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We investigate the topologies of random geometric complexes built over random points
sampled on Riemannian manifolds in the so-called “thermodynamic” regime. We prove
the existence of universal limit laws for the topologies; namely, the random normalized
counting measure of connected components (counted according to homotopy type) is
shown to converge in probability to a deterministic probability measure. Moreover,
we show that the support of the deterministic limiting measure equals the set of all
homotopy types for Euclidean connected geometric complexes of the same dimension
as the manifold.

1 Introduction

Sarnak and Wigman [19] recently established, utilizing methods developed by Nazarov
and Sodin [15], the existence of universal limit laws for the topologies of nodal sets
of random band-limited functions on Riemannian manifolds. In the current paper, we
adapt these methods to the setting of random geometric complexes, that is, simplicial
complexes with vertices arising from a random point process and faces determined by
distances between vertices.
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2 A. Auffinger et al.

Kahle [13] made the 1st extensive investigation into the topology of random
geometric complexes generated by a point process in Euclidean space (zero-dimensional
homology of random geometric graphs were also investigated earlier in [17]). The
expectation of each Betti number is studied within three main phases or regimes based
on the relation between density of points and radius of the neighborhoods determining
the complex: the subcritical regime (or “dust phase”) where there are many connected
components with little topology, the critical regime (or “thermodynamic regime”) where
topology is the richest (and where the percolation threshold appears), and the super-
critical regime where the connectivity threshold appears. The thermodynamic regime
is seen to have the most intricate topology. Many cycles of various dimensions begin
to form as we enter this regime and many cycles become boundaries as we leave this
regime.

Random geometric complexes on Riemannian manifolds were studied ear-
lier in the inf luential work of Niyogi et al. [16], where the manifold is embed-
ded in Euclidean space and the distance between vertices is given by the ambient
Euclidean distance. (In the current paper, where our manifold is not necessarily
embedded, we use geodesic distance to build the complexes. If the manifold hap-
pens to be embedded, it can be seen, using Lemma 2.1, that the same limit law
stated in Theorem 1.1 holds when using the ambient Euclidean distance.) The main
question in [16] is motivated by applications in “manifold learning” and concerns
the recovery of the topology of a manifold via a random sample of points on the
manifold. Consequently, the authors only consider a certain window within the super-
critical regime. The subsequent study [5] includes the thermodynamic regime where
they provide upper and lower bounds of the same order of growth for each Betti
number.

Yogeshwaran et al. [20] established limit laws (including a central limit theorem)
in the thermodynamic regime for Betti numbers of random geometric complexes built
over Poisson point processes in Euclidean space. More recently, Goel et al. [11] estab-
lished a limit law in the thermodynamic regime for Betti numbers of random geometric
complexes built over (possibly inhomogeneous) Poisson point processes in Euclidean
space, where they also addressed the case when the point process is supported on a
submanifold.

Hiraoka et al. [12] proved a limit law for so-called “persistent” Betti numbers.
Although this goes in a rather separate direction motivated by topological data analysis,
the formalism they use for describing the convergence of the persistence diagram has a
loose resemblance to the setup of the current paper in that they introduce a sequence of
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Topologies of Random Geometric Complexes 3

random measures and show that it converges in an appropriate sense to a deterministic
measure.

A survey of other results on random geometric complexes is provided in [4].
Most progress in this area has been made only recently, but the problem of studying
the topology of a random geometric complex (or equivalently the ε-neighborhood of a
random point cloud) can be traced back to one of Arnold’s problems (see the historical
note at the end of the introduction).

A novelty of the current paper is that, whereas previous studies of random
geometric complexes have focused on Betti numbers, we consider enumeration of
connected components according to homotopy type, a count that provides more refined
topological information.

1.1 The Riemannian case

Let (M, g) be a compact Riemannian manifold of dimension dim(M) = d, with
normalized volume form Vol(M) = 1. Let U n = {p 1, . . . , pn } be a random set of points
independently sampled from the uniform distribution on M. We denote by B̂(x, r) the
Riemannian ball centered at x ∈ M of radius r > 0. (In this paper we adopt the
convention that when an object is denoted with a “hat” sign, then it is related to M.
Analogous objects related to Euclidean space will have no “hat”. For example a ball in
M is denoted by B̂(x, r) and a ball in R d by B(x, r).) We fix a positive number α > 0 and
build the random set:

Un =
n

k=1

B̂(p k , αn −1/d ). (1.1)

We denote by Č(Un ) the corresponding Čech complex (which for n > 0 large enough is
homotopy equivalent to U n itself, see Lemma 2.1 below).

Let now Ĝ be the set of equivalence classes of M-geometric, connected simplicial
complexes, up to homotopy equivalence (observe that this is a countable set). In other
words, Ĝ consists of all the connected simplicial complexes that arise as Cech complexes
of some finite family of balls in M. Note that different manifolds give rise to different
sets Ĝ. For example, among all R d -geometric complexes we cannot find complexes with
nonzero d-th Betti number; but if M = S d , such complexes belong to Ĝ. When M = R d

we simply denote this set by G.
Given Un as above, we define the random probability measure ˆ μ n on Ĝ:

μ̂ n =
1

b0(Č(Un ))
δ[s],
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4 A. Auffinger et al.

Fig. 1. A geometric complex in the plane, which is homotopy equivalent to S 1 ∪ {p 1} ∪ {p 2}. The
corresponding measure on the set of homotopy classes of connected, simplicial complexes is
μ̂ = 1

3 δ[S1] + 2δ [pt] .Theorem 1.1 says that as n → ∞ the random measure ˆ μ n converges to a
deterministic measure.

where the sum is over all connected components s of U n , [s] denotes the type of s (i.e., the
equivalence class of all connected complexes homotopy equivalent to s), and b 0 denotes
the number of connected components.

Remark 1. The next theorem deals with the convergence of the random measure ˆ μ n in
the limit n → ∞. We endow the set P of probability measures on the countable set Ĝ

with the total variation distance:

d(μ 1, μ2) = sup
A⊂ Ĝ

μ 1(A) − μ 2(A) .

In this way ˆ μ n is a random variable with values in the metric space (P, d). Convergence
in probability (which is used in Theorems 1.1 and 1.3) of a sequence of random variables
{μ n }n∈N to a limit μ means that for every ε > 0 we have lim n→∞ P{d(μ n , μ) > ε} = 0.
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Topologies of Random Geometric Complexes 5

Theorem 1.1. The random measure μ̂ n converges in probability to a universal
deterministic probability measure μ ∈ P supported on the set G of connected R d -
geometric complexes.

The “universal” in the previous statement means that μ does not depend on the
manifold M (but it depends on its dimension d and on the parameter α).

Remark 2. Since G is a proper subset of Ĝ, the measure μ does not charge some points
in Ĝ. This is consistent with the findings of [6] where it was shown that an additional
factor of log n is needed in the radii of the balls defining U n in order to see the so-called
“connectivity threshold” where nontrivial d-dimensional homology appears.

Remark 3. In the one-dimensional case d = 1, the set G contains only one element: the
class of the point (since any connected geometric complex in R is contractible). The case
d = 2 is already more interesting, since in this case G = {[w k ]}k∈N where w k is the wedge
of k-circles (k = 0 is the point). In general the support of μ is more difficult to describe.

Remark 4. We can write the limiting measure μ as

μ =
γ ∈G

a γ δγ

for some non-negative constants a γ , γ ∈ G, which depend on the α > 0 appearing in
(1.1), and satisfy a γ = c γ /c with c γ , c defined in Proposition 3.1. All of the coefficients
a γ are strictly positive by Proposition 3.2.

The following result is related to the positivity of all coefficients a γ . While it is
not needed for showing such positivity (which follows from Proposition 3.2), it provides
additional information on the prevalence of localized components with prescribed
homotopy type throughout the manifold, see Section 6.

Proposition 1.2 (Existence of all topologies). Let P 0 ⊂ R d be a finite geometric complex
and α > 0. There exist R, a > 0 (depending on P 0 and α but independent of M and n) such
that for every p ∈ M and for n large enough:

P Un ∩ B̂(p, Rn −1/d )  P0 > a.
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6 A. Auffinger et al.

Remark 5. Let us point out an interesting consequence of the previous Proposi-
tion 1.2; given a compact, embedded manifold M 0 → R d , then for R > 0 large
enough with positive probability the pair (R d , M0) is homotopy equivalent to the pair
(B̂(p, Rn −1/d ), Un ∩ B̂(p, Rn −1/d )). This follows from the fact that, by [16, Proposition 3.1],
one can cover M 0 with (possibly many) small Euclidean balls M 0 ⊂ k=1 B(p k , ε) = U

with the inclusion M 0 → U a homotopy equivalence; hence the pair (R d , M0) is homotopy
equivalent to a pair (R d , P0) with P 0 a Rd -geometric complex.

1.2 The local model (the Euclidean case)

The proof of Theorem 1.1 for the Riemannian case involves a study of a rescaled version
of the problem in a small neighborhood of a given point. Specifically, one can fix R > 0
and a point p ∈ M and study the asymptotic structure of our random complex in the ball
B̂(p, Rn −1/d ). The random geometric complex that we obtain in the n → ∞ limit can be
described as follows.

Let P = {p 1, p2, . . .} be a set of points sampled from the standard spatial Poisson
distribution on R d and for α > 0 consider the random set:

P =
p∈P

B(p, α).

We also define P R to be the subset of P consisting of all the connected components of
P that are completely contained in the interior of B(0, R). Note that each B(p, α) is now
convex, and, by the nerve lemma, P R is homotopy equivalent to the simplicial complex
Č(PR ). The relation between U n ∩ B̂(p, Rn −1/d ) and P R is described in Theorem 4.1.

Similarly to what we have done above, we define the random probability
measure μ R on the set G of homotopy types of finite and connected R d -geometric
complexes:

μ R =
1

b0(Č(PR ))
δ[s],

where the sum is over all connected components s of P R . The following result provides
a limit law for μ R .

Theorem 1.3. The family of random measures μ R converges in probability to a
deterministic probability measure μ ∈ P whose support is all of G.
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Topologies of Random Geometric Complexes 7

It is important to note that the limiting measure μ appearing in Theorem 1.3 is
the same one appearing in Theorem 1.1 (this explains the statement on the support of
the limiting measure in Theorem 1.1).

Besides their positivity, little is known about the coefficients a γ in μ, and
a worthwhile computational problem would be to perform Monte Carlo simulations
in order to estimate their numerical values and how they depend on α. Concerning
dependence on α, a direction that has been suggested to us by Kahle is to study whether
the dependence of μ on α exhibits any interesting behavior related to the “percolation
threshold” (recalling that our random geometric complex is associated to continuum
percolation with disks for which existence of a percolation threshold α = α c is known
[14]).

While this paper was under review, Dowling and the 3rd author [10] posted a
preprint further adapting these methods to study the limiting homotopy distribution
for random cubical complexes associated to Bernoulli site percolation on a cubical grid,
where it was shown that the limiting homotopy measure has an exponentially decaying
tail for subcritical percolation and a subexponential tail (slower than exponential
decay) for supercritical percolation. It is then natural to pose a specific version
of the above problem suggested by Kahle, namely, to investigate the tail decay of
μ in the current setting of random geometric graphs and to determine whether it
exhibits a phase transition at the percolation threshold α = α c (see [10, Concluding
Remarks]).

Outline of the paper. We prove Theorem 1.3 addressing the Euclidean setting in
Section 3. In Section 4, we establish the “semi-local” result involving a double-scaling
limit within a neighborhood on the manifold, and in Section 5 we collect the semi-local
information throughout the manifold in order to prove the global result Theorem 1.1
for the manifold setting. We prove Proposition 1.2 in Section 6. Section 2 contains some
basic tools used throughout the paper, including the integral geometry sandwiches that
play an essential role.

Historical note.The study of the topology of random simplicial complexes has taken
shape only recently with intense activity in the past few years, but it is worth
mentioning (as it seems to have been forgotten) that this theme was proposed by Arnold
in the early 1970s, with specific attention given to random geometric complexes in the
thermodynamic regime. In the collection of Arnold’s [1] problems, the 28th problem
from 1973 states (notice that the set considered is homotopy equivalent to a geometric
complex by the nerve lemma):
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8 A. Auffinger et al.

Consider a random set of points in R d with density λ. Let V(α) be the α-
neighborhood of this set. Consider the averaged Betti numbers

β i(α, λ) := lim
R→∞

bi(V(α) ∩ B(0, R))
R d .

Investigate these numbers.

2 Preliminary Material

In this section we collect some basic tools used throughout the paper.

2.1 Geometry

A subset A of a Riemannian manifold (M, g) is called strongly convex if for any pair
of points y 1, y2 ∈ clos(A) there exists a unique minimizing geodesic joining these two
points such that its interior is entirely contained in A (see [7, 8]).

Lemma 2.1. Let (M, g) be a compact Riemannian manifold. There exists r 0 > 0
such that for every point x ∈ M and every r < r 0 the ball B̂(x, r) is strongly convex
and contractible. Moreover, for every x 1, . . . , xk ∈ M and 0 < r 1, . . . , rk < r 0 the set

k
j=1 B̂(x j , rj ) is also strongly convex and contractible. In particular, by the nerve lemma,

the set k
j=1 B̂(x j , rj ) is homotopy equivalent to its associated Čech complex.

Proof. By [8, Theorem 5.14] there exists a positive and continuous function r : M →
(0, ∞) such that if r < r(x), then B̂(x, r) is strictly convex (this is in fact due to
Whitehead). Since M is compact, then r 0 = min r > 0. Any strongly convex set in
a Riemannian manifold is contractible with respect to any of its point (star-shaped
in exponential coordinates); hence, it follows that for r < r 0 the ball B̂(x, r) is also
contractible. To finish the proof, we simply observe that the intersection of strongly
convex sets A 1, A2 is still strongly convex; in fact given two points y 1, y2 ∈ A 1 ∩ A 2, by
strong convexity of the sets, the unique minimizing geodesic joining the two points is
contained in both sets.

From now on, the notation k denotes the collection of all k-element subsets of
{1, 2, ..., }.

We will say that a R d -geometric complex k=1 B(y k , r) is nondegenerate if for
every 1 ≤ k ≤  and J = {j 1, . . . , jk } ∈ k the intersection j∈J

∂B(y j , r) is transversal (in
particular this intersection is empty for k > d).
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Topologies of Random Geometric Complexes 9

Random geometric complexes are nondegenerate with probability one. However,
it could be that without the nondegeneracy assumption one could construct a geometric
complex, which is not homotopy equivalent to any nondgenerate one. This is not the
case, as the next lemma shows.

Lemma 2.2. The set of homotopy types of R d -geometric, connected, nondegenerate
complexes coincides with G. (Recall that we did not assume the nondegeneracy condi-
tion in the definition of G.)

Proof. Given a possibly degenerate P = k=1 B(y k , r), let f : Rd → R be the
semialgebraic and continuous function defined by

f (x) = d(x, {y 1, . . . , yk }) = min
k

y k − x,

and observe that

k=1

B(y k , r) = {f ≤ r}.

We consider now the semialgebraic, monotone family {X(r + ) = {f ≤ r + }} ≥0 . By
[2, Lemma 16.17] for  > 0 the inclusion X(r) → X(r + ) is a homotopy equivalence.
It suffices therefore to show that for  > 0 small enough X(r + ) is nondegenerate;
this follows from the fact that given points y 1, . . . , y ∈ R d , for every 1 ≤ k ≤ d and
J = {j 1, . . . , jk } ∈ k there are only finitely many r > 0 such that the intersection

j∈J
∂B(y j , r) is nontransversal (and the number of possible multi-indices to consider is

also finite).

The following proposition plays an important role in all asymptotic stability
arguments.

Proposition 2.3. Let (M, g) be a compact Riemannian manifold of dimension d and
p ∈ M. Let P ⊂ R d be a nondegenerate complex such that

P =
j=1

B(y j , r) ⊂ B(0, R )
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10 A. Auffinger et al.

for some points y 1, . . . , y ∈ R d and r, R > 0. Given α > 0 set R = αR
r and consider the

sequence of maps:

ψn : B̂(p, Rn −1/d )
exp−1

p
−−−→ B Tp M (0, Rn −1/d )

r
α n 1/d

−−−→ B Tp M (0, R )  B(0, R).

Denoting by ϕ n the inverse of ψ n , there exist ε 0 > 0 and n 0 > 0 such that if ỹ k − y k  ≤ ε 0

for every k = 1, . . . ,  then for n ≥ n 0 we have

k=1

B̂(ϕn (ỹ k ), αn −1/d ) 
k=1

B(y k , r).

Proof. For k ≤ d and for every J = {j 1, . . . , jk } ∈ k either one of these possibilities can
verify:

(1) j∈J
B(y j , r) = ∅, in which case, by nondegeneracy, there exists ε J and y J

such that y J − y j  < r − ε J for all j ∈ J;
(2) j∈J

B(y j , r) = ∅, in which case there is no y solving y − y j  ≤ r for all j ∈ J.

Since the sequence of maps d n : B(0, R ) × B(0, R ) → R defined by

rn 1/d

α · d n (z 1, z2) = d M (ϕn (z 1), ϕn (z 2))

converges uniformly to d Rd , then for every δ > 0 there exists n 1 > 0 such that for all
pairs of points z 1, z2 ∈ B(0, R ) and for all n ≥ n 1 we have

rn 1/d

α · d M (ϕn (z 1), ϕn (z 2)) − z 1 − z 2 ≤ δ. (2.1)

For every index set J satisfying condition (1) above, choosing δ = εJ r
3α and setting ε J = δ,

the previous inequality (2.1) implies that, if ỹ k − y k  < ε J for every k = 1, . . . , , then for
n ≥ n J :

d M (ϕn (ỹ j ), ϕn (y J )) < αn −1/d .

This means that the combinatorics of the covers {B(y j , r)} j∈J and { B̂(ϕn (ỹ j), αn −1/d )} j∈J

are the same if y j − ỹ j  < ε J for j ∈ J and n ≥ n J .
Let us consider now an index set J satisfying condition (2) above. We want to

prove that there exists ε J > 0 and n J such that if ỹ j − y j  < ε J for all j ∈ J, then for
n ≥ n J the intersection ∩ j∈J

B̂(ϕn (ỹ j ), αn −1/d ) is still empty. We argue by contradiction
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Topologies of Random Geometric Complexes 11

and assume there exist a sequence of points x n ∈ B̂(p, Rn −1/d ) and for j ∈ J points
y

j,n ∈ B(0, R ) with y i,n − y j  ≤ 1
n such that for all j ∈ J and all n large enough:

d M (x n , ϕn (y
j,n )) < αn −1/d . (2.2)

We call y n = ψ n (x n ) and assume that (up to subsequences) it converges to some y ∈
B(0, R ). Using again the uniform convergence of d n to d Rd , the inequality (2.2) would
give

r > lim
n→∞

n 1/d r

α · d M (x n , ϕn (y
j,n )) = y − y j ∀j ∈ J,

which gives the contradiction y ∈ j∈J
B(y j , r) = ∅.

Set now n 1 = max J∈ {k},k≤d
n J and ε 0 = min J∈ {k},k≤d

εJ . We have proved that, if
ỹ j − y j  < ε 0 for all j = 1, . . . , , then for all n ≥ n 1 the two open covers {B(y j , r)} j∈J and

{B̂(ϕn (ỹ j ), αn −1/d )} j∈J have the same combinatorics. In particular their Čech complex is
the same. Moreover, Lemma 2.1 implies that for a possibly larger n 0 ≥ n 1 all the balls
B̂(x, αn −1/d ) are strictly convex in M; consequently, by the nerve lemma, for n larger
than such n 0 these two open covers are each one homotopy equivalent to their Čech
complexes; hence, they are themselves homotopy equivalent.

2.2 Measure theory

The following lemma will be used in the proof of Theorem 1.3. This lemma and its proof
are essentially in [19, Thm. 4.2 (2)], but we provide a proof to make the paper more
self-contained and to ensure that it is clear this result is purely measure theoretic.

Lemma 2.4. Let μ λ = a
λ,k δk be a one-parameter family of random probability

measures on N, and let μ = a k δk be a deterministic probability measure on N. Assume
that for every k ∈ N a λ,k → a k in probability as λ → ∞. Then μ λ → μ in probability, that
is, for every ε > 0 we have

lim
λ→∞

P{d(μ λ , μ) ≥ ε} = 0,

where d denotes the total variation distance.

Proof. Let δ > 0 be arbitrary.
Since μ is a probability measure on N, there exists K such that

k≥K

a k <
ε

4
. (2.3)
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12 A. Auffinger et al.

We have

P |a λ,k − a k | >
ε

4K
<

δ

2K
,

which implies (by a union bound)

P
k<K

a
λ,k − a k >

ε

4
<

δ

2
, (2.4)

and also (by the triangle inequality)

P
k<K

a
λ,k −

k<K

a k >
ε

4
<

δ

2
, (2.5)

for λ ≥ λ 0.
The estimate (2.5) implies an estimate for the tails:

P

⎧
⎨
⎩

k≥K

a
λ,k −

k≥K

a k >
ε

4

⎫
⎬
⎭

<
δ

2
, (2.6)

since

k<K

a
λ,k −

k<K

a k =
k≥K

a
λ,k −

k≥K

a k ,

which follows from μ λ and μ being probability measures.
For any λ > λ 0, we then have

P

⎧
⎨
⎩

k≥K

a
λ,k >

ε

2

⎫
⎬
⎭

<
δ

2
. (2.7)

Indeed, if

k≥K

a
λ,k >

ε

2

then equation (2.3) gives

k<K

a
λ,k −

k<K

a k >
ε

4
,

and (2.7) then follows from (2.6).
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Topologies of Random Geometric Complexes 13

In order to estimate the total variation distance between μ λ and μ, let A ⊂ N be
arbitrary. We have

k∈A

a
λ,k −

k∈A

a k =
k∈A,k<K

(a
λ,k − a k ) +

k∈A,k≥K

a
λ,k −

k∈A,k≥K

a k

≤
k∈A,k<K

a
λ,k − a k +

k∈A,k≥K

a
λ,k +

k∈A,k≥K

a k

≤
k<K

a
λ,k − a k +

k≥K

a
λ,k +

k≥K

a k

≤
k<K

a
λ,k − a k +

k≥K

a
λ,k +

ε

4
.

Using a union bound, this implies

P
k∈A

a
λ,k −

k∈A

a k > ε ≤ P
k<K

a
λ,k − a k >

ε

4
+ P

⎧
⎨
⎩

k≥K

a
λ,k >

ε

2

⎫
⎬
⎭,

which is less than δ by (2.4) and (2.7).
This implies that for every δ > 0 we have, for all λ sufficiently large,

P sup
A⊂N

μ λ (A) − μ(A) ≥ ε ≤ δ,

that is, we have shown

lim
λ→∞

P d(μ λ , μ) ≥ ε = 0.

2.3 The ergodic theorem

The proof of Proposition 3.1 uses the following special case of the d-dimensional
ergodic theorem. We follow [14, Ch. 2] and [9, Sec. 12.2]).

Theorem 2.5 (Ergodic theorem). Let (, F , ρ) be a probability space, and let T x , x ∈ R d

be an R d -action on . Let f ∈ L 1(ρ), and suppose further that the action of T x on  is
ergodic. Then we have

1
Vol(BR ) BR

f (T x (ω))dx → E f (ω) a.s. and inL 1

as R → ∞.
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14 A. Auffinger et al.

Let us explain the terminology appearing in the statement of this theorem.
An R d -action T x , x ∈ R d is a group of invertible, commuting, measure-preserving
transformations acting measurably on a probability space (, F, ρ) and indexed by R d .
An Rd -action T x is said to be ergodic if any invariant event has probability either zero
or one.

For our application of the ergodic theorem (see the proof of Proposition 3.1
below), the R d -action T x will simply be translation by x acting on the Poisson process
(this case is known to be ergodic [14, Prop. 2.6]).

2.4 Component counting function and the integral geometry sandwiches

Definition 1 (Component counting function). Let Y 1, Y2 ⊂ X and Z be topological
spaces (in the case of our interest they will be homotopy equivalent to finite simplicial
complexes). We denote by N (Y 1, Y2; [Z]) the number of connected components of Y 1

entirely contained in the interior of Y 2 and which have the same homotopy type as
Z. Similarly, we denote by N ∗ (Y 1, Y2; [Z]) the number of connected components of Y 1,
which intersect Y 2 and which have the same homotopy type as Z.

Theorem 2.6 (Integral geometry sandwich). Let P be a generic geometric complex in
Rd and fix γ ∈ G. Then for 0 < r < R,

BR−r

N (P, B(x, r); γ )

Vol Br
dx ≤ N (P, B R ; γ ) ≤

BR+r

N ∗ (P, B(x, r); γ )

Vol Br
dx.

Theorem 2.7 (Integral geometry sandwich on a Riemannian manifold). Let U be a
generic geometric complex on M and fix γ ∈ G. Then for any ε > 0 there exists η > 0
such that for every r < η,

(1 − ε)
M

N (U, B̂(x, r); γ )

Vol Br
dx ≤ N (U, M; γ ) ≤ (1 + ε)

M

N ∗ (U ,B̂(x, r); γ )

Vol Br
dx,

where B r still denotes the Euclidean ball of radius r.

Proof of Theorems 2.6 and 2.7.These results follow from the same proof as in [19]. 

Remark 6. Similar statements hold true if we take the sum over all components,
ignoring their type (an observation used throughout the paper). More precisely, denoting
by N (Y 1, Y2) the number of components of Y 1 entirely contained in the interior of Y 2 and
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Topologies of Random Geometric Complexes 15

by N ∗ (Y 1, Y2) the number of components of Y 1 that intersect Y 2, we have the following
inequality:

BR−r

N (P, B(x, r))

Vol Br
dx ≤ N (P, B R ) ≤

BR+r

N ∗ (P, B(x, r))

Vol Br
dx

and, in the Riemannian framework:

(1 − ε)
M

N (U, B̂(x, r))

Vol Br
dx ≤ N (U, M) ≤ (1 + ε)

M

N ∗ (U ,B̂(x, r))

Vol Br
dx.

Since both P and U have only finitely many components, these inequalities follow
by simply summing up the two inequalities from the previous theorems over all
components type (the sums are over finitely many elements). In fact the integral
geometry sandwiches as proved in [19] are adaptations of the original construction from
[15], where components were counted without regard to topological type.

3 Limit Law for the Euclidean Case

In this section we prove Theorem 1.3. The main step is provided by the following
proposition. We continue to use the above notation for the component counting function
(see Definition 1).

Proposition 3.1. For every homotopy type γ ∈ G there exists a constant c γ such that
the random variable

c
R,γ =

N (P, B(0, R); γ )

Vol(B(0, R))

converges to a constant c γ in L 1 as R → ∞. The same is true for the random variable

cR =
N (P, B(0, R))

Vol(B(0, R))

(i.e., when we consider all components, with no restriction on their types); as R → ∞, it
converges to a constant c in L 1.

The next proposition is proved in Section 6.

Proposition 3.2. The constants c γ defined in Proposition 3.1 are positive for all γ ∈ G.

Proof of Proposition 3.1.The proof follows the argument from [19, Theorem 3.3], with
some needed modifications.
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16 A. Auffinger et al.

We will use the shortened notation N R = N (P, B(0, R); γ ), N (x, r) =
N (P, B(x, r); γ ) and N ∗ (x, r) = N ∗ (P, B(x, r); γ ) (γ will be fixed for the rest of the proof
and we omit dependence on it in the notation). Using Theorem 2.6 we can write, for
0 < α < r < R:

1 −
r

R

d 1
Vol(BR−r

) BR−r

N (x, r)

Vol Br
dx ≤

N R

Vol(BR ) ≤ 1 +
r

R

d 1
Vol(BR+r

) BR+r

N ∗ (x, r)

Vol Br
dx.

(3.1)
Denoting by A(x, r, α) the annulus {z ∈ R d : r − α ≤ x − z ≤ r + α}, we can

estimate the integral on the r.h.s. of (3.1) with

BR+r

N ∗ (x, r)

Vol Br
dx ≤

BR+r

N (x, r)

Vol Br
+

#P ∩ A(x, r, α)

Vol Br
dx.

In fact, if a component of P is not entirely contained in the interior of B(x, r), then it
touches the boundary of B(x, r) and hence this component must contain a point p ∈
P ∩ A(x, r, α).

We now take R → ∞ (with r fixed) and use the ergodic theorem in order to assert
that

1
Vol(BR−r

) BR−r

N (x, r)

Vol Br
dx → λ(r) a.s. and inL 1, (3.2)

as R → ∞ where λ(r) := E N (x,r)
Vol(Br ) is a constant.

In order to apply the ergodic theorem (Theorem 2.5 stated above) we introduce
the function f defined as

f (P) =
N (0, r)

Vol(B(0, r))
,

where r is fixed, and the dependence of f on the Poisson process P is through P, which
we recall is the α-neighborhood of P. We also let T x denote translation by x acting on
the Poisson process P. This action is ergodic as noted above in Section 2. We also have
f ∈ L 1, since

E
N (P, B(0, r), γ )

Vol(B(0, r))
≤

E#P ∩ B(0, r)

Vol(B(0, r))
= 1 < ∞,

so that the ergodic theorem may be applied.
Furthermore, we notice that

(Tx (P)) =
N (x, r)

Vol(B(0, r))
,
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Topologies of Random Geometric Complexes 17

that is, shifting P has the same effect as recentering the ball B(0, r) to B(x, r). Thus, the
result of applying the ergodic theorem to this choice of f gives precisely the convergence
statement in (3.2).

Note that the same convergence statement in (3.2) holds for 1
Vol(BR+r ) BR+r

N (x,r)
Vol(Br ) dx,

namely,
1

Vol(BR+r
) BR+r

N (x, r)

Vol Br
dx → λ(r) a.s. and inL 1, (3.3)

as R → ∞ where λ(r) is the same constant as in (3.2).
We also have

1
Vol(BR+r

) BR+r

#P ∩ A(x, r, α)

Vol Br
dx → a(r) a.s. and inL 1 (3.4)

as R → ∞ where a(r) := E #P∩A(x,r,α)
Vol(Br ) = Vol(A(x,r,α))

Vol(Br ) . This follows from the ergodic theorem
as well (although it seems more natural to view it as a consequence of the law of large
numbers).

Let ε > 0 be arbitrary. Since a(r) = O(r −1 ) we can choose r sufficiently large
that a(r) < ε. We then choose R >> r >> 0 sufficiently large so that (1 + r/R) d < 1 + ε,
(1 − r/R) d > 1 − ε. Using the above convergence statements (3.2), (3.3), and (3.4) (while
making R even larger if necessary) we have

(1 − ε)(λ(r) − ε) ≤
N R

Vol(BR ) ≤ (1 + ε)(λ(r) + a(r) + ε) in expectation. (3.5)

Using a(r) < ε and also that λ(r) ≤ 1 for all r, which follows from

EN (x, r) ≤ E#P ∩ B(0, r) = Vol(B(0, r)),

(3.5) implies

E
N R

Vol(BR ) − λ(r) < ε(1 + λ(r)) + (1 + ε)a(r) < 2ε + (1 + ε)ε.

Since ε > 0 was arbitrary, this implies the existence of a constant c γ such that λ(r) → c γ

in L 1 as r → ∞ and N R /Vol(B R ) → c γ in L 1 as R → ∞.
The proof of the 2nd statement in the proposition concerning the existence of

a limit c R → c for all components (with no restriction on homotopy type) follows from
the same argument while replacing the integral geometry sandwich with its more basic
version (see Remark 6 in Section 2).
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18 A. Auffinger et al.

3.1 Proof of Theorem 1.3

We write the measure μ R as

μ R =
1

N (P, B(0, R))
γ ∈G

N (P, B(0, R); γ )δ γ

=
Vol(B(0, R))

N (P, B(0, R))
γ ∈G

N (P, B(0, R); γ )

Vol(B(0, R))
δγ

=
γ ∈G

c
R,γ
cR

δγ .

By the convergence statements in Proposition 3.1, and since c > 0 (which follows
from Proposition 3.2 since c ≥ c γ ), we have a R,γ =

cR,γ
cR

converges in L 1 to a constant
a γ =

cγ
c as R → ∞.

The positivity of the coefficients a γ follows from the positivity of c γ stated in
Proposition 3.2.

Next we prove that the measure

μ =
γ ∈G

a γ δγ

is indeed a probability measure (see Proposition 3.4 below). The main obstacle,
addressed in the following lemma (cf. [19, Sec. 4]), is in preventing the mass in the
sequence of measures μ R from escaping to infinity.

Lemma 3.3 (Topology does not leak to infinity). For every δ > 0 there exists a finite set
g ⊂ G and R 0 > 0 such that for all R ≥ R 0,

E
γ ∈g c

c
R,γ <

δ

4
.

Proof Lemma 3.3. First we observe that

γ ∈G

EN(P, B(0, r); γ )

Vol (B(0, r))
< a 0 < ∞, (3.6)
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Topologies of Random Geometric Complexes 19

where a 0 is independent of r. Indeed,

γ ∈G

EN(P, B(0, r); γ )

Vol (B(0, r)) =
EN(P, B(0, r))

Vol (B(0, r)) ≤
E|{P ∩ B(0, r)}|

Vol (B(0, r)) ,

which is a constant independent of r (the average number of points of a Poisson process
in a given region is proportional to the volume of the region).

Let A ⊂ G be arbitrary. Then, using the integral geometry sandwich, we obtain

γ ∈A

c
R,γ (ω)dω ≤ 1 +

r

R

d 1
Vol(BR+r

) E

⎧
⎨
⎩

γ ∈A
BR+r

N ∗ (P, B(x, r); γ )

Vol(B r ) dx

⎫
⎬
⎭

≤ 1 +
r

R

d
⎛
⎝

γ ∈A

E
N(P, B(x, r); γ )

Vol(B r ) + O(r −1 )

⎞
⎠.

Let δ > 0 be arbitrary, and choose r sufficiently large that the above O(r −1 ) error
term is smaller than δ/16.

By the convergence (3.6) there exists a finite set g ⊂ G such that

γ ∈g c

EN(P, B(0, r); γ )

Vol (B(0, r))
<

δ

16
.

Choosing R 0 large enough that 1 + r
R

d
< 2 we then have for all R ≥ R 0,

E
γ ∈g c

c
R,γ < 2

" δ

16
+

δ

16

#
=

δ

4
,

as desired, and this completes the proof of the lemma.

Proposition 3.4. The measure

μ =
γ ∈G

a γ δγ ,

with a γ =
cγ
c , is a probability measure.
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20 A. Auffinger et al.

Proof of Proposition 3.4.We need to show that γ ∈G a γ = 1, or equivalently,

γ ∈G

cγ = c. (3.7)

Let δ > 0 and take g ⊂ G to be the set guaranteed by Lemma 3.3.
We want to show that

γ ∈G

cγ − c ≤ δ, (3.8)

which will then immediately establish (3.7) since δ > 0 is arbitrary.
For fixed ω in the sample space  observe that by Fatou’s lemma

γ ∈g c

cγ ≤ lim inf
R→∞

γ ∈g c

c
R,γ (ω),

and applying Fatou’s lemma again followed by Tonelli’s theorem, we have

γ ∈g c

cγ dω ≤ lim inf
R→∞

γ ∈g c

c
R,γ (ω)dω

≤ lim inf
R→∞

γ ∈g c

c
R,γ dω

= lim inf
R→∞

γ ∈g c

c
R,γ (ω)dω.

Combining this with Lemma 3.3 we obtain

γ ∈g c

cγ dω ≤
δ

4
. (3.9)
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Topologies of Random Geometric Complexes 21

We proceed to estimate γ ∈G cγ − c :

γ ∈G

cγ − c =
γ ∈G

cγ − c dω

=
γ ∈G

cγ − c R + c R − c dω

=
γ ∈G

cγ −
γ ∈G

c
R,γ + c R − c dω

≤
γ ∈G

cγ −
γ ∈G

c
R,γ dω + cR − c dω

≤
γ ∈g

cγ −
γ ∈g

c
R,γ dω +

γ ∈g c

cγ −
γ ∈g c

c
R,γ dω + cR − c dω

≤
γ ∈g

cγ − c R,γ dω +
γ ∈g c

cγ dω +
γ ∈g c

c
R,γ dω + cR − c dω

≤
δ

4
+

δ

4
+

δ

4
+

δ

4
.

In the last line, we have estimated the 1st and last terms by δ/4 by choosing R

sufficiently large and using the L 1 convergence c R,γ → c γ (and the fact that g is a finite
set) and the L 1 convergence c R → c; we have estimated the 2nd term by δ/4 using (3.9);
and we have estimated the 3rd term by δ/4 by choosing R sufficiently large to apply
Lemma 3.3. This establishes (3.8) and concludes the proof of the proposition.

Having established by Proposition 3.4 that μ is a probability measure, the
convergence in probability μ R → μ now follows from the coefficient-wise convergence
a

R,γ → a γ along with the purely measure-theoretic result Lemma 2.4.
The statement that the support of μ is all of G follows from the positivity of the

coefficients a γ . This concludes the proof of Theorem 1.3.

4 Semi-Local Counts in the Riemannian Case

In this section, we study the components of U n contained in a neighborhood B̂(p, Rn −1/d )

of a point p ∈ M by relating this case to the Euclidean case. As a preliminary step, we
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22 A. Auffinger et al.

consider the following diffeomorphism (see also Proposition 2.3):

ψn : B̂(p, Rn −1/d )
exp−1

p
−−−→ B Tp M (0, Rn −1/d )

n 1/d

−−→ B Tp M (0, R)  B(0, R). (4.1)

Through ψ n , the stochastic point process U n ∩ B̂(p, Rn −1/d ) induces a stochastic point
process on B(0, R), which converges in distribution to the uniform Poisson process on
B(0, R) [18, Sec. 3.5]. By Skorokhod’s representation theorem [3, Ch. 1, Sec. 6], there
exists a representation, or “coupling”, of these point processes defined on a common
probability space such that the convergence of these stochastic processes is almost
sure.

Theorem 4.1. Let p ∈ M. For every δ > 0 and for R > 0 sufficiently large there exists n 0

such that (using the coupling given by Skorokhod’s theorem mentioned above) for every
γ ∈ G and for n ≥ n 0:

P N (P, B(0, R); γ ) = N (U n , B̂(p, Rn −1/d ); γ ) ≥ 1 − δ. (4.2)

Proof. Let ϕ n denote the inverse of the map ψ n defined in (4.1). For the proof of (4.2)
we will need to establish the following three facts:

(1) There exists 0 > 0 and n 1 > 0 such that with probability at least 1 − δ/3 we
have

#(Un ∩ B̂(p, Rn −1/d )) = #(P ∩ B(0, R)) ≤ 0 (4.3)

(i.e., with positive probability for large n, depending on δ, both point
processes have the same number of points and this number is bounded by
some constant 0, which also depends on δ).

(2) There exists W ⊂
$

≤ 0 B(0, R) , r > 0 and n 2 ≥ n 1 > 0 such that P(W) ≥
1 − δ/3 and for every x = (y 1, . . . , y ) ∈ W if x̃ = ( ỹ 1, . . . ,ỹ ) is such that
x − x̃ < r and n ≥ n 2 then

k=1

B(y i , α) 
k=1

B̂(ϕn (ỹ i), αn −1/d ), (4.4)

(i.e., the two spaces are homotopy equivalent), and for every connected
component of k=1 B(y i , α) this component intersects ∂B(0, R) if and
only if the corresponding component of k=1 B̂(ϕn (ỹ i), αn −1/d ) intersects
∂B̂(p, Rn −1/d ). (The symbol

$
A j denotes the disjoint union of the sets A j .)
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Topologies of Random Geometric Complexes 23

Let us explain this condition. A point x = (y 1, . . . , y ) in W

corresponds to the spatial Poisson event; we sample  points and each
of these points is sampled uniformly from B(0, R). With probability at least
1 − δ/3, by the previous point, the number of samples of the spatial Poisson
distribution is at most 0. Each such Poisson sample in R d gives rise to a
geometric complex in R d , and this complex is nondgenerate with probability
one. Given such a nondegenerate complex k=1 B(y i , α) in R d , we can perturb
“a little” (how little is quantified by “r > 0”) the point x = (y 1, . . . , y ) to a
point x̃ = ( ỹ1, . . . ,ỹ ) inside W and still get a nondegenerate complex, which
has the same homotopy type of the original one. Now, to each point x̃ ∈ W

there also corresponds a complex k=1 B̂(ϕn (ỹ i), αn −1/d ) in the manifold M,
through the map ϕ n . When n is “large enough”, it is natural to expect that
the two complexes k=1 B(y i , α) and k=1 B̂(ϕn (ỹ i), αn −1/d ) have the same
homotopy type. Point (2) says that, given 0, we can find W with probability
at least 1 − δ/3, r > 0 small enough and n > 0 large enough such that
this is true. (We also added the requirement that the intersection with the
boundary of the big containing ball is the same, but the essence of point
(2) is in the requirement that the two complexes should have the same
homotopy type.)

(3) Assuming point (1), denoting by {x 1, . . . , x } = P R ∩ B(0, R), and by
{x̃1, . . . ,x̃ } = ψ n (Un ∩ B̂(p, Rn −1/d )), there exists n 3 ≥ n 1 > 0 such that
for every n ≥ n 3:

P ∀ ≤ 0, ∀k = 1, . . . , , x k − x̃ k  ≤ r ≥ 1 − δ/3.

Assuming these three facts, (4.2) follows arguing as follows. With probability at least
1 − δ for n ≥ n 0 = max{n 1, n2, n3} all the conditions from (1), (2), and (3) verify and the
two random sets

p∈ P R

B(p, α) and
p k ∈Un ∩ B̂(p,Rn −1/d )

B̂(p k , αn −1/d )

are homotopy equivalent and by the 2nd part of point (2) also the unions of all
the components entirely contained in B(0, R) (respectively B̂(p, Rn −1/d )) are homotopy
equivalent. In particular the number of components of a given homotopy type γ is the
same for both sets with probability at least 1 − δ.

It remains to prove (1), (2), and (3).
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24 A. Auffinger et al.

Point (1) follows from the fact that (working with the representation provided by
Skorokhod’s theorem), the point process ψ n (Un ∩ B̂(p, Rn −1/d )) converges almost surely
to the Poisson point process on B(0, R). In particular the sequence of random variables
{#(Un ∩ B̂(p, Rn −1/d ))} converges almost surely to #(P R ∩ B(0, R)) and (4.3) follows from
the fact that almost sure convergence implies convergence in probability.

For point (2) we argue as follows. Given 0 we consider the compact semialge-
braic set:

X =
%

≤ 0

B(0, R) .

This set is endowed with the measure dρ:

dρ =
≤ 0

vol(B(0, R) )

!
χ

B(0,R)
dλ

B(0,R) ,

where dλ denotes the Lebesgue measure (this is the measure induced from the Poisson
distribution).

Let now Z ⊂ X be the set of points x = (y 1, . . . , y ) such that either the
intersection j∈J 1

∂B(y j , α) or the intersection ∂B(0, R) j∈J 2
∂B(y j , α) is nontransversal

for some index sets J 1, J2 ∈ d (note that the generic intersection of more than d spheres
will be empty). This set Z is also a semialgebraic set, and it has measure zero; it cannot
contain any open set, because the nondegeneracy condition is open and dense.

Let U(Z) be an open neighborhood of Z such that ρ(U(Z) c ) ≥ 1 − δ/3 (e.g., one
can take U(Z) =

$
≤ 0{d(·, Z) < ε} for ε > 0 small enough). We set W = U(Z) c (note that

P(W) ≥ 1 − δ/3).
We will first argue that for every x ∈ U(Z) c ⊂ W we can find r 2(x) > 0 and

n(x) > 0 such that the two complexes (4.4) have the same homotopy type (and the same
combinatorics of intersection with the boundary of the big containing ball) whenever

x̃ − x < r 2(x) and n > n(x). Then we will use the compactness of U(Z) c in order to find
uniform r > 0 and n > 0.

Pick therefore x = (y 1, . . . , y ) ∈ U(Z) c . The property of transversal intersection
implies that for every index set J 1 ∈ ≤ 0

d such that the intersection ∩ j∈J 1
B(y j , α)

is nonempty, this intersection contains a nonempty open set, and there exists a point
σJ1 (x) such that for every j ∈ J 1 we have y j − σ J1(x) < α. Similarly for every J 2 ∈

≤ 0
d whenever an intersection ∂B(0, R) j∈J 2

∂B(y j , α) is transversal and nonempty,
there exists a point σ J2(x) such that σ J2(x) > R and for every j ∈ J 2 we have y j −
σJ2 (x) < α. Because these are open properties, there exists r 1(x), r 2(x) > 0 such that for
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Topologies of Random Geometric Complexes 25

every w = (w 1, . . . , w ) and z = (z 1, . . . , z ) with w j − y j  ≤ r 1(x) and z j − w j  < r 2(x)

for all j = 1, . . . , , we have

∀j ∈ J 1 : z j − σ J1(x) < α and ∀j ∈ J 2 : z j − σ J2(x) < α.

Moreover, since the property of having nonempty intersection is also stable under small
perturbations, we can assume that r 1(x), r 2(x) are small enough to guarantee also that

&

j∈J 3

B(z j , α) = ∅ ⇐⇒
&

j∈J 3

B(x j , α) = ∅.

Observe now that the sequence of functions d n : B(0, R) × B(0, R) → R defined by

d n (x 1, x2) = d M (ϕn (x 1), ϕn (x 2))n 1/d

converges uniformly to the Euclidean distance in R d . In particular there exists n(x) >

0 such that for every n ≥ n(x), for every w = (w 1, . . . , w ) and z = (z 1, . . . , z ) with
w j − y j  ≤ r 1(x) and z j − w j  < r 2(x), for all j = 1, . . . , , and for i = 1, 2 we have

d M (ϕn (z j ), ϕn (σJi
(x))) < αn −1/d .

Moreover, for a possibly larger n(x), we also have that

&

j∈J 3

B̂(ϕn (z j ), αn −1/d ) = ∅ ⇐⇒
&

j∈J 3

B(x j , α) = ∅.

Choosing n(x) to be even larger, so that balls of radius smaller than αn −1/d in M are
geodesically convex, these conditions imply that the combinatorics of the covers

{B(x j , α)} j=1 and {B̂(ϕn (z j ), αn −1/d )} j=1

are the same and, by Lemma 2.1, the two sets j≤ B(x j , α) and j≤ B̂(ϕn (z j ), αn −1/d )

are homotopy equivalent. Also, the above condition on σ J2(x) implies that a component
of j≤ B(x j , α) intersects ∂B(0, R) if and only if the corresponding component of

j≤ B̂(ϕn (z j ), αn −1/d ) intersects B̂(p, Rn −1/d ).
Finally, we cover now W = X\U(Z) with the family of open sets x∈W B(x, r 1(x))

and find, by compactness of W, finitely many points x 1, . . . , xL such that the union of
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26 A. Auffinger et al.

the balls B(x k , r1(x k )) with k = 1, . . . , L covers W. With the choice n 2 = max{n(x k ), k =
1, . . . , L} and r = min{r 2(x k ), k = 1, . . . , L} property (2) is true.

Concerning point (3), we observe that again this follows from the fact that the
point process ψ n (Un ∩ B̂(p, Rn −1/d )) converges almost surely (hence in probability) to the
Poisson point process on B(0, R).

Corollary 4.2. For each γ ∈ G, α > 0, x ∈ M, and ε > 0, we have

lim
R→∞

lim sup
n→∞

P
N (Un , B̂(x, Rn −1/d ); γ )

Vol(BR ) − c γ > ε = 0.

Proof. This follows from Theorem 4.1 combined with Proposition 3.1. Indeed, let ε > 0
and δ > 0 be arbitrary. By Proposition 3.1 there exists R 0 such that for R > R 0 we have

P
N (P, B(x, R); γ )

Vol(BR ) − c γ > ε < δ.

Fix any such R > R 0. The event

N (Un , B̂(x, Rn −1/d ); γ )

Vol(BR ) − c γ > ε

is contained in the union of the event E 1 that

N (P, B(x, R); γ )

Vol(BR ) − c γ > ε

and another event E δ, which is the event that N (P, B(x, R); γ ) = N (U n , B̂(x, Rn −1/d ); γ ).
Thus,

P
N (Un , B̂(x, Rn −1/d ); γ )

Vol(BR ) − c γ > ε ≤ P{E 1} + P{E δ} < δ + P{E δ}. (4.5)

By Theorem 4.1, there exists n 0 such that for all n ≥ n 0 we have P{Eδ} ≤ δ.
Thus, applying this to (4.5) we obtain

lim sup
n→∞

P
N (Un , B̂(x, Rn −1/d ); γ )

Vol(BR ) − c γ > ε < 2δ.

Since δ > 0 was arbitrary, this completes the proof of Corollary 4.2.
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Topologies of Random Geometric Complexes 27

5 The Global Count for the Riemmanian Case: Proof of Theorem 1.1

In this section we establish the limit law in the manifold setting (cf. [19, Sec. 7]). As
in the Euclidean case, the main step is to prove coefficient-wise convergence, which is
stated in the following theorem.

Theorem 5.1. For every γ ∈ G, the random variable

c
n,γ =

N (Un , M; γ )
n

converges in L 1 to the constant c γ = c γ (α) (the same constant as in Proposition 3.1). The
same statement is true for the random variable

cn =
N (Un , M)

n

(i.e., when we consider all components, with no restriction on their type); as n → ∞, it
converges in L 1 to the constant c = γ ∈G cγ .

5.1 Proof of Theorem 1.1 assuming Theorem 5.1

Since convergence in L 1 implies convergence in probability, Theorem 5.1 ensures that
the random variable c n,γ = N (Un ,M;γ )

n converges in probability to the constant cγ ;
similarly the random variable c n = N (Un ,M)

n converges in L 1 (hence in probability) to
c > 0. The proof now proceeds similarly to the proof of Theorem 1.3. We write the
measure μ̂ n as

μ̂ n =
1

b0(Č(Un ))
γ ∈Ĝ

N (Un , M; γ )δγ

=
1

b0(Č(Un ))

⎛
⎜⎝

γ ∈G

N (Un , M; γ )δγ +
γ ∈Ĝ\ G

N (Un , M; γ )δγ

⎞
⎜⎠

=
1

N (Un , M)
γ ∈G

N (Un , M; γ )δγ +
1

N (Un , M)
γ ∈Ĝ\ G

N (Un , M; γ )δγ

=
n

N (Un , M)
γ ∈G

N (Un , M; γ )
n

δγ +
n

N (Un , M)
γ ∈Ĝ\ G

N (Un , M; γ )
n

δγ

=
γ ∈G

c
n,γ
cn

δγ +
γ ∈Ĝ\ G

c
n,γ
cn

δγ . (5.1)
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28 A. Auffinger et al.

We have a n,γ =
cn,γ
cn

converges in L 1 to the constant a γ =
cγ
c . Recalling that the

measure

μ =
γ ∈G

a γ δγ

is a probability measure (see Proposition 3.4), we can apply Lemma 2.4 to conclude that
the measure on the left in (5.1) converges in probability to μ.

Since μ is a probability measure, this implies that

γ ∈G

c
n,γ
cn

converges to 1 in probability. For any γ 0 ∈ Ĝ\G this implies that the coefficient
cn,γ 0

cn

appearing in the measure on the right in (5.1) converges to zero in probability, since

0 ≤
c

n,γ 0
cn

≤ 1 −
γ ∈G

c
n,γ
cn

.

Thus, the measure μ̂ n converges in probability to μ by another application of Lemma 2.4.

5.2 Proof of Theorem 5.1

Note: Since α > 0 and γ ∈ G are fixed, we will simply use

N n := N (U n , M; γ ) (5.2)

to denote the number of components of U n in M of type γ . We will use

N ∗
n (x, r) := N ∗ (Un , B̂(x, r); γ )

to denote the number of such components intersecting the geodesic ball B̂(x, r) of radius
r centered at x and

N n (x, r) := N (U n , B̂(x, r); γ )

to denote the number of components completely contained in B̂(x, r).
Thus, our goal, stated in the abbreviated notation (5.2), is to prove

E
N n

n − c γ → 0. (5.3)
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Topologies of Random Geometric Complexes 29

Using the integral geometry sandwich from Theorem 2.7 we have

(1 − ε)
M

N n (x, Rn −1/d )

Vol BR
dx ≤

N n

n ≤ (1 + ε)
M

N ∗
n (x, Rn −1/d )

Vol BR
dx. (5.4)

Letting I 1 denote the integral on the left side and I 2 the one on the right side, we subtract
I1 from each part of (5.4) and write

− εI 1 ≤
N n

n − I 1 ≤ εI 1 + (1 + ε)(I 2 − I 1). (5.5)

In order to estimate I 2 − I 1 we note that the number of connected components of U n

that intersect, but are not completely contained in, the geodesic ball B̂(x, Rn −1/d ) is
bounded above by the number of points that fall within distance αn −1/d to the boundary
∂B̂(x, Rn −1/d ). This αn −1/d -neighborhood of ∂ B̂(x, Rn −1/d ) is the same as the geodesic
annulus centered at x with inner radius (R − α)n −1/d and outer radius (R + α)n −1/d . The
average number of points in this annulus equals its volume, which can be estimated
(uniformly over x ∈ M) by that of the Euclidean annulus, and this gives

E|I2 − I 1| = O(R −1 ),

which together with (5.5) implies

E
N n

n − I 1 = O(ε) + O(R −1 ), (5.6)

where we have also used I 1 ≤ 1
1−ε , which follows from the 1st inequality in (5.4) along

with the simple estimate N n ≤ n.
By (5.6) we obtain

E
N n

n − c γ = E
N n

n − I 1 + I 1 − c γ

≤ E
)

I1 − c γ

*
+ O(ε) + O(R −1 ).

= E

+

M

N n (x, Rn −1/d )

Vol(BR ) − c γ dx

,

+ O(ε) + O(R −1 ).

Thus, in order to prove the theorem it suffices to show that the above term
E

)
I1 − c γ

*
can be made arbitrarily small for all sufficiently large n.
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30 A. Auffinger et al.

Define the “bad” event

x,R,n :=
N n (x, Rn −1/d )

Vol(BR ) − c γ > ε .

Claim: There exists a sequence R j → ∞ such that for every δ > 0 there exists
Mδ ⊂ M with Vol(M δ) > 1 − δ such that

lim
R j →∞

lim sup
n→∞

sup
x∈M δ

P x,R j ,n = 0. (5.7)

The proof of this claim closely follows [19] and uses Egorov’s theorem as well as
the idea from the proof of Egorov’s theorem. We start by recalling the pointwise limit
stated in Corollary 4.2. For each x ∈ M, we have

lim
R→∞

lim sup
n→∞

P x,R,n = 0.

Let us restrict to R ∈ N. Apply Egorov’s theorem to obtain M δ ⊂ M with Vol(M δ) > 1 − δ
2

such that

lim
R→∞

sup
x∈M δ

lim sup
n→∞

P x,R,n = 0. (5.8)

Next we use an additional Egorov-type argument in order to obtain the state-
ment in the claim (where we will obtain the set M δ by slightly shrinking M δ). For each
fixed integer j > 0, we can find by (5.8) an R j ∈ N sufficiently large so that

sup
x∈M δ

lim sup
n→∞

P x,R j ,n
< 1

j . (5.9)

Letting F m (j) denote the monotone decreasing (with m) sequence of sets

Fm (j) =
k≥m

x ∈ M δ : P( x,R j ,k ) > 2
j ,

we see from (5.9) that

&

m≥1

Fm (j) = ∅.
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Topologies of Random Geometric Complexes 31

Thus, there exists m = m(j) such that Vol(F m (j)) < δ
2j+1 . We take

Mδ = M δ \

⎛
⎝

j≥1

Fm(j) (j)

⎞
⎠,

which satisfies Vol(M δ) > Vol(M δ) − δ
2 > 1 − δ. It follows from the definition of F m (j) that

lim sup
n→∞

sup
x∈M δ

P x,R j ,n ≤
2
j ,

and we see that (5.7) is satisfied.
Denoting the whole probability space as , we separate the integration (defining

the expectation) over the two sets x,R j ,n and  \ x,R j ,n .

E
)

I1 − c γ

*
=

\ x,R j ,n

I1 − c γ dω +
x,R j ,n

I1 − c γ dω. (5.10)

We use the definition of x,R j ,n to estimate the 1st integral in (5.10):

\ x,R j ,n

I1 − c γ dω ≤
\ x,R j ,n M

N n (x, Rn −1/d )

Vol(BR ) − c γ dxdω ≤ ε. (5.11)

For the 2nd integral in (5.10), we use the estimate

N n (x, Rn −1/d )

Vol(BR ) ≤ (1 + ε)nξ −1 = O(1), (5.12)

where ξ > 0 is the minimum (over x ∈ M) volume of a geodesic ball of radius αn −1/d ,
which is uniformly (over x ∈ M) comparable to the volume of the Euclidean ball of
the same radius, and hence ξ is bounded below by a constant times n −1 . The estimate
(5.12) is based on the fact that each component has volume trivially at least a constant
times α d /n, and the fact that the minimal volume of a component times the number of
components cannot exceed the volume of the region where they are contained (while
fixing attention on components of type γ as we are throughout the proof). Applying
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32 A. Auffinger et al.

(5.12), we obtain

x,R j ,n

I1 − c γ dω ≤
M x,R j ,n

N n (x, Rn −1/d )

Vol(BR ) − c γ dωdx

≤ O(1) + c γ ·
M

P( x,R j ,n )dx

= O(1) ·
M

P( x,R j ,n )dx. (5.13)

Next, we split this last integration over M δ and M \ M δ:

M
P( x,R j ,n )dx =

Mδ

P( x,R j ,n )dx +
M\M δ

P( x,R j ,n )dx

≤ sup
x∈M δ

P( x,R j ,n ) + δ. (5.14)

Bringing the estimates (5.10), (5.11), (5.13), and (5.14) together, we have

E
)

I1 − c γ

*
≤ ε + O(1)

-

δ + sup
x∈M δ

P( x,R j ,n )

.

,

which can be made arbitrarily small using (5.7). This establishes (5.3) and completes
the proof of the 1st part of Theorem 5.1. The proof of the 2nd part concerning the
count for all components (without restriction on homotopy type) follows from the same
proof while replacing the integral geometry sandwich with its more basic version (see
Remark 6 in Section 2).

6 Positivity of All Coefficients

In this section, we prove Propositions 3.2 and 1.2.

6.1 Proof of Proposition 3.2

Recall that, by Proposition 3.1, for every γ ∈ G we have

cγ = lim
R→∞

E
"

N (P, B(0, R); γ )

Vol(B(0, R))

#
.

The desired lower bound will come from adding up certain local contributions
provided by the following lemma
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Topologies of Random Geometric Complexes 33

Lemma 6.1. Let P 0 ⊂ R d be a finite geometric complex. Fix α > 0. There exist r, a > 0
(depending on P 0 and α) such that for any p ∈ R d

P P ∩ B(p, r)  P0 > a.

Proof of Lemma 6.1. By the translation invariance of the Poisson point process, it is
enough to prove the statement while taking p = 0. We can assume, by Remark 2.2 above,
that P 0 is nondegenerate, and we write

P0 =
k=1

B(y k , α),

where y 1, . . . , y ∈ R d , and we have taken the radius to be α, since we can dilate the
entire set P 0 if necessary (which does not change the homotopy type). Choose r such
that P 0 ⊂ B(0, r − α). By nondegeneracy, there exists ε > 0 such that if ỹ k − y k  ≤ ε then
the two complexes k=1 B(y k , α) and k=1 B(ỹ k , α) are homotopy equivalent.

We are thus interested in the event E that for j = 1, 2, ...,  each ball B(y j , ε)

contains exactly one point from the random set P = {p 1, p2, ...} and that these  points
are the only points of P in the ball B(0, r + α). If E occurs then we have P ∩ B(0, r) ∼= P0

as desired. The positivity of the probability of the event E can be seen by noticing that
this probability is a product of finitely many positive probabilities. Indeed, E is an
intersection of the events that B(y j , ε) contains a single point from P for j = 1, 2, ..., 
along with the event that there are no points in the set B(0, r + α) \ ∪ i=1

B(y j , ε). These
events are independent by a basic property of the Poisson point process, and each of
them has positive probability (the probabilities can be specified explicitly in terms of
the volumes of the sets involved).

Let r, a be given by Lemma 6.1 for the choice of [P 0] = γ . For an appropriate
β > 0 we can fit k ≥ βVol(B(0, R)) many disjoint Riemannian balls

B1 = B(p 1, r), . . . , Bk = B(p k , r)

in B(0, R). Observing that

N (P, B(0, R); γ ) ≥
k

j=1

N (P, B j ; γ ),
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34 A. Auffinger et al.

we have (also using linearity of expectation)

E
"

N (P, B(0, R); γ )

Vol(B(0, R))

#
≥ βa > 0,

and the positivity of c γ follows.

6.2 Proof of Proposition 1.2

The positivity of coefficients a γ in Theorem 1.1 is already established in Proposition 3.2
proved above. In this section, we prove the related Proposition 1.2, which provides a
more direct analysis in the manifold setting.

Proof. Let y 1, . . . , y ∈ Rd and r > 0 such that

k=1

B(y k , r) = P

with k=1 B(y k , r) a nondegenerate complex (it is not restrictive to consider nonde-
generate complexes by Remark 2.2 above). Let now R > 0 such that B(0, R ) contains

k=1 B(y k , r) and set R = R α
r . Consider also the sequence of maps:

ψn : B̂(p, Rn −1/d )
exp−1

p
−−−→ B Tp M (0, Rn −1/d )

r
α n 1/d

−−−→ B Tp M (0, R )  B(0, R).

Proposition 2.3 implies that there exists 0 > 0 and n 0 such that if ỹ k − y k  ≤ 0 then
for n ≥ n 0 the two complexes k=1 B(y k , r) and k=1 B̂(ϕn (ỹ k ), αn −1/d ) are homotopy
equivalent.

We are interested in the event:

En = ∃I ∈
n

: ∀j ∈ I p j ∈ ψ −1
n (B(y j , )), and ∀j /∈ I p j ∈ B̂(p, (R + α)n −1/d )c .

Observe that if E n verifies, then U n ∩ B̂(p, Rn −1/d )  P; in fact, since there is no
other point in B̂(p, (R + α)n −1/d ) other than {p j}j ∈ I , then the complex U n is the disjoint
union of the two complexes U n ∩ B̂(p, Rn −1/d ) and U n ∩ B̂(p, (R + α)n −1/d )c : the complex
Un ∩ B̂(p, Rn −1/d )  P by Proposition 2.3.

It is therefore enough to estimate from below the probability of E n . Note that
for every measurable subset B ⊂ B(0, R ) there exists a constant c B > 0 such that
Vol ψ −1

n (B) ≥ cB
n . In particular, using the independence of the points in U n , we can
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estimate

P(En ) =
" n #

P ∀j ≤  : p j ∈ ψ −1
n (B(p j , )) and ∀j ≥  + 1 : p j ∈ B̂(p, (R + α)n −1/d )c

=
" n #⎛

⎝/

j=1
vol ψ −1

n (B(y j , ))

⎞
⎠ vol( B̂(p, (R + α)n −1/d )c )

n−

≥
" n # c1

n 1 −
c2
n

n− n→∞−−−→
c1
!

(1 − c 2)− e−c 2 .

In particular there exists c > 0 such that

P Un ∩ B̂(p, Rn −1/d ))  P≥ P(E n ) > c,

and this concludes the proof.
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