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Teachers, like everyone else, need objective reliable feedback in order to improve their effectiveness. However, 
developing a system for automated teacher feedback entails many decisions regarding data collection procedures, 
automated analysis, and presentation of feedback for reflection. We address the latter two questions by comparing two 
different machine learning approaches to automatically model seven features of teacher discourse (e.g., use of 
questions, elaborated evaluations). We compared a traditional open-vocabulary approach using n-grams and Random 
Forest classifiers with a state-of-the-art deep transfer learning approach for natural language processing (BERT). We 
found a tradeoff between data quantity and accuracy, where deep models had an advantage on larger datasets, but not 
for smaller datasets, particularly for variables with low incidence rates. We also compared the models based on the 
level of feedback granularity: utterance-level (e.g., whether an utterance is a question or a statement), class session-
level proportions by averaging across utterances (e.g., question incidence score of 48%), and session-level ordinal 
feedback based on pre-determined thresholds (e.g., question asking score is medium [vs. low or high]) and found that 
BERT generally provided more accurate feedback at all levels of granularity. Thus, BERT appears to be the most viable 
approach to providing automatic feedback on teacher discourse provided there is sufficient data to fine tune the model. 
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1 Introduction 
Teachers, like anyone, need feedback in order to improve their effectiveness in the classroom [6, 20, 26, 68]. Since they 
teach almost daily, teachers have plenty of opportunities to practice and refine these skills. However, isolated practice 
is not enough; achieving expertise might require deliberate practice, which often takes place under the guidance of a 
coach [28]. Such a coach would design training tasks at an appropriate level of difficulty and provide feedback and 
guidance to steer teachers towards continuous improvement [24, 26, 27]. 

Unfortunately, current professional development (PD) opportunities are a far cry from this form of deliberate 
practice. One issue is that conference-style PDs, large events with lectures on a wide range of topics, are largely 
ineffective [7, 11, 30, 31, 74] since they do not provide the individual support teachers need to apply the knowledge to 
their own classrooms. Another method of PD involves classroom observation, where peers or supervisors give 
feedback, ideally based on validated evaluation protocols and rubrics. Unfortunately, these methods are usually 
evaluative rather than formative and prohibitively time consuming to implement on a frequent basis, which is what 
teachers need to improve [4]. 

This gap in PD leaves an exciting opportunity for AI-driven learning analytics to empower teachers to guide their 
own growth. Automated approaches can provide teachers with feedback specific to their own practice without 
requiring cost-prohibitive human observation. Teachers can use the analytics and supporting tools to reflect on their 
practice, set goals, and track progress, either individually or with a peer or a coach. And because the feedback is 
computed automatically, it can be more objective and reliable than human judgments which might be affected by 
human error and biases. 

Accordingly, we focus on the development of an automatic system that provides teachers with objective feedback 
on the quality of their discourse (or teacher talk) in authentic classrooms. This entails several design considerations. 
First, the system should be able to record data of sufficient quality for automated analysis (see [12, 21, 57]). Some 
factors that may influence data collection are the measured variables (which influence the type of data to collect), the 
difficulty or expense of collecting data (due to costly or intrusive sensors), security and privacy concerns, and 
autonomy of teachers to record their own data. 

The next design consideration pertains to the algorithms for automatically analyzing the recorded data. While 
previous work has primarily used engineered features and supervised traditional classifiers to analyze teacher 
discourse (see discussion below), recent improvements in state-of-the-art natural language processing techniques (such 
as word embeddings and transformers [14, 46] ) warrant investigation of how these deep learning methods can be 
applied to the analysis of teacher discourse. These newer methods also require much more training data than the 
traditional approaches, which may be prohibitive in some applications. 

Finally, insights from the analyzed data should be presented to the teacher in a manner that makes the resulting 
analytics actionable, for example, enabling teachers to reflect on their practice when preparing for future lessons. 
There is currently little consensus on how this information should be presented to teachers. For example, [57] presents 
an orchestration graph to teachers, which gives a detailed account of their class activity over the entire class session. 
Alternatively, [41] presents teachers with an overall score in each teaching outcome for a given class session, which 
gives teachers a more high-level understanding of their teaching for a given lesson. 

Having addressed the first design consideration in previous work [21, 41], we now turn to the latter two 
considerations by comparing two methods for modeling teacher discourse. First, we consider a traditional open-
vocabulary approach, which uses n-grams and Random Forest classifiers to provide automated feedback, and which 



has yielded the most accurate modeling results for this problem to date [41]. We compare this to a state-of-the-art 
natural language processing approach (BERT) that uses transfer learning (on large domain-independent corpora) and 
fine-tuning (on our domain-specific data). We first consider how these models compare for different sized datasets and 
then analyze them at different levels of feedback granularity. 

1.1 Related Work 
We review work on automated approaches for analyzing teacher discourse quality and design considerations when 
presenting teachers with feedback. 

1.1.1 Automated Analysis of Teacher Discourse. 

We focus on automated analysis of teacher discourse, primarily through the use of recorded audio. Although recording 
classroom sessions for teacher assessment is not new [2, 16, 32], the transition to automatically analyzing the 
recordings has been relatively recent. Some lines of research have used classroom audio to identify general classroom 
activities (e.g., time spent in lecturing vs. discussion) using turn-taking dynamics [78] or by analyzing utterance 
timing, language, and acoustic features [23]. Other work has focused on identifying the amount of teacher versus 
student talk (as in the startup teachfx.com). More recent work has focused on identifying general discourse features 
such as the frequency of question asking and the types of questions [10, 19, 54, 69] and instructional talk (compared to 
classroom management) [69]. Additionally, a few studies have begun to focus on modeling specific discourse feature 
that extend beyond questions, such as restating student ideas [41, 71, 72].  

Traditional methods of automated teacher discourse analysis generally rely on one of two methods. The first, most 
common, method uses feature engineering based on automatic speech recognition (ASR) transcripts.  It involves 
computing high-level features, such as linguistic features that span word, sentence, and discourse levels, and using 
them as inputs to standard supervised classifiers that can detect the focal discourse features in a generalizable manner 
[43] . The second method uses an open-vocabulary approach, which uses the words (and short phrases comprised of 
two or three words) themselves as features rather than more abstract representations [19, 70]. With the exception of 
[71, 72] the studies mentioned above all employ one of these approaches. 

Recent advances in natural language processing have introduced a potential new method of automated teacher 
analysis - deep transfer learning. Deep transfer learning methods leverage the massive amounts of available online text 
data and the power of artificial neural networks with multiple hidden layers to achieve state of the art performance on 
a range of natural language processing (NLP) tasks, including text classification, the task considered in this study. 
Specifically, the introduction of the transformer architecture [75] in 2017 sparked a wave of deep transfer learning 
models that have advanced the state of the art in NLP. Rather than using purely supervised learning (above two 
approaches), transfer (machine) learning takes a model trained on one dataset/task and adapts it for another [55]. This 
entails two steps: pre-training and fine-tuning. During pre-training, the transformer uses large amounts (e.g., 
gigabytes) of text to learn the contextual meaning of words using domain-independent tasks. The trained model serves 
as the starting point for subsequent fine-tuning where it is then augmented with an output layer specific to the current 
task and tuned (update the parameters) using small amounts of domain-specific data. Recently, [71, 72] have used deep 
learning methods to detect specific dialogic strategies in mathematics classrooms. However, these studies used human-
transcribed (rather than automatically transcribed) utterances, so it is unclear how these models can address ASR 
errors, which will inevitably occur. These studies also did not ensure teacher-independent training folds, so overfitting 
is also a concern. 

1.1.2 Presenting Feedback on Teaching. 

Teacher feedback systems generally serve one of two main purposes: (1) providing information on student learning 
(e.g., identifying at-risk students, real-time class orchestration); and (2) providing information on teaching pedagogy 
and effectiveness (e.g., improving professional development) [17, 52]. Most systems are deployed in hybrid or virtual 
learning environments [17] and take advantage of extensive log data in the form of interactions with course materials, 
social interactions, assessment results, and time spent engaged with the platform [77]. For teachers in particular, the 
most common data recorded generally measures student time on platform and engagement with discussion boards 



[65]. There is a growing field of multimodal learning analytics which seeks to collect and analyze data in a more 
traditional face-to-face classroom setting. For example, [57] uses five different sensors to identify types of classroom 
activities and later displays an overview of the class session for the teacher to view. 

There is also considerable variation in how analytics are presented to teachers. Some systems aim to provide real-
time feedback that teachers can immediately act upon during a class session [50]. For systems related to student 
learning, analytics often centers on information like student engagement [5] or if a student needs immediate assistance 
[3, 38]. Research focused on teacher pedagogy has used virtual simulation technology like Augmented Reality/Virtual 
Reality to allow practice before a live class [8, 47, 48]. Additional work has used synchronous feedback, often from 
peers or supervisors, as a form of coaching [39, 62]. Other platforms show feedback after a class session in the form of 
trends in various metrics over time, such as the EdSight project [1], which aims to promote teacher reflection by 
providing feedback based on student surveys. However, this example and others often rely on self-reported 
perceptions of the lesson rather than objective feedback [57]. 

There are very few studies comparing the effectiveness of feedback design choices. In particular, it is important to 
consider the granularity of presented information and intended insights. In [76] the authors introduce a process model 
for teacher feedback which entails the following steps: awareness, reflection, sensemaking, and impact. For example, if 
a teacher does not understand the relative effectiveness of different classroom activities, providing them with a 
detailed breakdown of their class time spent on these activities will not give them insight for how to improve their 
teaching. Feedback is perceived as more useful when it contains more complete data in the form of more metrics and 
more visualizations [77]. However, this approach poses a risk because automated feedback is not always accurate and 
there is a chance of presenting misleading information. Extremely fine-grained feedback is also potentially risky 
because teachers often have difficulty using analytics to identify next steps for improving their practice [52, 64]. This 
is in line with the case study in [49], where teachers reported a desire of having interpretations along with raw data. 

1.2 Contribution and Research Questions 
We expand previous work by comparing open-vocabulary (previous work) and deep transfer learning methods 
(current study) for automatic teacher discourse classification from recorded teacher audio in authentic classrooms. Our 
data includes 16,977 automatically transcribed teacher utterances, expert-coded for seven discourse features such as 
asking questions, providing elaborated feedback, and specifying learning goals. For the standard approach, we train 
Random Forest (RF) models using an open-vocabulary approach focusing on n-grams [41]. For the deep transfer 
learning approach, we use state of the art natural language processing techniques by fine-tuning an existing 
Bidirectional Encoder Representations from Transformers (BERT [22]) model.  

Because data collection resources vary, some applications will need to choose automated models that can provide 
accurate results with limited data. We then pose Research Question 1 (RQ1): What is the data-accuracy tradeoff of 
standard vs. deep learning approaches? We address this question by sampling different quantities of our training data 
and comparing the two approaches as a function of data quantity.  

Beyond availability of data, feedback analytics may be presented at different levels of granularity depending on the 
application and on the accuracy of the underlying models. Accordingly, we analyze our results at three levels of 
granularity. First, we investigate how these two methods compare for classification of individual utterances. This level 
of feedback is the most fine-grained analysis available for teachers and entails tagging individual utterances with 
discourse labels and comparing them to human-codes (ground-truth labels). Next, we compute class-session-level 
proportions for each discourse variable by aggregating across utterances and correlating the computer-predicted with 
human coded proportions. This level of feedback provides an aggregated overview on the incidence of each discourse 
variable and is at an intermediate level of granularity. Finally, we discretize the session-level proportions into ordinal 
categories (low, medium, and high) based on percentile cutoffs from the entire corpus. This level of feedback gives 
teachers an understanding of their performance relative to their peers and is at the coarsest level of granularity.  

Whereas utterance-level feedback requires a high degree of accuracy because the feedback is resolved at the level 
of individual utterances, the intermediate session-level proportional feedback can accommodate a modicum of 
prediction errors because it capitalizes on the power of aggregation to eliminate noise. The ordinal-level feedback 
takes this a step further by not providing any numeric feedback, instead focusing on relative performance and should 



be even more tolerant to errors. Thus, for our second research question, (RQ2) we ask how the two methods compare 
with respect to these three levels of granularity? 

2 Method 

2.1 Teacher Talk Data 
We used data from a prior study, which is detailed in [41], and only report aspects germane to the present study.  

We recruited 16 English Language Arts (ELA) teachers from three suburban school districts in Pennsylvania. These 
teachers were trained to independently record their own classroom talk. Each teacher recorded at least four sessions of 
two different classes. From these, we identified a total of 127 recordings (out of 142 original recordings) that were 
usable for automated analysis. 

We automatically segmented and transcribed each recording using the IBM Watson speech recognizer [61], which 
achieved an average word error rate of 0.28. Of the total 35,142 utterances, we randomly selected 200 sequential 
utterances from each recording to be coded by raters trained and supervised by ELA content experts. The final dataset 
included 16,977 coded utterances, with an average reliability of 0.81 (Gwet’s AC [35]). 

The dataset includes codes for seven teacher discourse variables, which are drawn from the literature on teaching 
effectiveness, student engagement, and achievement. Specifically, we focus on dialogic discourse, which emphasizes 
taking students’ ideas seriously [29] and increasing opportunities for deeper cognition and engagement [44, 53, 59]. 
Based on this framework, we distinguished between questions and statements and also coded questions based on 
whether they were authentic (open-ended) questions with no pre-specified response (see also [42, 51]). Additionally, 
we included discourse variables inspired by Shernoff [66, 67] and Grossman [34], which include goal specificity [29, 
66], use of ELA-specific terms [25, 36], cognitive level [13, 33, 58, 73], and elaborated feedback. Finally, we 
distinguished instructional talk from other talk such as classroom management.  

Descriptions, examples, and incidences of the discourse variables are in Table 1. Note that these categories are not 
mutually exclusive; for example, Authentic Questions are a specific type of Questions, so the percentages do not add 
up to 100. Although some of the selected discourse variables have low prevalence rates in the dataset, they were 
selected based on their documented or hypothesized influence on student achievement (e.g., [53]) and low incidence is 
not to be equated to low impact. The low incidence also presents an important challenge for automated methods 
which often struggle to learn with unbalanced datasets [40], resulting in directly modeling the data at the proportion 
level in lieu of utterance-level modeling [43] . 

Table 1. Description of key teacher discourse variables ordered from highest to lowest prevalence.  

Discourse 
Variable 

Definition Prevalence Positive Example 

Instructional Talk Focuses on the lesson and learning goals rather 
than on other topics, such as classroom 
management or procedural talk. 

81% Let’s think about the tone of this poem. 

Questions Requests for information. 31% Do you have a pencil? 

Goal Specified 
  

Extent to which the teacher explains the 
process and end goals of a particular activity. 

9% Your writing partner should give you three 
overall comments, before editing supporting 
details. 

ELA Terms The use of discipline-specific terms in teacher 
talk. 

9% Ensure that you include a topic sentence in 
each one of your paragraphs. 



Discourse 
Variable 

Definition Prevalence Positive Example 

Elaborated 
Evaluation 

Expression of judgment or correctness of a 
student’s utterance with explicit guidance for 
student learning and thinking. 

6% That’s right. You’re dying with each breath, 
and this is what the poet tries to bring to the 
consciousness of the beloved. 

Authentic 
Questions 

Open-ended question for which the teacher 
does not have a pre-scripted answer. 

5% What was your reaction to the end of the 
story? 

High Cognitive 
Level 

  

Emphasizes analysis (e.g., compare, interpret, 
synthesize, etc.) rather than reports or 
recitation of facts (e.g., define, recall, identify) 

4% How were their reactions to the accident 
different? 

2.2 Machine Learning Procedures 

We adopted a supervised classification approach to predict the presence or absence of the discourse variables in each 
utterance. In particular, we compared two supervised classifiers: Random Forest Classifier (RF) and deep transfer 
learning using Bidirectional Encoder Representations from Transformers (BERT). Both RF and BERT output a 
prediction from 0 to 1 that an utterance reflects a given discourse variable, which was taken as the starting point for 
subsequent aggregation.  The general approach is illustrated in Figure 1. 

 

Figure 1. Overview of the automated analysis and feedback generation procedure. 

2.2.1 Random Forest Classifier. 

We derived features for the Random Forest classifier using a bag of n-grams approach, which computes counts of 
words and phrases from the automatically transcribed utterances. We used unigrams (words), bigrams and trigrams 
(two- and three-word phrases) for our bag of n-gram features. Additionally, we filtered bigrams and trigrams using a 
pointwise mutual information [18] of 2, to ensure that meaningful n-grams (“topic sentence”) were preserved, and not 
simply frequent words that occur together (“and then”). We also filtered the data to only include n-grams that occur 
with a minimum frequency in the corpus (we experimented with values of 1%, 2%, and 3%). We then trained Random 
Forest classifiers to predict the presence of the discourse variables in each utterance using the n-gram features 
described above. Separate binary classifiers were trained for each discourse variable (i.e., each model learns to predict 
the presence of only one of the variables, for example, whether an utterance is classified as an authentic question [1] 
or not [0]). We used the scikit-learn [56] library’s implementation of the Random Forest Classifier with 100 estimators 
(the default). 



2.2.2 BERT.  

We used transfer learning to fine-tune BERT models to predict the presence of the discourse variables in each 
utterance. This entails starting with a BERT model pre-trained on large amounts of unlabeled data and fine-tuning it 
on our dataset of transcribed utterances and corresponding labels. Unlike the bag of n-grams approach used for the 
Random Forest models, BERT processes the automatically transcribed utterances using WordPiece tokenization [63]. 
Here, an utterance is first split into a sequence of words, or parts of words. Each unique word or word piece is then 
converted to an integer according to the model’s pre-specified vocabulary, and the sequence of integers is used as 
input to the model. As with the Random Forest models, a separate model was trained for each discourse variable. We 
started with the transformers [79] library’s implementation of the BertForSequenceClassification model and the 
BertTokenizer and fine-tuned the BERT model for two epochs using a batch size of 32. 

2.2.3 Cross Validation and Majority Sampling. 

We used random teacher-level nested 8-fold cross validation for both classifiers. This means that all the utterances for 
a given teacher were either included in the training set or the testing set, but never in both. This approach promotes 
generalizability to new teachers because it ensures a model is never trained and evaluated on utterances from the same 
teacher. Importantly, we used identical cross validation folds for the RF and BERT models to ensure that differences in 
performance are not an artifact of the folds used. Due to the imbalance of the discourse variables in our data, with 
several discourse variables having very low base rates, we used the imblearn [45] library to undersample the majority 
class during training of the RF models; distributions of the test set were unchanged. 

3 Results 

3.1 (RQ1) Comparing Models Across Different Dataset Sizes 
To investigate the tradeoff between data and model accuracy (RQ1), we randomly sampled 25%, 50%, and 75% of the 
utterances from the full dataset (16,977 utterances). We repeated the experiment for 10 iterations. Sampling was done 
without replacement within an iteration, but utterances could be repeated across iterations. We trained the RF and 
BERT models (7 discourse variables × 2 classifiers × 10 iterations) on the sampled data using the 8-fold cross validation 
procedure described above. We used the same sampled datasets and cross validation folds for equitable comparison 
across the two classifiers. We focused on utterance-level accuracy for this analysis since the other accuracy metrics are 
derived from these utterance-level predictions. We used the area under the receiver operating characteristic curve 
(AUROC) as our evaluation metric, which compares true positive and false positive rates across different classification 
thresholds. An AUROC of .5 represents chance performance.  

Figure 2 shows the mean AUROC and 95% confidence interval across the 10 iterations for each of the sampling 
rates (25%, 50%, 75% and 100% [no sampling]). We used a bootstrap method to statistically compare AUROC values for 
the two models for each discourse variable and each iteration. This analysis was performed using the pROC package 
[60] in R with 2,000 bootstrap permutations. For each discourse variable, we adjusted the resulting p-values across the 
10 iterations using a false discovery rate correction [9]. Sampling rates where one of the models performed 
significantly better (FDR corrected ps < .05) on the discourse variable in 7 or more of the 10 iterations are marked with 
an asterisk on the x-axis in Figure 2. 

Results varied by sampling rate. At the 25% sampling rate, BERT outperformed RF for Instructional Talk and ELA 
Terms, while RF outperformed BERT for Authentic Questions. There was no clear best model for the remaining four 
discourse variables. At the 50% sampling rate, BERT outperformed RF on all discourse variables except Authentic 
Questions, where RF had a significant advantage, and High Cognitive Level, for which there was no significant 
difference. Interestingly, the two discourse variables for which BERT did not outperform RF at either the 25% or 50% 
sampling rate (Authentic Questions and High Cognitive Level) had the lowest base rates of all variables examined (.05 
and .04, respectively), which indicates that when using smaller amounts of data, RF may be better a better model for 
these variables. To this point, the BERT models’ accuracy was at chance level (AUROC of 0.5) for the 25% sampling 
rate for Authenticity, whereas RF was above chance. At the 75% and 100% sampling rates, BERT significantly 



outperformed RF on all discourse variables except Authentic Questions, where there was no clear difference between 
the two models. 



  

 

  

 



  

 

 

Figure 2. Mean (with 95% CI) utterance-level AUROCs of RF (dashed line) and BERT (solid line) across 
sampling rates of 25%, 50%, 75%, and 100%. Sampling rates where one of the models performed significantly 

better on 7 or more iterations are marked with a * on the x-axis. 

3.2 (RQ2) Comparing Models Across Different Levels of Granularity 
Next, we compared the two models on the full dataset at the three levels of granularity – utterance-level, session-level 
proportions, and session-level ordinal categories (See Introduction). 

3.2.1 Utterance-level results. 

Mean AUROC values for each discourse variable across the 10 iterations are reported in Table 2, along with 95% 
confidence intervals. We also used the bootstrap method to compare the AUROC values and adjusted the resulting p-
values with a false discovery rate correction, as described in 2.4. We report the number of iterations with statistically 
significant (FDR corrected ps < .05) differences in Table 2. We found that BERT significantly outperformed RF for all 10 
iterations on five of the discourse variables: Instructional Talk, Questions, Goal Specified, ELA Terms, and Elaborated 
Evaluation. It performed significantly better than RF for 9 iterations for High Cognitive Level. For authentic questions, 



BERT only outperformed RF for 6 of the iterations. There were no iterations where RF significantly outperformed 
BERT. Overall, the results strongly favor BERT vs. RF on the full dataset. 

Table 2. Utterance-level results for BERT and RF models, reported as mean AUROC across iterations. We 
also report the number of iterations where the difference in AUROC of the two models was statistically 

significant. 

Discourse Variable BERT  Random Forest # Significant  
(out of 10) 

Instructional Talk 0.828 [0.827-0.830] 0.762 [0.761-0.763] 10 

Questions 0.830 [0.825-0.834] 0.762 [0.761-0.764] 10 

Goal Specified 0.878 [0.875-0.881] 0.826 [0.824-0.828] 10 

ELA Terms 0.895 [0.891-0.899] 0.763 [0.762-0.764] 10 

Elaborated Evaluation 0.861 [0.858-0.863] 0.814 [0.812-0.816] 10 

Authentic Questions 0.725 [0.711-0.739] 0.705 [0.701-0.710] 6 

High Cognitive Level 0.868 [0.863-0.872] 0.850 [0.847-0.852] 9 

Mean 0.841  0.783  

3.2.2 Session-level Proportion Results. 

We next compared the performance of RF and BERT models at the class session level by averaging the utterance-level 
ground-truth human codes and the RF/BERT predictions to the session level (N = 127). We then computed the Pearson 
correlation between the human- and computer- proportions. For each iteration, we used the Meng, Rosenthal, and 
Rubin’s z test [37] for overlapping correlations to determine if there were significant differences among the two 
models. We again applied an FDR correction [9] to the resulting p-values to account for multiple testing across the 10 
iterations (Table 3). BERT yielded significantly higher session-level correlations than RF for Instructional Talk, Goal 
Specified, and ELA Terms (all 10 iterations), Questions and Elaborated Evaluation (9 out of 10 iterations). Interestingly, 
BERT was only better than Authentic Questions for three iterations and there were no significant differences for the 
other seven iterations. Finally, the difference in correlations were not significant for any iterations of High Cognitive 
Level. Whereas there was no statistical advantage to using BERT over RF on these two low-prevalence variables, the 
magnitude of the correlations was higher for BERT for these two variables. Overall, the small utterance-level 
advantage of BERT over RF in AUROCs (mean of .841 vs. .783 across all seven variables) was compounded (mean 
correlation of .557 vs. 354) when utterances were aggregated to the session level. 

Table 3. Class session-level results for BERT and RF models, reported as mean Pearson r across iterations. 
We also report the number of iterations where the difference in correlations of the two models is 

statistically significant. 

Discourse Variable BERT Random Forest # Significant (out of 10) 

Instructional Talk  0.545 [0.521-0.569] 0.262 [0.247-0.276] 10 



Discourse Variable BERT Random Forest # Significant (out of 10) 

Questions 0.694 [0.666-0.722] 0.529 [0.520-0.538] 9 

Goal Specified 0.626 [0.614-0.639] 0.445 [0.434-0.456] 10 

ELA Terms 0.695 [0.677-0.714] 0.292 [0.276-0.307] 10 

Elaborated Evaluation 0.465 [0.444-0.487] 0.306 [0.295-0.317] 9 

Authentic Questions 0.350 [0.249-0.452] 0.207 [0.170-0.244] 3 

High Cognitive Level 0.526 [0.507-0.546] 0.438 [0.429-0.446] 0 

Mean .557  .354   

3.2.3 Session-level Ordinal Results. 

We lastly compared the models after we discretized the class session-level proportions into high, medium, and low 
ordinal categories using the percentile splits pertaining to each distribution (RF, BERT, actual proportions) for each 
discourse variable. We considered two different splits: 33:67 and 15:85, which indicate the cutoff for the low and high 
categories, respectively (i.e., proportions < .33 are categorized as low; >.67% as high; median in-between). We chose 
these splits to examine the tradeoff between model accuracy and ordinal category size (i.e., the medium category 
contains 70% vs. 33% of instances for the 15:85 and 33:67 splits, respectively). Accuracy was computed as the diagonal 
agreement between the model assignments of category (low, medium, high) with ground-truth alignments at the 
observational level. The mean accuracy scores (and 95% CI) for each discourse variable across 10 iterations are shown 
in Table 4.  

We statistically analyzed the data using mixed effects logistic regression models. Specifically, we regressed 
agreement (1 or 0) on model (RF [reference group] or BERT) with iteration and class session as (categorical) random 
intercepts. The resulting odds ratios are shown in Table 4 where values greater than 1 indicate an advantage of BERT 
vs. RF. We found that the BERT model consistently yielded higher agreement than the RF model for the 33:67 split 
with the exception of Authenticity, where the two models were tied. The differences were less pronounced for the 
15:85 split, where BERT significantly outperformed RF for three of the discourse variables; the differences were 
marginally significant for two additional variables. Overall, as could be expected, agreement was higher for the 15:85 
split (BERT average of 69%) than the 33:67 split (BERT average of 52%) because the former is less discriminating (i.e., 
the middle category contains 70% of the cases). This would explain why BERTs advantages over RF were more 
pronounced for the more discriminating 33:67 split. 

Table 4. Percent Agreement [95% CI] of session-level ordinal feedback fir 15:85 and 33:67 splits across 10 
iterations, along with Odds Ratio values (reference is RF) for each split. 

 Percent Agreement [95% CI across iterations] Odds Ratio (OR) 

 15:85 Split 33:67 Split 15:85 
Split 

33:67 
Split 

Discourse Variable BERT RF 
 

BERT RF   

Instructional Talk 0.691  0.645  0.511 0.394  1.67*** 2.58



 Percent Agreement [95% CI across iterations] Odds Ratio (OR) 

 15:85 Split 33:67 Split 15:85 
Split 

33:67 
Split 

Discourse Variable BERT RF 
 

BERT RF   

[0.677-0.706] [0.629-0.660]  [0.495-0.527] [0.380-0.408] *** 

Questions 0.698  
[0.673-0.724] 

0.686  
[0.670-0.701] 

0.584  
[0.559-0.609] 

0.498  
[0.484-0.513] 

1.17 2.58
*** 

Goal Specified 0.680  
[0.664-0.697] 

0.604  
[0.591-0.617] 

0.526  
[0.514-0.538] 

0.490  
[0.473-0.507] 

2.09*** 1.42
** 

ELA Terms 0.745  
[0.722-0.767] 

0.517  
[0.512-0.533] 

0.654  
[0.636-0.673] 

0.387  
[0.369-0.405] 

7.64*** 9.97
*** 

Elaborated 
Evaluation 

0.656  
[0.635-0.677] 

0.634  
[0.621-0.647] 

0.513  
[0.497-0.528] 

0.446  
[0.434-0.457] 

1.2611 1.74
*** 

Authentic 
Questions 

0.656  
[0.636-0.675] 

0.626  
[0.614-0.638] 

0.417  
[0.373-0.462] 

0.433 
[0.403-0.463] 

1.2011 0.91 

High Cognitive 
Level 

0.706  
[0.692-0.719] 

0.688  
[0.679-0.698] 

0.435  
[0.427-0.443] 

0.403  
[0.390-0.416] 

1.22 1.29
* 

Mean 0.690 0.629 0.520 0.436 - - 

***p < .001; ** p < .01; * p < .05; 1 p < .057 

4 Discussion 

4.1 Main Findings 
We compared two machine learning approaches to model teacher discourse features with an eye for providing 
automated feedback for teacher learning. The first was a traditional open-vocabulary approach using a Random Forest 
model to predict the presence of key discourse variables in automatically transcribed teacher speech. We then 
compared this approach to BERT, a state-of-the-art natural language processing model which learns the contextual 
semantics of words from domain-independent training data, upon which the model is fine-tuned to the current domain 
of teacher talk. 

Due to varying opportunities for data collection, our first task was to investigate the data-accuracy tradeoff 
between these two models. Specifically, RQ1 asked whether one model would be a better choice if the available 
training data were limited. We addressed this question through a sampling experiment where we trained each model 
using different sized partitions of our dataset. Perhaps unsurprisingly, we found that for both models, larger datasets 
generally yielded better model performance. Whereas RF had some advantageous for variables with low incidence 
rates when 25%-50% of the data was included, BERT generally outperformed RF for larger datasets. Compared to some 
NLP datasets which can contain millions of training samples, our own dataset was relatively modest at 16,977 samples. 
We hypothesize that BERT performance may improve even more using a larger dataset than is currently available to 
us. 



Our next task was to consider how these two approaches compared when presenting data at different granularities 
(RQ2). We first considered utterance-level feedback, which identifies whether each utterance contains a given 
discourse variable or not. This type of feedback is the most specific form of feedback, which would allow teachers to 
identify positive and negative examples of behaviors they are trying to improve in the classroom. Compared to a 
traditional in-class observation by a peer or supervisor, utterance-level feedback is similar to the observer pointing out 
specific moments in class that the teacher excelled or needed improvement. We found BERT clearly outperformed the 
RF model for five of the seven discourse variables; the differences were negligible for the other two variables. Overall, 
BERT had a higher mean AUROC score of .841 compared to the RF model’s mean AUROC of .783, but both easily 
outperformed chance (AUROC of 0.5). These results suggest that both models might be capable of providing feedback 
at this level of granularity. That said, it remains an important empirical question of how accurate these models must be 
in order to provide exemplar-based feedback to teachers because providing false positives as examples of particular 
utterances will erode trust. 

We next considered session-level proportion feedback, which generates an overall score for each discourse variable 
in a given class session. This type of feedback provides a class-level summary per variable per class that teachers can 
directly focus on improving. By pooling across tens or even hundreds of utterances, it can mitigate utterance-level 
modeling errors. Additionally, teachers may be more capable of connecting this value with actionable goals for future 
lessons (e.g., increase Questions from 25% to 30%). Similar to the utterance-level feedback, we found the BERT clearly 
outperformed RF for five out of the seven discourse variables. Overall, BERT had an average correlation of .557 
compared to .354 for RF, a larger relative improvement (57%) than the utterance-level AUROC scores (7.4% 
improvement). 

Finally, we considered session-level ordinal feedback, which categorizes the scores from RQ2 into high, medium, or 
low categories relative to the other teachers in the dataset. This feedback provides another level of abstraction, which 
can hopefully protect against inevitable errors in the automated analysis. Feedback at this level may also serve as 
further motivation for teachers to improve since it reports their score relative to other teachers. However, this 
categorical feedback may be harder for teachers to interpret to make actionable insights because it is less clear what 
improvement looks like (e.g., moving up from 40th percentile to 60th percentile is still medium). We compared the two 
approaches using two different splits between categories. We found that BERT had generally higher agreement scores 
than RF, though the differences were larger and more consistent for the more discriminating 33:67 split compared to 
the 15:85 split. For both models, agreement was higher using the 15:85 split, where more instances are considered 
medium, which is perhaps less informative for teachers. Thus, BERT also appears to be superior to RF for the coarsest 
level of feedback granularity. 

4.2 Limitations and Future Work 
Our study was limited in a few aspects. First, our dataset was relatively homogeneous in that it contained data from 
only 16 teachers from a similar geographic region. Hence, our models may not generalize well to new dialects or other 
sources of teacher variation. More robust data collection is needed to further explore this possibility. Second, we only 
considered a limited number of machine learning models in our study. Specifically, we built off of previously verified 
methods and chose RF to exemplify the traditional open-vocabulary approach; we used BERT to exemplify the deep 
transfer learning approach to automated teacher feedback. As this area of natural language processing research 
continues to rapidly evolve, more models should be considered. Finally, our results apply specifically to discourse in 
English Language Arts classrooms; future work should similarly consider automated feedback methods in other 
subject areas to provide a holistic assessment of its value for teachers. 

4.3 Implications and Applications 
Given the diverse and complex needs of individual teachers, there is unlikely to be a one-size-fits-all approach to 
automated discourse feedback. Each situation will vary in their desired outcomes and ability to collect data. The type 
and amount of data available will dictate which machine learning methods can be used for automated analysis. The 
results of the current study suggest that the traditional n-gram and RF approach might be a better choice when 



training data is limited, but BERT is clearly preferred when training data is abundant. Further given the rapid pace of 
advances in NLP and deep learning, it is prudent to replicate these analyses with newer models such as the Generative 
Pre-trained Transformer 3 (GPT-3, [15]) model, which is achieving state-of-the-art results in many NLP tasks. 

Beyond modeling, future research is needed to understand the most effective ways to provide teachers with 
feedback. For example, the level of feedback should take into account the desired insights teachers need in order to 
improve their practice. Pre-service teachers, for instance, may find value in more detailed utterance-level feedback 
while experienced teachers may use session-level ordinal feedback to periodically review their classroom discourse. 
We also need to investigate the potential impacts feedback systems may have on teacher learning. Although there is 
some initial evidence that teacher feedback can be used to improve student learning outcomes [50], there is a dearth of 
studies that examine the longitudinal effects of presenting these analytics to teachers. As discussed in [77], it is 
important to move beyond modeling to better understand how teachers are using the given information to make 
decisions about their instructional practices and which approaches are effective.  

Towards this end, our future work will study the impacts of an automated feedback system proposed in [41] which 
provides teachers with session-level ordinal feedback. Our initial designs are illustrated in Figure 3, where we opted to 
provide teachers with session-level ordinal feedback using the BERT models and 15:85 split (mean accuracy of about 
70%), along with explanations that clearly communicate model accuracy in the interest of transparency, and a 
summary of the measures across class sessions (e.g., percent of lessons classified as low for Instructional Talk). After 
evaluating the feedback designs in user studies, we will investigate whether and how teachers alter their behaviors 
based on the feedback and identify the best way to pare feedback with other forms of coaching or instructional 
support. There is also the foundational question of whether this form of data-driven professional development can lead 
to improvements in teacher discourse and whether this results in improved student achievement, which will entail 
further development and evaluation. 



(a)  

 (b)   

  (c)  

Figure 3. Screenshots of preliminary teacher feedback (a) using session-level ordinal feedback, (b) specific 
information about the discourse feedback, and (c) a summary of all lessons 
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