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We consider ultracold atoms trapped in a toroidal trap with an azimuthal lattice for utility as
a macroscopic simulator of quantum optics phenomena. We examine the dynamics induced by the
adiabatic introduction of the lattice that serves to couple the normal modes, as an analog of a laser
field coupling electronic states. The system is found to display two distinct behaviors, manifest in
the angular momentum - coherent oscillation and self-trapping - reminiscent of non-linear dynamics,
yet not requiring interatomic interactions. The choice is set by the interplay of discrete parameters,
the specific initial mode and the periodicity of the lattice. However, rotation can cause continuous
transition between the two regimes, causing periodic quenches and revivals in the oscillations as a
function of the angular velocity. Curiously, the impact of rotation is determined entirely by the
energy spectrum in the absence of the lattice, a feature that can be attributed to adiabaticity. We
assess the effects of varying the lattice parameters, and consider applications in rotation sensing.

I. INTRODUCTION

Ultracold atoms trapped in ring shaped lattices offer
a versatile system for probing and simulating quantum
mechanics, while also offering possibilities for sensor ap-
plications [1–3]. The closed loop topology enables access
to some of the most enigmatic quantum features, like
nonlocal effects [4, 5], sustained superfluid flow [6], and
effects of gauge fields mimicked by rotation [1, 7]. The
azimuthal lattice structure makes the system substan-
tially richer, introducing band structure in a finite peri-
odic system [8]. Coherent states satisfying the periodic
boundary condition also provide a macroscopic realiza-
tion of de Broglie’s classic model [9] of quantization of
electronic orbits, that launched our current understand-
ing of quantum physics. This last aspect of cold atoms
in a ring lattice is the subject of interest in this paper.

The introduction of a lattice serves to couple the nor-
mal modes of the ring. A direct analogy can be made
with the situation of lasers interacting with electronic
states of an atom [2], with the lattice coupling the modes
of the ring just as a laser field couples the electronic
states, illustrated schematically in Fig. 1. Even spin de-
grees of freedom can be mimicked with clockwise and
counter-clockwise flow orientations. This makes cold
atoms in ring lattices an attractive simulator of quantum
optics [10] at a scale orders of magnitude larger. Beyond
the similarities, the macroscopic scale, the external de-
grees of freedom, and the option of strong nonlinearity
[11] create possibilities that can go beyond typical quan-
tum optical paradigms, blending them with aspects of
condensed matter physics and nonlinear dynamics.

Multiple pathways exist for creating ring traps for
atoms [12–20], some conveniently adaptable to include an
azimuthal lattice structure, such as the use of Laguerre-
Gaussian (LG) beams [21, 22]. While numerous experi-
ments [6, 23, 24] have been conducted with cold atoms
in ring traps, proportionate effort with the inclusion of
lattices are overdue, notwithstanding the rich physics in-
dicated by continuing theoretical works [2, 8, 25–38].

(a) (b)

FIG. 1: (Color online) (a) Laser light interacting with an
electronic state of an atom, its quantization represented by a
de Broglie model of a eigen-mode satisfying periodic boundary
condition. (b) This is mimicked by ulatracold atoms (filled
blue) trapped in an effectively one-dimensional toroidal trap
with an azimuthal lattice potential (red line) serving to couple
the coherent collective modes of the atoms.

The focus of theoretical studies have been centered pri-
marily on the nonlinear aspects of the system, and associ-
ated with persistent currents, and potential applications
for atomtronics and quantum computation. These are
very relevant topics and justify continued exploration.
The purpose of this paper, in contrast, is to examine
the linear dynamics of the system in the context of close
analogies with quantum optics. We examine the dynam-
ical behavior of ultracold atoms in a ring lattice, as a
function of the primary lattice parameters with regards
to two fundamental questions that are relevant for any
experiment on such a system: (1) How does the system
respond to the lattice being introduced adiabatically? (2)
How does the presence of rotation impact the resulting
dynamics? Our findings contain some surprising features
that open lines of further studies and also provide prin-
ciples that can find value in sensor applications.

In Sec. II, we present our physical model that is uti-
lized through the paper. Section III identifies the salient
features of the dynamics and explains them, and Secs. IV
and V clarify the influence of the parity of the initial
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mode and adiabaticity respectively. The crucial impact
of rotation is presented in Sec. VI with considerations
of sensor application in Sec. VII. Effects of various lat-
tice parameters on the induced dynamics are analyzed in
Sec. VIII. We conclude in Sec. IX, with a discussion of
feasibility in experiments and with an outlook for further
studies.

II. PHYSICAL MODEL

We consider a BEC in a toroidal trap as shown in
Fig. 1. We take the minor radius to be much smaller than
the major radius R so that the system can be treated as
a cylinder r = (z, r, ϕ) with periodic boundary condition
on z. We assume the confinement along (r, ϕ), trans-
verse to the ring circumference to be sufficiently strong
to keep the atoms in the ground state ψr(r)ψϕ(ϕ) for
those degrees of freedom, so that the three-dimensional
bosonic field operator can be written in the effective form
Ψ̂(z)ψr(r)ψϕ(ϕ). Integrating out the transverse degrees
of freedom, the dynamics can be described by an effective
one dimensional Hamiltonian

Ĥ(t) =

∫ 2πR

0

dzΨ̂†(z, t)× (1)[
− h̄2

2m
∂2
z + V (z, t) +

g

4πl2
Ψ̂†(z, t)Ψ̂(z, t)

]
Ψ̂(z, t).

where g = 4πh̄2a/m is the interaction strength defined by
the s-wave scattering length a, the mass of the atoms m,
and the harmonic oscillator length l for the transverse
confinement along the cross-section of the torus. The
potential along the ring is taken to be a periodic lattice,
that can rotate with angular velocity ω,

V (z, t) = h̄U(t) cos2p
[

1
2q(z/R− ωt) + θ

]
≡ h̄U(t)

p∑
j=1

cj cos [j{q(x− ωt) + 2θ}] , (2)

both p and q being positive integers. This represents a
lattice potential of period 2π/q corresponding to q peaks
equally spaced along the circumference 2πR of the ring.
Increasing the value of the power 2p of the cosine causes
the peaks to become progressively narrower. The second
form of the potential introduces the scaled azimuthal co-
ordinate x = z/R, and does a trigonometric expansion
in terms of cosine functions of periods 2π/(jq) that are
integer (j) divisors of the base period. The expansion
coefficients cj = 1

22p−1

(
2p
p−j
)

leave out a constant offset

term c0 = 1
22p

(
2p
p

)
. A phase shift θ is allowed for, but

will be set to zero except where specified otherwise.
The strength U(t) of the lattice potential is time de-

pendent with the ability to turn the lattice on and off
with variable rates and duration. We will use the func-
tional form,

U(t) = U0 × [{1− et
2/τ2

} − e(T−t)2/τ2

]. (3)

The first pair of terms control the switching on, and the
last term the switching off. The total duration of evo-
lution is set by T and the rate of switching on or off is
controlled by τ , with higher values causing a slower onset.

Expanding the field operator in eigenstates of the ring

Ψ̂(x) =
∞∑

n=−∞
âne
−inωtψn(x); ψn(x) =

1√
2π
einx, (4)

where n = 0,±1,±2, · · · are the quantum numbers la-
beling the circulating eigen-modes. Our analysis of the
dynamics in the ring will be based on how the quantum
amplitudes of these modes evolve. The equation of mo-
tion for the Hamiltonian can be transformed into a series
of coupled differential equations for the mode amplitudes
or expansion coefficients ân [2],

i
∂

∂t
ân(t) = (ωn − nω)ân + U(t)

p∑
j=1

cj [ân−jq + ân+jq]

+
g

4π2l2

∑
k

∑
l

â†kâlân+k−l. (5)

These equations serve to provide useful insight into the
nature of the coupling between the modes as well as the
impact of rotation: The lattice potential couples the
modes in ‘ladders’ of steps ±jq corresponding to the
number of peaks q in the lattice, with one such ladder
for each available value of j = 1, · · · p. Specifically, for
the lowest value p = 1 in the exponent in Eq. (2), only
j = 1 is available, so the modes coupled are separated
by steps of ±q. But for higher values, p > 1, additional
‘ladders’ with larger step sizes ±jq become available for
every j = 2, · · · p. The angular velocity induced by rota-
tion causes a shift of nω in the spectrum, proportional
to quantum number n of each mode.

However, we will not use Eq. (5) which, being a mo-
mentum space representation, is suitable for weak lat-
tices, whereas in this study we will need to vary the lat-
tice strength over a wide range. We will instead use the
equation of motion in a position space representation,
obtained directly from the Hamiltonian Eq. (1)

ih̄∂tΨ̂ =

[
− h̄2

2m
∂2
x + ih̄ω∂x + V +

g

4π2l2
Ψ̂†Ψ̂

]
Ψ̂. (6)

The field operator Ψ̂(x, t) and the potential V (x, t) have
time and position dependence that are not displayed ex-
plicitly. The relevant connection between the two pic-
tures represented by Eqs. (5) and (6) is via the projec-

tions ân(t) = 〈ψn(x)|Ψ̂(x, t)〉. The effect of rotation has
been added on with an angular momentum term which
amounts to a transformation to a frame rotating with the
lattice. This is consistent with the form of Eq. (5) ob-
tained by explicit inclusion of the rotation induced phase
in the mode expansion in Eq. (4).

We will assume the mean field limit Ψ̂ → 〈Ψ̂〉 = Ψ,
applicable for a large number of particles when quan-
tum fluctuations are relatively small. Correspondingly,
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FIG. 2: (Color online)(a) The time evolution of the net angular momentum (solid lines) of the quantum state in the ring is
plotted as the lattice strength U(t) (dashed black line) is switched on and off adiabatically. The thin blue line showing strong
oscillation is for q = 2 peaks in the lattice, and the thick red line with suppressed oscillation (self-trapped), is for q = 3. In
both cases, the state is initiated in a specific circulating eigen-mode of the ring with quantum number n0 = 2. The boxed
panels (b,c) show the time evolution of the populations in significantly occupied modes, with (b) corresponding to the strongly
oscillating angular momentum in panel (a) with q = 2; and (c) corresponding to the self-trapped case in panel (a) with q = 3,
so called because the population persists significantly in the initial mode n0 = 2. Only states with significant population are
plotted, justified by their sum remaining constant at unity during evolution, seen as a flat black line at the top.

we will represent mean field limit of the projection oper-
ators by an(t) = 〈ân(t)〉. We will also neglect nonlinear-
ity, setting g = 0, assuming weak interactions possible by
Feshbach resonance [39]. Along with length unit R, our
units assume h̄ = m = 1. We will examine the coher-
ent dynamics of the quantum state of the medium in the
ring, as it interacts with the lattice, by computing the
projections an(t) that give the amplitude of the modes,
with |an(t)|2 tracking their population. We will refer to
the modes ψn simply by their quantum number n.

For our numerical simulations, the radius R of the ring
serves as the length unit as already implicit in our def-
inition of x = z/R, so that x is numerically equivalent
to the angular co-ordinates in radians and ih̄∂x is the

angular momentum operator. We take ε = h̄2

mR2 = h̄ω0

as our energy unit, τ = ω−1
0 as the time unit, ω0 as the

unit of angular velocity and
√

2mε as unit of angular mo-
mentum. The population densities are in units of R−1.
These units are used in all our simulations and figures.

III. CRITERIA FOR COHERENT
OSCILLATION

The eigenstate expansion Eq. (4) represents circulat-
ing modes, with positive and negative values of the quan-
tum number corresponding to counter-propagating flows.
We initiate the system in one of the modes with quan-
tum number n0, with the lattice potential switched off,
U(t) = 0. Then, we adiabatically switch on the lattice to
reach a stable maximum depth of U0. As the equations
of motion Eq. (5) show, this causes the state to couple to
other modes with quantum numbers {n0±q, n0±2q, · · · }
transferring population. It is clear from the properties of
the binomial series, that for a fixed value of p, the expan-
sion coefficients cj used in Eq. (2) diminish with increas-

ing j so that the highest weight will always correspond
to the first term with j = 1, which therefore provides the
dominant coupling pathway. Therefore, we first consider
the case of the lowest power with p = 1 which contains
only this single term in the expansion. The effects of
higher powers, p > 1 will be examined in Sec. VIII.

We solve the differential equation, Eq. (6) with g = 0,
for the time-evolved quantum state Ψ(t), and from its
projections an(t), we determine the populations of a set
of modes n0± jq, j = 0, 1, · · · on a ladder centered about
the initial mode n0. Energy conservation places a natu-
ral limit on the number of such modes that will acquire
significant population. We ensure that in our simula-
tions, a sufficient number are taken into consideration by
verifying the sum of their populations remains unity.

We first capture the aggregate behavior of the medium
by computing the expectation of the angular momentum
of the system 〈ih̄∂x〉 = 〈Ψ(t)|ih̄∂x|Ψ(t)〉. Two very differ-
ent and distinct behavior emerges as shown in Fig. 2: (I)
The angular momentum undergoes oscillations with al-
most complete reversal occurring periodically, or (II) The
angular momentum stabilizes at some intermediate value
with the emergence of small oscillations about that mean,
that we will refer to as ‘wiggles’. To contrast with the os-
cillating case, we refer to the second case as ‘self-trapped’
in analogy with similar behavior in non-linear dynamics,
wherein the population is restrained from making com-
plete transition out of a specific state.

By adiabatically switching off the lattice, we find that
for the self-trapped cases, the angular momentum is re-
stored to the initial value as illustrated in Fig. 2. However
in the oscillating case, the degree of restoration depends
on the precise timing of initiating the switching off, but
complete revival appears to be always possible.

Whether oscillations occur or not is determined by
the relation between the spatial periodicities of the ini-
tial mode, n0, and that of the lattice, 2π/q. Oscillating
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FIG. 3: (Color online) When the initial mode is a standing
wave cos(n0x), the time evolution of the population in oc-
cupied modes is plotted as the lattice potential U(t) (dashed
black line) is switched on adiabatically, shown here for n0 = 3
and q = 2. Left panels (a,c) show the circulating mode ba-
sis, and the right panels (b,d) the standing wave basis (la-
beled cos(nx) ≡ cos[n] ≡ c{n}). In both bases, upper panels
(a,b) show that with no phase shift, θ = 0, between the lat-
tice and the initial mode, oscillations are suppressed. But
in the lower panels (c,d) with θ = π/4, oscillations occur.
Note, in panel (a) counter-propagating modes with the same
wave number (±n) have identical evolution, and overlap. The
states displayed are the only ones with significant population,
confirmed by their sum (flat black line) remaining normalized.

cases constitute a limited subset of possibilities that oc-
cur whenever 2n0/q = j is a non-zero integer, also ne-
cessitating that q ≤ |2n0|. Examination of the evolution
of the population sheds light on this: Satisfaction of this
condition provides a ladder pathway through a sequence
of intermediate coupled modes from the initial mode n0

to another mode which is degenerate in energy with it,
in this case −n0. Thus, in Fig. 2(b), where q = 2 the
population dominantly oscillates between the degenerate
modes n0 = +2 and n0 − 2q = −2, because they are
coupled by two ladder steps of q. The intermediate state
n0−q = 0 is populated but has muted oscillations since it
is non-degenerate. Population oscillations also occur be-
tween other degenerate states, for example between the
modes n = ±4, since there is direct coupling of one of
them with the initially occupied mode: n0 + q = +4.
But the amplitude is lower than for oscillations involving
the initial mode directly, due to larger energy gap.

In contrast, for the self-trapped cases, the ladder of
coupled modes does not contain any pair with degener-
ate energies as illustrated in Fig. 2(c). There is however
some exodus of population from the initial mode, and as
should be expected, the primary recipient is the mode
closest to it on the ladder but with lower energy. There
is progressively less population appearing in modes en-

ergetically farther apart on the ladder. An interesting
special case of note is that of the ground state. Since it
is non-degenerate, it always remains self-trapped regard-
less of the periodicity of the lattice.

IV. PARITY EFFECT FOR STANDING WAVES

The presence of oscillations is sensitive to the initial
state. If we initiate the system in a standing wave of
form ∼ cos(n0x), there are never any instances of oscil-
lating cases even when the criteria defined in Sec. III are
satisfied. That is because the potential V ∼ cos(qx) is
an even function of the co-ordinate, and therefore only
couples states with the same parity which, in this case,
are other standing waves also of the form cos(nx) with
n = 0, 1, 2, · · · . Since n 6= n0, there can be no degen-
eracies among those states. Strong oscillations can only
occur between a pair of distinct states that are degener-
ate in eigenenergies and are also separated by an integer
number of ladder steps ±q, set by the lattice period. This
requires coupling of cos(n0x) with sin(n0x). In order to
make that happen, we introduce a phase shift of θ = π/4
into the potential, so that V ∼ cos[qx+ 2θ]→ − sin(qx)
an odd parity function that can now couple even and
odd parity states. Physically, in the context of p = 1,
this amounts to initiating the system in a mode that is
phase-shifted by π/2 from the period of the lattice peaks.
Figure 3 shows the case where the initial mode is a stand-
ing wave cos(3x), in a lattice of periodicity q = 2. Oscil-
lations are absent with θ = 0 but appear with θ = π/4.

The criteria for oscillation is now different. The lad-
der of coupled modes must necessarily contain a pair of
modes that are resonantly coupled which can only hap-
pen if modes with quantum number n = ±q/2 (set by
the lattice period) are on the ladder, requiring q to be
even. That ensures that the degenerate modes cos(qx/2)
and sin(qx/2) are directly coupled. Then, there exists a
pathway for the initial mode cos(n0x) to couple with its
energy-degenerate pair sin(n0x). This can only happen if
2n0/q is an odd integer, otherwise any ladder connecting
n0 to −n0 would lead to the non-degenerate zero mode
and there can be no resonant coupling.

Two different bases are used to show the dynamics of
the states, with Fig. 3(a,c) showing the population in cir-
culating modes, and Fig. 3(b,d) showing that for stand-
ing wave modes. In the standing wave modes, only cosine
modes populate as expected for θ = 0, but oscillations
with sine mode appear when θ = π/4. In the circulat-
ing bases, both clockwise and counter-clockwise modes
have exactly the same population evolution for identical
mode number, when θ = 0. But, with θ = π/4, when os-
cillations occur, the oppositely circulating modes evolve
differently, demonstrating consistency regardless of the
specific basis used.

One feature we have noted across all strongly oscil-
lating cases, regardless of the initial mode - circulating
or standing wave - is that at steady state, the clockwise
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modes all fall into sync with each other and the counter-
clockwise modes likewise sync up mutually. This can be
clearly seen in Fig. 3(c), where the positive numbered
modes all oscillate together in phase and so do all the
negative numbered modes. In contrast, there is no such
syncing of cosines and sines evident in Fig. 3(d) rather the
cosine modes are out of phase with the adjacent cosine
modes. This kind of resonant directional ‘mode-locking’
behavior ensures strong oscillation of the angular mo-
mentum, when coherent oscillations are present.

V. INSTANTANEOUS EIGENSTATES

The dynamics as described assumes adiabatic switch-
ing of the potential. The implications can be understood
by following the projection of the wavefunction on the in-
stantaneous eigenstates of the Hamiltonian as it evolves,
parameterized by the time t. With sufficiently slow evolu-
tion, the system will follow the instantaneous eigenstate
φn0(t) that evolved from the mode ψn0 the system was
initiated in. Being a closed system, in the absence of ro-
tation all the instantaneous states can be chosen to be
real valued, that take the form sin(nx) and cos(nx) in
the limit of no lattice. As the lattice is switched on, their
functional form alters, but they can still be classified as
symmetric or antisymmetric about the potential maxima,
designated φnS and φnA respectively. When the initial
mode is a circulating one, the instantaneous state φn is
a 50/50 superposition of φnS and φnA.

In our simulations, the lattice potential is switched
on or off according to Eq. (3), where a larger value of
the parameter τ causes a more adiabatic variation. Fig-
ure 4(a,b) shows that for τ = 1, the instantaneous state
φ2 loses some population during the switching on, but
then stabilizes. For a more adiabatic onset of the poten-
tial, with τ = 10, there is hardly any loss of population,
only detectable on zooming in at the order of 10−3.

The composition of the instantaneous states reflects
the oscillations present in the normal modes of the
ring without a lattice. Figure 4(c,d) show the in-
stantaneous eigenstates corresponding to initial mode
n0 = 2 at weak and strong lattice strengths. At
weak lattice, the relevant states are sinusoidal, sym-
metric and antisymmetric about the two peaks of the
lattice with q = 2, φ2A ' sin(2x) and φ2S '
cos(2x). As the lattice reaches maximum depth, φnA '
0.44 sin(2x) + 0.064 sin(4x) + 0.0015 sin(6x) and φ2S '
0.44 + 0.21 cos(2x) + 0.092 cos(4x) + 0.0030 cos(6x), re-
flecting relative populations seen in Fig. 2(b).

The antisymmetric state here actually has the lower
energy, which may seem surprising considering that an-
tisymmetric pairing of localized states always has higher
energy. The reason is that in this case of two lattice
sites, q = 2, as the lattice is turned on, the ground state
remains symmetric, pairing up with the antisymmetric
state arising from the initially degenerate pair of first ex-
cited states. The two states approach a new degeneracy
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FIG. 4: (Color online)(a) Evolution of the population pro-
jected on the instantaneous eigenstates φn of the Hamilto-
nian, for q = 2 and initial mode n0 = 2. The solid lines
show the population in the occupied states , shown for two
different rates (set by τ) of switching on of the potential U(t)
plotted in dashed black lines. Faster rate (τ = 1) causes visi-
ble loss from the initial mode φ2, but hardly any at the slower
rate (τ = 10). (b) Zooming in for (τ = 10) shows any loss
is sufficiently small to justify adiabaticity. (c,d) Plots of the
instantaneous eigenstates that are populated are shown: (c)
when the lattice potential V is weak, U0 = 0.1 and (d) when
it is strong U0 = 10. The states are labeled symmetric (S) or
antisymmetric (A) about the peaks of the lattice potential V
plotted in dotted black line on right axis.

as the lattice strength is increased. Likewise the sym-
metric first excited state pairs up with the antisymmetric
second excited state, and so on, maintaining the expected
pattern of antisymmetric state having the higher energy
within each pairing, as seen later in Fig. 6(d).

When we initiate the state in the circulating mode ψ2

in the absence of a lattice, it comprises of two degener-
ate modes, of which the antisymmetric one migrates to
the lower band and the symmetric to the higher band,
causing the seeming inversion of the energy structure
of symmetric/antisymmetric instantaneous states when
a correspondence is made with the initial modes ψn.

VI. SENSITIVITY TO ROTATION

Introducing rotation fundamentally changes the dy-
namics so far discussed. Rotation can transform an os-
cillating case into a self-trapped case and vice versa as
shown in Fig. 5: In its panels (a) and (b), for an initially
oscillatory case, as the angular velocity is increased, the
amplitude of oscillation of the initial mode diminishes
and practically vanishes. Similar behavior is seen with
the the mean value, together indicating a transition to
self-trapped behavior. Curiously, at larger angular veloc-



6

0

0.2

0.4

0.6

0.8

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

+1
+3
+5
-1

Sum

0

0.2

0.4

0.6

0.8

1

+1
+3
+5
+7
-1

TimeAngular veclocity, w

A
m

p
li

tu
d
e 

o
f 

O
sc

il
la

ti
o
n

-1
+2

+5
-4

0

0.2

0.4

0.6

0.8

1

0 5 10 15
0

0.2

0.4

0.6

0.8

1

0 1 2 3 4

(a)

(b)

(c)

(d)

(e)

(f)

n!=1

 q =2

n!=2

 q =4

n!=2

 q =3

I
II

V

III

IV

Peak I

Peak II

Peak V

VI

M
o
d
e 

P
o
p
u
la

ti
o
n
 |
a
n
|2

mode

mode

mode

+3

+5

+7
-1

+1

+1 +3

+5
-1

+2
-1

+5 -4

FIG. 5: (Color online) (a,b,c) Rotation changes the dynamics
continuously between oscillating and self-trapped behavior,
evident in the variation of the amplitude of oscillation of the
initial state n0. At no rotation ω = 0, cases in panels (a,b) are
oscillatory and in panel (c) self-trapped, but all show recur-
rence of oscillatory behavior at specific values of the angular
velocity ω. (d,e,f) The right panels display the time evolu-
tion of the modal population for parameters corresponding to
specific peaks labeled by Roman numerals on the left panels.
Specifically, panels (d) and (e) correspond to peaks I and II of
panel (a): Note the initial mode n0 = 1 dominantly couples
to mode n = 3 in (d) but with mode n = 5 in (e) showing
that rotation alters the primary coupling.

ities, the oscillations undergo an almost complete revival,
that repeats at integer values of the angular velocity.

Likewise, for an initially self-trapped case, increasing
angular velocity causes transformation into an oscillatory
case, as seen in Fig. 5(c). There are once again revivals
of oscillation which now peak at half integer values of
the angular velocity.

The population evolution at the angular velocities
where the revival peaks occur reveal another aspect in
Fig. 5(d,e,f). The dominantly coupled modes are dif-
ferent from the ones when there is no rotation. Thus,
for initial mode, n0 = 1 and lattice periodicity q = 2,
with no rotation ω = 0, the population oscillates be-
tween n = ±1, but at ω = 2, the dominant oscillation
occurs between n = 1 and n = 3 as seen in panel (d)
while at ω = 3 it occurs between n = 1 and n = 5. Simi-
lar drift of the dominantly coupled modes is observed to
occur when the system is self trapped in the absence of
rotation, with the mode oscillations corresponding to the
first revival peak in Fig. 5(c) shown in Fig. 5(f).

An explanation for this behavior can be found in the
energy spectrum of the ring in the presence of rotation

-8

-6

-4

-2

0

2

4

6

8

10

-4

0

4

8

12

-4

0

4

8

12

0 41 2 3

0 41 2 30 2 4 6 8
Maximum Lattice depth, U!

Angular veclocity, w

E
n

er
g

y

Angular veclocity, w

(a)

(b) (c)

(d) (e)

U!=0

U!=10

U!=10

I
II III

IV

V

VI

FIG. 6: (Color online) Variation of the lowest energy eigen-
values in the ring as function of: (a) the angular velocity with
no lattice, U0 = 0; (b,d) the lattice strength without rotation
ω = 0; (c,e) the angular velocity for lattice strength U0 = 10.
Panels (b,c) are for q = 2 and (c,e) for q = 4, reflected in the
number of states in each band when the lattice is on. Inter-
sections labeled by Roman numerals in the top panel match
similarly labeled peaks in Fig. 5 that mark recurrence of oscil-
lation. They correspond to the onset of new degeneracies for
the initial mode, induced by rotation, with the lattice absent.
The four lower panels show that those relevant degeneracies
are conspicuously absent with the lattice present.

shown in Fig. 6(a). The oscillation revival peaks corre-
spond to the emergence of new degeneracies. Consider-
ing that in the absence of a lattice the modes have energy
Ei = n2

i /2−niω (setting h̄ = m = 1), degeneracies of two
modes Ei = Ej occur at ω = (ni+nj)/2, that takes inte-
ger and half integer values. The n0 = 1 mode establishes
new degeneracies with n = +3 and n = +5 at ω = 2 and
ω = 3, and those are precisely the dominant modes in
Fig. 5(d,e) that correspond to the peaks I and II in the
amplitude at those ω in Fig. 5(a). All of the amplitude
peaks in that figure are similarly explained, including the
initially self-trapped case in Fig. 5(c). Each peak corre-
sponds to the emergence of a new relevant degeneracy for
the initially occupied mode, as indicated in Fig. 6(a).

Notably, we also see why there is no peak in Fig. 5(a)
at ω = 1, because Fig. 6(a) shows that the n0 = 1 mode
is not degenerate with any other mode, and hence oscilla-
tions are suppressed. However, energy degeneracy is not
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the complete story. For example in panel Fig. 5(b) there
are no peaks at ω = 1 and 3 or for panel Fig. 5(c) at
ω = 1.5 and 2.5, although Fig. 6(a) shows that the initial
mode n0 = 2 has degeneracies there. That is because,
as explained in Sec. III, for oscillations to occur there
also needs to be a ladder pathway between the degener-
ate modes, that is, they need to be separated by integer
multiples of the lattice period q, which does not occur for
these above mentioned cases.

Perhaps the most surprising aspect of these quenches
and revivals of the coherent oscillation is that they are
completely determined by the energy spectrum in the ab-
sence of the lattice. Figure 6(b,d) show the variation of
the spectrum as U0 is varied from zero to the maximum
value for lattice period q = 2 and 4, as used in Fig. 5,
and then Fig. 6(c,e) show how the spectrum is further
changed by angular velocity, keeping the lattice strength
at U0 = 10. Clearly, the defining degeneracies that ap-
pear in the absence of the lattice in Fig. 6(a) are gener-
ally absent in Fig. 6(c,e). This underscores the relevance
of the adiabatic switching on of the potential (τ = 10
in Eq. 3) with the angular velocity already present. As
shown in Fig. 4 earlier, the state remains in the instan-
taneous state as the lattice is turned on, so that the de-
generacies present in the absence of the lattice continue
to determine the dynamics even when the lattice reaches
maximum strength, as long as it is done so adibatically.

VII. SENSOR APPLICATION POTENTIAL

The sensitivity of the coherent oscillation to rotation
naturally suggests possible application in rotation sens-
ing. The response of the amplitude of oscillations will be
manifest in the angular momentum, hence the circula-
tion, an observable of the system. However, Fig. 5 shows
that the decline in the amplitude with rotation is rather
gradual, indicating limits to sensitivity. But Fig. 7(a,b,c)
indicates this can be remedied by reducing the lattice
depth. In the limit of very weak coupling (small U0),
the drop in amplitude of oscillation can be quite sharp,
indicating heightened rotation sensitivity. Furthermore,
as seen there, weak lattice also has the advantage that
only the primary modes are excited, making the dynam-
ics more transparent and cleaner.

There is of course a trade-off. Weaker lattice leads
to longer periods, evident in Fig. 7(d,e,f), which reflects
the energy time trade-off of the uncertainty principle. So
that while rotation sensitivity can be enhanced by weak-
ening the lattice strength, longer duration of observation
is required to allow for completion of a period.

Interestingly, a potential bypass of this trade-off also
seems to be implied in the behavior of the period of os-
cillation. At some non-zero angular velocity, there is a
sharp drop in the period as the angular velocity is in-
creased. This is shown in Fig. 7(d,e,f). That drop is
sharper at higher lattice strengths. But, the trade-off
here is that the drop off is smaller in magnitude. One
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FIG. 7: (Color online) The legend in subplot (e) applies to sub-
plots (a-f). The left panels (a-c) plot the variation of ampli-
tude of oscillation caused by rotation. They match Fig. 5(a)
except here, along with the initial mode n0 = 1 (marked by
blue dots), the modes it couples to are also shown to undergo
similar behavior, and all are impacted by the lattice strength
U0. The right panels (d-f) show that rotation also impacts the
period of oscillation of the modes causing a drop and subse-
quent rise, that gets sharper with increasing U0. Panels (a,d)
label modes that overlap with the initial mode; its dominant
coupling changes from mode n = −1 to n = +3 as ω varies,
also seen at higher U0 but less stark. Boxed panels (g,h) show
time evolution of the primarily occupied modes, correspond-
ing to the specific values of ω circled in panel (f); fluctuations
are due to migration of the dominant coupling.

could, in principle, utilize the sharpness of period change,
if one were to monitor the period of oscillation keeping
the system rotating at a uniform rate close to the tran-
sition point. Then, a small change in the period would
indicate a change in the rotational state.

The drop in both the period, as well as the amplitude
of oscillation and subsequent revival, actually occurs for
all the relevant coupled modes, although to a variable
degree for each. This marks the transition of one set of
strongly coupled oscillating modes to another set, as the
energy degeneracy shifts with rotation. This is clearly
evident in Fig. 7(a,b,c) for the amplitudes of the modes
as ω changes.

The regime of lowered period span different ranges of
the angular velocity for the various modes, but is widest
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for the initial mode as seen in Fig. 7(d,e,f). The cause
for the sudden change is evident when one tracks the
population oscillation for values of ω lying in the valley
of lowered periodicity. For a pair of points in that regime,
Fig. 7(g,h) shows that oscillations become rather erratic.
This can be be attributed to transitions in the coupling
of the modes that occur here, so that the same mode is
coupled with equal strength to two distinct modes.

VIII. INFLUENCE OF LATTICE PARAMETERS

We now turn our attention to the influence of the lat-
tice parameters on the system dynamics. To be specific,
we track the response of the time evolution of the pop-
ulation in the initial state, characterizing it by the pe-
riod and the amplitude of its oscillation, as well as by
the mean value of the population. All are averaged over
multiple periods at steady state when the lattice poten-
tial is constant at maximum depth. We illustrate this
comparatively for an oscillating case n0 = 2, q = 2 and
a self-trapped case n0 = 2, q = 3. In the latter case, the
period and the amplitude refer to that of the wiggles in
the population of the initial state.

A. Revival Time

As noted earlier, on adiabatically switching off the lat-
tice, in the oscillating cases, the system does not nec-
essarily restore to the initial state and angular momen-
tum. This is influenced by the rate of switching off as
well as by when the switch off is initiated. By adjust-
ing these parameters, via τ and T in Eq. (3), practically
any terminal angular momentum can be achieved inter-
mediate between and upto complete circulation clockwise
or counter-clockwise. The time for complete revival de-
pends on the number of ladder steps, given by the ratio
2n0/q, separating the initial state from its energy degen-
erate counterpart. A higher value requires longer revival
time. Furthermore, for fixed lattice period q, the revival
time generally increases with the mode n0 and hence its
energy. The notable exception is for the resonant case
when 2n0/q = 1, where the initial mode couples directly
with its degenerate mode, in which case, the revival time
remains surprisingly constant regardless of the specific
initial mode, n0 in consideration.

B. Exponent of the Potential

We have presented all our results so far for the power
of cosine in the lattice potential in Eq. (2) at 2p = 2.
We now show that the conclusions are qualitatively un-
changed by that constraint. Increasing the exponent 2p
has the effect of narrowing the width of the peaks of the
potential with no effect on the lattice periodicity. We
consider two options, (1) keeping the strength U0 fixed
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FIG. 8: (Color online) The influence of the power 2p of the co-
sine potential on the dynamics is represented by tracking the
period, mean-value and amplitude of the oscillations/wiggles
in the time-evolution of the initial mode. Left panels are for
an oscillating case with n0 = 2, q = 2 and the right panels for
self-trapped case with n0 = 2, q = 3. The full circles interpo-
lated by orange lines keep the area under the potential fixed
by adjusting the lattice strength U0 while the empty circles
interpolated by blue lines keep U0 constant.

and (2) adjusting it so that the integrated area of each
peak remains constant. The latter option simulates the
approach to a sequence of delta functions in the limit
p → ∞, matching a similar limit of a Kronig-Penney
model. Figure 8 illustrates the effects. Fixed U0 makes
the potential weaker with increasing power, so the oscilla-
tion period increases, consistent with the proportionality
of energy to frequency. However, when U0 is adjusted
to maintain the strength of the lattice, the period settles
into a stable value. A sharp initial drop is due to the
opening up of new ladder paths with larger step size, im-
plicit in the trigonometric expansion in the second form
of the potential in Eq. (2).

The mean value of the oscillation captures the loss of
population from the initial state, averaged over a period.
The patterns are similar for both oscillating and self-
trapped cases, but with different physical interpretations.
For the oscillating case, the mean value is proximate to a
value of 1/2 which corresponds to oscillations with maxi-
mum amplitude. At fixed U0 as the potential weakens, it
is harder to excite more distant modes so that the system
tends towards a full amplitude oscillation between the
dominant degenerate pair. This is also reflected in the
behavior of the amplitude. The initial sharp boost levels
off as the maximum amplitude is approached asymptot-
ically. When the strength of the potential is kept con-
stant by adjusting U0, both the amplitude and the mean
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FIG. 9: (Color online) The influence of the lattice strength
U0 of the cosine potential on the dynamics is represented by
tracking the period, mean-value and amplitude of the oscilla-
tions/wiggles in the time-evolution of the initial mode. Left
panels are for an oscillating case with n0 = 2, q = 2 and the
right panels for self-trapped case with n0 = 2, q = 3. The in-
terpolating lines are for guidance only, the multiple lines are
for different values of the power of the cosine potential, 2p.

remain at values that reflect diminished oscillations of
the dominant pair, with population acquired by other
modes. A sharp drop at low power is once again due to
the opening up of new ladder paths.

In the self-trapped cases, the mean values approach
unity and the amplitude of the wiggles approaches zero
when the potential weakens with increasing power, both
indicative of vanishing effect of the lattice. But, when
the potential strength is maintained, the narrowing of
the potential causes the mean to stabilize at some value
representing some loss of population in the initial state,
which is accompanied by the characteristic wiggles that
settle into some constant amplitude.

There are two main messages here: (1) If the strength
of the potential is maintained, the dynamics becomes
generally insensitive to the exponent, consistent with set-
tling into universal behavior as the lattice approaches the
delta comb limit. (2) The greatest impact of the expo-
nent is at low values when the emergent new ladder path-
ways have the highest relative weights compared to the
fundamental pathway.

C. Strength of the Potential

In Fig. 9, we present the effect of increasing the
strength of potential, fixing the exponent 2p of the co-
sine function in the potential Eq. (2) at different values,
to create a picture of the composite effect of the potential

strength and width. For both oscillating and self-trapped
cases, the increase in the strength of the lattice potential
causes a decline in the period of the oscillations consis-
tent with higher energy input as seen in Fig. 9. A sharp
decline is seen at lower strengths, particularly for the os-
cillating case, but at higher strengths, the period levels
off at values that trend higher with the weakening due to
the narrowing of the potential at higher exponents.

The same basic pattern appears for the mean value
as well. The decline reflects increased loss of population
to modes farther apart on the ladder made energetically
accessible by the stronger lattice coupling, but softened
by narrowing of the potential at higher exponent.

In the case of strong oscillations, the amplitude acts
in tandem with the mean value for the same reasons.
However, the amplitude of the wiggles reveal an opposite
trend, an increase with U0 at the beginning before level-
ing off and possibly turning around. This occurs because
initially, a stronger potential boosts the coupling between
the initial mode n0 and its neighbor n0 − q, but as the
strength increases further the latter mode can itself cou-
ple further along the ladder reducing the amplitude of
the initial mode. Notably, the turnaround effect is less
pronounced at higher exponents, since the existence of
multiple ladder pathways allows the initial mode to di-
rectly couple to multiple modes on the ladder, leading to
more pronounced oscillations.

The influence of the lattice strength U0 is particularly
relevant in the two limits of weak lattice and strong lat-
tice. In the weak lattice limit, clearly there is strong
sensitivity to the lattice depth, with even local rever-
sal of trends occurring for small exponents 2p that can
be attributed to the heightened impact of new coupling
pathways opening up. The strong lattice marks a tight-
binding limit, where localized states would be a more ap-
propriate basis and the behavior of individual circulating
modes tends to become uniform.

IX. OUTLOOK AND CONCLUSIONS

The considerations in this paper indicate some of the
most basic experiments that could be done on a ring
shaped lattice. The primary criterion for testing the re-
sults here is to trap ultracold atoms that maintain co-
herence in a toroidal trap where an azimuthal lattice
structure can be introduced. Confinement of atoms in
ring traps has been demonstrated and utilized in exper-
iments for some time now, with LG beams [6, 12, 40]
as well as via other methods such as with an intensity
mask [23, 24]. In some of these experiments, sharply fo-
cussed blue-detuned lasers have been used to create po-
tential structures along the azimuth, indicating feasibility
of a lattice potential with a uniformly spaced multitude.
Ring shaped lattices have already been demonstrated by
interfering two LG beams with opposite orbital angu-
lar momentum (OAM) and offers a particularly conve-
nient method [21, 22]. What remains to be done is the
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clearly feasible step of bringing together these two fea-
tures, already separately realized, azimuthal lattice po-
tential, and confinement of ultracold atoms in ring traps.

The other necessary feature in our study is the inclu-
sion of rotation. Angular motion of the general frame
is clearly an independent consideration that does not
impact trapping of atoms in ring shaped lattices. The
lattice itself can be easily rotated by introducing a fre-
quency shift between the two constituent LG beams, lim-
ited only by the speed of the phase modulation, but rota-
tion periods at the picosecond levels are possible with an
electro-optic modulator [41]. Measurement of the quan-
tum states in the ring can be done through various imag-
ing techniques, the phase via mapping to density modu-
lation such as by interference of a circulating condensate
with a non-circulating one [24, 42], and measurements of
flow even in situ have been demonstratd [43].

Adiabatic introduction of the lattice can be done in a
variety of ways, one possibility in the case of LG beams,
would be to use one beam of zero OAM for confinement,
and a pair with opposite OAM, ±h̄q to create the lat-
tice that can be independently controlled, so raising its
intensity would adiabatically introduce the lattice. Dif-

ferent values of the OAM would lead to different lattice
periodicities in multiples of q. Finally, although not ab-
solutely essential, the nonlinearity can be reduced by use
of Feshbach resonance to tune atom-atom interactions to
approximate the linear behavior [39] assumed here.

The results reported here offer multiple routes for fur-
ther research, particularly with the introduction of non-
linearity, a subject of our ongoing interest. Specifically, a
prior study, co-authored by one of us, showed that rota-
tion sensitivity can be enhanced by use of spin squeezing
induced by nonlinearity [2]. The sensitivity, as observed
here, of the amplitude of mode oscillation to rotation
could possibly be similarly enhanced, to make it a com-
petitive mechanism for matter wave rotation sensing.
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