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Abstract. The large societal impact of liquid crystals (LCs) in electrooptical displays arrived after
several decades of research involving molecular-level design of LCs and their alignment layers,
and elucidation of LC electrooptical phenomena at device scales. The unusual anisotropic optical,
mechanical and dielectric properties of LCs used in displays also makes LCs remarkable amplifiers
of their interactions with chemical and biological species, thus opening up the possibility that LCs
may play an equally influential role in a data-driven society that increasingly depends on
information coming from sensors. In this article, we briefly describe ongoing efforts to design LC
systems tailored for chemical and biological sensing, efforts that in many ways mirror the
challenges and opportunities in LC design and alignment tackled several decades ago during
development of LC electrooptical displays. Now, however, traditional design approaches based on
structure-property relationships are being supplemented by data-driven methods such as machine
learning. Recent studies also show that computational chemistry methods can greatly increase
the rate of discovery of chemically-responsive LC systems. Additionally, non-equilibrium states
of LCs are being revealed to be useful for design of biological sensors and more complex
autonomous systems that integrate self-regulated actuation along with sensing. These topics and
others are briefly addressed in this article with the aim of highlighting approaches and goals for
future research that will realize the full potential of LC-based sensors.

Introduction. The idea of creating chemical and biological sensors that exploit the properties of
liquid crystals (LCs) is not new. Before mankind roamed the surface of Earth, evolutionary
processes selected the liquid crystalline state of matter as the basis of life> 2, because LCs can
reorganize in response to subtle chemical and mechanical cues to perform useful functions” (e.g.,
as underlies the functioning of a mammalian cell membrane). A bit more recently, and in parallel
and following the development of liquid crystal displays in the 1970°s”, a range of studies have
explored the properties of synthetic LCs as the basis of chemical and biological sensors*'®. In the
year 2020, as societal challenges such as management of COVID-19, global changes in climate,
and creation of a circular economy, have moved to the front-burner, the pull for innovation and
translation of sensing technologies is strong: data acquisition and analysis are central elements of
decision-making common to all of these challenges, and sensors, in many cases, are the source of
that data. For the research community with expertise in LCs, the opportunity to have an impact is
being amplified by the emergence of new tools for LC bio/chemical sensor design, including



electronic-structure calculations and Al techniques. This brief perspective aims to convey select
opportunities connected to LC sensor design, with a focus on approaches enabled by new scientific

tools and methodologies.

Chemical Sensors Create the Need for
New LC Alignment Chemistries and
Mesogen Designs. The development of
stable and long-lived surface chemistries
for alignment of LCs, such as is achieved
via use of surfaces coated with polyimides,
underlies the success of the electrooptical
LC display technology®. One broad class
of strategies for the design of LC chemical
sensors aims to build from this success by
creating tailored surfaces that cause LCs to
change orientation in the presence of a
targeted chemical species (Figure 1a)!% 12
1621 Approaches used to date to transduce
and quantify surface-driven changes in the
orientation of LCs in sensors include
measurement of light transmitted through
polarizers, absorbance of guest-host
systems, and electrical capacitance. In
contrast to displays, however, in addition
to the solid-LC interface, a LC chemical or
biological sensor must have a free surface,
either to the atmosphere for gas sensing®?
or an aqueous phase for sensing of
biological species in water”. These
unconventional interfaces in LC sensors
create  additional  challenges  and
opportunity for fundamental science and
technological contribution. Here we focus
on recent efforts to address these issues,
with the goal of sending the message that
opportunities exist both for surface
chemists and those skilled in the synthesis
of new LCs to make important
contributions.

The degrees of freedom underlying the
design of surfaces and LCs for surface-
driven LC sensors is large, leading to the
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Figure 1. Design of reactive surfaces for LC chemical
sensors. (a) General design principle: the optical response of
the LC sensor is triggered by a surface anchoring transition.
Surface anchoring transitions in LC sensors have been
triggered by (b) metal cation-ligand exchange reactions (e.g.,
exchange of nitrile group of mesogen with phosphoryl group
of DMMP) (¢) redox reactions (oxidation of Mn?* to Mn** (as
MnO;) by Cl, in the presence of water vapor) and (d)
reactions on noble metal surfaces (dissociative adsorption of
Cl, displacing mesogen bound to Au(l11)). From
references!® 2!,
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Figure 2. Design of LCs tailored for use in sensors.
(a) Optical micrographs (crossed polars) of LCs
comprised of pure 5CB, 5CB with a pyrimidine-based
dopant, or SCB containing a pyridine-based dopant,
supported on surfaces decorated with AI** : initial
state, exposed to a vapor of 10 ppm DMMP in
nitrogen, and exposed to a vapor of 30% relative
humidity of nitrogen. (b) Time-dependent change in
interference fringes of PCH3/PCHS mixture supported
on La** decorated surface, following introduction of
DMMP (10 ppm). The ruler indicates the change in
fringe position. (c¢) Characteristic time to achieve an
80% response for PCH3/PCHS and 5CB as a function

of DMMP concentration. From reference %% 2.

need to optimize multiple design parameters.
Significantly, recent studies have demonstrated
that computational chemistry techniques can be
used to screen select degrees of freedom to
identify suitable LCs and reactive surfaces for
a given chemical target, as described below.
The first design of a LC surface-driven sensor
that we introduce here is inspired by classical
observations of adsorbate-triggered anchoring
transitions®*, in which changes in the
intermolecular interaction between a LC and
the surface of a solid leads to an alteration of
the easy axis/anchoring energy of the LC!> 7
25 We illustrate the approach using surfaces
that present metal cation binding sites, and LCs
that possess functional groups (e.g., nitrile
groups) that participate in coordination
interactions with select metal cations'?2. For a
LC such as nematic  4’-pentyl-4-
biphenylcarbonitrile (5CB), the formation of a
coordination complex of sufficient strength at
the metal ion-decorated solid surface leads to a
uniform homeotropic orientation of the LC?®.
This interpretation of experiments is supported
by computations of the binding energies of
benzonitrile for metal cations'® 2% 2127 An
anchoring transition of the LC is triggered by
exposure of the free surface of the oriented LC
film to gaseous species that diffuse through the
LC film and bind to the metal cation more
strongly than the mesogens of the LC. A
widely explored example (Figure 1b) of
gaseous species that will trigger this type of
anchoring transition is the organophosphonate
class of compounds (relevant to pesticides and
chemical = warfare  agents), such as
dimethylmethylphosphonate (DMMP).
Consistent with experimental observations of
anchoring transitions triggered by DMMP and
nerve agents, electronic structure calculations
predict that the binding energy of DMMP to
AIP* (-1.14 eV) is stronger than that of 5CB to
A" (-0.40 eV) and thus that the orientational



transition of 5CB is driven by ligand exchange at the surface (nitrile of SCB by phosphoryl of
DMMP)!8:20-21.27  Experiments demonstrate that this experimental design can be highly sensitive;
for example, parts-per-billion concentrations of DMMP in the gas phase can trigger anchoring
transitions of SCB supported on A’ functionalized surfaces'® ?°. Through judicious selection of
the metal cation, its counter ions, and the ligands incorporated into mesogens, a wide range of
chemically specific LC systems can be created '3-2!>2% 27 Here again, computational chemistry
methods are proving increasingly useful in screening these degrees of freedom.

A second strategy for the design of chemically responsive interfaces for use in LC sensors relies
on interfacial redox reactions. This strategy works well for oxidizing and reducing gases that, for
example, bind weakly with metal cations and thus cannot be detected using the strategy described
above. As an example of this strategy (Figure 1c), we describe the use of surfaces presenting
Mn?* cations and detection of Cl» gas (an oxidizing gas) '°. Whereas nitrile-containing LCs bind
strongly to Mn*" binding sites on surfaces, exposure of Mn?*-decorated surfaces to humid (35%
relative humidity) Cl» gas triggers a redox reaction that results in formation of Mn*" (in the form
of MnO,), which in turn triggers a change in the orientation of the supported LC from homeotropic
to planar. Interestingly, the orientations of the LC before and after the redox-reaction were
predicted by electronic structure calculations '°, again highlighting the opportunity to use
computational chemistry to guide the design of new types of LC chemical sensors. In contrast to
the metal ligand-exchange reactions outlined above, the oxidation of the Mn?" to MnO; is
irreversible, and thus is suitable for one-time alarm sensors or sensors that report cumulative
exposure, as is needed for quantification of chronic human exposure to chemical environments.
The selectivity of the sensor can be tuned via choice of the mesogen and metal cation with its
associated anion (or other redox species), thus creating a substantial (and largely unexplored)
design space.

The third surface-based strategy for design of LC sensors that we outline here revolves around
reactive surfaces. We illustrate this design by describing the use of a noble metal surface to anchor
a LC (Figure 1d)*'. While many LCs (e.g., cyanobiphenyls) are known to orient parallel to the
surfaces of noble metal surfaces such as the Au(111) surface, substantial research in the field of
heterogeneous catalysis reveals that a range of chemical functional groups undergo chemical
transformations on these surfaces. For example, aromatic carboxylic acids will undergo a
dehydrogenation reaction on Au(111), resulting in directional binding®®. Guided by these prior
results, aromatic carboxylic acids have been used recently as dopants in cyanobiphenyl-based LCs
and shown to cause the LCs to adopt a homeotropic orientation as a consequence of
dehydrogenation of the carboxylic group of the dopant’!. Complementary computations
confirmed the experimental observations, but also predicted that dissociative adsorption of Cl, gas
on the Au(111) surface would displace the bound (dehydrogenated) carboxylic acid. This
prediction was validated by experiment, revealing that subsequent exposure of the LC system to
Cl; gas triggered an anchoring transition due to dissociative adsorption of Cl; gas to atomic CI on
the Au(111) surface (Figure 1d). This design of a LC sensor for Cl, was shown to be robust and
tolerant to many other chemical species and, more broadly, serves to highlight the opportunity to
leverage knowledge from the field of surface science and heterogeneous catalysis to advance the
design of LC sensors.



In each of the approaches described above, there exists a largely untapped opportunity to refine
the sensitivity and specificity of LC sensors via optimization of the structure of the mesogens and
properties of the LC phase?!?>?7. For example, whereas many past studies of LC sensors have
used the cyanobiphenyl series of LCs, dopants and mesogens that contain pyridine and pyrimidine
groups have been shown to yield substantial improvements in terms of chemical selectivity of the
sensors (i.e., responding to one chemical species but not another)?’. We illustrate the opportunity
to create new mesogens with properties tailored for LC sensors with an example that was informed
by the use of computational chemistry. In the example shown in Figure 2a, as predicted by binding
energies from electronic structure computations, LCs containing nitrile groups bind to AI** cations
on surfaces more weakly (-0.40 eV) than DMMP (-1.14 eV) or water (-0.49 eV), and thus nematic
5CB undergoes a surface-driven anchoring transition in response to DMMP or water. In contrast,
LCs containing pyridine groups bind too strongly to the Al**-decorated surfaces to respond to
either DMMP or water, whereas LCs containing pyrimidine groups bind less strongly than DMMP
but more strongly than water, thus leading to a response to DMMP but not water. This example
demonstrates how the choice of mesogen plays a central role in the performance of a LC chemical
sensor. Many designs of mesogens that incorporate other metal cation binding functional groups
can be envisaged but have not yet been explored.

In addition to the critical task of designing LC-solid interfaces in LC sensors, another largely
untouched challenge is the design of the LC-air interface of the sensor. In the majority of past
studies of LC sensors, in which a micrometer-thick film of LC was supported on a chemically
functionalized surface (e.g., in a microwell or stabilized by arrays of micropillars), the LCs
exhibited a perpendicular orientation at the upper free surface (to air) '>?>?°, Manipulation of this
orientation is an important design variable, however, because it can impact the change in elastic
energy of the LC film that accompanies the LC response to a chemical species. So far, little work
has been reported on the topic, but the importance of it in LC sensor design is illustrated by one
recent example. In this example, LCs containing the cyclohexyl group (PCH series) were used 2.
For reasons that are not yet fully understood, these LCs exhibit planar anchoring at a free surface
(interface to air) while maintaining a homeotropic orientation at a surface presenting metal cations
(the latter through a coordination interaction between the nitrile groups of the PCH mesogens and
metal cations). Importantly, it was demonstrated that this combination of interfacial ordering—
planar anchoring at the free surface and homeotropic anchoring at the metal-cation-decorated
surface—led to designs of LC sensors that exhibited faster responses and greater sensitivities to
DMMP, as compared to LCs that adopt perpendicular orientations at free surfaces (5CB, E7 and
others, Figure 2b)*2.When using a mixture of PCH3/PCHS, in contrast to SCB, the LC is initially
strained by hybrid anchoring with an elastic free energy per unit area of K/h, where K is the elastic
constant of the LC and h is the LC film thickness. To trigger a response to DMMP, the only
requirement is that the homeotropic anchoring strength be reduced to a value that is less than K/h
(=107 Jm™?). In contrast, for nematic SCB with an initially homeotropic state, exposure to DMMP
must trigger a change in the orientation of the easy axis of the LC in order to generate an optical
response. As a result, as shown by inspection of Figure 2b, gas phase concentrations of DMMP
as low as 100 ppb can be detected with PCH3/PCHSY; under the same conditions, SCB generates
no measurable response. For 1 ppm and 10 ppm DMMP, PCH3/PCHS5 exhibited faster responses
than observed when using SCB.



Achieving Higher Chemical Specificity and Sensitivity in LC sensors by using Machine
Learning. The strategies described above for design of LC chemical sensors focused on
identification and optimization of the chemistry of mesogens and surfaces. A complementary
strategy is to look for specificity in the response of LC systems to targeted chemical species by
increasing the sophistication with which the spatial and temporal responses of LC systems are
characterized. It is this “pattern recognition” approach that forms the basis of the aspect of the LC
sensor design strategy that we discuss in this section. As detailed below, the approach is enabled
by the availability and dissemination of machine-learning approaches. The term “machine
learning” (ML) is attributed to an article ** where the possibility of teaching a computer to learn
how to play the game of checkers was demonstrated. In the past decade, the growth in computing
power and availability of large datasets has elevated the importance of ML in most areas of science
and engineering !

The first report of the use of ML in the context of LC sensors demonstrated that machine
recognition of operator-specified features of the optical response of a LC sensor could be used to
classify the response and thus improve the specificity and speed of a LC-based chemical sensor 2.
A range of different features were used to train the classifiers of the ML framework, including the
average intensity of RGB channels of an image. The optical responses of surface-based LC sensors
to either water vapor or DMMP were processed using two different training strategies, namely,
dynamic and static training. The dynamic strategy trained a classifier (using a “training dataset”
of images using average RGB feature information that was accumulated during the evolution of
the LC response. The strategy was motivated by the observation that, for the experimental dataset
under consideration, LC responses to water vapor tended to be slower than responses to DMMP.
Therefore, the authors argued that the shape of the dynamic profiles of the RGB channels should
provide valuable information to perform classification. However, the dynamic responses, as
presented in Figure 3a, were found to exhibit variability from sample to sample. A static strategy
was then explored based on classifying LC responses using spatial features in the images
(independent of when they were obtained). This strategy was based on the hypothesis that subtle
differences in spatial patterns (that are not obvious to the human eye) would be sufficient to
distinguish between water vapor and DMMP. The static strategy has the key practical advantage
that it does not require running a lengthy experiment to conduct classification, thus accelerating
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Figure 3. (a) Dynamic evolution of average red (top), green (middle), and blue (bottom) intensities of LC sensors
responding to DMMP (left) and No-water (right). Each line represents a different sample (b) Average classification
accuracy (for test set) achieved using ML approaches based on dynamic and static strategies. From Reference’2.




the speed of classification. As shown in Figure 3b, prediction accuracies of 99% were achieved by
using images that were captured within only 3.3 s of tracking the LC response. The results
demonstrate the potential utility of ML-based methods for distinguishing responses of LCs to
chemical targets that are otherwise indistinguishable to human observers.

A second study that has used ML methods to analyze LC sensor responses employed convolutional
neural networks (CNN) . Most implementations of CNNs are inspired by the deep neural
network model (AlexNet) of Krizhevsky et al. that was reported in 2012 34, AlexNet was trained
using millions of images found on the Internet, thus mimicking how humans categorize new
objects based on prior information. In the context of research involving LCs, AlexNet-based
frameworks have been used to identify LC phases and predict the order parameter of simulated
nematic LCs 3%3¢, CNNs have also been shown to identify the pitch length of simulated samples
of cholesteric LCs *.

CNNs perform two major tasks, feature extraction (red box in Figure 4a) and classification (blue
box in Figure 4a)*’. Feature extraction is performed by so-called “convolution”, in which an
operation is performed on an input image using a filter. The filter, which is a small matrix, acts as
a “keyhole” with which the image is viewed: as the image is scanned, a mathematical operation
(defined by the matrix that comprises the filter) is performed on the local part of the image (as
seen through the keyhole). The output of the convolution is a so-called feature image, which is a
small set of numerical values that can be used to summarize and classify the features in an image
(a feature image is created for each filter). An example of applying a convolution filter to an image
is illustrated in Figure 4c. Different filters report on the presence of different patterns in the image.
The larger the value of the filter output, the more similar the given neighborhood is to the pattern
that the filter is attempting to find. The pooling step shown in Figure 4a typically aims to reduce
the dimensionality of the feature image by selecting extreme values of the feature image (“max
pooling”). Subsequent convolutions compress the feature images to the point where a decision
(e.g., classification or regression) can be made. This part of the CNN is termed a fully connected
layer. During training of the CNN, there is a backpropagation step in which filters are selected to
maximize the accuracy of the output classification.

VGG16, (a more compact CNN than Alexnet) was used to analyze color micrographs of LC sensor
optical responses **. The study led to the conclusion that the CNN learned that the hue distributions
(color spatial patterns) provided informative set of features that can be used to characterize LC
sensor responses. As importantly, the extracted features were connected to physical characteristics
of the LC responses to the chemical targets. In particular, the hue identified by the CNN to be
important in classification of the LC response reflects the different orientations of the LCs within
the film (interference colors generated by the white light illumination). As shown in Figure 4d and
4e, the maximally activating textures reveal that DMMP and water are characterized by a distinct
set of hues (reflecting differences in orientation of the LC). For the sensor reported above that gave
a visible optical response to both water and DMMP (increase in brightness when observed with
the naked eye), the CNN was able to classify the micrographs of LC responses to water and DMMP
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Figure 4. (a) An example of a typical CNN architecture (b) Schematic illustration of feature extraction and
classification framework for analysis of LC sensor responses using ML approaches (c) Illustration of the
application of a convolution filter to two different images (d) Hue distributions that characterize the response
of LC sensors to water or (¢€) DMMP, as identified using a CNN. From references®>34.

with 100% accuracy (i.e., it could distinguish between DMMP and water). Similar to the first ML
study of LC sensors, the results of this second study indicate that LC features developed early in
the sensor response (first 30 s) are highly informative and sufficient to discriminate between
chemical environments.



Strategies for Design of LC Chemical Sensors that do not Rely on Responsive Surfaces. The
examples of LC sensor design that were discussed above rely on the use of surfaces to achieve
chemical selectivity (i.e., they are based on surface anchoring transitions). An alternative strategy
is to design LC systems that undergo changes in bulk phase organization in response to exposure
to targeted chemical species. While this strategy has a long history, starting with the use of phase
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Figure 5. (a) Change of lattice spacing of a BP (BPI and BPII) LC exposed to toluene vapor. Inserts show the
corresponding structures of BPI and BPIL. (b) Optical response of either a polymer-stabilized BP, polymerized
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transitions induced by absorption of volatile organic compounds (VOCs), as detailed below, more
recent efforts have turned to the use of chiral LC phases, including cholesteric and blue phase (BP)
LCs, and the design of chemically-selective chiral dopants.

Chiral LC phases are promising for sensing applications due to their intrinsic optical properties,
such as Brag reflection (Figure 5). A number of past studies demonstrate that chiral LCs exhibit
measurable optical responses when volatile organic compounds absorb into them * % 3843, For
example, cholesteric phases have been demonstrated to respond to tetrachloroethylene, with the
response arising from an expansion of the pitch of the cholesteric phase .  More recent studies
have extended investigations of chiral LC phases for VOC sensing to BPs, including BPI (body
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center cubic) and BPII (simple cubic) phases (Figure 5a)). Interestingly, when exposed to toluene
vapor, the lattice expands in BPI while it shrinks in BPII, revealing that the influence of the toluene
on the BP is not simply to swell the material, as occurs with cholesteric LCs. Polymerized BPs,
which exhibit stable BP phases over a wide range of temperatures %%, have also been explored
for VOC sensing. Inspection of Figure 6b reveals that a polymer-stabilized BP can generate a
larger optical response to toluene vapor than either a polymerized cholesteric or nematic phase.
Overall, polymerized LC phases appear promising for design of LC sensors, in part because they
are self-supporting and thus easy to integrate into devices.
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Figure 6. Cholesteric LC sensors doped with reactive chiral dopants: (a) Transmission spectra of cholesteric LC
film containing a chiral dopant that reacts with CO,, before (red) and after (green) exposure to CO». Insert shows
the images of the cholesteric film before (red) and after (green) exposure to CO; for 1 h, and the corresponding
reaction between the doped reactive chiral dopant and CO,. (b) (i) Schematic illustration of the structure of the
cholesteric LC (half pitch), (ii-iv) Molecular structures of various chiral dopants and their corresponding reactions
with (ii) Oo, (iii) acetone, (iv) water. From references'> +>

A particularly interesting approach based on cholesteric LCs involves the use of chiral dopants
that undergo changes in helical twisting power in the presence of targeted chemical species (via
physical or chemical interactions) !> #8 For example, Figure 6a shows the response of a
cholesteric film doped with a chiral diamine (Figure 6a insert) upon exposure to CO> '°. Because
the chiral diamine itself has a low helical twisting power, a TADDOL derivative with a high helical
twisting power was also introduced into the LC. The TADDOL derivative formed a complex with
the diamine and enabled Bragg reflection of the film in the visible region. Initially, the cholesteric
film exhibited a red color with maximum reflection at 637 nm. Upon transformation of the diamine
to a carbamate (Figure 6a insert) via reaction with CO», the helical twisting power increased due
to dissociation of the complex. This change generated a greenish blue appearance and a maximum
in reflectance at 495 nm. Beyond the use of reactive diamine dopants for CO; detection, Figure
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5(b, ii-iv) shows reactive chiral dopants that have been reported to form cholesteric phases that
respond to O2, acetone vapor, and humidity® !4 1539 40,4246

Beyond Equilibrium: Design of Biological Sensors based on Non-Equilibrium Interfacial
Phenomena In addition to efforts to create LC sensors that detect the presence of targeted
chemical species present in the gas phase, a substantial number of studies have reported LC sensors
for detection of biological species from aqueous phases. In these examples, a thermotropic LC is
brought into contact with an aqueous phase, and interfacial phenomena at the LC-aqueous interface
leads to changes in the ordering of LCs. For example, a range of past studies using LC sensors
with LC-aqueous interfaces have reported observations of orientational transitions of LCs
triggered by the adsorption or reorganization of amphiphilic molecules at the interface 6452,
These changes in orientation of the LCs reflect, in part, the interaction of LC mesogens with
aliphatic tails of the
amphiphiles and
depend on the
structure and
concentration of the
amphiphiles !> 1731
3 as well as the

solution conditions
23

Whereas the
majority of past
efforts to develop
biomolecular

sensors at LC-
aqueous interfaces
have focused on
driving the LC
between two

equilibrium  states
(with or without the Figure 7. Schematic illustrations of (a) a vesicle approaching a LC-aqueous interface
target), recent [inset, top: structures of DLPC and 5CB; bottom: polarized light micrograph (crossed

. . g polarizers) of the sample showing a dark texture] and (b) a vesicle colliding with the
studies hl‘ghhght the interface and subsequently spreading along the interface [inset, polarized light micrograph
opportunity t0  (crossed polarizers) showing a “blink™]. (c-f) Sequential micrographs of a single blinking
create LC sensors event. (g) Schematic representation of the interaction of viruses or bacteria with LC
that operate beyond emulsions. The cartoons depict the i) radial and ii) bipolar configurations of LC droplets.
From references 3% .

equilibrium. To
illustrate the
approach, we describe recent observations of non-equilibrium behaviors of LC interfaces that are
incubated against aqueous dispersions of amphiphilic assemblies®®. In these studies, the LCs (e.g.,
nematic phases of 5SCB) were observed to generate spatially localized and transient flashes of light
when viewed through crossed polarizers. It was deduced that amphiphilic assemblies of
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phospholipids (vesicles of DLPC, Figure 7a)) collided with the LC-aqueous interface, and that
subsequent spreading of the amphiphiles across the interface (Figure 7b) generated a transient
surface tension gradient and associated interfacial flow (Marangoni flow). The surface flow is
sufficiently strong to realign the LC near the interface and generate an optical response (a “blink™)
(Figure 7c-f). Experimental observations revealed a first order relationship between the
concentration of vesicles in the aqueous phase and the frequency of blinking, consistent with
blinking events arising from the collisions of single vesicles with the LC interface.

The above-described study hints at a range of future directions of exploration involving lipidic
assemblies at LC interfaces. For example, past studies have reported that the transfer of lipid onto
LC interfaces from bacteria > and viruses -’ can trigger LC ordering transitions (Figure 7g).
Specifically, micrometer-sized droplets of nematic SCB transition from bipolar (planar) to radial
(hedgehog) configurations when contacted with Gram-negative bacteria (E. coli) or lipid-
enveloped viruses

(A/NWS/TOkyO/67): Motile bacterial No bacteria ! Motile bacteria Dead bacteria
a o

but not when contacted

|
with Gram-positive =

bacteria (Bacillus
subtilis) or  non-
enveloped viruses

(M13  helper phage)
(Figure 7g). These
observations are
consistent with the
transfer of lipids from

the surfaces of Gram-
negative bacteria and Figure 8. (a) Schematic illustration (side view) and (b—d) sequential micrographs
lipid-enveloped viruses (side view) showing interfacial shear stresses generated by motile bacteria (E. coli)

. triggering the self-regulated release of microdroplets containing anti-bacterial agent
to the interfaces of the (silver salts) and a red tracer, (b) before the arrival of bacteria, (¢) immediately after
LC droplets. When  the arrival of motile bacteria and (d) two hours after the arrival of bacteria and
combined with the following cell death. (¢) Optical responses and side views of the LC interface

observation that single corresponding to (b—d). From reference™.

amphiphilic  vesicles

can trigger non-equilibrium states, it also appears likely that highly sensitive methods of detection
of vesicles, viruses and bacteria may be possible using LCs driven beyond equilibrium.

A second example of the use of non-equilibrium interfacial states of LCs for biological sensing
revolves around the hydrodynamic interactions of motile bacteria with the aqueous interfaces of
LC systems®®. Specifically, it was shown that the hydrodynamic shear stresses transmitted from
motile bacteria onto LC interfaces are sufficient to drive the reorientation of LCs and thus generate
an optical response that reflects the motion of the bacteria. In addition, it was reported that aqueous
micrometer-sized droplets, initially trapped within the LCs, could be released from the LC by
mechanical shear stress generated by the swimming motion of bacteria (E. coli). When the
aqueous microdroplets contained antibacterial agents (silver salts), the release of the microdroplets
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in the presence of motile bacteria resulted in bacterial cell death, thus generating a self-regulated
release of antimicrobial agent. Here we emphasize that the antibacterial agent is only released in
the presence of the shear stress generated by motile bacteria, and that it functions in a feedback
loop, stopping the release of antibacterial agents as the trigger is eliminated (Figure 8b-d). The
self-regulating behavior of the LC system suggests that LCs not only offer the basis of promising
biological sensors, but that they can integrate the functions of actuators to provide stimuli
dependent release of active agents (e.g., to avoid release of antibacterial agent in the absence of
motile bacteria).

Concluding statements

This article describes areas of opportunity related to the design of LC-based chemical and
biological sensors with a focus on four broad messages:

First, there exist a range of surface-based strategies for design of LC sensors, employing metal-
ligand interactions, redox-reactions and noble metal surfaces. In each of these contexts, there
remain many opportunities to develop new alignment chemistries and new mesogen designs!®2%
7. To date, existing strategies have largely relied on the menu of LCs developed for electrooptical
applications. The design of LCs with properties tailored for LC sensors is almost untouched.

Second, the design and analysis of LC sensors is being increasingly enabled by computational
methods. As illustrated by examples given in this article, computational methods include
electronic structure calculations for screening of chemical functional groups for incorporation into
LC dopants, mesogen designs and to present from surfaces. Additionally, ML approaches are
proving useful in identifying subtle spatial and temporal features of LC optical responses to
chemical and biological targets, thus decreasing the reliance of tailored chemistry to achieve
specificity in the operation of the LC sensor. Both classes of approaches appear fertile territory
for advancing LC sensor design®% 3,

Third, a promising strategy for design of LC chemical sensors revolves around the use of chiral
dopants with helical twisting power that changes upon interaction/reaction with targeted chemical
species. Polymerized blue phases appear useful hosts for such reactive chiral dopants, as they are
self-supporting, stable over a wide range of temperatures, and subtle changes in organization can
be reported via changes in Bragg diffraction!> 3% 43:46.59,

Fourth, and finally, this article highlights the opportunity to perform sensing functions using LCs
that are driven into non-equilibrium states. It has long been known that LCs undergo shear
alignment, but recent studies demonstrate that shear stresses encountered in living biological
systems or generated by gradients in interfacial concentration of amphiphiles, are sufficient to
triggered optical and other functional responses of LCs (e.g., release of microcargo). The complex
dynamic responses of LC to non-equilibrium states offers a range of pathways towards adaptive
and self-regulating chemical systems, where the responses to multiple stimuli are computed by the
LC thus giving rise to a level of autonomy and function that is increasingly similar to living
biological systems (e.g., function of a biological membrane)>* %%,
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