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ABSTRACT

The focus of this research is to create a methodology to systematically generate spatially-varying, periodic, cellu-
lar microstructures that are tailored to attain optimized performance of the macrostructure. The unit cell lattice is
represented by Fourier series expansions, and the corresponding amplitudes and phase spectrum are obtained.
Then, the material distribution (topology) and orientation of each cell (morphology) are optimized for multiple
load cases. The phase of the spatial harmonics is updated based on the optimized orientation, and the analog re-
sponse is thresholded with the optimized material distribution to find the binary lattices. The framework is tested
for three types of lattices with various periodicities. The square cell with a rectangular hole shows the exploita-
tion of the cell's orthotropic properties for structures subjected to a single load case; the triangular cell with the
triangular lattice depicts the applicability of other types of cells and lattices to transfer shear for the structures
subjected to multiple load cases; and the square cell with pentagonal lattices shows the versatility of the frame-
work. An optimized triangular cellular solid is additively manufactured, and it is validated experimentally that
12% higher stiffness and 57% higher strength can be achieved compared to the conventional topology optimiza-
tion design.
© 2020 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://
creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

A cellular solid is comprised of an assembly of full materials and
voids (binary microstructures). In nature, cellular solids are found in
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trabecular bone, wood, cork, and plant parenchyma [1]. Inspired by na-
ture, cellular solids have been utilized in various applications [2], includ-
ing 1) efficient lightweight structures due to their high stiffness and
strength-to-weight ratio [3]; biomedical applications due to their con-
trollable cells and stiffness [4]; heat exchangers and cooling machines
due to their large surface area and low flow resistivity [5]; energy ab-
sorbers due to their capability of sustaining large deformations [6];
and acoustic insulation due to their porosity [7].
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Periodic cellular solids are multiscale problems in which the perfor-
mance of the macrostructure is derived by the effective properties and,
hence, the micro-architectures of cellular solids. Thus, the structural
performance can be optimized by designing spatially-varying architec-
tures of local cells, including their amounts of material, their orienta-
tions, and their sizes. Topology optimization can be utilized to
optimize the distribution of the material. Topology optimization inher-
ently is a binary design optimization in which the design variable, mate-
rial distribution, is one for solid or zero for void. The binary design field
can be relaxed by utilizing the homogenized macroscopic properties of
microstructures and implementing the gradients of the objective and
constraints in the optimization process [8-10]. The orientations of the
cells are obtained using Pedersen strain-based [11] or stress-based
methods [12]. Both methods use the compliance of the design as the ob-
jective function. In the stress method, stress is assumed fixed with re-
spect to the orientation of the cell, while, in the strain-based method,
the strain field is considered to be fixed. Homogenization-based topol-
ogy optimization results in “gray” regions, which represent infinitely
small microstructures. Later, this method was extended to maximize
the macrostructure performance with an optimization of the micro-
structure using inverse homogenization through a hierarchical compu-
tational scheme [13]. Due to the high computational cost of performing
finite element analysis on such complex, small-scale structures, homog-
enized material properties can be used as a surrogate model in a macro-
scale optimization to reduce this cost. However, in a homogenization-
based multiscale approach, the connectivity of microstructures between
surrounding cells is not considered. The lack of connectivity of spatially
varying cellular solids in fabricated artifacts results in a large difference
between predicted and measured performance. Homogenization-based
optimization also is based on infinite periodicity, which results in peri-
odic cells consisting of infinitesimal features. However, fabrication of
the cellular structure requires a scale with a finite length. Zhang, Gao,
and Xiao [14] addressed the connectivity between microstructures by
a kinematical connective constraint. In their study the optimized design
of multiple prototype microstructures is obtained by using a
homogenization-based level set method. Then the level set functions
are interpolated to generate a set of microstructures to construct a
Kriging metamodel, and the material distribution is optimized for max-
imizing the natural frequency of the cellular structures. This method
was later applied to multiscale topology optimization of sandwich
structures with graded cellular cores [15].

Another approach to ensure the connectivity of microstructures is
the post-treatment of the homogenization-based topology optimization
which first was reported by Pantz and Trabelsi [16]. A rank-two lami-
nate is used in the optimization process, but due to the issue concerning
its manufacturability, square cells with rectangular holes were used in
the construction of the optimized design on a fine mesh. A coherent ori-
entation was required to establish the optimization of the lattice struc-
tures, but the orientation was symmetric with respect to 1. To resolve
this issue, Pantz and Trabelsi [16] obtained a mapping function by solv-
ing a least squares minimization with several constraints to remove the
sudden changes in the orientation. Later, Groen and Sigmund [17] sim-
plified the procedure used to obtain the mapping function for the square
cells with rectangular holes by using the connected component labeling
method and by including a relaxation coefficient in the least squares
minimization. They also implemented a scaling factor based on average
lattice spacing to better control the size of the unit cell in the optimized
design. Recently, Allaire, Geoffroy-Donders, & Pantz [18] addressed the
discontinuity in the orientation by substituting an abstract manifold
for the computational domain and imposing the conformality condition.
In their work, the exponential of a dilation field also was considered in
the process of establishing the mapping function to preserve the geo-
metric properties of the cell.

The focus of the research mentioned above was on a square cell with
a rectangular hole subjected to a single load case. The objective of this
research is to extend the de-homogenization approach and create a
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methodology to systematically generate optimized, spatially-varying,
manufacturable, periodic cellular solids that can be applied to different
types of cells and lattices and subjected to multiple load cases. The cel-
lular structures in this research consist of 2D cell types replicated in the
out-of-plane direction. The lattices are the binary microstructures
within the cell. It has been shown in crystallography that various peri-
odic cellular solids can be created using Fourier series [19]. Rumpf and
Pazos [20] also showed that a distance function can be used to establish
the Fourier series and that a mapping function can be used to develop
spatially-varying, periodic cellular solids. Thus, to obtain the topological
and morphological design of spatially-varying cellular structures, the
periodic cellular solids are represented using spatial harmonics. Subse-
quently, the topology optimization is performed by utilizing the effec-
tive properties obtained by numerical homogenization. The
homogenization-based optimization is based on infinite periodicity
and yields infinitesimally disconnected cellular microstructures. In
order to establish interconnected microstructures, the spatial har-
monics are reconstructed using their shape-preserving phases. Then,
manufacturing constraints are incorporated in the reconstruction and
the post-treatment process by using the periodicity of the lattice.

The framework developed in this research consists of four steps,
i.e., [1] Parametrization and Construction of Periodic Cellular Micro-
structures: In this step, the characterizing parameters required to gen-
erate the lattice geometry are identified, the phase spectrum and
amplitude to establish the Fourier series are calculated, and a database
is developed for the homogenized properties for various characteriz-
ing parameters; [2] Homogenization-Based Topology Optimization:
In this step, the optimization problem to find the optimized cell mor-
phology and material distribution subjected to multiple load cases is
established; [3] Projection of cellular solids using Fourier series: The
optimized orientation is regularized, the mapping functions that cor-
respond to the phase of the spatial harmonics are developed, and
the analog and binary lattices are obtained; [4] Post-processing of
projected cellular solids: In this step, the projected cellular solids are
modified based on the feature periodicity, cell porosity, and minimum
manufacturable feature size; the floating members are identified and
removed, and the boundary of the cellular solid is smoothed. The
four major contributions of the current research are as follows;
(a) While two types of cells and three types of lattices, i.e., square
cell with rectangular hole, triangular cell with triangular lattice, and
square cell with pentagonal lattices, were selected to convey the
ideas in this research, due to the versatile spatial harmonics decompo-
sition, the proposed framework can be used with any types of cells
and lattices; (b) the implementation of multiple load cases demon-
strates the applicability of various types of lattices; (c) the
manufacturing post-treatment process can identify both small thick-
nesses and small holes for various type of cells and lattices and pro-
duce a design that can be additively manufactured; (d) the
optimized cellular solids and those obtained using Solid Isotropic Ma-
terial with Penalization (SIMP) are manufactured additively, and it is
validated experimentally that the stiffness is improved by using the
optimized cellular structures and that significantly higher strength is
achieved due to the redundant load paths provided by the cellular
solids.

2. Parameterization and construction of periodic cellular
microstructures

The first step in the generation of a cellular solid is to select the types
of cells and lattices, such as square cells with rectangular holes, triangu-
lar cells with triangular lattices, or square cells with pentagonal lattices.
Then, the parameters that correspond to the evolution of a unit cell ge-
ometry must be selected. For example, Fig. 1 shows the characterizing
parameters for square, triangular, and pentagonal lattices. One parame-
ter or multiple parameters (i.e., h,, where n is the number of parame-
ters) can be selected to control the geometry of the lattice within the
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cell. For example, each cell in Fig. 1 contains two parameters to develop
the geometry of the lattice. Alternatively, each cell could have one pa-
rameter (e.g., h; = hy). The parameters also can be related to the void
(Fig. 1 ()), or the solid thickness (Fig. 1 (b) and (c)). The parameters
are normalized between 0 and 1. The parameters do not necessarily
show the thickness of the lattice. For a square with a rectangular hole
lattice, the thickness is t, = 1 — h,, and for the triangular lattice, the
thickness of the members are t,~v3 /2hy, while they are t,~1/ V8hy,
for the pentagonal lattice.

The selection of the parameter has a significant effect on the me-
chanical properties. Generally, a larger design space is allowed when
the number of parameters is increased, which provides better control
of the local mechanical properties. For example, while the triangular
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Fig. 1. Parametrization: (a) for a square lattice with a rectangular hole; (b) for a triangular lattice; (c) for a Cairo pentagonal lattice

lattice with a single parameter for thickness has isotropic properties,
the selection of two parameters results in anisotropic properties. Fig. 2
shows the polar plots of homogenized stiffness for various lattices. As
can be seen, there is a larger homogenized Young's modulus in the di-
rections parallel to the walls of the square that has a rectangular hole
and triangular lattices, and the best shearing stiffness occurs 1) in the
45 degree angle for the square cell with a rectangular hole, and 2) in
the vertical and horizontal directions for the triangular lattice (Fig. 2
(a) and (b)). These types of anisotropic properties provide the opportu-
nity to design the orientation of the local cell with respect to the applied
loads, and, as a result, obtain more efficient macrostructures. While
there is orthotropy for the low parameter values of the Cairo pentagonal
lattice, it diminishes quickly.
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Fig. 2. Polar plots of homogenized Young's modulus and shear modulus of: (a) square with rectangular hole lattice; (b) triangular lattice (c) Cairo pentagonal lattice for different values
of h;
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Next, the unit cell configuration is constructed using a distance func-
tion, i.e,, d,(x,y,z), where d,,(x,y,z) < h, is solid and d,,(x,y,z) > h,, is void.
(If hy, is related to the void thickness, then 1 — h,, is utilizEd.) Assuming
that h; = hy, Fig. 3 shows the distance functions that correspond to the
various lattices.

Since the cellular solid is created by the periodic repetition of a
unit cell, d,(x,y,z) can be decomposed into spatial harmonics and rep-
resented using a Fourier series. To this end, the periodic lattice vector
concept for crystal structures [19,20] is borrowed to generate cellular
solids. In crystallography, a crystal structure consists of a periodic
array of structural units. Each unit cell is considered as an imaginary
point; hence, the cellular solid (Fig. 4 (a)) becomes an array of equiv-
alent points called the points of lattice. (See Fig. 4 (b).) Five unique
point lattice arrays exist in 2D, i.e., oblique, rectangular, square, trian-
gular, and rhombus arrays [19]. To connect two different points in the
points of lattice, the primitive lattice vectors a; and a, (Fig. 5 (a) and
(b)) are introduced, where A is the spacing between successive points
of lattice in the direction of the primitive lattice vectors. In order to re-
peat the lattices infinitely on a 2D space, wave vectors are introduced
that are referred to as the reciprocal lattice vectors, Gy, [19] (see Fig. 5
(c) and (d):

Gpq = PGy +qG;

2><a1
a;-(a; x Z)

a, X Z
a;-(a; x Z)

G, =2m =2m (1)

where Z is the perpendicular axis to the 2D plane, and p and q are inte-
gers. A special characteristic of the reciprocal vectors is that the waves
that propagate along these directions have the same periodicity as the
points of lattice, which implies that exp(jG,q - ) = exp (jGpq - (r + R)),
where r is the position vector, and R is the vector to create the points of
lattice [19]. Thus, the reciprocal lattice vector shows the orientation of
periodicity, and its magnitude is the inverse of the spatial period

(a)

(b)

Fig. 3. Distance functions: (a) square cell with rectangular hole; (b) triangular lattice; (c) Cairo pentagonal lattice
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between the successive points of the lattice. By using the periodicity
characteristic of the reciprocal lattice vector, the cellular solid is
expressed using a complex Fourier series [19]:

Ui = Re (; Zq:bgqejcm"/"> )

where qu is the amplitude of the pg™ harmonic, which is obtained by
the Fourier transform of the distance function (d,) that is used to gen-
erate the geometry of the lattices. The Fourier transform moves the
lattice from the spatial domain to the frequency domain considering
a limited, but large enough, group of frequencies. It is good practice
to shift the highest frequencies to the center cell domain, and since
the significant terms are located in the center, a truncated Fourier
transform is generated by considering a window of amplitudes around
the center [20]. Therefore, the truncated amplitude and reciprocal lat-
tice vector (qu and Ggq) are obtained for each parameter.

Next, a database of density (p) as a function of cell parameters was
constructed while keeping the reciprocal vectors unchanged (see
Fig. 6 (a)). The database for the homogenized properties also was con-
structed using the parameters of the cells. The homogenized mechanical
properties of periodic cellular solids were obtained using numerical ho-
mogenization [21-23] over a finite element mesh of cell domain Y cre-
ated by [a4, a3]:

oy ov;
. P _ (0K i _
/ Ycupq <—dyq €pq By, dy=0

Cg'lkl(r) = % /chqu (ry) (gggkl_gm (Xkl)> (gggij ~Ems (Xij) ) v @3)

where & are the three macroscopic unit strains, y* are the displace-

ment fields, v; is the virtual displacement field, and Cis the stiffness ten-
sor of the cell material. As demonstrated in Fig. 6 (b), the homogenized

(b)

Fig. 4. (a) 4x4 Cairo pentagonal lattice; (b) point lattice replacing the Cairo pentagonal cell
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Fig. 5. Primitive lattice vectors (a) for the square unit cell; (b) for the triangular unit cell; reciprocal lattice vectors for (c) the square unit cell; and (d) triangular unit cell [19]

properties were obtained for various cell parameters to construct a re-
sponse surface, C(h,,).

The response surfaces related to the density and elasticity tensor
were generated once, and they were used within the
homogenization-based topology optimization. However, the homoge-
nized properties were obtained based on the assumption of infinite
periodicity, and it is important to investigate the convergence of the
effective properties to the homogenized properties of the cellular
solids numerically with a finite cell number; also, it is important to
validate the numerical model experimentally. Thus, a finite element
analysis (FEA) was performed according to the method used by
Maskery et al. [24] to measure the effective elastic modulus for cellu-
lar solids with various numbers of cells and different types of lattices.
A displacement in the vertical direction was prescribed to the top sur-
face to compress the structure in the in-plane direction. On the bot-
tom surface, the displacement was constrained only in the vertical
direction. A single node on a corner of the bottom surface was
constrained fully to prevent the rigid body translation. These bound-
ary conditions compressed the structure while allowing the top and

bottom surfaces to expand freely. The effective elastic modulus was
obtained from Eq. (4):
. FL

E - )
where 6 is the prescribed displacement, F is the reaction force produced
by the prescribed displacement, A is the cross-sectional area of the
structure, and L is the undeformed height of the structure. Cellular solids
that had 30% relative density and up to 8 repetitions in each direction
were analyzed. Fig. 7 is a plot of the normalized results, and it shows
the different behaviors of each of the cell geometries as their effective
stiffnesses converged to their homogenized values. With the compres-
sion load applied parallel to the cell walls in the square cell with a rect-
angular hole, the effective elastic modulus has no dependence on the
number of cells and is always equal to the result of homogenization. This
behavior is a result of the load being perfectly parallel to the vertical
members. For spatially varying optimized square cells with rectangular
holes where the orientations of the cells are aligned with the load paths
of a single load case, there should be little dependence of the stiffness of

1 H
1.2-CJ,
0.8 .cH
0.8 H
Q~0.6 .C
H
0.4 0.4 ~C
0.2
/ 0 % .WH«;—.MM‘A”‘/
0 025 05 075 1 0 0.2 0.4 0.6 0.8 1
hl h]
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Fig. 6. (a) Cairo pentagonal density; (b) Cairo pentagonal homogenized mechanical properties
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Fig. 7. Normalized effective Young's modulus versus the number of cells that made up the cellular solids; the normalized homogenized values are shown by the solid black horizontal line

the structure on the number of cells that comprise it. When the square
lattice is loaded diagonally at a 45-degree angle, the effective Young's
modulus was dependent on the number of cells since now the deforma-
tion is dominated by bending. Similarly, the triangular lattice with the
load applied in the 90-degree direction starts at a lower stiffness that
converges up to the homogenized value. When the load is applied in
the 0 degree direction, which is parallel to one of the three directions
of the wall, it behaves similarly to the square lattice, and just a single cell
is very close to the homogenized value. For the Cairo pentagonal lattice,
there are no continuous members, so deformation always is dominated
by bending, and convergence of the stiffness with the number of cells
occurs for a load applied in any direction. The results of this analysis
point to the conclusion that the assumptions of homogenization theory,
in which the unit cells are significantly smaller than the macrostructure,
are not restrictive to the macro cellular solids presented in this article.
With a 3 x 3 grid of unit cells (a periodicity of 1/3), each of the three dif-
ferent lattices analyzed here had stiffness values within 90% of the ho-
mogenization values.

Next, the FEA results were compared to the experimental tests. Six
specimens for two lattice types, i.e., a square cell with a rectangular
hole and a Cairo pentagonal, were additively manufactured in 3 x 3 con-
figurations at 30% relative density. The specimens were fabricated using
Multi Jet Fusion with thermoplastic polyamide 12 (PA12) material. In
the Multi jjet Fusion process the fusing and detailing agents are applied
to the powder bed and an infrared heater moves over the bed to fuse the
layer. The specimens were scaled such that the wall thicknesses were
approximately 2mm. They were tested under compression in a univer-
sal testing machine with a 50kN load cell. The material properties of PA
12 were tested from coupons additively manufactured by Multi Jet Fu-
sion, and the elastic modulus and Poisson's ratio were found (E =
1260MPa, and v = 0.3). The experimental results of the stiffness sum-
marized in Table 1 confirmed that only three repetitions of the unit
cells achieved stiffness values that were within 90% of the homogeniza-
tion value.

Table 1

3 x 3 base cell additively-manufactured test specimens loaded in the vertical direction
E*/E" Square Cairo
Homogenization (Plane Stress) 1.00 1.00
Standard Mechanics (FEA, Plane Stress) 1.00 0.917
Experiment 0.949 + 0.017 0922 + 0.018

% Error of Experiment (Average) Relative to FEA —5.0% +0.55%

The last step in the parametrization and construction of the cellular
solid was to establish the relationships between the cell morphology,
reciprocal lattice vector, and homogenized properties. The morphology
of a cell can be changed by rotating the reciprocal vectors, Thus, the re-
ciprocal vectors were rotated based on the orientation (6) of the unit
cell, G(6) = Q(0)G, where Q is the rotation matrix. As a result, the ho-
mogenized elasticity tensor also is related to the orientation through
the transformation matrix (C"'(6,p) = T(8)C"(p)T"(8)), where T is the
transformation matrix. In the next section, we discuss obtaining the ori-
entation that updates the reciprocal vectors toward the optimized mor-
phology and the material distribution that corresponds to the optimized

topology.
3. Homogenization-based topology optimization

For maximum stiffness or, alternatively, minimum compliance, the
homogenization-based topology optimization for the problem of multi-
ple load cases is formulated in Eq. (5), where [ and nl are the load case
number and number of load cases, respectively; F, U, and K represent
the load vector, displacement vector, and stiffness matrix, respectively;
and Vg is the volume constraint. The design variables are the cell param-
eters (h,,) and the orientation.

nl
min Y_F.U
hy, and 6 =1

s.t.: K(p(h,)0)U' = F
/ p(hy) dQ <V,
J Q

0 < h, £1; nis number of parameters

—m<Osm (5)

In each iteration of the optimization, the current design variables
and the gradient of compliance and volume with respect to the design
variables are provided to the Globally Convergent Method of Moving
Asymptotes [25], and new design variables were obtained. In order to
initialize the orientation vector, an isotropic cell was created for each
load case, the stresses were calculated, and the eigenvectors that
corresponded to the maximum principal stress from all load cases
were selected for the initial orientation. In the optimization process,
sudden changes of 7 may occur due to the repeated global optimum ori-
entation [26]. Motivated by the penalty function used in Groen et al.
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[27], a control function (Py) was used to penalize the sudden changes in
orientation in neighboring elements:

=]

M=z

€
Py =

) (1— cos (6 —6;)) (6)

I
N
Il
—_

The penalty function is looped over all of the elements (ne) and con-
nected elements (N) to the k™ element. Eq. (6) shows that the penalty
function is zero when the difference between the orientations of neigh-
boring elements is zero or 1, and the penalty function is one when there
is a /2 difference between the orientations of neighboring elements.
The penalty function is added to the optimization formulation in
Eq. (5), using weights that correspond to the individual objective func-
tion:

nl

min w. Y F.U + wyPy
1

h, and 6 1=

s.t.: Kp(h,,0)U' = F
/ P 4OV,

0 < h, < 1; nis number of parameters

—m<Osm (7)

where the weights are w. = 1/c® and wy = 1 /2P%, and ¢° and Pg are the
compliance and penalty functions in the first iteration.

A 120 x 72 x 10 mm?> bridge with one simply supported con-
straint and one roller constraint was selected as a test case
(Fig. 8). The finite element model for the optimization consisted
of linear square elements. The volume fraction constraint in this
problem was 25%. The material properties that were used were
Young's modulus and Poisson's ratio of E = 950MPa and v =
0.30. The cases of the first and second loads consisted of 1 kN ap-
plied at a distance of 40% from the left and right edges of the do-
main and distributed over 5% of the total length of the base of the
structure. The structure was optimized using the homogenized
properties obtained for three types of lattices, i.e., (a) a square
cell with a rectangular hole and the use of two parameters (h;
and h,) to update the geometry of the lattice; (b) a Cairo pentag-
onal lattice with a single parameter, h; and (c) a triangular lattice
with two parameters (h; and h,). The optimized orientation, dis-
tribution of material, and compliance (c) utilizing the three lat-
tices for multiple load cases (with f; and f, applied separately)
and single load case (f; and f, are applied simultaneously) are
shown in Fig. 9 and Fig. 10, respectively. For both test cases, it is
evident that there is a distinct variation in the optimized distribu-
tion of material, but the differences between the optimized orien-
tations for various lattices are subtle. Compared to the other
lattices, the square with the rectangular hole had the highest
orthotropic properties for the intermediate densities (Fig. 2), and
they can be orientated with respect to the direction of the opti-
mized principle stress. Thus, a large domain of gray areas is pro-
duced when the structure is optimized for a single load case, as
observed in Fig. 10 (a). However, when the structure was sub-
jected to multiple load cases, the optimized orientation of the
local cell may not be associated with a single load in some regions
of the domain, and the two directions from two load cases are not
necessarily perpendicular. Therefore, to compensate, the cell be-
comes entirely solid in this region. Fig. 9 (a) shows that the cells
in the middle region become solid to transfer the shear stresses
produced by both load cases. The triangular lattice has anisotropic
properties, and it provides higher stiffness in two directions with
a difference of m/3 (Fig. 2 (b)). This unique characteristic of the
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properties of the triangular lattice was exploited in the multiple
load case to provide a gray area in the middle region (Fig. 9
(b)). However, for the case of a single load, the horizontal member
of the triangular lattice was oriented toward the largest principle
stress to support the load (Fig. 10 (b)). Concerning the Cairo pen-
tagonal lattice, while it has orthotropic properties for thin mem-
ber thickness, it diminishes immediately when the thickness
increases (Fig. 2 (c)). Thus, for both multiple load cases (Fig. 9
(c)) and single load case (Fig. 10 (c)), the lattice does not provide
any advantages in the left and right regions, and the cells become
solid. For the single load case, the homogenization-based design
converges to solid-void, due to isotropic material properties for
higher densities. However, the lattice provides a higher shear stiff-
ness in the middle region of multiple load cases, where no perpen-
dicular optimized direction exists, and, as a result, a semi-gray
area was observed in this region (Fig. 9 (c)).

As mentioned earlier, the optimized solutions of the
homogenization-based topology are based on infinite periodicity with
no requirement for the connectivity of the adjacent lattice. Discon-
nected lattices are not consequential with an infinite number of cells,
but they become an issue when the lattices are transformed to finite
sizes. In the next section, the construction of a coherent, shape-
preserving orientation to establish interconnected finite size lattices is
discussed.

4. Projection of cellular solids using Fourier series

After determining the optimized orientation (6*) in the previous
section, the reciprocal lattice vectors were updated, i.e., (G(0*) = Q

(6%)G). It has been shown that when G is a function of 6(?), the result

of adding the Fourier series fails to reproduce the desired lattices [20].
Rumpf and Pazos [20] suggested using a mapping function, @4, which
accumulates the phase along the direction of the reciprocal lattice
vectors. Therefore, the reciprocal lattice vector, rotated according to
the optimized orientation (G(6 *)), is decomposed to rotational and irro-
tational components in order to reconstruct the orientation and size of
the cells. Decomposition of a vector field to rotational and irrotational
terms provides significant insights in various applications in fluid me-
chanics [28] and solid mechanics [29,30]. In the current application, a
mapping function was created from an irrotational component of a re-
ciprocal lattice vector to project the lattices from a homogenized space
to a finite-sized cellular solid. In general, the reciprocal lattice vectors
are not solely rotational or irrotational, and they contain characteristics
of both the orientation and the spatial period. Analogous to the
Helmholtz-Hodge representation of vector fields [31], reciprocal lattice
vectors in a domain D are decomposed to irrotational and rotational
components, and the mapping function related to the irrotational com-
ponent is constructed as follows:

0.6L D

JAN ¢ i &
S fo

Fig. 8. Bridge test case subjected to multiple load cases
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Fig. 9. Multiple load cases optimized material distribution and orientation for: (a) a square cell with a rectangular hole; (b) a triangular lattice; (c) a Cairo pentagonal lattice

GR, (0
V2R, (xy) = v-%()on D
oy
—alfq = Gpy(6)mon dr (8)

where 0T is the boundary of the domain, and 7 is normal to the bound-
ary. The field lines of the irrotational component of a reciprocal vector
are the level sets of (ng. To ensure the uniqueness of the irrotational
function, the following condition was enforced: V&, x G, = 0.
While solving Eq. (8) with the above constraint extracts the irrota-
tional component, the Fourier series representation based on @, be-
comes distorted due to the irregularities of the reciprocal lattice
vector. The source of these irregularities is either differences of m in
the orientation of periodicity (as shown in the optimized orientations
in Fig. 9 and Fig. 10), or the singularities (or degenerate points) occuring
due to the presence of the repeated global minima. To capture the irreg-
ularities and create a locally continuous vector field, a shape-preserving
interpolation concept was used that decoupled the shape and direction

[32,33]. The first step was to capture the inconsistency of the propaga-
tion and the degenerate points by screening the vector field in the
local triangular or tetrahedral elements in the structural domain. A vec-
tor field is generated from the optimized orientation (v = [cos(6 *),sin
(67)]). The dot product of the vectors of the two vertices (V;) identifies
the irregularities in the local element; if the product of all dot products
between pairs of vectors is not positive, then the element contains de-
generate points (Fig. 11. (a)); otherwise, if some dot products are nega-
tive, there is a m difference in orientation (Fig. 11. (b)). For the elements
with a degenerate point (point D in Fig. 11. (b)), a vertex at the degen-
erate point with v = 0 (due to the inability to determine the orientation
[33]) is inserted to construct sub-elements without an inner degenerate
point. Then, an interpolation is generated for each element (v,,) to re-
construct the unit vector field that is consistent with the flow of cell
propagation in the neighboring cells:

Ven = §1V1 + 156 Vivi 9)

where nv and ¢ are number of element vertices and element shape
functions.
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Fig. 10. Single load case optimized material distribution and orientation for: (a) square cell with a rectangular hole; (b) triangular lattice; (c) Cairo pentagonal lattice

The above procedure creates a coherent orientation to rotate the re- suggested obtaining a local dilatation factor (7y) and multiplying the
ciprocal lattice vectors, but the original geometry of the cell may not be vector field by e”. This method was used in the current work. Therefore,
preserved in the projection, i.e., the cell is compressed or stretched. To the reciprocal lattice vector is multiplied by €7, i.e., Gpqg = €?Gpq, Where y
this end, Groen and Sigmund [17] suggested finding the average lattice depends solely on the optimized orientation (6 *):
spacing by using the gradient of the mapping function and adjusting the

period of the lattice accordingly. Allaire, Geoffroy-Donders, & Pantz [18] VY = (=VxV)V+ (V x V)V (10)

v,

V1=Vz.173>0 ; V3=171.'l72<0

B

b3/-- V, =v3.v, >0 .\’h
2 = V3.7 v, <0 \Vl

(a) (b)

Fig. 11. (a) Existence of the degenerate point; (b) Inconsistency in the propagation of the flow of cells
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Fig. 12. Projection method using Fourier series for Cairo pentagonal lattice: (a) mapping function (&); (b) amplitude; (c) analog lattice (¢/) created up to 81, 160, and 271 terms

of consistency when comparing the performance as well as
enforcing the minimum feature size for the different types of lat-
tices in the next sections. The area of square cell with the

and v is perpendicular vector to v. In addition, we modified the
periodicity, A, using a coefficient (~A) to enforce approximately
the same cell area for the three lattices so that there was a level

Fig. 13. Multiple load cases binary lattices () for: (a) square cell with a rectangular hole; (b) triangular lattice; (c) Cairo pentagonal lattice
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(b)

Fig. 14. Single load case binary lattices (£2,) for: (a) square cell with a rectangular hole; (b) triangular lattice

rectangular hole was considered as the reference, thus /=

1,1/4/v/3,and V8 for squares with a rectangular hole, triangular,

and Cairo pentagonal lattices, respectively.

The last step in the projection procedure is to create an analog lattice
by using the mapping function that corresponds to each reciprocal lat-
tice vector (Eq. (11)). Then, an analog lattice is thresholded with the op-
timized material distribution (p *) obtained from the homogenization-
based topology optimization to find the binary cellular structures
(Eq. (12)). When there is more than one parameter that describes the
initial geometry of the cell, the final projected shape is obtained through
the union of the binary lattices (Eq. (13)).

{, = Re {%bgq exp (jd)gq(r) )} (11)
Sn = (P, <hy) (12)
Q=US, (13)

A = 5 was selected for the results shown in this section and in
Section 5. Fig. 12 shows the phase (or mapping function (&)), and the
amplitude of the term numbers 81, 160, and 271 in the Fourier series
and the analog lattice created up to these terms. As can be seen, the
final analog lattice created by summing the 271 terms fully obtains
the Cairo pentagonal cellular solid. For the projection step, a finer struc-
tured triangular mesh with 15 elements per unit length was used in
order to capture the small features. The binary lattices (;) for multiple
load cases and a single load case are shown in Fig. 13 and Fig. 14. The re-
ported binary lattices may include floating members (because of the
size of the mesh), and members and holes that have small sizes that
cannot be fabricated due to the minimum feature size in the
manufacturing process. In the next section, the manufacturability char-
acteristics of reconstructed cellular solids are investigated, and a post-
processing method is developed to ensure the feasibility of additively
manufacturing the cellular solids.

8.78
7.10
5.42

3.74

2.06

0 20

40 60 80 100 120

Fig. 15. Feature sizes for the Cairo pentagonal cellular solid
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5. Post-processing of the projected, spatially-varying cellular solids

Two post-treatments for the projected square cell with a rectangular
hole have been suggested in the literature. The first treatment consists of
two parts, i.e. 1) utilizing a smoothed Heaviside projection to keep only
the members above a certain thickness [17]. Since an explicit thickness
is not enforced in this method, the projected feature size based on local
periodicity is obtained in the second step, and the lattices are modified
based on the allowable thickness. Then, the free-hanging members are
removed based on an iterative finite element analysis and the identifica-
tion of members that have low strain energy. 2) Explicitly enforcing the
minimum feature size [18]. In the second step, the closed holes are filled
and the complement of the filled region is obtained to identify and re-
move the free-hanging members. In the current research, method 2
was modified based on our experience with projected design perfor-
mance, and it was extended to be applicable to various types of lattices.
Based on the modified periodicity introduced in the previous section
(7\e™7), post-processing consisting of three steps was developed for
the periodic microstructures using n number of characterizing parame-
ters. These steps are explained based on the assumption that the charac-
terizing parameters (h,,) are related to the solid members in the cell.

5.1. Modification based on the minimum periodicity of the features and the
thickness of the lattice

First, the smallest feature periodicity (t;) within a unit cell in Cartesian
coordinates was identified. The minimum periodicity of a triangular lat-
tice in Cartesian coordinates is v/3 A/2 (see Fig. 5). The Cairo lattice in-
cludes 8 complete pentagons, so the minimum periodicity is A/v/8. To
determine the minimum size of the features for each lattice, the modified
periodicity (#Ae~?) is multiplied by 1,/3 /2 and 1/v/8 for a square
with arectangular hole, triangular, and pentagonal lattices, respectively.
Fig. 15 shows the distribution of the feature sizes for the Cairo pentagonal
cellular solid. Then, the design domain, D, is divided to two subsets ac-
cording to the periodicity of the features. The first subset, Dy, is defined
by the cells that have feature sizes smaller than two manufacturable
thicknesses ( t; < 2hyi,). The reason for choosing 2h,,;;, was that both
holes and solids with the minimum feature size of h,,;;, cannot coexist
with a periodicity lower than 2h,;,. The h,;, in this research was 0.8

Fig. 16. Projected shape, (), after increasing the thicknesses of the members in the regions
where p* > pyy
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mm. Then, a single-step thresholding function is applied to each param-

eter hy, and hy, is created. The step function forces Ry to be one and zero
for regions with p*> 0.5 and p* < 0.5, respectively.

The second subset is defined by all the points in domain D, where
tr> 2hpin. One suggestion (hereinafter referred to as Method-A) is to
modify the thickness of the member ( t/h,,) in the lattice using the fol-

lowing conditions, i.e., (@) if th, < hpmin/2, then H,, = 0 to remove mem-
bers with very small thicknesses and (b) if hyin/2 < td1, < hpin, then

Ry = Ryin, to bring the members with moderately small thicknesses to
the minimum thickness [18]. However, our experience has indicated
that removing individual members in a cell based on minimum thick-
ness compromises the structural performance. As is shown later in
Section 5, the process results in long and thin members in the middle
area of the structures. These unsupported members with high aspect ra-
tios bend under applied loads, thereby degrading the stiffness-to-
weight ratio of the overall structure. Thus, we suggest another method
(hereinafter referred to as Method-B), which consists of applying the
following conditions for the lattices in the second subset, i.e., (a) if
p* > pg (in this case py = 0.1) and th, < hpp then
tfﬁn = i, and (b) if p~ < pgn, then hy, = 0. Fig. 16 shows the projected
shape, Q,, after applying this condition. By comparing the projected
shapes in Fig. 16 and Fig. 13 (¢), it can be seen that the thicknesses of
the members located in the lower right and left domains are increased.

5.2. Filling cells with small holes

Data manipulation procedures, such as those presented in
Section 5.1, use point-based functions, such as the local periodicity,
but this approach has the disadvantage of not being able to fully fill
the small voids in the projected cells, which has adverse effects on the
manufacturability and performance of the design. Thus, in this step, re-
gions are implemented instead of data manipulation procedures to
identify small holes in the projected cells. First, the subset D5 is created
by thresholding the analog lattice (Fig. 12 (c)) with h;, (Fig. 17 (a)).
The regions are created from the complement of the union between
D5 and the projected shape, Q, (Fig. 17 (b)). Then, the diameter of the
largest inscribed circle (a measurement of porosity) is calculated for
each region. The regions with inscribed circle diameters less than 1.05
hpmin are filled (Fig. 17 (c)). By comparing the new projected shape
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(Q3) in Fig. 17 (c) and projected shape (£);) in Fig. 16, it is apparent
that the small holes close to the loading application and the outer bor-
der of the shape are filled.

5.3. Removal of floating members and smoothing the boundaries

The last steps in the post-treatment are 1) to remove the floating
members and 2) to smooth the boundaries. First, the closed holes with
areas smaller than a threshold are filled temporarily (Fig. 18 (a)). The
threshold is obtained based on a fraction (e.g., 1/2) of the largest region
identified in the subset D, and p* > p,. This threshold is necessary for
the cases that have large holes inside the bounded structure with free-
end members. The complement is taken and divided into regions
(black areas in Fig. 18 (b)). The boundaries of the black regions are cre-
ated, and a Delaunay triangulation is utilized for each region to create an
outer polygonal shape. Then, the number of triangles in the Delaunay
triangulation is reduced by a factor of 0.8 to create a slightly smoother
boundary, and the vertices within the boundary are added to the region
(Fig. 18 (c)). Then the complement of the complement is found, as
shown in Fig. 18 (d) in which the temporarily-filled areas are emptied.
This process was repeated until all of the floating members were re-
moved. In addition, after removing the floating members, the points
that are located between the boundary of the projected shape and a
smoothed boundary created by a non-uniform rational basis spline
(NURBS) can be added to the projected shape in order to create a uni-
form outer boundary. The final post-processed cellular solid, €, is
shown in Fig. 18 (e). In order to perform a detailed, 2D finite-element
analysis, Bezier splines were used to convert the post-processed results
to CAD geometries. Fig. 19 shows the CAD geometries for the post-
processed optimized designs with square with rectangular holes, trian-
gular lattice, and Cairo pentagonal lattice for multiple load cases and a
single load case with two periodicities, i.e.,, A = 5 and 7. A case number
is assigned to each design that will be used in the next section to com-
pare the performances of various designs.

6. Comparison of the performances of various spatially-varying cel-
lular solids

Due to the post-processing, the final designs can have relative vol-
umes that are different from those of the optimization constraint.

(©)

Fig. 17. (a) Analog lattice thresholded with hy,;, (subset D3); (b) region created by the complement of the union between D5 and the projected shape €),; (c) projected shape ({23) with

filled small holes
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(a)

(b)

Fig. 18. (a) Temporary filling of the small closed holes; (b) Complement of (a); (c) removing the floating members; (d) projected shape after removing the floating members; (e) the final

projected shape () after smoothing the boundaries

Thus, the slope of the force-displacement curve per unit surface area of
the front face is used as a performance indicator to compare different
designs. For a linear force-displacement relationship this is

. . P
Specific Stiffness = A

(14)
where P is the applied load, 6 is the maximum deflection, and A is the
area of the front face of the structure. Loads and boundary conditions
were applied to the same parts of the domain as was done in the optimi-
zations. The properties of the material that were used were Young's
modulus and Poisson's ratio of E = 950MPa, and v = 0.30. The surface
geometries were meshed with two-dimensional linear finite elements,
and linear static analyses were performed.

For the first analysis, the post-processing Method-A was used for a
multiple-load cases with a triangular lattice bridge design, and one
load was applied to the left side. Fig. 20 shows the projected design
and vertical displacement, where A® and AP are the areas of the front
face of the projected design and the baseline model, respectively. As
can be seen, this post-processing method resulted in the removal of al-
most every small cross member, leaving the larger vertical members
completely unsupported with no means of transferring the lateral load
between them. Without the supporting structures, they bend easily,
and the bridge is left with very low stiffness.

Post-processing Method-B was applied for the following two trian-
gular cell bridge designs. The design of the first bridge was optimized

13

for multiple load cases, and a single load was applied, as was the case
for the design in Fig. 20. Fig. 21 shows the following: (a) with the
post-processing Method-B, the small cross members were retained,
which solved the issue of the bending of unsupported members, and
the overall specific stiffness of the bridge was increased by 71%. The sec-
ond bridge was optimized for a single load case, and two different anal-
yses were performed. In the first analysis, a 1 kN load was applied to the
left side (Fig. 21 (b)). Since the structure was optimized for the single
load case with loads applied to both sides, it handled the unsymmetrical
force less efficiently due to the large hole in the middle. A load applied to
the left side cannot transfer directly across the hole to the right support,
and this causes a lateral bending response; its specific stiffness was 17%
lower than the bridge that was optimized for multiple load cases. In the
second analysis two 1 kN loads were applied simultaneously (Fig. 21
(c)). The bridge performed more efficiently under the single load case
for which it was optimized, i.e., the vertical deflection only increased
by 1.4x despite carrying a total load that was 2x greater.

Analyses also were performed for the other eight cases mentioned in
the previous section (Fig. 19). Table 2 summarizes the results for the de-
signs with multiple load cases, and Table 3 summarizes the results for
the designs with a single load case. By comparing the contents of
Table 2 and Table 3, it is apparent that the specific stiffness of the ho-
mogenized design was closer to the projected design for multiple load
cases than it was for the single load case. This occurred because the
thicknesses of more members were increased to the manufacturable
thickness in the projected shape of the design of the single load case.
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Fig. 19. CAD geometries for post-processed optimized designs subjected to multiple-load cases (Cases (1)-(6)) and single load case (Cases (7)-(10))
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Fig. 20. Bridge optimized for multiple load cases using post-processing Method-A: (a) CAD geometry; (b) true scale vertical deformation plot [mm]
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Fig. 21. Optimized bridge designs with true scale deformation plots [mm]: (a) Multiple load case design with one load applied; (b) single load case design with one load applied; (c) single

load case design with two loads applied

For the square lattice structures, while the smaller periodicity led
to a better structural performance (case (1) compared to case (2) in
Table 2), the smaller periodicity also results in smaller cells, some of
which are filled in order to satisfy the minimum manufacturing fea-
ture size. As a result, both periodicities result in similar specific stiff-
nesses. The performance of case (2) was the best of all of the
designs. The triangular lattice with the smaller periodicity (case
(3) in Table 2) had the most frontal surface area. The large increase
in material over the value of the optimization target was due to the
post-processing manufacturing constraint filling in small holes where
the cell orientations converge to the points of load application. Large
solid regions were apparent around these areas in Fig. 19, Case (3).
By comparing Case (4) to Case (3), it is clear that the larger periodicity
of Case (4) resulted in fewer features that were smaller than the
manufacturing constraint, and accordingly its area was 11% less than
that of case (3). The deflection was increased by a roughly-equal pro-
portion of 11%, so the overall specific stiffness was similar for both pe-
riodicities. The Cairo lattice structures (cases (5) and (6) in Table 2)
had the lowest specific stiffnesses of the multiple-load cases designs.
Case (5) had a smaller periodicity, and it showed a slight increase in
specific stiffness compared to Case (6).

Table 2
Performance Comparison of Multiple Load Case Bridge Designs

Case A?/AP  Compliance (kNmm)  Specific stiffness (N/mm?>)

Projected design ~ Homogenized design

(1) 0272 294 0.289 0.320
(2) 0250 3.18 0.290
3) 0317 2.64 0.277 0.281
(4) 0282 294 0.279
(5) 0269 3.62 0.237 0.238
(6) 0264 3.74 0.234

Table 3

Performance Comparison of Single Load Case Bridge Designs

Case A“?/AP  Compliance (kNmm)  Specific stiffness (N/mm?)
Projected design  Homogenized design
(7) 0.264 4.86 0.361 0.458
(8) 0294 416 0383
9) 0273 5.14 0.329 0.392

(10) 0260 5.08 0.350

For the results of the single load case design, which are summarized
in Table 3, the specific stiffness was higher for larger periodicities with
two loads applied simultaneously. For the single load case, there was
only one principal stress direction field. If the alignments of the walls
of the cells in this direction field were perfect, the square and triangular
lattice structures would have maximum stiffness irrespective of the
number of cells. Therefore, decreasing the periodicity in the optimized
structures has a lessened effect on stiffness, while more material still
can be added to satisfy the manufacturing constraint.

Another interesting observation that can be made from comparing
Table 2 and Table 3 is that, even though the square lattice structures
in the design of multiple load cases have approximately 4% higher spe-
cific stiffness than triangular lattices, this is increased to 9.5% for the sin-
gle load case. This shows that, while filling the small holes due to the
manufacturing constraint decreased the specific stiffness of the triangu-
lar lattice design, it still provides acceptable performance because of its
ability to transfer shear in the middle region for the multiple load cases.

In summary, three main conclusions can be extracted from these
analyses:

1. Reducing periodicity will increase structural performance up to a
point at which limitations in manufacturing precision outweigh in-
creases in stiffness. Future advances in additive manufacturing tech-
niques to fabricate microstructures with smaller feature size will
allow for smaller cells and additional gains in performance, but, ulti-
mately, there will be diminishing returns.

A &

3L

Fig. 22. Three point-bending test case subjected to multiple load cases
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Table 4
Linear Specific Stiffness of Three-Point Bending Designs
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Case Geometry Area (mm?) Maximum Deflection (mm) Specific Stiffness (N/mm?)

FEA Experiment FEA Experiment % Error
(11) 4447 0.760 0.774 0.296 0.291 -1.7%
(12) 5161 0.606 0.647 0.320 0.300 -6.3%
(13) 5343 0.556 0.575 0.336 0.326 -3.0%

2. For the designs of single load case in which the walls of the cells are
aligned with the load paths, the point at which manufacturing limita-
tions outweigh increases in stiffness will occur sooner. (See Table 3.)

3. The orthotropic square lattice cell can provide the most efficient use
of material for the single load case, but since the stiffness is only high
in very specific directions, the structures may have lower perfor-
mance in multiple load cases where shear stresses exist in some
regions.

4. The triangular lattice cell produces macrostructures that are capable
of transferring shear, so it may be better to use them in situations
where there are larger numbers of load cases.

7. Experimental evaluation of additively-manufactured, spatially-
varying cellular solids and SIMP designs

Experimental testing was performed on three-point bending struc-
ture designs obtained using conventional SIMP topology optimization
and the method described in this paper with triangular lattices. Each
structure was generated with a rectangular design space that had a
3:1 aspect ratio. The height of the design space (L) was 62 mm with
an out-of-plane thickness of 15 mm (Fig. 22). The optimized results
were obtained using a Young's modulus and Poisson's ratio of E =
950MPa and v = 0.30 for multiple load cases with loads of 1kN. An op-
timized design was obtained using the SIMP method with 186 x 62 el-
ements (Table 4, case (11)). The same number of elements was used to
determine the homogenization-based topology optimization designs.
Then, the optimized homogenized material distribution was projected
using A = 4.4 and 15 elements per unit length (Table 4, case (12)).
The holes in the lower left and right sides of the case (12) domain
were filled with triangular lattices, and the periodicity was changed
slightly (A = 4.5) to also fill the bottom edge (Table 4, case (13)). The
results in Table 4 show that the specific stiffness of the triangular lattice
design (case (12)) outperformed SIMP by 8% for a load applied to the
left side. Filling in the large holes with lattices in case (13) increased
the performance by 13% over the SIMP design.

Along with the computational analysis, the three designs were addi-
tively manufactured by Multi Jet Fusion with PA 12 material. The
printed specimens were painted, stamped with a speckle pattern, and
they were tested experimentally using Digital Image Correlation (DIC)
in a three-point bend fixture with the left offset load. The experimental
results were compared with the computational results in Table 4. Fig. 23
(a) shows the applied force (per unit area of the front faces of the struc-
tures) versus the displacement of the testing machine's crosshead.
Fig. 23 (b)-(f) show the spatial distributions of the vertical component
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of displacement captured by DIC at the events marked in Fig. 23 (a),
which can have minor discrepancies compared to the crosshead dis-
placements because the DIC was not able to track the point of load ap-
plication at the extreme edges of the structures.

The linear parts of the experimental curves agreed well with the lin-
ear computational analysis. Case (12) had a 3% higher specific stiffness
(slope of the curve) than the SIMP design, while the lattice design of
case (13) had a slope that was 12% higher than case (11).

Interestingly, at large displacements in the nonlinear range the lat-
tice designs showed a major strength advantage over the SIMP struc-
ture. The SIMP design lost stiffness early when its comparatively few
and large structural members deformed significantly and lost their abil-
ity to efficiently transfer load to the supports. It reached a maximum
load of 4.37 kN before it failed catastrophically at a crosshead displace-
ment of 8.9 mm (Fig. 23 (b)).

The triangular lattice design of case (12) continued to carry larger
loads well beyond the strength of the SIMP design, reaching a maxi-
mum of 7.93 kN. Its many small, closely-spaced lattice members pro-
vided redundant load paths that the SIMP design did not have, and
this allowed it to achieve much higher deflections and forces by
redistributing the internal loads as the individual small members
reached their limits. An easily observable example of this load path re-
dundancy is evident in point (c) of the load-displacement curve,
where a single small strut fracture occurred (Fig. 23 (c)) but the over-
all structure continued to carry increasing loads. After the strut frac-
ture, a different region of the lattice material buckled at 9.5 mm of
crosshead displacement, but the internal loads were redistributed
again, and the design continued to deform until 10.2 mm (point
(d) and Fig. 23 (d)) before failing completely.

The triangular lattice design of case (13) similarly experienced much
higher strength than the SIMP equivalent, and it also had a similar pro-
gressive failure. Fig. 23 (e) shows the structure at 8 mm of crosshead
displacement after an initial local buckling event. Subsequently, it con-
tinued to deform while carrying a load per unit area 35% larger than
the maximum of the SIMP design. Two small members fractured at
9.2 mm of crosshead displacement (Fig. 23 (f)), and complete failure oc-
curred subsequently at 9.9 mm.

The results of these experiments led us to conclude that the
method described in this paper can produce designs with higher lin-
ear stiffness than conventional SIMP topology optimization. In addi-
tion, as a side effect of the use of cellular solids, the strength per
unit area was shown to be as much as 57% greater than SIMP at
large displacements due to the robust nature and progressive failure
behavior of the triangular lattices.
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Fig. 23. Three-point bending tests: (a) Force per unit frontal surface area versus crosshead displacement at the point of load application; (b) the SIMP specimen immediately before
complete failure at 8.8 mm of crosshead displacement; (c) the triangular lattice structure at 7.1 mm of crosshead displacement after a local failure occurred in one small strut
(circled); (d) the triangular lattice structure at 10.2 mm of crosshead displacement after a local buckling failure had occurred (circled); (e) the filled triangular lattice structure at
8 mm of crosshead displacement after an initial local buckling failure had occurred (circled); (f) the filled triangular lattice structure at 9.2 mm of crosshead displacement after the
local failure of two small struts (circled)
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8. Conclusion

Advances in additive manufacturing are shifting the focus of struc-
tural optimization from the macrostructure layout to a new paradigm
that is capable of incorporating the details of the microstructure.
Given this paradigm shift, a systematic algorithm based on Fourier se-
ries expansion was created to generate spatially-varying, periodic cel-
lular microstructures that are tailored to attain the optimized
performance of the macrostructure. The homogenized properties
were validated experimentally, and it was shown that the assump-
tions of homogenization theory, in which the unit cell must be signif-
icantly smaller than the macrostructure, were not restrictive to the
macro cellular solid designs that were obtained. The topology and
morphology were optimized using homogenization-based topology
optimization subjected to multiple load cases. The foci were then
placed on the calculation of the amplitude and the phase spectrum
of the Fourier series expansion that represented the unit cell lattice
and on how the amplitude and updated phase spectrum that was
based on the optimized orientation were utilized to project the opti-
mized material distribution to cellular solids. The specific stiffness of
the optimized structure with three lattice types with two periodicities
was compared, and it was shown that, while reducing periodicity in-
creases the structural performance, the limitations in the precision of
the manufacturing may outweigh the increases in stiffness, resulting
in lower specific stiffness. It also was shown that, for the single load
case designs in which the walls of the cells are aligned with the load
paths, squares with rectangular hole lattices with their orthotropic
properties can provide the most efficient design. However, the trian-
gular lattices produced cellular solids that were capable of transferring
shear, so they may be better used in situations in which there is a
large number of load cases. The experimental evaluations of the opti-
mized cellular solids were compared with those obtained using SIMP,
and it was shown that both higher stiffness and significantly improved
ultimate strength were attained due to the redundant load paths cre-
ated by the lattices.
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