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A B S T R A C T   

The late Oligocene is an important deep-time analog for understanding future changes in the strength of the East 
Asian monsoon: it represents a climate warmer than today, yet follows the nascent uplift of the Tibe
tan–Himalayan orogeny during the Eocene Epoch. Here we quantify monsoon strength based on new oxygen 
isotope measurements on cellulose (δ18Ocell) extracted from modern and fossil wood from southern China. Tree- 
ring δ18Ocell values have previously been used to track Holocene climate variations in East Asia, as δ18Ocell values 
are primarily controlled by meteoric water δ18O (δ18OMW) and relative humidity. We find the δ18Ocell values 
measured on the modern samples (25.7 to 29.1‰ VSMOW) are consistent with other δ18Ocell records from trees 
growing in southern China under the present-day monsoon climate. However, fossil wood δ18Ocell values (21.0 to 
24.1‰ VSMOW) are significantly lower than those from living trees in the region, and instead overlap with 
values from modern high latitudes and high elevations. We show that these low δ18Ocell values are best explained 
by much higher rainfall amounts in southern China during the late Oligocene, with monthly wet-season rainfall 
that may have been ~60% greater than today based on modern relationships. These data represent the first 
seasonal rainfall estimates for southern China during the late Oligocene and signify an intensification of the 
region’s current monsoonal rainfall patterns. We speculate that significantly greater monsoon rainfall is therefore 
possible in the region under a warmer climate.   

1. Introduction 

Strong seasonality in precipitation, with wet summers and dry win
ters, characterizes the monsoon climate across East Asia today. Models 
indicate that monsoon intensity, measured as the amount of summer 
rainfall, may increase with global warming (Takahashi et al., 2020), but 
projected changes have large uncertainties and substantial intermodel 
variability (Chevuturi et al., 2018), and the role of anthropogenic ac
tivity (i.e., aerosol emission) on monsoon strength is still highly debated 
(Bollasina et al., 2011; Dong et al., 2019; Kim et al., 2016; Mu and Wang, 
2021). Paleoclimate records from intervals of warmer global climate 
may therefore be informative for understanding monsoon dynamics in a 
warmer world. Analysis of paleo-monsoon strength is commonly infer
red from oxygen isotope measurements of speleothems (Cheng et al., 
2016; Cosford et al., 2008; Liu et al., 2020), but these records are limited 
to the Quaternary, when CO2 levels were lower than today. Studies of 

monsoon strength in deep time (pre-Quaternary) indicate a strong link 
between CO2 and rainfall dating back to the Eocene (Licht et al., 2014), 
while others highlight the important role of paleogeography on 
monsoon intensity (Farnsworth et al., 2019). Although the mechanism is 
debated, recent work provided firm evidence for an East Asian Monsoon- 
style system, with wet summers relative to winters, prior to the Neogene 
(Vornlocher et al., 2021), but quantitave estimates of the amount of wet- 
season rainfall in the late Oligocene are lacking. Here we provide new 
measurements of the oxygen isotope value of cellulose (δ18Ocell) 
extracted from modern and late Oligocene fossil wood in order to 
determine how monsoon rainfall during the late Oligocene compares to 
today. The late Oligocene is an ideal period to study the effect of global 
temperature on monsoon intensity because it represents the likely tra
jectory for Earth’s climate system as CO2 emissions continue to rise 
unabated (Westerhold et al., 2020). It also represents a critical period in 
central Tibetan uplift (Fang et al., 2020; Su et al., 2019), and therefore is 
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an essential yet understudied interval of time for investigating Asian 
monsoon dynamics in deep-time. 

Determination of δ18Ocell value from living trees has long been used 
to quantify recent climate change (Brienen et al., 2012; Knorre et al., 
2010; Loader et al., 2010; Loader et al., 2007; McCarroll and Loader, 
2004; Poussart et al., 2004; Rinne et al., 2013; Saurer et al., 2008; 
Treydte et al., 2006; Young et al., 2015), including in monsoon regions 
of East Asia (e.g., Sakashita et al., 2016; Xu et al., 2016). Application of 
these techniques to well-preserved fossil wood collected from pre- 
Quaternary sediments has allowed for new quantitative climate data 
in deep time (Jahren and Sternberg, 2002, 2003, 2008; Richter et al., 
2008a; Wolfe et al., 2012). These studies all rely on empirical relation
ships between the stable oxygen isotope composition of tree-ring cel
lulose (δ18Ocell) and that of meteoric water (δ18OMW) (Csank et al., 2013; 
Olson et al., 2020; Richter et al., 2008b; Saurer et al., 2016; Sternberg 
et al., 2007; Waterhouse et al., 2002), which can then be related to 
precipitation or temperature depending on the environment in which 
the plant grew: δ18OMW values in low-latitude sites respond more to 
rainfall amount (Araguás-Araguás et al., 1998; Brienen et al., 2012; 
Dayem et al., 2010; Gonfiantini et al., 2001; Xie et al., 2011), while 
δ18OMW values in middle to high-latitude sites are affected more by 
changes in temperature (Bowen, 2008; Dansgaard, 1964; Schubert and 
Jahren, 2015). We leverage these earlier works to present the first es
timates for wet-season rainfall in southern China during the late 
Oligocene based on the δ18Ocell value of well-preserved wood fossils, 
thus providing data on seasonal rainfall intensity in this monsoon region 
under a warmer climate state. 

2. Materials and methods 

Mummified fossil wood samples were collected from the upper 
Yongning Formation near Nanning in the Guangxi Zhuang Autonomous 
Region of South China (22◦52′50” N, 108◦25′2′′ E; elevation = ~80 m; 
Fig. 1) (Quan et al., 2016). The upper Yongning Formation is a lacustrine 
deposit dated to the late Oligocene based on palynology and mammalian 

fossils (Quan et al., 2016). For this study, we selected 64 mummified 
wood samples representing the genus Castanopsis (Huang et al., 2018) 
for cellulose extraction and oxygen isotope analysis. This genus is 
considered an important paleoecological indicator of subtropical ever
green forests (Gee et al., 2003), and are currently restricted to regions of 
east and southeast Asia (Huang et al., 2018). Living Castanopsis trees 
growing in the region have maximum rooting concentrations within the 
upper 0.3 m of the soil (Hao et al., 2006). Such shallow rooted trees may 
better record annual variations in δ18OMW (McCarroll and Loader, 2004; 
Waterhouse et al., 2002) than more deeply rooted species or trees 
growing in drier climates (e.g., Huang et al., 2019a; Huang et al., 
2019b). 

Radial cores (QXS21A and QXS24A, Fig. 1) were also collected from 
two living Pinus massoniana trees growing at nearby Qingxiushan Hill, 
Nanning (22◦47′23.35” N, 108◦23′4.26′′ E, elevation = 223 m). The site 
has a humid, monsoon climate, with 63% of the total annual rainfall 
falling in only four months (May through August) (Fig. 2). Annual 
growth rings (entire earlywood and latewood) were sampled by hand 
using a razor blade across the years 1990–2000 to produce an annually 
resolved δ18Ocell record. This period was chosen because it: 1) repre
sented a wide range of wet-season (May through August) rainfall (482 to 
1267 mm), and 2) avoided potential juvenile effects on δ18Ocell value in 
the early portion of the trees’ growth (Büntgen et al., 2020; Duffy et al., 
2019). A total of 22 annual growth rings (11 per tree) were collected for 
stable isotope analysis. 

We extracted α–cellulose from bulk samples of the fossil wood and 
individual tree rings of the modern wood following a method modified 
from Brendel et al. (2000). Because of the low cellulose yields in the 
fossil wood relative to the modern wood, we increased the amount of 
fossil wood starting material and proportionally adjusted the volume of 
reagent used. Lignin was removed by nitric acid and acetic acid, and 
lipids were removed by ethanol and acetone, and then treated with 17% 
sodium hydroxide solution to obtain α–cellulose. Dry α–cellulose sam
ples were then weighed into silver capsules, and δ18Ocell values were 
determined using a High–Temperature–Conversion Elemental Analyzer 
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Fig. 1. a) Location of Nanning, China (circle) and Guangzhou, China (square) within the present-day monsoon region (pink: as reported within (Ramage, 1971) and 
(Wang and Ding, 2008)). Note this area includes the East Asia summer monsoon, western North Pacific summer monsoon, and Indian summer monsoon (Wang and 
LinHo, 2002). All of these locations experience high rainfall seasonality today. b-c) Photographs of mummified fossil wood samples: b) NNW015 and c) NNW037, 
respectively. d-e) Photographs of the two modern cores: d) QXS21A and e) QXS24A. (For interpretation of the references to colour in this figure legend, the reader is 
referred to the web version of this article.) 
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coupled with a Delta–V Advantage Mass Spectrometer (Thermo Fisher 
Scientific, Inc., USA). Samples were analyzed with three internal labo
ratory reference materials (ACELL = 32.33 ± 0.06‰, JCELL-01 = 17.64 
± 0.09‰, and SigmaCell = 28.46 ± 0.07‰) calibrated against Inter
national Atomic Energy Agency (IAEA) benzoic acid reference materials: 
IAEA 601 (23.24 ± 0.19‰) and IAEA 602 (71.28 ± 0.36‰). A quality 
assurance sample (JCELL 02, δ18O = 20.44 ± 0.10‰) was analyzed 
within each batch and analyzed as an unknown. The δ18Ocell values had 
an analytical error of ±0.3‰ and ± 0.1‰ for the fossil and modern 
samples, respectively. The δ18Ocell values are reported in units of per mil 
(‰) relative to the VSMOW standard. 

3. Results 

We recovered α–cellulose from 67% of the fossil wood samples (43 
out of 64 samples); the remaining 21 samples (33%) contained no 
recoverable α–cellulose, and are not discussed further. The δ18Ocell value 
of the 43 fossils ranged from 21.0 to 24.1‰ with a mean (± 1σ) = 22.4 
± 0.7‰ (Table 1). The measured variance in the δ18Ocell values across 
the 43 fossil specimens was small (0.5‰), consistent with a common 
water source and common environment during growth (Csank et al., 
2013; Sternberg et al., 2007). Because the δ18O value of seawater during 
the late Oligocene was lower than today (Westerhold et al., 2020), we 
added 2.5‰ to the fossil values to allow for an unbiased comparison 
with modern δ18Ocell values. The δ18Ocell value of the modern samples 
averaged 27.4 ± 1.0‰ (n = 22) (Table 2), which was similar to the most 
recent 50 years of δ18Ocell values measured independently on Pinus 
massoniana and Picea schrenkiana trees growing in monsoon regions of 
southern China (Shi et al., 2020; Xu et al., 2013) (Two-sample t-test, t =
0.6, p = 0.53). The different sampling resolution of the modern (annual) 
and fossil (bulk wood) samples do not allow for comparison of variance 
between the late Oligocene and present-day; however, the δ18Ocell 
values of the modern samples is significantly higher than both the raw 
(22.4 ± 0.7‰) and seawater-corrected (24.9 ± 0.7‰) fossil δ18Ocell 
values (two-sample t-tests, t = 20.8 and 10.3, respectively; p < 0.0001 
for each). We note that all further analysis and discussion of the fossil 
δ18Ocell data use the seawater corrected values. 

4. Discussion 

When examining our results within the context of published δ18Ocell 
values, we find that all our measured δ18Ocell values (both fossil and 
modern) were within the range of δ18Ocell values reported for trees 

growing across the planet today (δ18Ocell = 14 to 34‰; Fig. 3). The 
δ18Ocell values of the modern samples are similar to other records in 
southern China (Cai et al., 2018; Shi et al., 2020; Xu et al., 2013). 
However, our measured fossil δ18Ocell values are lower than δ18Ocell 
values from the modern trees in the Nanning Basin, and are more similar 
to values reported for trees growing at high elevation sites (3500 m) in 
Nepal (Xu et al., 2018); high latitude, cold sites near Lake Baikal in 
central Russia (Tartakovsky et al., 2012) and arctic Siberia (Holzkämper 
et al., 2008); and areas that receive higher summer rainfall amounts 
than southern China (e.g., Bangladesh, Islam et al., 2021). Nevertheless, 
the paleolatitude (Wu et al., 2017) and paleogeography (Quan et al., 
2016) of Nanning Basin during the late Oligocene are incompatible with 
very low MAT and/or high elevation, suggesting the low δ18Ocell values 
measured in our fossil wood samples are unlikely caused by these fac
tors. This is also supported by similar δ18Ocell values reported for 
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Fig. 2. Monthly average relative humidity, precipitation, and δ18OMW value for Nanning, China. Note that the lowest δ18OMW values occur in summer when pre
cipitation is greatest. Climate data are from the China Meteorological Data Service Center (2018) for our study period (1990–2000); δ18OMW data are from Bowen 
et al. (2005). 

Table 1 
Measured δ18Ocell values of late Oligocene fossil wood.  

Sample ID δ18Ocell (‰, VSMOW)a Sample ID δ18Ocell (‰, VSMOW)a 

18,060–10 23.0 18,060–66 23.2 
18,060-12A 22.5 18,060–70 23.0 
18,060–13 22.1 18,060–71 22.0 
18,060-15B 23.5 18,060–72 22.6 
18,060–16 22.9 18,060–73 22.9 
18,060–18 22.3 18,060–76 22.9 
18,060–19 23.3 18,060–77 22.5 
18,060–31 22.9 18,060–78 21.0 
18,060–33 22.0 18,060–84 21.4 
18,060–34 22.2 18,060–85 22.9 
18,060–37 21.3 18,060–86 24.1 
18,060–40 21.1 18,060–88 22.3 
18,060–47 22.3 18,060–91 22.6 
18,060–48 22.5 18,060–104 22.6 
18,060–50 22.5 18,060–109 23.1 
18,060–51 22.3 18,060–110 22.5 
18,060–52 21.5 18,060–111 21.3 
18,060–53 22.0 18,060–114 22.4 
18,060–60 23.1 18,060–117 22.6 
18,060–61 22.7 18,060–124 21.4 
18,060–64 21.4 18,060–126 22.0 
18,060–65 22.4 Average ± 1σ 22.4 ± 0.5  

a Data reported here are raw δ18Ocell values, prior to any correction for 
changes in δ18O of seawater. For comparison with modern values, we added 
2.5‰ to these values to account for the lower δ18O value of seawater during the 
late Oligocene than today, as inferred from δ18O measurements of benthic 
foraminifera (Westerhold et al., 2020). 
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Oligocene age wood fossils from interior Siberia (Fig. 3), which further 
preclude temperature (Richter et al., 2008b), vapor transport distance 
(Jahren and Sternberg, 2002), or continentality (i.e., distance from 
coast) (Rozanski et al., 1993) as viable explanations for the low δ18Ocell 
values measured in the fossil wood from Nanning Basin. Intriguingly, 
similarly low δ18Ocell values to our fossil wood have also been measured 
in modern wood growing within monsoon climates of east and south 
Asia that see greater precipitation amounts than present–day Nanning 
Basin (Islam et al., 2021; Schollaen et al., 2014; Zhu et al., 2012). For 
example, Zhu et al. (2012) reported δ18Ocell values of 22.3 to 25.9‰ 
(mean ± 1σ = 24.1 ± 0.78‰) for Pinus merkusii growing in southern 
Cambodia and Islam et al. (2021) reported δ18Ocell values of 24.2 to 
27.2‰ for Chukrasia tabularis (25.6 ± 0.8‰) and Lagerstroemia speciosa 
(25.9 ± 0.5‰) growing in Bangladesh; both of these studies reported 
data from sites with greater wet-season precipitation than our study site 
in Nanning. 

We therefore interpret our low δ18Ocell values in terms of the amount 
effect, consistent with interpretations made at other low-elevation 
tropical and sub-tropical sites (Schollaen et al., 2014; Shi et al., 2020; 
Zhu et al., 2012), in which intense monsoon precipitation becomes 
depleted in 18O in summer months (Araguás-Araguás et al., 1998; 
Dansgaard, 1964). We achieve this by first demonstrating the utility of 
these relationships for quantifying growing season precipitation in 
monsoon climates using our modern δ18Ocell values, and then applying 
these relationships towards inferring wet-season rainfall during the late 
Oligocene using our fossil δ18Ocell dataset. 

4.1. Quantifying monsoon precipitation from δ18Ocell 

In order to quantify monsoon rainfall from δ18Ocell, we first 
demonstrate the ability for δ18Ocell to accurately record the δ18OMW 
value of monsoon rainfall in present-day Nanning. We did this by 
calculating δ18OMW from δ18Ocell using the following relationship 
developed by Sternberg et al. (2007) from both needle leaf and broadleaf 
tree species growing across a wide climate gradient: 

δ18Ocell = 0.60 × δ18OMW + 31.9 (1) 

This relationship excluded samples from Arizona, USA (after Stern
berg et al., 2007) because they grew under exceptionally low relative 
humidity (26%) that is known to affect δ18Ocell, and contrasts with the 
consistently high relative humidity of Nanning Basin today (80%) 
(Fig. 2). We note, however, that given the strong relationship between 
δ18Ocell and δ18OMW and large sample size of this dataset (n = 34), the 
slope (m) and intercept (b) do not change substantially if the data from 
Arizona are included (m = 0.61, b = 32.4‰, Sternberg et al. (2007)). 

Using Eq. (1) and the δ18Ocell values measured here for the modern 
trees growing in Nanning, we calculate median δ18OMW = −7.5 ± 1.7‰ 
(n = 22). These values are consistent with predicted δ18OMW values for 
summer monsoon precipitation at this site, which today range from −6.5 
to −8.0‰ (Fig. 2), and demonstrate the utility of Eq. (1) for estimating 
monsoon δ18OMW values using δ18Ocell. 

Next, we calculated average monthly monsoon precipitation using 
the following relationship developed by Xie et al. (2011) for nearby 
Guangzhou, China: 

Pmonth = − 30.4 × δ18OMW–0.5 (2)  

where Pmonth is mean monthly precipitation, and δ18OMW is calculated 
using Eq. (1). Using our annual δ18Ocell values from each tree core and 
Eqs. (1) and (2), we calculate mean (±1σ) Pmonth in Nanning today of 
230 ± 51 mm (range = 141–314 mm). These values are consistent with 
average monthly rainfall amount during the wettest four months of each 
calendar year represented by our δ18Ocell dataset, i.e., “Pwet” 
(1990–2000: Pwet = 216 ± 46 mm, range = 158–317 mm) (Fig. 4). This 
result highlights the importance of rainfall in the wettest months on tree 
growth in this subtropical monsoon climate, and suggests δ18Ocell values 
as an accurate proxy for monsoon precipitation in the region. 

4.2. Quantifying monsoon precipitation during the late Oligocene 

Applying Eqs. (1) and (2) to our fossil wood data allows for 

Table 2 
Measured δ18Ocell values for two modern tree cores (QXS21A and QXS24A).  

Year δ18Ocell (‰, VSMOW) 

QXS21A QXS24A 

1990 28.1 28.1 
1991 29.1 27.9 
1992 28.4 29.0 
1993 28.5 28.0 
1994 25.9 26.7 
1995 26.5 26.7 
1996 26.9 25.9 
1997 26.4 25.7 
1998 27.3 27.4 
1999 26.4 27.4 
2000 27.4 28.2 
Average ± 1σ 27.4 ± 1.0 27.4 ± 1.0  

15 20 25 30
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Literature
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Fig. 3. Violin plots with δ18Ocell data points, box plots, and 
kernel densities for modern and fossil samples. Late Oligocene 
values for Siberia and southern China have both been corrected 
by +2.5‰ to account for changes in seawater composition. 
Global data include compilations by Sternberg et al. (2007) 
and Richter et al. (2008b), with updated sites including a high 
elevation site in the Himalayas (Xu et al., 2018), high latitude 
site in acrtic Siberia (Holzkämper et al., 2008), inland/high 
latitude site in Lake Baikal (cetral Russia; Tartakovsky et al., 
2012), and Bangladesh (Islam et al., 2021). Fossil data from 
Siberia are from Richter et al. (2008a). Box plots show the first 
through third quartiles with whiskers extending a distance of 
the interquartile range on either side of the box. All new 
modern data sets were trimmed to the most recent 50 years for 
each δ18Ocell series to prevent overweighting individual sites. 
Data were available as supplementary materials from the pri
mary publications. Data used in this figure are available in the 
supplementary materials (Table S1).   
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estimation of monsoon precipitation during the late Oligocene. We note 
that this approach can be affected by changes in the δ18O value of source 
water and potential changes in δ18OMW gradients through time (Fricke 
and O’Neil, 1999). If we assume a similar amount effect in the late 
Oligocene as today, we can use our seawater-adjusted fossil δ18Ocell 
values to calculate average Pwet = 349 ± 35 mm (n = 43), which sug
gests late Oligocene rainfall was approximately 60% greater than 
present-day (Pwet = 220 ± 46 mm, 1951 to 2012) (note, without the 
correction, Pwet = 476 mm, or 2.2× present-day, which is untenably 
large). Today, similar monthly precipitation amounts are found at 
coastal sites only 400 km to the southeast of Nanning (e.g., Pwet = 354 
mm at Yangjiang, China) as well as large portions of north central 
Vietnam and central Laos (Pwet = 339 mm, range = 315 to 383 mm) and 
central Bangladesh (Pwet = 348 mm, range = 314 to 384 mm). We note 
that our significantly lower δ18Ocell values in the late Oligocene 
compared with today cannot be reconciled without an increase in 
rainfall compared to present, even if the specific relationship repre
sented by Eq. (2) differed in the past (e.g., steeper or shallower slope). 
Although the exact amount of this increase is here calculated as 60%, 
larger and smaller increases cannot be ruled out without knowing 
δ18OMW/Pwet spatial patterns in the late Oligocene. 

Recent efforts have aimed to improve our understanding of spatial 
patterns in precipitation during the late Oligocene (Utescher et al., 
2021). Plant macrofossil data indicate less wet-season precipitation in 
northern China during this time (Li et al., 2018), in contrast with the 
greater wet-season rainfall we calculate here for southern China. These 
regional differences are consistent with observations and models indi
cating diminished rainfall in northern China (Li et al., 2017) and 
increased rainfall to the south (Bryan et al., 2019; Sooraj et al., 2015) in 
response to modern global warming, and lend support to our interpre
tation of high rainfall inferred by the low δ18Ocell values. The increased 
average wet season rainfall calculated here for the late Oligocene further 
supports hypotheses that warmer temperatures in the future will in
crease the amount of precipitable water thereby intensifying rainfall in 
southern China (Takahashi et al., 2020). This interpretation is supported 
by multiple models that indicate a 50% to 100% increase in extreme 
precipitation frequency in southern China and southeast Asia in 
response to warming of only 1.5 to 2 ◦C (Chevuturi et al., 2018). 

The Oligocene paleoflora at Nanning has previously been inter
pretated to reflect tropical, monsoonal climate conditions similar to 
areas that receive higher summer rainfall than modern Nanning (e.g., 
Thailand and eastern India; Huang et al., 2018; Ying et al., 2018). The 
results of the current study and these independent lines of evidence 
suggest that the East Asian monsoon was at least as strong as modern 
conditions—with likely higher summer rainfall levels—during the late 
Oligocene, and indicates that the East Asian monsoon may strengthen as 
CO2 levels and global temperatures approach those of the Oligocene 
(Tierney et al., 2020). 

5. Conclusions 

We show that δ18Ocell values can be used to provide information on 
summer rainfall within monsoon regions. We find that δ18Ocell values 
were 5‰ lower during the late Oligocene than today, half of which is 
attributed to lower δ18O values of seawater and half to changes in 
climate. Comparison to Oligocene δ18Ocell data from Siberia confirm the 
low δ18Ocell values cannot be reconciled by lower temperatures because 
it is unlikely both sites experienced the same temperatures. Agreement 
between δ18Ocell and rainfall in modern monsoon regions supports our 
interpretation of low fossil δ18Ocell values inferring elevated rainfall 
during the late Oligocene. Using modern relationships, we calculate a 
59% increase in monsoon rainfall during the late Oligocene compared to 
present (349 mm/month versus 220 mm/month). Such heavy rainfall in 
a single month is not unprecedented in Nanning at present: from 1951 to 
2012, nearly 10% of the monsoon months (May through August) have 
experienced at least 349 mm of rainfall; however, no single year has 
averaged at least 349 mm across four months (i.e., Pwet ≥ 349 mm, the 
late Oligocene average value). This result is consistent with fundamen
tally higher monsoon rainfall in the late Oligocene than today and in
dicates potential for greater monsoon rainfall in a warmer climate. We 
therefore conclude that continued global warming beyond 2 ◦C may lead 
to enhancement of wet-season rainfall in southern regions of the East 
Asian monsoon. 
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