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ABSTRACT: A redox-neutral alkyl Petasis reaction has been developed that proceeds via photoredox catalysis. A diverse set of
primary, secondary, and tertiary alkyltrifluoroborates participate effectively in this reaction through a single-electron transfer
mechanism, in contrast to the traditional two-electron Petasis reaction, which accommodates only unsaturated boronic acids.
This protocol is ideal to diversify benzyl-type and glyoxalate-derived aldehydes, anilines, and alkyltrifluoroborates toward the
rapid assembly of libraries of higher molecular complexity important in pharmaceutical and agrochemical settings.

Multicomponent reactions (MCRs) have emerged as
powerful transformations to condense three or more

partners to deliver novel scaffolds with inherent molecular
complexity.1 The advantages of MCRs include the preservation
of atom and step economies, shorter reaction times, and the
ability to access highly diverse chemical space rapidly and
efficiently. These integral benefits make MCRs highly attractive
for diversity-oriented synthesis of small molecule libraries in
drug discovery2 as well as in a variety of other useful
endeavors.3

Presently, the tool box of a synthetic chemist is composed of
many MCRs, including Mannich,4 Biginelli,5 Passerini,6 and
Ugi transformations.7 The Petasis reaction8 is another such
reaction and is perhaps unique by virtue of its generation of
amines and amino acid derivatives with pivotal activity in
biology. The majority of traditional Petasis applications require
adjacent heteroatoms as directing groups to form the key
boron “ate” complex intermediate (Scheme 1a).9 This initial
complexation is followed by an irreversible, two-electron
nucleophilic addition to an imine or iminium ion intermediate,
stemming from a condensation reaction of the aldehyde and
amine. The propensity of the boron “ate” complex to migrate
depends on its ability to stabilize negative charge: alkynyl >
aryl ≈ alkenyl > alkyl.10 Thus, the traditional Petasis reaction is

restricted to alkenyl, aryl, alkynyl, allyl, benzyl, and allylic
boronic acid derivatives.8,9 As far as we are aware, there are no
reports of multicomponent Petasis reactions using alkylboron
derivatives. A widely utilized alternative approach to amines
stemming from two-electron nucleophilic addition to imines or
iminium ions uses strongly nucleophilic organometallic
reagents.11 These transformations, however, rely on harsh
reaction conditions that compromise functional group
tolerability, restricting their widespread use in late-stage
functionalization of complex molecules. It is also important
to note that the formation of water as a byproduct under a
multicomponent platform would hinder the efficacy of these
pyrophoric reagents. In the context of single-electron transfer
(SET) in the multicomponent Petasis reaction, the only
examples reported require preformed imines12 or the use of
stoichiometric indium as a reductant with limited scope, being
restricted to secondary alkyl iodides.13

Other SET approaches to CN bond alkylation, including
Minisci reactions, are well documented.14 Our group, as well as
others, recently demonstrated that photoredox catalysis
enables the generation of alkyl radicals from organotrifluor-
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oborates, while maintaining broad functional group toler-
ance.15 Given the robust stability of alkyl radicals to aqueous
conditions, a photoredox approach to a multicomponent
Petasis-type reaction would appear feasible. We envisioned that
a suitable photocatalyst in its excited state ([PC]*, II) would
initiate the process by oxidizing an alkyltrifluoroborate IV to
the desired alkyl radical V (Scheme 1b), generating BF3 as a
byproduct. The radical V could then add to the in situ
condensed imine VIII to form the amine radical cation IX. A
subsequent reduction of IX by the reduced state of the
photocatalyst III terminates the photocatalytic cycle. The use
of trifluoroborates as radical precursors was viewed as critical
for the success of the proposed protocol because the BF3 Lewis
acid generated in the SET process was anticipated to facilitate
the condensation between the aldehyde and the amine and
could also activate the resultant imine toward radical addition.
Relevant to the present investigation, the Doyle16 and

Gaunt17 groups recently reported elegant multicomponent
reactions to access benzhydryl amines as well as tertiary
amines, respectively. In a unique transformation, Li reported a
Ru-catalyzed addition of aldehydes to preformed aryl imines,
accessing phenylalkyl amines. The scope of this process was
restricted predominantly to benzaldehydes.18 The multi-
component synthesis of analogous phenylalkyl amines is thus
underexplored.
After a systematic survey of reaction parameters (see the

Supporting Information), we were able to identify suitable
reaction conditions. Thus, in exploratory studies a mixture of
methyl 4-formylbenzoate (1), aniline (2, 1.5 equiv), and
potassium cyclohexyltrifluoroborate (3, 1.5 equiv) was

catalyzed by [Ir{dF(CF3)ppy}2(bpy)]PF6 (2 mol %,
E1/2

red[*IrIII/IrII] = +1.32 V vs SCE)19 in the presence of
sodium bisulfate (1.0 equiv) in 1,4-dioxane (0.1 M) (Scheme
2). The desired product (4) was afforded in 84% isolated yield
under irradiation with blue LEDs for 24 h at rt.20,21 In
expanding the method, diverse secondary alkyltrifluoroborates,
including heteroaromatic-based systems, were found to be
amenable substrates in this transformation. In the hetero-
aromatic substructures (e.g., 10), no Minisci byproduct was
detected. Sterically disfavored tertiary alkyltrifluoroborates
gave excellent yields (12, 13). Surprisingly, primary aliphatic
alkyltrifluoroborates, with a markedly higher oxidation
potential (E1/2

red = +1.90 V vs SCE)22 reacted well under
the reaction conditions (14−16).
Assessing the aldehyde scope, halo-substituted benzaldehyde

derivatives whose products are suitable for further processing
provided the targets in good yield (25−27). The reaction is
highly chemoselective. In a dicarbonyl substrate, only the
aldehyde derivative reacted, while the ketone remained
untouched (24). Electron-donating groups are amenable
structural motifs (32-37). Given that heteroarenes represent
prevalent substructures in pharmaceutically relevant mole-
cules,23 a variety of such systems were evaluated and proved to
be effective partners (38−43). Additionally, an unnatural α-
amino acid derivative is accessible using glyoxyl aldehyde
instead of a benzaldehyde derivative (44).
Next, we turned our attention to the aniline partner, where a

wide array of functional groups was tolerated, such as chloro
(45, 46, 49, 50), trifluoromethyl (47), ester (48), and methoxy
(54). The electronic effect on the aniline component was
inconspicuous. Meanwhile, the reactions were not sensitive to
steric hindrance at the ortho position of the aniline (52, 53).
To demonstrate the utility of this protocol for late-stage

modification of intricate molecules, we prepared benzaldehyde
derivatives from commercially available drug cores.24 Both
indomethacin and fenofibrate were successfully converted to
the corresponding products in excellent yields (55, 56).
Sulfadimethoxine was also elaborated with acceptable yield,
especially considering its high functional group density (57).
To highlight the application of this photoredox alkyl Petasis
reaction further, we utilized this method to expedite the
synthesis of a key intermediate toward a Pfizer glucagon
receptor modulator (Scheme 3b).25 The key intermediate (60)
was assembled with good yield in one step using this newly
developed, convergent MCR reaction.
To highlight the amplification of this method, a trans-

formation was successfully performed on a larger scale,
whereby the desired product 54 was obtained in 51% yield,
in agreement with the small-scale reaction. It is worth noting
that the p-methoxyphenyl (PMP) group of 54 could be readily
removed by ceric ammonium nitrate (CAN) oxidation to
release the primary amine (61) (Scheme 4).26

To probe the reaction pathway, we conducted preliminary
mechanistic studies. The ring-opening product was exclusively
observed when potassium (cyclopropylmethyl)trifluoroborate
was used as the starting material (Scheme 5a). In the presence
of the radical scavenger TEMPO [(2,2,6,6-tetramethylpiper-
idin-1-yl)oxyl], the reaction was completely inhibited, and a
TEMPO-alkyl adduct was isolated, as well as the imine
(Scheme 5b). This is suggestive of the involvement of alkyl
radical generation under this reaction manifold. When the
preformed imine was used instead of the aldehyde/aniline
partners, a yield similar to that obtained in the multi-

Scheme 1. Mechanistic Rationale: SET-Based Petasis
Reaction and Phenylalkyl Amine Bioactive Molecules
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component reaction was observed (Scheme 5c). Furthermore,
during the course of the reaction, the reductive dimerization
byproduct of the imine was not observed.27 Although Stern−
Volmer studies indicate no significant quenching of the excited

state of the photocatalyst (E1/2
red [IrIV/*IrIII] = −1.00 V vs

SCE)19 by the imine intermediate, we cannot rule out the
possibility of direct reduction of the imine (E1/2

red = −1.91 V
vs SCE)14e,28 by the reduced state of the photocatalyst (E1/2

Scheme 2. Scope of Alkyltrifluoroborates, Aldehydes, and Anilinesa

aReaction conditions: aldehyde (0.5 mmol), alkyltrifluoroborate (0.75 mmol), aniline (0.75 mmol), [Ir{dF(CF3)ppy}2(bpy)]PF6 (0.01 mmol),
NaHSO4 (0.5 mmol), and 1,4-dioxane (5 mL) under blue LED irradiation for 24 h. Isolated yields are given. bIrradiated by 34 W Kessil lamp.
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[IrIII/IrII] = −1.37 V vs SCE).19 In particular, variabilities in
reaction concentration and pH levels could exert an impact on
redox potential values.29

In conclusion, a multicomponent alkyl Petasis reaction
under photoredox conditions has been developed. This
procedure employs bench stable, commercially available
alkyltrifluoroborates, easily accessible benzaldehydes, and
anilines as feedstock. Taking advantage of the stability of
alkyl radicals in water, preformed imines are no longer
required, providing a highly step-efficient process that should
be amenable to the industrial setting. Other favorable factors
include the elimination of harsh reaction conditions (elevated
temperatures and strong organometallic reagents) and the
toleration of an exceptional array of functional groups as well
as complex structural scaffolds. The facile diversification
inherent in this MCR positions this technology as being

extremely suitable for diversity-oriented synthesis in drug
discovery scenarios.
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Scheme 3. Late-Stage Functionalization of Pharmaceutical Analogues and Modular Bioactive Molecule Synthesisa

aSee the Supporting Information for details.

Scheme 4. Large-Scale Reaction and Removal of the PMP
Groupa

aSee the Supporting Information for details.

Scheme 5. Preliminary Mechanistic Studiesa

aSee the Supporting Information for details.
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8133. (i) Fernańdez-Salas, J. A.; Maestro, M. C.; Rodríguez-
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