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Abstract. The large societal impact of liquid crystals (LCs) in electrooptical displays arrived after 

several decades of research involving molecular-level design of LCs and their alignment layers, 

and elucidation of LC electrooptical phenomena at device scales.  The unusual anisotropic optical, 

mechanical and dielectric properties of LCs used in displays also makes LCs remarkable amplifiers 

of their interactions with chemical and biological species, thus opening up the possibility that LCs 

may play an equally influential role in a data-driven society that increasingly depends on 

information coming from sensors.  In this article, we briefly describe ongoing efforts to design LC 

systems tailored for chemical and biological sensing, efforts that in many ways mirror the 

challenges and opportunities in LC design and alignment tackled several decades ago during 

development of LC electrooptical displays. Now, however, traditional design approaches based on 

structure-property relationships are being supplemented by data-driven methods such as machine 

learning.   Recent studies also show that computational chemistry methods can greatly increase 

the rate of discovery of chemically-responsive LC systems.  Additionally, non-equilibrium states 

of LCs are being revealed to be useful for design of biological sensors and more complex 

autonomous systems that integrate self-regulated actuation along with sensing. These topics and 

others are briefly addressed in this article with the aim of highlighting approaches and goals for 

future research that will realize the full potential of LC-based sensors.  

 

Introduction.  The idea of creating chemical and biological sensors that exploit the properties of 

liquid crystals (LCs) is not new.  Before mankind roamed the surface of Earth, evolutionary 

processes selected the liquid crystalline state of matter as the basis of life1, 2, because LCs can 

reorganize in response to subtle chemical and mechanical cues to perform useful functions2 (e.g., 

as underlies the functioning of a mammalian cell membrane).  A bit more recently, and in parallel 

and following the development of liquid crystal displays in the 1970’s3, a range of studies have 

explored the properties of synthetic LCs as the basis of chemical and biological sensors4-16.  In the 

year 2020, as societal challenges such as management of COVID-19, global changes in climate, 

and creation of a circular economy, have moved to the front-burner, the pull for innovation and 

translation of sensing technologies is strong: data acquisition and analysis are central elements of 

decision-making common to all of these challenges, and sensors, in many cases, are the source of 

that data.  For the research community with expertise in LCs, the opportunity to have an impact is 

being amplified by the emergence of new tools for LC bio/chemical sensor design, including 
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electronic-structure calculations and AI techniques.  This brief perspective aims to convey select 

opportunities connected to LC sensor design, with a focus on approaches enabled by new scientific 

tools and methodologies.   

Chemical Sensors Create the Need for 

New LC Alignment Chemistries and 

Mesogen Designs.   The development of 

stable and long-lived surface chemistries 

for alignment of LCs, such as is achieved 

via use of surfaces coated with polyimides, 

underlies the success of the electrooptical 

LC display technology3. One broad class 

of strategies for the design of LC chemical 

sensors aims to build from this success by 

creating tailored surfaces that cause LCs to 

change orientation in the presence of a 

targeted chemical species (Figure 1a)10, 12, 

16-21.  Approaches used to date to transduce 

and quantify surface-driven changes in the 

orientation of LCs in sensors include 

measurement of light transmitted through 

polarizers, absorbance of guest-host 

systems, and electrical capacitance. In 

contrast to displays, however, in addition 

to the solid-LC interface, a LC chemical or 

biological sensor must have a free surface, 

either to the atmosphere for gas sensing22 

or an aqueous phase for sensing of 

biological species in water23. These 

unconventional interfaces in LC sensors 

create additional challenges and 

opportunity for fundamental science and 

technological contribution.  Here we focus 

on recent efforts to address these issues, 

with the goal of sending the message that 

opportunities exist both for surface 

chemists and those skilled in the synthesis 

of new LCs to make important 

contributions.  

The degrees of freedom underlying the 

design of surfaces and LCs for surface-

driven LC sensors is large, leading to the 

 

Figure 1. Design of reactive surfaces for LC chemical 

sensors. (a)  General design principle: the optical response of 

the LC sensor is triggered by a surface anchoring transition.  

Surface anchoring transitions in LC sensors have been 

triggered by (b) metal cation-ligand exchange reactions (e.g., 

exchange of nitrile group of mesogen with phosphoryl group 

of DMMP) (c) redox reactions (oxidation of Mn2+ to Mn4+ (as 

MnO2) by Cl2 in the presence of water vapor) and (d) 

reactions on noble metal surfaces (dissociative adsorption of 

Cl2 displacing mesogen bound to Au(111)). From 

references19, 21. 
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need to optimize multiple design parameters.  

Significantly, recent studies have demonstrated 

that computational chemistry techniques can be 

used to screen select degrees of freedom to 

identify suitable LCs and reactive surfaces for 

a given chemical target, as described below. 

The first design of a LC surface-driven sensor 

that we introduce here is inspired by classical 

observations of adsorbate-triggered anchoring 

transitions24, in which changes in the 

intermolecular interaction between a LC and 

the surface of a solid leads to an alteration of 

the easy axis/anchoring energy of the LC12, 17, 

25.  We illustrate the approach using surfaces 

that present metal cation binding sites, and LCs 

that possess functional groups (e.g., nitrile 

groups) that participate in coordination 

interactions with select metal cations12.   For a 

LC such as nematic 4’-pentyl-4-

biphenylcarbonitrile (5CB), the formation of a 

coordination complex of sufficient strength at 

the metal ion-decorated solid surface leads to a 

uniform homeotropic orientation of the LC26.  

This interpretation of experiments is supported 

by computations of the binding energies of 

benzonitrile for metal cations18, 20, 21, 27. An 

anchoring transition of the LC is triggered by 

exposure of the free surface of the oriented LC 

film to gaseous species that diffuse through the 

LC film and bind to the metal cation more 

strongly than the mesogens of the LC.  A 

widely explored example (Figure 1b) of 

gaseous species that will trigger this type of 

anchoring transition is the organophosphonate 

class of compounds (relevant to pesticides and 

chemical warfare agents), such as 

dimethylmethylphosphonate (DMMP). 

Consistent with experimental observations of 

anchoring transitions triggered by DMMP and 

nerve agents, electronic structure calculations 

predict that the binding energy of DMMP to 

Al3+ (-1.14 eV) is stronger than that of 5CB to 

Al3+ (-0.40 eV) and thus that the orientational 

 

Figure 2. Design of LCs tailored for use in sensors. 

(a) Optical micrographs (crossed polars) of LCs 

comprised of pure 5CB, 5CB with a pyrimidine-based 

dopant, or 5CB containing a pyridine-based dopant, 

supported on surfaces decorated with Al3+  : initial 

state, exposed to a vapor of 10 ppm DMMP in 

nitrogen, and exposed to a vapor of 30% relative 

humidity of nitrogen. (b) Time-dependent change in 

interference fringes of PCH3/PCH5 mixture supported 

on La3+ decorated surface, following introduction of 

DMMP (10 ppm). The ruler indicates the change in 

fringe position. (c) Characteristic time to achieve an 

80% response for PCH3/PCH5 and 5CB as a function 

of DMMP concentration. From reference 22, 27. 
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transition of 5CB is driven by ligand exchange at the surface (nitrile of 5CB by phosphoryl of 

DMMP)18, 20, 21, 27.  Experiments demonstrate that this experimental design can be highly sensitive; 

for example, parts-per-billion concentrations of DMMP in the gas phase can trigger anchoring 

transitions of 5CB supported on Al3+ functionalized surfaces19, 25. Through judicious selection of 

the metal cation, its counter ions, and the ligands incorporated into mesogens, a wide range of 

chemically specific LC systems can be created 18-21, 25, 27.  Here again, computational chemistry 

methods are proving increasingly useful in screening these degrees of freedom.  

A second strategy for the design of chemically responsive interfaces for use in LC sensors relies 

on interfacial redox reactions.  This strategy works well for oxidizing and reducing gases that, for 

example, bind weakly with metal cations and thus cannot be detected using the strategy described 

above.   As an example of this strategy (Figure 1c), we describe the use of surfaces presenting 

Mn2+ cations and detection of Cl2 gas (an oxidizing gas) 19.  Whereas nitrile-containing LCs bind 

strongly to Mn2+ binding sites on surfaces, exposure of Mn2+-decorated surfaces to humid (35% 

relative humidity) Cl2 gas triggers a redox reaction that results in formation of Mn4+ (in the form 

of MnO2), which in turn triggers a change in the orientation of the supported LC from homeotropic 

to planar. Interestingly, the orientations of the LC before and after the redox-reaction were 

predicted by electronic structure calculations 19, again highlighting the opportunity to use 

computational chemistry to guide the design of new types of LC chemical sensors.  In contrast to 

the metal ligand-exchange reactions outlined above, the oxidation of the Mn2+ to MnO2 is 

irreversible, and thus is suitable for one-time alarm sensors or sensors that report cumulative 

exposure, as is needed for quantification of chronic human exposure to chemical environments. 

The selectivity of the sensor can be tuned via choice of the mesogen and metal cation with its 

associated anion (or other redox species), thus creating a substantial (and largely unexplored) 

design space. 

The third surface-based strategy for design of LC sensors that we outline here revolves around 

reactive surfaces.  We illustrate this design by describing the use of a noble metal surface to anchor 

a LC (Figure 1d)21.   While many LCs (e.g., cyanobiphenyls) are known to orient parallel to the 

surfaces of noble metal surfaces such as the Au(111) surface, substantial research in the field of 

heterogeneous catalysis reveals that a range of chemical functional groups undergo chemical 

transformations on these surfaces.  For example, aromatic carboxylic acids will undergo a 

dehydrogenation reaction on Au(111), resulting in directional binding28. Guided by these prior 

results, aromatic carboxylic acids have been used recently as dopants in cyanobiphenyl-based LCs 

and shown to cause the LCs to adopt a homeotropic orientation as a consequence of 

dehydrogenation of the carboxylic group of the dopant21.  Complementary computations 

confirmed the experimental observations, but also predicted that dissociative adsorption of Cl2 gas 

on the Au(111) surface would displace the bound (dehydrogenated) carboxylic acid. This 

prediction was validated by experiment, revealing that subsequent exposure of the LC system to 

Cl2 gas triggered an anchoring transition due to dissociative adsorption of Cl2 gas to atomic Cl on 

the Au(111) surface (Figure 1d).  This design of a LC sensor for Cl2 was shown to be robust and 

tolerant to many other chemical species and, more broadly, serves to highlight the opportunity to 

leverage knowledge from the field of surface science and heterogeneous catalysis to advance the 

design of LC sensors. 
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In each of the approaches described above, there exists a largely untapped opportunity to refine 

the sensitivity and specificity of LC sensors via optimization of the structure of the mesogens and 

properties of the LC phase21, 22, 27. For example, whereas many past studies of LC sensors have 

used the cyanobiphenyl series of LCs, dopants and mesogens that contain pyridine and pyrimidine 

groups have been shown to yield substantial improvements in terms of chemical selectivity of the 

sensors (i.e., responding to one chemical species but not another)27. We illustrate the opportunity 

to create new mesogens with properties tailored for LC sensors with an example that was informed 

by the use of computational chemistry.  In the example shown in Figure 2a, as predicted by binding 

energies from electronic structure computations, LCs containing nitrile groups bind to Al3+ cations 

on surfaces more weakly (-0.40 eV) than DMMP (-1.14 eV) or water (-0.49 eV), and thus nematic 

5CB undergoes a surface-driven anchoring transition in response to DMMP or water. In contrast, 

LCs containing pyridine groups bind too strongly to the Al3+-decorated surfaces to respond to 

either DMMP or water, whereas LCs containing pyrimidine groups bind less strongly than DMMP 

but more strongly than water, thus leading to a response to DMMP but not water.   This example 

demonstrates how the choice of mesogen plays a central role in the performance of a LC chemical 

sensor. Many designs of mesogens that incorporate other metal cation binding functional groups 

can be envisaged but have not yet been explored. 

In addition to the critical task of designing LC-solid interfaces in LC sensors, another largely 

untouched challenge is the design of the LC-air interface of the sensor.   In the majority of past 

studies of LC sensors, in which a micrometer-thick film of LC was supported on a chemically 

functionalized surface (e.g., in a microwell or stabilized by arrays of micropillars), the LCs 

exhibited a perpendicular orientation at the upper free surface (to air) 19, 25, 29.  Manipulation of this 

orientation is an important design variable, however, because it can impact the change in elastic 

energy of the LC film that accompanies the LC response to a chemical species.  So far, little work 

has been reported on the topic, but the importance of it in LC sensor design is illustrated by one 

recent example.  In this example, LCs containing the cyclohexyl group (PCH series) were used 22.  

For reasons that are not yet fully understood, these LCs exhibit planar anchoring at a free surface 

(interface to air) while maintaining a homeotropic orientation at a surface presenting metal cations 

(the latter through a coordination interaction between the nitrile groups of the PCH mesogens and 

metal cations).  Importantly, it was demonstrated that this combination of interfacial ordering— 

planar anchoring at the free surface and homeotropic anchoring at the metal-cation-decorated 

surface—led to designs of LC sensors that exhibited faster responses and greater sensitivities to 

DMMP, as compared to LCs that adopt perpendicular orientations at free surfaces (5CB, E7 and 

others, Figure 2b)22.When using a mixture of PCH3/PCH5, in contrast to 5CB, the LC is initially 

strained by hybrid anchoring with an elastic free energy per unit area of K/h, where K is the elastic 

constant of the LC and h is the LC film thickness. To trigger a response to DMMP, the only 

requirement is that the homeotropic anchoring strength be reduced to a value that is less than K/h 

(≈10−5 J m−2).  In contrast, for nematic 5CB with an initially homeotropic state, exposure to DMMP 

must trigger a change in the orientation of the easy axis of the LC in order to generate an optical 

response.  As a result, as shown by inspection of Figure 2b, gas phase concentrations of DMMP 

as low as 100 ppb can be detected with PCH3/PCH5; under the same conditions, 5CB generates 

no measurable response. For 1 ppm and 10 ppm DMMP, PCH3/PCH5 exhibited faster responses 

than observed when using 5CB. 
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Achieving Higher Chemical Specificity and Sensitivity in LC sensors by using Machine 

Learning. The strategies described above for design of LC chemical sensors focused on 

identification and optimization of the chemistry of mesogens and surfaces. A complementary 

strategy is to look for specificity in the response of LC systems to targeted chemical species by 

increasing the sophistication with which the spatial and temporal responses of LC systems are 

characterized.  It is this “pattern recognition” approach that forms the basis of the aspect of the LC 

sensor design strategy that we discuss in this section.  As detailed below, the approach is enabled 

by the availability and dissemination of machine-learning approaches. The term “machine 

learning” (ML) is attributed to an article 30 where the possibility of teaching a computer to learn 

how to play the game of checkers was demonstrated.  In the past decade, the growth in computing 

power and availability of large datasets has elevated the importance of ML in most areas of science 

and engineering 31.   

 

The first report of the use of ML in the context of LC sensors demonstrated that machine 

recognition of operator-specified features of the optical response of a LC sensor could be used to 

classify the response and thus improve the specificity and speed of a LC-based chemical sensor 32.   

A range of different features were used to train the classifiers of the ML framework, including the 

average intensity of RGB channels of an image.  The optical responses of surface-based LC sensors 

to either water vapor or DMMP were processed using two different training strategies, namely, 

dynamic and static training. The dynamic strategy trained a classifier (using a “training dataset” 

of images using average RGB feature information that was accumulated during the evolution of 

the LC response. The strategy was motivated by the observation that, for the experimental dataset 

under consideration, LC responses to water vapor tended to be slower than responses to DMMP. 

Therefore, the authors argued that the shape of the dynamic profiles of the RGB channels should 

provide valuable information to perform classification. However, the dynamic responses, as 

presented in Figure 3a, were found to exhibit variability from sample to sample. A static strategy 

was then explored based on classifying LC responses using spatial features in the images 

(independent of when they were obtained).  This strategy was based on the hypothesis that subtle 

differences in spatial patterns (that are not obvious to the human eye) would be sufficient to 

distinguish between water vapor and DMMP.   The static strategy has the key practical advantage 

that it does not require running a lengthy experiment to conduct classification, thus accelerating 

Figure 3. (a) Dynamic evolution of average red (top), green (middle), and blue (bottom) intensities of LC sensors 

responding to DMMP (left) and N2-water (right). Each line represents a different sample (b) Average classification 

accuracy (for test set) achieved using ML approaches based on dynamic and static strategies. From Reference32. 
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the speed of classification. As shown in Figure 3b, prediction accuracies of 99% were achieved by 

using images that were captured within only 3.3 s of tracking the LC response. The results 

demonstrate the potential utility of ML-based methods for distinguishing responses of LCs to 

chemical targets that are otherwise indistinguishable to human observers. 

 

A second study that has used ML methods to analyze LC sensor responses employed convolutional 

neural networks (CNN) 33.  Most implementations of CNNs are inspired by the deep neural 

network model (AlexNet) of Krizhevsky et al. that was reported in 2012 34. AlexNet was trained 

using millions of images found on the Internet, thus mimicking how humans categorize new 

objects based on prior information. In the context of research involving LCs, AlexNet-based 

frameworks have been used to identify LC phases and predict the order parameter of simulated 

nematic LCs 35, 36.  CNNs have also been shown to identify the pitch length of simulated samples 

of cholesteric LCs 35.  

 

CNNs perform two major tasks, feature extraction (red box in Figure 4a) and classification (blue 

box in Figure 4a)37.  Feature extraction is performed by so-called “convolution”, in which an 

operation is performed on an input image using a filter.  The filter, which is a small matrix, acts as 

a “keyhole” with which the image is viewed: as the image is scanned, a mathematical operation 

(defined by the matrix that comprises the filter) is performed on the local part of the image (as 

seen through the keyhole).  The output of the convolution is a so-called feature image, which is a 

small set of numerical values that can be used to summarize and classify the features in an image 

(a feature image is created for each filter). An example of applying a convolution filter to an image 

is illustrated in Figure 4c.  Different filters report on the presence of different patterns in the image.  

The larger the value of the filter output, the more similar the given neighborhood is to the pattern 

that the filter is attempting to find.  The pooling step shown in Figure 4a typically aims to reduce 

the dimensionality of the feature image by selecting extreme values of the feature image (“max 

pooling”). Subsequent convolutions compress the feature images to the point where a decision 

(e.g., classification or regression) can be made.  This part of the CNN is termed a fully connected 

layer.  During training of the CNN, there is a backpropagation step in which filters are selected to 

maximize the accuracy of the output classification.   

VGG16, (a more compact CNN than Alexnet) was used to analyze color micrographs of LC sensor 

optical responses 33.  The study led to the conclusion that the CNN learned that the hue distributions 

(color spatial patterns) provided informative set of features that can be used to characterize LC 

sensor responses. As importantly, the extracted features were connected to physical characteristics 

of the LC responses to the chemical targets. In particular, the hue identified by the CNN to be 

important in classification of the LC response reflects the different orientations of the LCs within 

the film (interference colors generated by the white light illumination). As shown in Figure 4d and 

4e, the maximally activating textures reveal that DMMP and water are characterized by a distinct 

set of hues (reflecting differences in orientation of the LC). For the sensor reported above that gave 

a visible optical response to both water and DMMP (increase in brightness when observed with 

the naked eye), the CNN was able to classify the micrographs of LC responses to water and DMMP 

https://pubs-acs-org.proxy.library.cornell.edu/doi/10.1021/acs.jpcc.0c01942#fig7
https://pubs-acs-org.proxy.library.cornell.edu/doi/10.1021/acs.jpcc.0c01942#fig7
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with 100% accuracy (i.e., it could distinguish between DMMP and water).  Similar to the first ML 

study of LC sensors, the results of this second study indicate that LC features developed early in 

the sensor response (first 30 s) are highly informative and sufficient to discriminate between 

chemical environments.  

 

Figure 4. (a) An example of a typical CNN architecture (b) Schematic illustration of feature extraction and 

classification framework for analysis of LC sensor responses using ML approaches (c)  Illustration of the 

application of a convolution filter to two different images (d) Hue distributions that characterize the response 

of LC sensors to water or (e) DMMP, as identified using a CNN.  From references32-34. 
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Strategies for Design of LC Chemical Sensors that do not Rely on Responsive Surfaces.   The 

examples of LC sensor design that were discussed above rely on the use of surfaces to achieve 

chemical selectivity (i.e., they are based on surface anchoring transitions).   An alternative strategy 

is to design LC systems that undergo changes in bulk phase organization in response to exposure 

to targeted chemical species.  While this strategy has a long history, starting with the use of phase 

transitions induced by absorption of volatile organic compounds (VOCs), as detailed below, more 

recent efforts have turned to the use of chiral LC phases, including cholesteric and blue phase (BP) 

LCs, and the design of chemically-selective chiral dopants.   

Chiral LC phases are promising for sensing applications due to their intrinsic optical properties, 

such as Brag reflection (Figure 5). A number of past studies demonstrate that chiral LCs exhibit 

measurable optical responses when volatile organic compounds absorb into them 4, 9, 38-43. For 

example, cholesteric phases have been demonstrated to respond to tetrachloroethylene, with the 

response arising from an expansion of the pitch of the cholesteric phase 42.   More recent studies 

have extended investigations of chiral LC phases for VOC sensing to BPs, including BPI (body 

 

Figure 5. (a) Change of lattice spacing of a BP (BPI and BPII) LC exposed to toluene vapor. Inserts show the 

corresponding structures of BPI and BPII.  (b) Optical response of either a polymer-stabilized BP, polymerized 

cholesteric and polymerized nematic sample to toluene vapor at 930 ± 70 ppm. From Reference39, 45, 48.    
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center cubic) and BPII (simple cubic) phases (Figure 5a)).  Interestingly, when exposed to toluene 

vapor, the lattice expands in BPI while it shrinks in BPII, revealing that the influence of the toluene 

on the BP is not simply to swell the material, as occurs with cholesteric LCs.  Polymerized BPs, 

which exhibit stable BP phases over a wide range of temperatures 9, 38, 39, have also been explored 

for VOC sensing.  Inspection of Figure 6b reveals that a polymer-stabilized BP can generate a 

larger optical response to toluene vapor than either a polymerized cholesteric or nematic phase. 

Overall, polymerized LC phases appear promising for design of LC sensors, in part because they 

are self-supporting and thus easy to integrate into devices.  

A particularly interesting approach based on cholesteric LCs involves the use of chiral dopants 

that undergo changes in helical twisting power in the presence of targeted chemical species (via 

physical or chemical interactions) 15, 44-48.  For example, Figure 6a shows the response of a 

cholesteric film doped with a chiral diamine (Figure 6a insert) upon exposure to CO2 15. Because 

the chiral diamine itself has a low helical twisting power, a TADDOL derivative with a high helical 

twisting power was also introduced into the LC.  The TADDOL derivative formed a complex with 

the diamine and enabled Bragg reflection of the film in the visible region. Initially, the cholesteric 

film exhibited a red color with maximum reflection at 637 nm. Upon transformation of the diamine 

to a carbamate (Figure 6a insert) via reaction with CO2, the helical twisting power increased due 

to dissociation of the complex.  This change generated a greenish blue appearance and a maximum 

in reflectance at 495 nm. Beyond the use of reactive diamine dopants for CO2 detection, Figure 

 

Figure 6.  Cholesteric LC sensors doped with reactive chiral dopants: (a) Transmission spectra of cholesteric LC 

film containing a chiral dopant that reacts with CO2, before (red) and after (green) exposure to CO2. Insert shows 

the images of the cholesteric film before (red) and after (green) exposure to CO2 for 1 h, and the corresponding 

reaction between the doped reactive chiral dopant and CO2.  (b) (i) Schematic illustration of the structure of the 

cholesteric LC (half pitch), (ii-iv) Molecular structures of various chiral dopants and their corresponding reactions 

with (ii) O2, (iii) acetone, (iv) water. From references15, 45. 



11 
 

5(b, ii-iv) shows reactive chiral dopants that have been reported to form cholesteric phases that 

respond to O2, acetone vapor, and humidity9, 14, 15, 39, 40, 42, 46.   

Beyond Equilibrium:  Design of Biological Sensors based on Non-Equilibrium Interfacial 

Phenomena  In addition to efforts to create LC sensors that detect the presence of targeted 

chemical species present in the gas phase, a substantial number of studies have reported LC sensors 

for detection of biological species from aqueous phases. In these examples, a thermotropic LC is 

brought into contact with an aqueous phase, and interfacial phenomena at the LC-aqueous interface 

leads to changes in the ordering of LCs. For example, a range of past  studies using LC sensors 

with LC-aqueous interfaces have reported observations of orientational transitions of LCs 

triggered by the adsorption or reorganization of amphiphilic molecules at the interface 16, 49-52.  

These changes in orientation of the LCs reflect, in part, the interaction of LC mesogens with 

aliphatic tails of the 

amphiphiles and 

depend on the 

structure and 

concentration of the 

amphiphiles 13, 17, 51, 

53 as well as the 

solution conditions 
23.  

Whereas the 

majority of past 

efforts to develop 

biomolecular 

sensors at LC-

aqueous interfaces 

have focused on 

driving the LC 

between two 

equilibrium states 

(with or without the 

target), recent 

studies highlight the 

opportunity to 

create LC sensors 

that operate beyond 

equilibrium. To 

illustrate the 

approach, we describe recent observations of non-equilibrium behaviors of LC interfaces that are 

incubated against aqueous dispersions of amphiphilic assemblies54.  In these studies, the LCs (e.g., 

nematic phases of 5CB) were observed to generate spatially localized and transient flashes of light 

when viewed through crossed polarizers. It was deduced that amphiphilic assemblies of 

 

Figure 7. Schematic illustrations of (a) a vesicle approaching a LC-aqueous interface 

[inset, top: structures of DLPC and 5CB; bottom: polarized light micrograph (crossed 

polarizers) of the sample showing a dark texture] and (b) a vesicle colliding with the 

interface and subsequently spreading along the interface [inset, polarized light micrograph 

(crossed polarizers) showing a “blink”]. (c-f) Sequential micrographs of a single blinking 

event.   (g) Schematic representation of the interaction of viruses or bacteria with LC 

emulsions. The cartoons depict the i) radial and ii) bipolar configurations of LC droplets. 

From references 54, 55. 
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phospholipids (vesicles of DLPC, Figure 7a)) collided with the LC-aqueous interface, and that 

subsequent spreading of the amphiphiles across the interface (Figure 7b) generated a transient 

surface tension gradient and associated interfacial flow (Marangoni flow).  The surface flow is 

sufficiently strong to realign the LC near the interface and generate an optical response (a “blink”) 

(Figure 7c-f). Experimental observations revealed a first order relationship between the 

concentration of vesicles in the aqueous phase and the frequency of blinking, consistent with 

blinking events arising from the collisions of single vesicles with the LC interface.  

The above-described study hints at a range of future directions of exploration involving lipidic 

assemblies at LC interfaces. For example, past studies have reported that the transfer of lipid onto 

LC interfaces from bacteria 55 and viruses 55-57 can trigger LC ordering transitions (Figure 7g). 

Specifically, micrometer-sized droplets of nematic 5CB transition from bipolar (planar) to radial 

(hedgehog) configurations when contacted with Gram-negative bacteria (E. coli) or lipid-

enveloped viruses 

(A/NWS/Tokyo/67), 

but not when contacted 

with Gram-positive 

bacteria (Bacillus 

subtilis) or non-

enveloped viruses 

(M13 helper phage) 

(Figure 7g). These 

observations are 

consistent with the 

transfer of lipids from 

the surfaces of Gram-

negative bacteria and 

lipid-enveloped viruses 

to the interfaces of the 

LC droplets.  When 

combined with the 

observation that single 

amphiphilic vesicles 

can trigger non-equilibrium states, it also appears likely that highly sensitive methods of detection 

of vesicles, viruses and bacteria may be possible using LCs driven beyond equilibrium.  

A second example of the use of non-equilibrium interfacial states of LCs for biological sensing 

revolves around the hydrodynamic interactions of motile bacteria with the aqueous interfaces of 

LC systems58.  Specifically, it was shown that the hydrodynamic shear stresses transmitted from 

motile bacteria onto LC interfaces are sufficient to drive the reorientation of LCs and thus generate 

an optical response that reflects the motion of the bacteria.  In addition, it was reported that aqueous 

micrometer-sized droplets, initially trapped within the LCs, could be released from the LC by 

mechanical shear stress generated by the swimming motion of bacteria (E. coli).  When the 

aqueous microdroplets contained antibacterial agents (silver salts), the release of the microdroplets 

 

Figure 8. (a) Schematic illustration (side view) and (b–d) sequential micrographs 

(side view) showing interfacial shear stresses generated by motile bacteria (E. coli) 

triggering the self-regulated release of microdroplets containing anti-bacterial agent 

(silver salts) and a red tracer, (b) before the arrival of bacteria, (c) immediately after 

the arrival of motile bacteria and (d) two hours after the arrival of bacteria and 

following cell death. (e) Optical responses and side views of the LC interface 

corresponding to (b–d). From reference58. 
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in the presence of motile bacteria resulted in bacterial cell death, thus generating a self-regulated 

release of antimicrobial agent.  Here we emphasize that the antibacterial agent is only released in 

the presence of the shear stress generated by motile bacteria, and that it functions in a feedback 

loop, stopping the release of antibacterial agents as the trigger is eliminated (Figure 8b-d). The 

self-regulating behavior of the LC system suggests that LCs not only offer the basis of promising 

biological sensors, but that they can integrate the functions of actuators to provide stimuli 

dependent release of active agents (e.g., to avoid release of antibacterial agent in the absence of 

motile bacteria). 

Concluding statements 

This article describes areas of opportunity related to the design of LC-based chemical and 

biological sensors with a focus on four broad messages: 

First, there exist a range of surface-based strategies for design of LC sensors, employing metal-

ligand interactions, redox-reactions and noble metal surfaces.  In each of these contexts, there 

remain many opportunities to develop new alignment chemistries and new mesogen designs19-22, 

27.  To date, existing strategies have largely relied on the menu of LCs developed for electrooptical 

applications.  The design of LCs with properties tailored for LC sensors is almost untouched.  

Second, the design and analysis of LC sensors is being increasingly enabled by computational 

methods.  As illustrated by examples given in this article, computational methods include 

electronic structure calculations for screening of chemical functional groups for incorporation into 

LC dopants, mesogen designs and to present from surfaces.  Additionally, ML approaches are 

proving useful in identifying subtle spatial and temporal features of LC optical responses to 

chemical and biological targets, thus decreasing the reliance of tailored chemistry to achieve 

specificity in the operation of the LC sensor.  Both classes of approaches appear fertile territory 

for advancing LC sensor design32, 33.  

Third, a promising strategy for design of LC chemical sensors revolves around the use of chiral 

dopants with helical twisting power that changes upon interaction/reaction with targeted chemical 

species.  Polymerized blue phases appear useful hosts for such reactive chiral dopants, as they are 

self-supporting, stable over a wide range of temperatures, and subtle changes in organization can 

be reported via changes in Bragg diffraction15, 38, 43, 46, 59.   

Fourth, and finally, this article highlights the opportunity to perform sensing functions using LCs 

that are driven into non-equilibrium states.  It has long been known that LCs undergo shear 

alignment, but recent studies demonstrate that shear stresses encountered in living biological 

systems or generated by gradients in interfacial concentration of amphiphiles, are sufficient to 

triggered optical and other functional responses of LCs (e.g., release of microcargo).  The complex 

dynamic responses of LC to non-equilibrium states offers a range of pathways towards adaptive 

and self-regulating chemical systems, where the responses to multiple stimuli are computed by the 

LC thus giving rise to a level of autonomy and function that is increasingly similar to living 

biological systems (e.g., function of a biological membrane)54, 58.     
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