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Abstract
Models for automated scoring of content in
educational applications continue to demon-
strate improvements in human-machine agree-
ment, but it remains to be demonstrated that
the models achieve gains for the “right” rea-
sons. For providing reliable scoring and feed-
back, both high accuracy and connecting scor-
ing decisions to scoring rubrics are crucial. We
provide a quantitative and qualitative analysis
of automated scoring models for science expla-
nations of middle school students in an online
learning environment that leverages saliency
maps to explore the reasons for individual
model score predictions. Our analysis reveals
that top-performing models can arrive at the
same predictions for very different reasons,
and that current model architectures have dif-
ficulty detecting ideas in student responses be-
yond keywords.

1 Introduction

Recent work on scoring content in education has
shown gains in human-machine agreement from
neural network models, particularly recurrent neu-
ral networks (RNNs) and pre-trained transformer
(PT) models (Mizumoto et al., 2019; Riordan et al.,
2019; Sung et al., 2019). However, prior research
has neglected investigating the reasons for improve-
ment at the response level. Through expert analysis
of saliency maps (Simonyan et al., 2014), we focus
on the extent to which models attribute importance
to words and phrases in student responses that align
with question rubrics. We analyze these trends for
evidence about how state-of-the-art models carry
out the content scoring task in this domain.

This work focuses on formative assessment ques-
tions that are embedded in science units for mid-
dle school students accessed via an online class-
room system (Gerard and Linn, 2016; Linn et al.,
2014). For this study, we focus on two forma-
tive assessment questions: (1) Musical Instruments

(MI): Students develop ideas about properties of
sound waves (wavelength, frequency, amplitude,
and pitch). (2) Solar Ovens (SO): Students collect
evidence and decide whether to agree or disagree
with a claim made by a fictional peer about the
functioning of a solar oven. Students from 11 U.S.
middle schools participated by engaging in the sci-
ence units during science classes.

2 Methods

RNN and PT models were trained to predict an
ordinal score from each response’s text. The RNN
model was a 1-layer GRU with 250-dimensional
hidden state and GloVe 100-dimension embed-
dings. The model was trained to minimize a
mean squared error loss for 50 epochs. The PT
model used a bert-base-uncased pre-trained
instance (Wolf et al., 2019) optimized with Adam
and a learning rate tuned from {2e-5, 3e-5, 5e-5}
for a maximum of 20 epochs.

Our main evaluation focuses on methods for
estimating the importance of a word token for a
model’s score prediction. We employ gradient-
based saliency estimation methods to produce a
(normalized) scalar value for each token and visu-
alize the saliency of tokens with “saliency maps”
(Figure 1). For each dataset, we sampled 100 re-
sponses and generated saliency maps for each re-
sponse. We used the simple gradient method (Si-
monyan et al., 2014; Wallace et al., 2019).

To explore trends in saliency according to each
type of model, we sampled 25 responses from each
of four outcome conditions: both models were cor-
rect, one model was correct and the other incorrect
(i.e. RNN+,PT- and vice versa), and both models
were incorrect. We carried out two sets of analyses:
First, to analyze responses from each outcome con-
dition with a common framework, each sampled
response was labeled by a question developer with



Question Model type Pearson QWK MSE

SO RNN 0.7612 0.7116 0.2619
SO PT 0.7691 0.7127 0.2608
MI RNN 0.7989 0.7642 0.3058
MI PT 0.8134 0.7733 0.2956

Table 1: Human-machine agreement. Pearson = Pear-
son’s r, QWK = quadratically-weighted kappa, MSE =
mean squared error.

one or more categories that represented hypotheses
about what tokens the model used to make a predic-
tion, as evidenced by the saliency scores. The cate-
gories were Captured the most important keywords,
Missed link between keywords, Non-keyword is
salient, and Did not consider context of keywords.
The set of categories was designed to be general
enough to apply to any question’s data. Second, we
carried out a detailed qualitative analysis of model
behavior based on the saliency labels.

3 Results and Discussion

Two important trends in the distribution of saliency
labels were: (1) The number of examples of Cap-
tured the most important keywords was similar
across model types for the MI question, but for
the SO question, when models were wrong, they
were less likely to identify the important keywords
(RNN+ PT-: PT 17, RNN 24; RNN- PT+: PT 24,
RNN 18). (2) Not considering the context of key-
words was a particular problem when both models
were wrong (MI RNN- PT-: PT 9, RNN 12; SO
RNN- PT-: PT 14, RNN 12). Moreover, on the SO
question, when one model was wrong, it was more
likely to have ignored context (RNN+ PT-: PT 12,
RNN 1; RNN- PT+: PT 2, RNN 11).

We report qualitative analyses on the MI ques-
tion (Figure 1). Across outcome conditions, the pat-
terns of salience were often substantially different
between RNN models and PT models. These differ-
ent patterns, however, could still result in the same
model predictions (responses 191704, 190386). On
one hand, the models could make the same correct
predictions but with different saliency profiles. On
response 191704, the RNN and PT models agreed
on the salience of lower, but differed greatly in
the importance of the key phrases full glass and
more mass. At the same time, the models made the
same incorrect predictions with different saliency
profiles (response 148006).

From our analysis, the different patterns in
saliency across models do not seem to indicate

191704
RNN score=4 prediction=4
If the full glass has more mass in it then the pitch will be lower .
PT score=4 prediction=4
[CLS] if the full glass has more mass in it then the pitch will be lower .
[SEP]

190386
RNN score=3 prediction=3
It is different because the water will slow down the sounds . The more
full will make the sound lower .
PT score=3 prediction=3
[CLS] it is different because the water will slow down the sounds . the
more full will make the sound lower . [SEP]

148006
RNN score=1 prediction=3
The glass is lower .
PT score=1 prediction=3
[CLS] the glass is lower . [SEP]

254470
RNN score=4 prediction=3
the empty glass is able to reverberate more and make a high pitch noise
.
PT score=4 prediction=2
[CLS] the empty glass is able to rev ##er ##ber ##ate more and
make a high pitch noise . [SEP]

Figure 1: Examples of saliency patterns in RNN and
pretrained transformer (PT) model errors.

greatly differing model capabilities. First, the
model errors attributable to a lack of considera-
tion of word context provide examples of the mod-
els identifying the right keywords but the wrong
science, which in turn leads to over-prediction of
scores. Second, the models can identify the right
keywords but not associate them with the correct
score – for example, because limited training data
creates associations between a score and a rare
word. Response 254470 shows an example of both
models under-predicting the score of a response
because reverberate only appears in the training
data once and is associated with a lower score.

Our analysis shows that different classes of state-
of-the-art machine learning models for short an-
swer scoring can produce substantially different
saliency profiles while often predicting the same
scores for the same student responses. While there
is some indication that PT models are better able
to avoid spurious correlations of high frequency
words with scores, our results indicate that both
models focus on learning statistical correlations
between scores and words and do not demonstrate
an ability to learn key phrases or longer linguistic
units corresponding to ideas, which are targeted by
question rubrics. These results point to a need for
models to better capture student ideas in science
assessments.
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