]. A
cube @ in R? is called a dyadic cube if its sidelength is
an integer power of 2, 2!, and the corners of the cube
are on the lattice 2/Z3. Let D denote the set of dyadic
cubes in R3. Let D; denote the subset of dyadic cubes



having sidelength 277. The the parent of @, denoted
by PQ), is introduced as the unique dyadic cube in
Dj(@)—1 which contains . On the other hand, one
defines C*¥(Q), the kth order grandchildren of @ to be
the set of those cubes in Dj ()4 which are contained
in Q.

The modeling starts by replacing a vector valued
function u by a scalar valued one. An orthonormal
family of wavelets is denoted by {wgq}, with wg the
wavelet associated to the spatial dyadic cube Q € D;.
Then u can be represented as:

u(z,t) = ug(tywe(z).
Q

Note that due to spatial localization of wg

3i(Q)

[wellpe ~ 2727 (21)

On the other hand

IVwgllrz ~27. (22)

Having in mind (21) and (22), a cascade down oper-
ator is defined through its ch coefficient as follows:
55(Q)
(Ca(u,v))q =272 upqupq,

with the scaling 2°7(@) that reflects the upper bound
on the nonlinear term, implied by (21) - (22). Simi-
larly, a cascade up operator is defined as the adjoint
of Cy(u,v) via:

(Cu(u,v))q =2

5 (Q)+1)
2 E Q-

Q' eCH(Q)

uQ

Then the cascade operator is introduced as
C(“v U) = Cu(u, U) - Cd(u7 U)'

Having defined Laplacian as A(wg) = 2¥wg, one
introduces the following model equations:
e Dyadic Euler equation:

d
diz + C(u,u) =0.
e Dyadic Navier-Stokes equation:

du
— Au=0.
I + C(u,u) + Au=0

By construction of the cascade operators, we have
(Cu(uyu),uy = (Cq(u,u),u), which implies skew-
symmetry property of the operator C

(C(u,u),u) =0. (23)
A simple consequence of (23) is conservation of en-
ergy for the dyadic Euler equations and decay of en-
ergy for the dyadic Navier-Stokes equations, at least
at the formal level (for sufficiently regular solutions).

The above dyadic models are special cases of the
following infinite system of coupled ordinary differ-
ential equations, which was studied by Friedlander:

%%’ +v2%a; =207 Val ) +29a5a;10 = fj, (24)
for j =0,1,2,..., where a_; = 0, ¢ is a positive pa-
rameter related to intermittency, and %a? represents
the total energy in the frequencies of order 27. The
force f is such that fo > 0 and f; = 0 for all j > 0,
so that the energy is pumped on low modes.

As we have seen above, the model preserves many
features of the fluid equations, while the nonlinear-
ity is simplified by considering only local interac-
tions between scales. Moreover, the choice of the
constant ¢ = 5/2 ensures that the nonlinearity in
the dyadic model obeys the same L2-based estimates
as Euler (see (19)) and Navier-Stokes equations (see
(20)). Thanks to these L?-based estimates and a cer-
tain monotonicity present in the model, a finite-time
blow-up was exhibited for the inviscid dyadic model
[KP05], as well as the viscous dyadic model with some
“small” degrees of dissipation [KP05] or large values
of ¢ [Che08]. For instance, solutions blow up when
¢ > 3, in which case the dyadic model scales as 4+
dimensional Navier-Stokes equations. Such a mono-
tonicity property resembles monotonicity of certain
quantities present in so called “cooperative” systems
(see for example the work of Palais and the work of
Bernoff and Bertozzi where singularities in a modified
Kuramoto-Sivashinsky equation were identified). Fi-
nite time blow-up in the inviscid case was sharpened
by Kiselev and Zlatos. A three dimensional vector
model for the incompressible Euler equations was in-
troduced in [FP04], which is similar in some features



to a discretized approximate model constructed by
Dinaburg and Sinai for the Navier-Stokes equations
in Fourier space. It was shown in [FP04] that for spe-
cial initial data the evolution equations of the diver-
gence free vector model reduced to the scalar dyadic
Euler system and finite time blow-up occurs in this
model for the three dimensional incompressible Eu-
ler equations. This was a brief snapshot of results
for dyadic models around 2005, when Susan Fried-
lander initiated the study of phenomena related to
turbulence at the level of dyadic models.

3.2 Omnsager’s and Kolmogorov’s con-
jectures

Up to now we discussed conservation of energy at
a formal level, i.e. for sufficiently regular solutions
to Euler equations (1). However one might wonder
about the minimal level of regularity of a solution to
the Euler that guarantees conservation of energy. In
fact this seemingly naive question is connected with
the statistical theories of turbulence developed by
Kolmogorov [Kol41] and Onsager [Ons49]. In their
seminal works, it is suggested that an appropriate
mathematical description of 3-dimensional turbulent
flow is given by weak solutions of the Euler equations
which are not regular enough to conserve energy. On-
sager conjectured that for the velocity Holder ex-
ponent h > 1/3 the energy is conserved? and that
this ceases to be true for h < 1/3. This latter phe-
nomenon is now called turbulent or anomalous dissi-
pation. Kolmogorov’s theory predicts that in a fully
developed turbulent flow the energy spectrum E(|k|)
in the inertial range is given by
E([k]) = coe®*|k| /2, (25)
where € is the average of the energy dissipation rate.
While the rigidity part of Onsager’s conjecture
(namely the regime corresponding to the conserva-
tion of energy) has been understood well due to works
of Eyink and Constantin-E-Titi — prior to works on

2A very rough motivation for the appearance of the Hélder
exponent 1/3 is “sharing” of one derivative among three copies
of velocity u in the skew-symmetry relation (18), which has a
crucial role in producing energy equalities (19) and (20).

dyadic models — the flexibility part represented a
challenge for a long period of time. Thanks to ad-
vances in the method of convex integration due to De
Lellis-Székelyhidi, the flexibility part of the Onsager
conjecture for the Euler has been very recently settled
by Isett, and by Buckmaster-De Lellis-Székelyhidi-V.
for dissipative solutions. However, the state of the
puzzle regarding the flexible part of the conjecture
was completely open back in 2007. In that context,
the dyadic model (24) provided a mathematical lab-
oratory for addressing the phenomena predicted by
Onsager and Kolmogorov.

More precisely, in [CFP07, CFP10] Friedlander et
al showed that the inviscid (v = 0) dyadic model pos-
sesses a unique fixed point a, whose energy spectrum
S(k) ~ €%/3578/3 which is just on the borderline of
the Sobolev space H?/®, where the H® Sobolev space
is equipped with the norm:

o0
lalife = 2*7a].
j=0

This showed that all the solutions of the dyadic Eu-
ler model stop satisfying energy equality at some time
(which resolved Onsager’s conjecture in the negative
direction), and the long-time behavior is exactly as
predicted by Kolmogorov’s theory of turbulence, but
with extreme (or what we now call fully intermit-
tent) energy spectrum. In fact, as it was observed
in [CF09], the dyadic model (24) covers the whole
intermittency range d € [0, 3], where the intermit-
tency dimension d is connected to the parameter c as
¢ =1+ 35¢ (see Subsection 3.3). Then

Theorem 3.1 ([CFP07,CFP10]). The following hold
for the dyadic system (24) in the inviscid case v = 0:

1. Every regular solution (defined to be a solution
with bounded H®/6 norm) satisfies the energy
equality.

2. There exists a unique fized point a to (24), which
is a global attractor. The fized point is not in
1
H5/S. In fact, it lies exactly in the space B3
(defined in (31) below), which takes into account
termittency.



8. The energy spectrum of the fized point:

S(k) ~ 62/31€7%,

where ag fo is the energy input rate, that corre-
sponds to the anomalous energy dissipation rate.

4. Every solution blows up in finite time in H°/6

1
and in B?f,:;, for any € > 0.

5. The H® norms of every solution are locally
square integrable in time for s < 5/6, and ev-
ery solution eventually dissipates energy.

We note that the relevance of the Sobolev expo-
nent 5/6 stems from three copies of modeled veloc-
ity “sharing” the scaling of the localized coefficient
25/2 in the skew-symmetry property for the dyadic
nonlinear term (23). The existence of a global at-
tractor for an inviscid system, at first, seems surpris-
ing. However it is exactly consistent with the concept
of anomalous or turbulent dissipation conjectured by
Onsager [Ons49].

The relation between the fixed points of inviscid
and viscous dyadic models is as follows:

Theorem 3.2 ([CF09]). The following hold for the
dyadic system (24) in the viscose case v > 0:

1. The global attractor for the viscous dyadic model
is a fized point a” .

2. The fixed point of the viscous system a” con-
verges in 2 to the fized point of the inviscid sys-
tem a as v — 0. Moreover, the energy dissi-
pation rate converges to the anomalous energy
dissipation rate of the inviscid system, i.e.,

lim e = (f,a) = ¢,
v—0
where

e =vl|a"|lF = (f.a")

is the energy dissipation rate.

3.3 From the dyadic model to the full
equations

One of the main features of the dyadic Navier-Stokes
model, the forward energy cascade, leads to the ques-
tion of whether solutions satisfy the energy equal-
ity. The nonlinear term in the dyadic model is skew-
symmetric by construction, and hence one immedi-
ately obtains

] J J
af = —1II; — Z/Z 2%a? + Z fiai,  (26)
j =0 =0

N
Il
=)

where the flux is defined as
5.
Hj = 22Ja?aj+1,

where we again chose ¢ = 5/6. Passing to the
limit as j — oo, it follows that every solution a €
L3(0,T; H%/%) satisfies the energy equality

S =Y dlto)
1=0 =0

t
“
to

for all 0 < ¢y < t < T. Surprisingly, this result
was not known for the fluid equations at that time,
so Friedlander and collaborators extended it to the
Navier-Stokes equations in [CSF12].

As we have seen in Section 3.2, a simplified dyadic
model (24) mimicked highly nontrivial predictions for
real equations, raising the following questions. First,
can we rigorously justify the derivation of the model?
Second, what is the meaning of the parameter ¢ that
affects the energy spectrum, which ranges from classi-
cal Kolmogorov’s 5/3 to the extreme 8/3 power law?
This started a fruitful series of works on obtaining op-
timal bounds for the energy flux and incorporation a
notion of intermittency in the mathematical studies
of fluid equations.

Consider the Navier-Stokes equations (4) for the
motion of a three-dimensional incompressible viscous

fluid. Define

—v i 2242 + i fiai| ds, (27)
i=0

1=0

ugy; = ux FH(p(-277)),



where (&) is a smooth nonnegative function sup-
ported in the ball of radius one centered at the origin
and such that () = 1 for £ < 1/2, and F is the
Fourier transform. The energy flux due to nonlinear
interactions through the sphere of radius \; = 27 is
defined as (see [CCFS08])

1I;

—/ (u-V)u- (ugy;)<a, do.

R3

Using the test function (u<x, )<, in the weak formu-
lation of the Navier-Stokes equations we obtain

3 o lluen B = —TL; — v Vugr, I3 +{fer, uen,)
(28)

In [CCFSO08], Cheskidov, Constantin, Friedlander,

and Shvydkoy obtained the following new bounds on

the nonlinear term in (4):

e _2 q

i=—1

where u; = ugj41 —ug; is the Littlewood-Paley pro-
jection of . This estimate employing the Littlewood-
Paley decomposition produced not only a sharpening
of the conditions under which there is no anomalous
dissipation, but also provides detailed information
concerning the cascade of energy through frequency
space. More precisely, it shows that the energy flux II
through the sphere of radius & is controlled primar-
ily by scales of order x. The estimate also showed
that a critical space for solutions in which the energy

equality is guaranteed, Onsager’s space, is B§ o for

for the Euler

1
3

the Navier-Stokes equations, and By .

equations.

Now define a; = [|u;]|2, so that $a? represents the
energy in the dyadic shell of radius 27. In order to
mimic the flux estimate (29), we need to pass from
L3 to L?, which can be done thanks to Bernstein’s
inequality:

3
aj < w5 < A7 af. (30)

To capture the whole range of possible saturations
of the Bernstein inequality, define an intermittency
parameter d € [0, 3], which, roughly speaking, rep-
resents the dimension of the set occupied by eddies,
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such that .
lujlls ~ A% aj.

Then it is natural to define the Besov norm of a as

lal +552)

By, = su_p2j( aj. (31)
J

This combined with the locality of the (29) motivates
the following model for the energy flux:

14324
AR

Hj = a?ajﬂ. (32)
Here d = 3 corresponds to the so called Kolmogorov’s
regime where eddies occupy the whole space (or lower
bound on |lu;|3 in (30)) and d = 0 is the case of ex-
treme intermittency (or upper bound in (30)). Moti-
vated by (28), subtracting subsequent equations (26)

(for j and j — 1) gives

1d

g% = W1 -

I; — vAja; + fia;, (33)
which is exactly the dyadic model (24) with ¢ =1+

% by definition of the flux.

4 The magneto-geodynamo

The geodynamo is the process by which the rotat-
ing, convecting, electrically conducting molten iron
in the Earth’s fluid core maintains the geomagnetic
field against ohmic decay. The convective processes
in the core that produce the velocity fields required
for this dynamo action are a combination of thermal
and compositional convection. A detailed description
of dynamo problem requires the examination of the
three dimensional partial differential equations gov-
erning incompressible magnetohydrodyamics (MHD)
under the effect of Coriolis, Lorentz, and gravity
forces (see the system (34)—(37) below). The sys-
tem also possesses thermal source terms which model
radioactive decay within the Earth’s core, and can
have an essentially stochastic character. The math-
ematical statement of the geodynamo problem asks
whether there are initial data for the MHD system
for which the evolution of the magnetic field grows



for sufficiently long time, i.e. the existence of insta-
bilities. These instabilities are also expected to play a
fundamental role in magnetostrophic turbulence and
turbulent dynamo theory [Mof08].

Due to its complexity, in order to simulate this
system, current computational limitations require pa-
rameter choices that are several orders of magnitude
larger than what is physically realistic. It is there-
fore reasonable to attempt to gain some insight into
the geodynamo by considering a reduction of the full
MHD equations to a system that is more tractable,
but still maintains some of the key physical features.
The magnetogeostrophic (MG) equation proposed by
Moffatt and Loper [ML94, Mof08] (see (37) and (41)
below) is one such model, which has gained signifi-
cant interest in the mathematical community, mostly
due to Friedlander’s work on this subject. During
the past decade Friedlander and her collaborators
have gone from laying down the mathematical foun-
dations of the MG equations, to proving delicate re-
sults about the long-time dynamics of solutions, the
instability of its steady states as it relates to the geo-
dynamo, and to rigorously deriving the model from
the small parameter regime postulated in its physical
derivation.

4.1 Derivation of the MG model

For simplicity of notation, assume that the axis of
rotation and the gravity are aligned in the direction
of the Cartesian vector e3. Moffatt and Loper [ML94,
Mof08] furthermore assume that the magnetic field is
the sum of an underlying purely toroidal constant
field Bpes and a perturbation field b(z,t). The fluid
velocity vector field is denoted by w(z,t), while the
buoyancy scalar field as 6(z,t). In the rotating frame
of reference the MHD system becomes:

N%[R, (Opu+u-Vu) + ez x u] + VP
=ey-Vb+ Rub-Vb+ N%0es + vAu
R, [0:b+u-Vb—0b-Vu] =ea - Vu+ Ab
V-u=0, V-b=0

00 +u-VO=rAO+S.

Here S(z,t) is a given thermal source due to radioac-
tive decay acting on the system, and naturally may

11

be considered to include stochastic components. The
dimensionless physical parameters appear above are:
the inverse Elsisser number N2, the Rossby number
R,, the magnetic Reynolds number R,,, the inverse
Peclet number k, and the the inverse square of the
Hartman number v.

The physical postulate of the Moffatt-Loper MG
model is that slow cooling of the Earth leads to
slow solidification of the liquid metal core onto the
solid inner core, releasing latent heat of solidifica-
tion which drives compositional convection in the
fluid core. Based on this physical postulate, argu-
ments are given in [ML94, Mof08] for the appropriate
ranges of the aforementioned parameters: N =~ 1 and
R,, R, < 1. The MG model is obtained by setting
N =1 and passing R,, R,, — 0 in (34)—(36), equa-
tions which simplify to®

e3 X u=—VP+ey Vb+bes+vAu
0=-¢ey-Vu+ Ab
V-u=0, V-b=0.

(38)
(39)
(40)

The linear system of equations (38)—(40) determine
the vector fields u and b in terms of the scalar buoy-
ancy 6, encoding the vestiges of the physics in the
problem: Coriolis force, Lorentz force, and gravity.
Further vector manipulations of (38)-(40) give the
expression

[(e3- V)?A+ VA% — (e2- V)*]*] u
— (e5- V)A(es x VO)

— [VA? — (eg - V)PV x (e3 x V) (41)
which allows us to compute « as a function of #, under
the model’s self-consistency assumption that both 6
and u have zero vertical mean.* Note that all the
differential operators appearing in (41) have constant
coefficients. Thus, it is convenient to rewrite (41) as
u = M,[0], where M, is a vector Fourier multiplier

3The orders of v and & are speculative, but likely very small.
For the moment we keep them as free parameters, which allows
us to pass v,k — 0 later on in the analysis.

4Note that while the physically relevant boundary for the
Earth’s fluid core is a spherical annulus, for the purposes of
studying the mathematical properties of the MG equations we
simply consider periodic boundary conditions.



operator with associated symbol ]\//.71, given by

My, (k) = (koks|k|® — kiks(k3 + v|k|*)) D, (k)=
Mo (k) = (=kiks|k|* — kaks (k3 + v|k[*)) Dy (k)
Mys(k) = ((k3 + k3) (K3 + v|k|*)) D, (k)"

(k) =

D, (k) = |k|*k3 + (k3 + v|k[*)?

for k = (k‘l,kg,k'g) S Z3 = 73 \ {k‘3 = 0} On
{ks = 0} we define M,,](k) =0, for all j € {1,2,3},
since # and u have zero vertical mean.

In summary, for v,k > 0, the magnetogeostrophic
MG, . equation is the nonlinear advection diffusion
equation (37), in which the incompressible velocity
field uw = M, [0] is given by the constitutive law (41).
Some of the key properties of the MG, ,, equation
are that it is three dimensional, its diffusion is given
by the classical Laplacian (when s > 0), the symbol

]\/Zy(k) is orthogonal to the wavevector k and is an
even function of it. Most importantly, the nature of
the operator M, changes dramatically between the
inviscid case v = 0 (when M,, is an unbounded oper-
ator) and the dissipative case v > 0 (when M, is a
smoothing operator). This later fact plays a crucial
role in the analysis of MG, ..

It is instructive to compare the MG, , equation to
more classical hydrodynamic models in the canon of
nonlinear active scalar equations, such as the 2D sur-
face quasi-geostrophic equation (SQG) and its dis-
sipative versions. The SQG equation has received
tremendous interest in the mathematical community
over the past decades, through works of Constantin,
Wu, Cordoba, Caffarelli-Vasseur, Kiselev-Nazarov-
Volberg, and many many others. The recent re-
sults in the analysis of the SQG equation have played
a fundamental role in developing the mathematical
foundations for the MG, ,, model.

4.2 The inviscid model v =0

In Friedlander’s original work on this subject [FV11],

it is shown that when v = 0 there exist regions of
Fourier space where Mo(k) is unbounded and may
even grow as fast as |k| when |k| — oco. Thus, in this
worst case scenario My acts as an order one Fourier
multiplier, and so the map 0 — u = M]|0] effectively
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loses one derivative. Since the evolution of 6 in (37)
satisfies the maximum principle (when S = 0) one
may prove an a priori bound on § € L$°LS°; this is
the strongest norm of § which is a priori bounded uni-
formly in time. In turn, in view of the aforementioned
properties of My, we may only deduce a bound on u
in L BMO, !, i.e. u behaves as the divergence of a
BMO skew—symmetric matrix. The crucial observa-
tion is that in three dimensions advection-diffusion
equations with incompressible L° BM O, ! drifts are
critical, meaning that the natural parabolic scaling
of equations leave the size of the rescaled drift ve-
locity u unchanged in this norm. When the initial
datum 6y or the forcing term S are large, it is no-
toriously difficult to establish the global existence of
smooth solutions for such problems, and indeed, prior
to [FV11] this was an open problem. Using a variant
of the parabolic De Giorgi iteration and the incom-
pressibility of u, Friedlander and the last author have
proven:

Theorem 4.1 ([FV11]). Let the initial data 6y €
LN L% and 0 € L>=(0,00; L?) N L?(0,00; H') be a
weak solution of MGy ,., where k > 0. Then, for any
to, there exists a > 0 such that € C*/2(ty, 00; C?).

The proof of Theorem 4.1 starts by using De Giorgi
iteration to establish the boundedness of the weak so-
lutions to MGy, ... Proving Hélder regularity requires
a more delicate argument since the drift velocity u
is the divergence of a BMO, rather than L°°, ma-
trix. By essentially using the divergence-free nature
of u, and by appealing to the John-Nirenberg inequal-
ity, one may however prove a suitable LP-based Cac-
cioppoli inequality, which is the key ingredient in De
Giorgi’s improvement of oscillation lemma. Note that
while Theorem 4.1 only establishes global Hoélder con-
tinuity of weak solutions to MGy ., a-posteriori one
may deduce these solutions are C'*° smooth for ¢t > 0,
and thus unique.

Having established the global existence of smooth
solutions for MGy ,, with x > 0, Friedlander and her
collaborators have turned their attention to proving
the existence of instabilities for the this nonlinear
model, since this is after all what the geodynamo
problem asks for. Building on the ideas discussed
in Section 2, Friedlander was able to prove that for



m > 1, the operator corresponding to MGy, lin-
earized around the steady state ©g = sin(maxs), with
associated Uy = 0 and forcing S = wkm?sin(maz3),
has unstable point spectrum. Moreover, the largest
eigenvalue has real part which is at least as large as
27971 once k is taken to be sufficiently small and
m < k~ L. As in Section 2, a careful analysis shows
that this linear instability implies that solutions to
the full nonlinear MGy , are Lyapunov nonlinearly
unstable: initially small perturbations of ©y grow
exponentially in time, which is consistent with the
dynamo instabilities.

Friedlander, jointly with Rusin, and the last au-
thor, have obtained a number of further results con-
cerning the MGg , model. For instance, the system
MGy, is Hadamard ill-posed in Sobolev spaces, but
local well-posedness is recovered if one adds back a
dissipative operator of the type wk(—A)Y with v >
1/2. For further results in the inviscid case, we refer
the interested reader to the review paper [FRV14].

4.3 The viscous model v > 0

The MG, . equations’ nature changes dramatically
when considering the wviscous case v > 0. To see
this, return to the symbol M, defined implicitly by
(41). For v > 0, instead of having an unbounded
symbol, one may show that |k|2|]\//.7,,(k)| <, 1 for all
k € Z3. Thus, the map 6 — u = M|[6] is smoothing
of order two in the viscous case; a regularization that
is even stronger than the Biot-Savart law. Thus, an
a priori estimate on § € L{°LS° (natural in view of
the maximum principle for (36)), yields a bound for
V2u in LPLE for any p < oo. In particular, the
Lipschitz norm of w is a priori controlled, globally in
time and as for classical ODEs, one may thus hope
that the system is globally well-posed even when the
diffusivity parameter x vanishes. This problem was
recently resolved by Friedlander jointly with Suen

Theorem 4.2 ([FS15]). Consider v > 0 and k > 0.
Assume that 8y € L has zero mean. Then, there ex-
ists a unique global weak solution § € BC((0,00); L?)
with u € C((0,00); W23) of the MG, . equation.

The remarkable fact about the above result is that
it holds even for k = 0. It is also shown in [FS15]
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that solutions to MG, ,, converge in the vanishing
viscosity limit ¥ — 0 towards solutions of MGy, for
Kk > 0. Moreover, there is no anomalous dissipation
of energy for (37) in the vanishing diffusivity limit:
for any T > 0 and 8y € H', we have that

T
/ / K|V, ,|2dzdt = 0,
o Jrs

where 0, , denotes the unique solution of MG, .
guaranteed by Theorem 4.2. The above result ad-
dresses the question of magneto-geostropic turbu-
lence raised by Moffatt [Mof08]. Concerning the geo-
dynamo problem, using techniques similar to those
in Section 2, it was proven by Friedlander and Suen
in [FS15] that the dissipative MG, ,, equation sus-
tains exponentially growing dynamo-type instabili-
ties.

lim
k—0

4.4 Singular limits for the magneto-
geodynamo in a stochastic setting

Another direction of Friedlander’s work in magneto-
hydrodynamics concerns the Moffatt-Loper model
(34)—(37) in the stochastic setting, where the source
term S in thermal evolution equation (37) is spec-
ified as a Gaussian white noise. This probabilistic
setting of the model interprets white noise driven
terms as a heat source which “continuously regen-
erates the statistically stationary temperature distri-
bution throughout the core” as described by Mof-
fat [Mof08]. As such, an important feature of Fried-
lander and her collaborators’ work in the stochastic
setting is to analyze statistically invariant states, i.e.
to study invariant measures of the associated Marko-
vian dynamics. More broadly, such measures play
an important role in the study of turbulence as they
provide a framework for identifying robust statistical
quantities in turbulent flows.

In a joint work with Foldes, the second co-author,
and Richards [FFGHR17], Friedlander considered the
singular parameter limits R,, R,, — 0 for (34)-
(35), with these limits being carried out in terms
of the corresponding invariant measures. Roughly
speaking, the work [FFGHR17] establishes that sta-
tistically robust quantities of the full MHD system



with 0 < R,, R,, < 1, are well approximated by
the those measured using the formal limit system
R, = R,, = 0. More precisely, we summarize this
result as:

Theorem 4.3 ([FFGHRI17]). Consider (34)—(37)
with v,k > 0, in the presence of a stochastic source
term of the form

S(x,t) = Z e mo () WE™(1), (42)
kez}
me{0,1}

where oY(x) = cos(k - x), o}(z) = sin(k - x),

ar € R are amplitudes, and {W*™} is a collec-
tion of independent white noise processes. Subject
to mon-degeneracy (hypo-ellipticity) condition that
0[(170,0)m70[(071,0)m,01(07071).,” are non-zero fOT’ m =
0,1 the limit equation (34)—(37) when R, = R, =0
has a unique statistically invariant state p which
is achieved at an exponential rate; cf. (44) below.
For any collection of statistically invariant states
{r,, R0 } Ry Ry >0 and any suitably reqular observable
® of the dynamics, we have

‘/q)(u,b,@)duRmRm—/Cb(u,b, 0)dp|

< C(Ro+ Rn)Y  (43)
where the constants v,C > 0 are independent of
R,, R, > 0.

An interesting feature of the above result is that
the estimate (43) is independent of possible non-
uniqueness in the approximating statistics. Here we
observe that the formal limit system when R, =
R,, =0, ie. MG, , is an active scalar equation with
a smoothing constitutive law of order two, and there-
fore classically yields a Markovian dynamic. On the
other hand, for positive values of R,, R,,, it is not
clear that (34)—(37) is well posed or that the asso-
ciated statistically pgr, g, steady states are unique;
for positive R,, R,,, the invariant states g, g, are
considered as stochastic analogues (i.e. martingale so-
lutions) of stationary Leray weak solutions.

The strategy in [FFGHR17] turns on establishing
a spectral gap condition in suitable in a Wasserstein
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metric for the markovian dynamics for the limit sys-
tem. Here, one considers

2 v):= inf

P(/~La ) ECH,V

p(U, V)L (dU,dV),

where p is taken to be a certain metric, topologically
equivalent to L2, but which punishes elements far
from the origin and C, , is the set of couplings of u
and v. “Weak Harris” mixing results for Markovian
systems which are adapted to such topologies 20,
were developed Hairer, Mattingly, Kuksin, Shirikyan
and others in the early 2000’s. By leveraging such
modern variants of Harris’ classical theorems one may
establish bounds of the type

W, (uPy;, vP;) < Ce "0, (u, v). (44)

A crucial step in the analysis leading to (44) is
to study the delicate interactions of the stochastic
source terms S in (42) with the nonlinear portion of
the drift w - V6 present in (41), in order to establish
a certain Hormander-type hypoellipticity condition.
This analysis produces a form of smoothing in the
markovian dynamics, the so-called asymptotic strong
Feller condition of Hairer and Mattingly.

The bound (44) crucially affords a reduction of
the study of the convergence of the stationary states
in (43), to the establishing of bounds between pos-
itive and limit solutions in the parameters R,, R,
at a fix finite time ¢, > 0. The finite time conver-
gence analysis produces interesting challenges due to
a phase space mismatch between full system when
R,, R,, > 0 and the active scalar equation represent-
ing the limit. This formally suggests a multi-time
scale analysis to correctly approximate solutions at
an initial layer in time. One insight in [FFGHR17] is
that, beyond the initial layer, there is no need to cor-
rect the dynamics in order to obtain a bound similar
to (43) for the thermal components of the dynamics;
these decay rates may then be transferred to bounds
on velocity and magnetic components.

5 Impact of Friedlander’s work

It is hard to overestimate the significance of Fried-
lander’s research and her impact on the work of so



Friedlander at the
Forschungsinstitut Oberwolfach in 2015.

Figure 2: Mathematisches

many mathematicians, including the authors of this
survey. The geometric optics method has developed
into a powerful tool to study instabilities for a broad
range of fluid models. Further advances in this area
has led to a full description of the essential spectrum
of the 2D and 3D Euler system. This, in turn, made
it possible to apply methods from dynamical systems
to construct invariant manifolds near unstable equi-
libria.

Friedlander’s results on the long time behaviour of
dyadic models represent a prototype of the “dream
scenario” for the full Euler equations — finite time
blowup or regularization that leads to the Onsager-
critical regularity for solutions with any initial data.
The regularization property of the nonlinear term has
been investigated further starting with the work of
Barbato, Morandin, and Romito. A recent work of
Tao exploits the blow up mechanism of the dyadic
model and adds the energy cascade delays to break
the 4D barrier that result in a construction an “av-
eraged” 3D Navier-Stokes model which fulfills all the
same energy estimates as the actual Navier-Stokes,
but blows up in finite time — a long awaited result
demonstrating that the energy method alone is not
enough to resolve the Clay Problem for 3D Navier-
Stokes.

The MG-model has sparked research in many di-
rections, and in particular it was one of the first
active scalar equations to which the convex integra-
tion method was adapted. It played a crucial step in
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understanding the role of symmetries in the Fourier
multiplier for the scalar-to-velocity constitutive law,
as a mechanism for generating wild solutions.

Friedlander’s contribution to the ongoing work on
the Onsager conjecture laid the basis for the math-
ematical formalization of the physical concepts of
intermittency and accumulation set for the forward
energy cascade in turbulent flows. These concepts
proved to be experimentally measurable and were
well received in physical community. Friedlander’s
analytical results on the energy law remain sharp to
date and were extended to fluids models with bound-
aries, to inhomogenuous and compressible fluids, and
even to general hyperbolic conservation laws.
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