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ABSTRACT

This paper presents an experimentally validated framework used to perform topology and orientation
(morphology) optimization of lattice structures subject to stress constraints. The effective stiffnesses
and yield stresses of a unit cell are obtained using numerical homogenization and validated experimen-
tally. Due to the orthotropic behavior of the unit cell, the modified Hill’s yield criterion is used to describe
the lattice strength. The effective orthotropic properties are implemented via macrostructure topology
optimization to further improve the lattice structure stiffness. Homogenization-based optimization is
performed using a coarse mesh and the optimized design is projected onto a fine mesh. This reduces
the computational cost significantly. Finally, the projected design is post-processed to ensure the fabri-
cation feasibility of the optimized lattice structure. The framework is tested for two cases: an L-shaped
bracket and a single-edge notched bend (SENB) problem. A comparison of the compliance-based and
stress-constrained designs used in the two cases demonstrates that the changes in the optimal material
distribution that occur upon implementing the stress constraint result in higher yield strength. The SENB
lattice structures are additively manufactured and the stiffnesses and yield strength of the optimized
designs are compared to those obtained numerically.
© 2021 The Authors. Published by Elsevier Ltd. This is an open access article under the CCBY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

ogy and morphology optimization have received considerable
attention in recent years due to the emergence of new additive

A lattice structure comprises a network of cells with nodes and
struts that offers exceptional properties such as high stiffness,
energy absorption, and acoustic insulation. Lattice structure topol-
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manufacturing techniques with the ability to fabricate microstruc-
tures. Among the various multiscale optimization methods used to
design lattice structures, the homogenization-based approach has
been investigated the most. This is because the effective properties
of local microstructures can be obtained using homogenization
theory. A surrogate model is then obtained for various microstruc-
ture densities, and this surrogate model is used within the opti-
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mization process. This significantly reduces the computational
complexity of microstructure analysis during the optimization pro-
cedure. Projection of homogenized designs is inspired by the work
of Pantz and Trabelsi [1], in which the homogenized properties of
rank-two laminates were used to optimize microstructure topolo-
gies and the principal direction was utilized to optimize cell mor-
phologies. A mapping function based on the optimized orientation
was needed to project the homogenized design. However, since the
optimized orientation was symmetric with respect to 7, a regular-
ization approach was utilized to alleviate the discontinuities in the
optimized orientation. Optimization was performed using a coarse
mesh. The optimized design was projected onto a fine mesh using a
mapping function and optimized density to generate the lattice
structure. Later, each of the three steps i.e., homogenization, regu-
larization, and projection was enhanced in other research studies.
Groen and Sigmund [2] interpolated the homogenized properties
of a square cell with rectangular hole instead of using the explicit
homogenized properties of rank-two laminates. They also intro-
duced a connected-component labeling approach to simplify regu-
larization. Allaire, Geoffroy-Donders, & Pantz [3] addressed the
conformality of square lattices. They also used an abstract manifold
for the computational domain to reconstruct lattice structures
from optimized homogenized designs.

Despite the success of stiffness-based de-homogenization
approaches in generating lightweight periodic lattice structures,
higher stiffnesses cannot be achieved if the stress constraints are
not implemented within the optimization process and the opti-
mized lattice structure fails. In addition, utilizing stress constraints
may change the optimized lattice structure topology and morphol-
ogy. There are three sources of complexity associated with stress-
constrained optimization using homogenized properties: (1) stress
singularities at zero density, (2) the large number of local stress
constraints, and (3) the local nature of micro-stresses, which
depends heavily on the cell micro-architecture. In the context of
macrostructure topology optimization, stress singularities at zero
density are addressed by using a polynomial, Kreisselmeier-
Steinhauser, or reciprocal function to smooth the feasible design
space [4,5]. The issue of large numbers of stress constraints has
been addressed by aggregating the local constraints into a global
constraint using the Kresselmeier-Steinhauser, p-norm, or p-
mean functions [6,7]. However, aggregations of stresses may not
represent local stresses in structures. In order to preserve some
of the local nature of the stresses while avoiding excessive compu-
tational cost, regional stress approaches have been proposed in
which the design domain is split into several clusters and the stress
constraints of the elements within each cluster are aggregated into
a single constraint [8,9].

Unlike the above two issues, i.e., stress singularities and large
numbers of local stress constraints, which exist in both macro
and microstructural optimization, macrostructure optimization
with microstructural stress considerations is less investigated.
Microstructural stress constraints can be implemented within the
macrostructure optimization process using two approaches: (a)
finding the effective allowable stresses and (b) amplifying the
homogenized stress. Cheng, Bai, and To [10] investigated topology
optimization of lattice structures with stress constraints. A cubic
lattice structure with a single-density design variable was consid-
ered. The Hill's yield criterion was used as the strength constraint.
The effective yield strength in Hill's model was obtained by per-
forming finite element analyses (FEAs) of lattice structures for var-
ious densities. Yu et al. [ 11] studied topology optimization of shell-
lattice structures with stress constraints. This study also used the
Hill yield criterion. The effective yield strength was found for var-
ious densities. In both of these studies, a single design variable was
employed to control the lattice structure topology. However, to use
the full potential of the lattice structures in perpendicular direc-
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tions, two variables must be used to describe the cell. To this
end, Donders [12] studied minimization of the L2 norms of lattice
structure stresses in square cells with rectangular holes using two
variables. The effective stress was obtained using homogenized
stress-strain relations. Then an amplification factor, which took
micro-stress fluctuations into account, was multiplied by the effec-
tive stress to mimic the microstructural stress. While both stress
amplification factor and effective allowable stress approaches were
tested for microstructure topology optimization, cell orientations
were kept unchanged in previous studies. However, various cells,
such as square cells with rectangular holes that exhibit superior
orthotropic properties, are weak with regard to withstanding shear
stress. The orientation must be incorporated in the optimization
process in order to take advantage of the orthotropic properties
of the cell.

We previously studied compliance-based lattice structure
topology and morphology optimization [13] using load paths and
load flows as intermediate variables [14]. Later, we also studied
optimization of material distribution and orientation and the sub-
sequent projection for various types of cells and lattices using
Fourier series representation [15]. The goal of the current study
is to investigate the optimization of the topologies and morpholo-
gies of lattice structures that are subject to stress constraints.
Square cells with rectangular holes with two characterizing
parameters related to the void are used as the base cells. The effec-
tive unit cell stiffness and yield stress are obtained using numerical
homogenization and compared to those found experimentally.
Effective properties are obtained for various cell parameters in
order to construct response surfaces. The response surfaces are
implemented using a homogenization-based optimization algo-
rithm. The modified Hill’s criterion is implemented to establish
the stress constraints and a material indicator variable is used to
address the stress singularity issue. The stress constraints are rep-
resented using a p-mean function and a clustering approach is uti-
lized to preserve some of the local nature of the stress. The
optimized homogenized designs are then projected onto a fine
mesh to generate the lattice structure. Finally, the projected lattice
designs are post-processed to remove thin and floating members
and enforce a minimum manufacturable feature size. The frame-
work is tested for two cases: an L-shaped bracket and a single-
edge notched bend (SENB) problem. Comparison of the
compliance-based and stress-constrained designs for these cases
clearly demonstrates that the optimized material distribution is
different when the stresses are considered as constraints. In addi-
tion, the projected SENB design is additively manufactured and
experimentally evaluated. The optimized design is shown to be
manufacturable and to exhibit yield strength similar to those
implemented via stress constraints. The four major contributions
of this study are: (1) comparison of the effective stiffnesses and
yield stresses obtained using numerical homogenization and
experimental evaluation; (2) implementation of stress constraints
and related sensitivity analyses in homogenization-based opti-
mization of lattice structures; (3) incorporation of unit cell ortho-
tropic properties in the optimization process to further improve
the stiffness; and (4) demonstrating the fabrication feasibility of
the lattice design and experimentally validating the optimized
yield strength.

2. Effective cell properties

Square cells with rectangular holes are considered in the cur-
rent study. As shown in Fig. 1, the cell is parameterized using
two parameters (h; and h,). The member thicknesses can be found
using the corresponding parameter t, = 1 — h,, (n is the parameter
number) and the corresponding cell volume fraction is 1 — hyh,.
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Fig. 1. Parameterization of a square cell with a rectangular hole.

The homogenized stiffness tensor (E‘) is found via numerical
homogenization [16-18] over a representative volume element
(RVE):

L ROLAY Y
Jy Cipg (ﬁ— &pq ) 7 dY =0

Coa(r) =3y fy Cospa (1) (e = 002 ) (2" = ems(2) )Y
(1)

where Y is the cell domain, ¢®% are the three macroscopic unit
strains, y¥ are the displacement fields, ; is the virtual displacement
field, and C is the stiffness tensor of the cell material. Using &yq()*')
allows the relation between the local micro-stress (¢) and effective

macro-stress (6 = C & & is the effective strain) to be established
[19]:

o 1
oc=CMS O';M,'jkl = i (5ik5jl + 5i15jk) — Sij(X’d) (2)

where §; is the Kronecker delta, My, is a local structure tensor that

relates the effective strain and micro-strain [19], and § is the inverse
of the homogenized stiffness tensor. Since it is assumed that the cell
is composed of an isotropic material, the von Mises criterion is cho-
sen to describe the yield at the microstructure level. The von Mises
yield criterion is expressed as

2
s (05 (R _dtio, | (V3dh _
sk ((F) Gy e (B ) e g

where SR” in Eq. (3) represents the strength ratios and oY is the
material yield strength. The effective yield stress of the cell is
obtained by multiplying the applied distributed load by the
strength ratio. Four macroscopic unit distributed loads (6©7;
rs = 11,22,12,44), including uniaxial in each direction, pure shear
and hydrostatic, as shown in Fig. 2, are applied in order to obtain
SR”. Since the unit distributed loads are applied, the macroscopic
effective yield stresses (oY) are obtained based on the strength
ratios

Gy, = SR” (4)

In order to validate the properties obtained using the homoge-
nization method and evaluate the effect of the characterizing
parameters on the effective tensile yield strength, 14 x 4 cell lat-
tice structures were manufactured using an HP 3D High Reusabil-
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ity PA 12 in a Multi Jet Fusion (M]JF) printer (HP Jet Fusion 5200
Series). Through the MJF, fusing and detailing agents were depos-
ited along with heat onto thin layers of powder. This process was
repeated until all layers were formed. The material properties were
determined by testing five specimens according to ASTM D638-14.
The Young’s modulus of the material was E = 1288.30 + 45MPa;
the yield strength was ¢¥ = 18.3 + 0.9MPa, and the Poisson’s ratio
was v=0.375+0.1.

The lattice specimens were subjected to tensile loads using an
MTS Criterion Model 43 test machine with a 50 kN load cell at a
constant crosshead displacement rate of 0.875 mm/min. The test
was terminated when the samples fractured fully. The strains were
measured using digital image correlation (DIC). The square cell was
5mm long (L) and 3 mm thick. In the first set of experiments,
h, =0.5L was kept constant and five different h; values
(h; =0.1L,0.3L,0.5L,0.7L and 0.9L) were considered. In the other
set of experiments, h; was kept constant at 0.5L and four different
h, values (h, = 0.1L,0.3L,0.7L and 0.9L) were considered. Table 1
shows the measured dimensions of the 3D printed samples. There
is an average error of 2.42% between the CAD model and the
printed sample. The results presented are the average of five sam-
ples that were 3D printed for each configuration. Fig. 3 (a) shows
the printed model for a cellular solid  with
h; = 0.7L and h, = 0.5L. The strain distribution for the middle of
the sample was obtained via DIC and a single cell was extracted
(Fig. 3 (b) and (c)). The results are compared to the distribution

obtained via homogenization theory (¢ = MS &) in Fig. 3 (d). The
numerical homogenization contour shows that high strains appear
around the hole with the highest strains near the four corners of
the hole. In contrast, the experimental contour shows a high but
more distributed strain on the side of the hole with the highest
strain at the corner of the hole and expanding to the corner of
the cell. Quantitatively, the experimental and numerical homoge-
nization strains are within similar ranges. Fig. 3 (e)-(h) compares
the experimental and computational strain contours for
(h; =0.5Land h, = 0.5L) and (h; = 0.5L and h, = 0.3L), for which
observations similar to those from (h; = 0.7L and h, = 0.5L) can
be drawn.

Stress—strain curves are plotted for various h; values in Fig. 4
(a). All of the samples deform linearly before yielding. This is fol-
lowed by nonlinear deformation and fracture. It is also observed
that the strength and elastic modulus decrease as h; increases. A
larger h; implies that a smaller area carries the load; this results
in higher stresses. The stress—strain curves produced when h, var-
ies (Fig. 4 (b)) exhibit trends similar to those noted when h; is
allowed to vary, although the change in the yield strength is not
as significant. The experimental and computational yield strength
and elastic modulus of each sample are compiled in Table 2 and
Table 3. The experimental yield stresses are determined from the
0.2% offset lines of the stress-strain curves (Fig. 4).

The difference between the numerical homogenization and
experimental results is less than 16%. This validates the results
obtained using the homogenization method. The largest difference
of 15% is observed for h; = 0.9L (Table 2). This can be attributed to
geometric differences between the CAD model and the actual
printed model. More specifically, the printer resolution forces the
holes to be printed with some curvature instead of being com-
pletely rectangular. Rounded holes have lower stress concentra-
tions. To compensate for this, a filtering technique based on the
weighted average distance function [20] is applied to the homoge-
nization results to remove concentrated stress from the corners of
the holes. The effect of filter radius on maximum of micro-strain of
unit cell is shown in Fig. 5. As can be seen, when there is no filter-
ing, a high concentration in strain exists at the corners. However,
this issue is alleviated when a filter radius above 0.05 is considered.
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Fig. 2. Unit distributed loads applied to the representative volume element.

Table 1
Average measured dimensions of lattice specimens (width = 20mm, thickness = 3mm and L = 5mm).
h; =0.1L h; =03L h; =0.5L h; =0.7L h; =09L
Actual value % error Actual value % error Actual value % error Actual value % error Actual value % error
Width 19.85 £ 0.12 0.75 20.00 + 0.02 0.02 20.03 £+ 0.02 0.13 20.08 + 0.03 0.38 20.13 + 0.06 0.67
Thickn 3.06 + 0.02 2.00 3.05 £ 0.03 1.56 3.03 £ 0.05 1.11 3.05 +0.02 1.56 3.06 + 0.02 2.00
hy 0.51 £ 0.04 2.00 1.54 + 0.03 2.67 2.53 +0.02 1.20 3.56 + 0.04 1.71 4.56 + 0.04 1.41
h, 2.52 +0.02 0.93 2.57 £ 0.04 2.57 2.57 £ 0.04 2.80 2.58 +£0.03 3.07 249 +0.02 0.27
hy =0.1L h, =0.3L h, =0.7L h, =09L
Actual value % error Actual value % error Actual value % error Actual value % error
Width 20.06 + 0.03 0.30 20.05 + 0.07 0.27 20.06 + 0.02 030 20.04 + 0.06 0.20
Thickn 3.01 £ 0.01 0.33 3.05+0.03 1.67 3.08 + 0.07 2.67 3.06 £ 0.08 2.11
hy 2.59 £ 0.14 3.47 2.61 % 0.01 4.13 2.51 £ 0.04 0.40 2.52 +0.03 0.93
h, 0.53 £ 0.01 5.33 1.53 £ 0.03 222 3.62 £0.10 343 4.68 + 0.16 3.93

After experimental validation of the effective properties, prop-
erties were determined for various cell parameters and used to

construct the response surfaces, E(hn) and ¢Y(h,), as shown in
Fig. 6.

The homogenized stiffness matrix C is derived with respect to
the principal axes of anisotropy. When the cell is rotated by angle
0, the stiffness matrix is updated using the transformation matrix

(R):

Co(0, hy,hy) = R(6) C(hy, ho)RT (6) (5)

It should be noted that the stress and strain tensors are
expressed as vectors using Voigt notation. Due to the orthotropic
behavior of the square cell with a rectangular hole, Hill’s yield cri-
terion is chosen to describe the lattice yield strength. It is assumed
in Hill’s yield criterion that the hydrostatic pressure does not affect
the yield strength. However, this assumption is not accurate for
lattice cells. Thus, a modified Hill’s criterion [21] is utilized that
includes the hydrostatic yield strength. The effective yield stresses

(aY) are used in the macroscopic modified Hill’s yield criterion for
each element:
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The effective uniaxial, shear, and hydrostatic yield strengths
(3., Gy, and 7}, are, a,,) were found using Eq. (4). o3, is obtained

from min((}\;] , 6;2). The yield criterion in Eq. (6) is developed in the

principal axes of anisotropy. The stresses and strains in the refer-

ence axes (6, and &) are obtained using the transformation
matrix (R).

3. Material models and stress constraints

As mentioned earlier, one issue related to stress constraints in
topology optimization is that of stress singularities at low densi-
ties. This issue was first observed during a three-bar truss opti-
mization [22]. It was shown that removing members is necessary
to obtain a global minimum. However, the stress in a member
increases as the member’s thickness approaches zero. This pre-
vents removal of the member. Several approaches to addressing
this issue are discussed in the introduction section. The stress
interpolation scheme [8] is adopted in this work. In order to estab-
lish the stress interpolation scheme, a material indicator variable
(¢) is implemented. The material indicator has previously been
used to obtain stiffness-optimized, coated structures with ortho-
tropic infill [23]. In our work, the material indicator is used mainly
to address the singularity issue during stress-constrained opti-

mization. The stiffness matrix (Eo), density (p), and failure index
(F,) are updated using the material indicator variable:

Co(0,hy1,hy, ¢) = $TR(0) C (hy, h)RT (0)
p=¢(1—hihy) (7)
F,=¢"2Ve"Ve

where ¢, and g, are parameters that penalize the intermediate den-
sity. Based on previous research [8,23], ¢; =3.0 and g, = 0.5 are
used in this work. The second challenge in stress-constrained topol-
ogy optimization is related to the large number of stress con-
straints. To address this issue, the element failure index can be
aggregated to a single constraint using the p-mean function. In
order to preserve some of the local nature of the stress while avoid-
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Fig. 3. Lattice structure strain contours: (a) printed specimen, (b) DIC strain contour, (c) DIC image of one cell and (d) numerical homogenization strain contour for h; = 0.7L
subjected to the distributed load of 2.98 N/mm?; (e) DIC and (f) numerical homogenization strain contours of one cell with h; = 0.5L subjected to the distributed load of
7.44 N/mm?; (g) DIC and (h) numerical homogenization strain contours of one cell with h, = 0.3L subjected to the distributed load of 3.98 N/mm?.

ing excessive computational cost, a clustering approach is utilized 1 ;
(@), Forae)
m Qn

[8,24]. In the clustering approach, elements in the design domain F)r; =

are sorted based on their failure indexes. Then, the sorted elements

are placed in N groups. The failure indexes of the elements in each

group are aggregated into a single value using a p-mean function: ~ Where m is the group number, Qy, is the total volume of the ele-
ments in each group, and p is a tuning coefficient. Since the p-

(8)
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Fig. 4. Stress vs. strain curves: (a) variation with h; and (b) variation with h,.
Table 2
Variation in effective properties with h;.
h; 0.1L 03L 05L 0.7L 09L
Young’s modulus variation (MPa)
Experimental 1105 + 106.59 881 + 30.85 728 +29.51 453 +11.09 178 £ 6.27
Numerical 1188 945 702 448 172
% Difference 7.24 6.97 3.63 1.00 3.70
Yield strength variation (MPa)
Experimental 14.93 + 2.80 12.17 £ 1.18 9.3 £ 0.66 5.77 + 0.81 1.55 £ 0.37
Numerical 14.5 11.05 8.27 5.33 1.8
% Difference 2.94 9.62 11.72 7.87 15.14
Table 3
Variation in effective properties with h,.
h, 0.1L 03L 05L 0.7L 09L
Young’s modulus variation (MPa)
Experimental 886 + 33.16 700 * 37.34 728 +29.51 642 + 45.47 632 +51.25
Numerical 840 757 702 668 652
% Difference 5.34 7.79 3.63 4.00 3.16
Yield strength variation (MPa)
Experimental 11+04 8.97 +0.15 9.30 £ 0.66 8.33 £0.29 8.43 + 0.38
Numerical 9.71 8.35 8.27 8.15 8.1
% Difference 12.46 7.12 11.72 2.22 4.03
k-1
max(F,
&n = SyFm — 158%, = Ofk&Jr (1 - o)y 9)
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Fig. 5. The effect of filtering radius on maximum of micro-strain.

mean function in Eq. (8) converges to a lower value of max(F,), a
scaling factor (s) is implemented during each iteration to decrease
the difference between the p-mean function and the max(F,) [8]:

()"

where g,, is the stress constraint for each group. The parameter o is
selected based on the sk, in two consecutive iterations; o = 0.5 if s
is oscillating, otherwise o = 1.0.

4. Topology and morphology design optimization algorithms

In each optimization iteration, the topology and morphology
optimizations are performed in two steps. The characteristic
parameters and material indicator variable are optimized in the
first step and the optimized cell orientation is obtained in the sec-
ond step. Two topology optimization problems are considered in
this research: (1) minimizing the compliance (maximizing stiff-
ness) subjected to the equilibrium equation and volume constraint
(Vg), and (2) minimizing the volume subjected to the equilibrium
equation and stress constraints. For the compliance optimization

problem, we start with initial variables (h’]‘7h’2‘,¢>", and 6% for
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Fig. 6. Response surfaces for the homogenized stiffness (MPa) and yield strength (MPa).

k = 0) and perform the following steps during each optimization
iteration:

(a) Find C (¥, n%).

(b) Solve the elasticity problem, KU = F, where K, U, and F are
the stiffness matrix, the displacement vector, and the force
vector, respectively.

(¢) Filter the design variables h’l‘, h’;, and ¢*

(d) Obtain the sensitivity of the objective function and con-
straint with respect to the design variables h*, h%, ¢*, and 6*.

(e) Perform topology optimization (10) and update

k
h<and ¢+,
(f) Perform morphology optimization (11) and update 6.
(g) The process continues (k = k + 1) until convergence.

minSE
subjected to () [,pdQ—Vg <0 (10)

design variables O <h,and ¢ <1. n=1,2

min SE/SEq + Py/2Pyo

11
design variables — 27 < 0 <271 ()

where SE is compliance (SE —&cC é), and SE, is the compliance in

the first iteration. Vj is the volume of the design domain, and Vj is
the volume fraction constraint. Py is a control function that penal-
izes sudden changes in orientation among neighboring elements
and Py is the penalty function in the first iteration [25]:

e 11
Py = 2 2 (j — 5 Cos(40, - 40,-)) (12)
e=1 i=

where f is the number of elements connected to the element e. The
topology optimization problem presented in (10) is solved using the
method of moving asymptotes [26]. The morphology optimization
problem (11) is solved using the Broyden-Fletcher-Goldfarb—Shan
no (BFGS) algorithm from the open-source library NLopt [27]. The
stress-constrained optimization steps are similar to those from
compliance optimization, but incorporate the following changes:
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\/(h’{,hﬁ) is also calculated in step (a) and topology optimization
with stress constraints (13) is performed in step (e).

minVy = () J, pdQ

subjected to F¥, —1<0 (13)
design variables 0 < h, and ¢ <1. n=1,2

The sensitivity analyses for the compliance objective function,
stress constraints, and volume fraction constraint are required in
the optimization process. The sensitivity of the volume fraction is:

dlfT Jo vdQ = —ph Q.

d;?j Jo vdQ = —dh1Qe (14)
& Jo vdQ = (1 — hychae)Qe
where Q. is the area of each element. The sensitivities of the com-
pliance and p-mean stress measure are obtained using the adjoint

method. The compliance objective function is self-adjoint and its
sensitivity is:

dSE _ _ 4@1pT dC a () .

dhe = —91E G 8Qe;

E Vgl C 2.
$E= 0 Ve C e Qe; (15)
dSE __ Giol ¢ dRT

mf—z(b‘s CT),-SHQG

The sensitivity analysis of the p-mean stress measure is
obtained using Eq. (8):

(ot o ) e (%)

dhye dhpe 20, F.
o dC - dV -
Ty — % T =Y
X (20‘ \/dhne &+0 dh.. a))Qe (16)
dF;, C (F P)H)
d= | 0o e(RC e+ gn— (F) ' q9™ 'Fe | Qo
e
where the adjoint variables are:
'K = F5, )
p\1-P - _ —
Py = Secan fo, T (R) (42) (a7v CR'B) do

The topology and morphology optimization framework are
developed using the open-source PDE solver FreeFem++ [28].
P,-functions are utilized to discretize the displacements and
adjoint variables and Po-functions are implemented to discretize
all other variables, such as stress, strain, characteristic parameters,
the material indicator variable, and orientation. In order to
regularize the characteristic parameters and material indicator
variable, the Helmholtz-type filtering approach is adopted in this
research [29]:

, o~ - -
7(2%> Vh, +hy=h, on Q%=0 on oT (18)

where 17 is the filter radius, Q is the design domain, oI" is the

boundary of the design domain, and h , is the intermediate filtered

variable. P;-functions are used to discretize h,, which is then trans-
formed into a Po-function to obtain the filtered characteristic
parameters. The same procedure is applied to obtain the filtered
material indicator variable (¢). In addition, a smoothed Heaviside
projection [30] is applied to the material indicator variable to pro-
duce the 0/1 design variable:
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tanh (Bn) + tanh (/3(4; —17))

¢ = Zanh (Bn) + tanh (B(1 — 1)) ’

(19)

where f is the projection parameter used to control the intensity of
the projection. The parameter 7 specifies the inflection point and is
set to n = 0.5. It was previously shown that use of homogeneous
Neumann boundary conditions in the filtering formulation may
cause several issues in the optimized design, such as forcing struc-
tural members to be perpendicular to the boundary [31]. A bound-
ary padding approach is suggested to address this issue [31,32]. In
the padding technique, the boundary of the design domain is
extended by a width equal to the filter radius, except at the support
and load. This approach is adopted in the current research to
address the boundary effects of Helmholtz-type filtering.

The material properties, state variables, and objective and con-
straint functions are obtained using the projected material indica-

tor variable ¢ and filtered characteristic parameters h,. In order to
retrieve the sensitivities of the objective and constraint functions
(f) with respect to the design variables ¢ and h,, the following
chain rules are implemented [29,30]:

a(ne)

Ohn 0;!,. Ohn (20)
a(9) _ o 04 09
) 06 5 0%

Compliance-based and stress-constrained topology and mor-
phology optimization are applied to an L-bracket problem. The
dimensions and boundary conditions for the L-shaped bracket
problem, including the clamped top edge and distributed load
applied to the right corner (F = 1000 N/cm) are shown in Fig. 7.
The load is distributed over 0.1cm and a region with an area of
0.2 x 0.2 cm? near the applied load is excluded from the design
domain. The domain is discretized using 23,544 triangular ele-
ments. The filter radius is 0.2cm and the maximum value of the
projection parameter is § = ry/v/3l, [33], where [, is the minimum
elemental edge length (I, = 0.033 cm) in this study. As suggested
in [33], p is updated every 100 iterations until it reaches the max-
imum value. The response surfaces (Fig. 6) are used to obtain

homogenized properties C and ¢¥ during optimization. First, the
stress-constrained optimization is performed. Ten regional stress
constraints (m = 10) and a p-mean parameter of p =10 are
selected. The optimized volume fraction, compliance, and maxi-
mum of the failure index are reported in Table 4. The convergence
histories for the volume fraction and maximum failure index are

shown in Fig. 8. The optimized material distribution
I W W WA 1
2.4cm F
X2 1
1.6cm
X1 |- 1.6cm +|+— 2.4cm —

Fig. 7. Dimensions and boundary conditions for the L-shaped bracket test case.
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Table 4
L-bracket optimized design volume fractions, compliances, and maximum of failure
index.

Optimization Problem Vs SE (Ncm) max(F,)
Stress-constrained optimization 33.6% 28 1.0
Compliance-based optimization 33.6% 20 3.1

(p=¢(1 —hyh ,)), orientation, and failure index are shown in
Fig. 9 (a), (b), and (c), respectively. As shown in the figure, the
material at the re-entrant corner is removed during the topology
optimization process, the failure index is uniformly distributed,
and the stress constraint is satisfied. Next, the compliance-based
optimization problem with volume fraction constraints is consid-
ered. The upper bound of the volume fraction is taken as the opti-
mized volume fraction of the stress-constrained optimized design
(Vg = 33.6%). Upon comparing the material distributions and fail-
ure indexes of the two optimization problems in Fig. 9, it is evident
that the stress constraint is not satisfied in the compliance-based
design because of the stress concentration at the right-angle corner
of the design. The results presented in Table 4 show that lower
compliance is obtained by using compliance optimization for the
same volume fraction.

5. Projection and post-treatment of lattice structures

The homogenized design presented in Fig. 9 is obtained based
on the assumption of an infinitesimal length scale. The projection
of the homogenized design to a finite length scale is discussed in
this section. As shown in [15,34], a cellular solid can be repre-
sented by Fourier series expansions. For the square cell with a rect-
angular hole considered in this research, implementing two cosine
terms is sufficient to represent the lattice structure [1]:

<2mp15i<1 , x2)>

Qu = {(X1,X2) € D|cos

> cos(mp(1 — hy)) U cos (M)
> cos(mp(1 — hy))} 21)

where A is the periodicity parameter and v, is the mapping func-
tion used to project the homogenized design. The mapping func-

tions are obtained using the optimized orientation
(v = [cos(0),sin(0)]) [3]:
Vy, =e'v (22)

where y is a dilatation factor used to adjust the lattice spacing [3]:
Vy=(7va)fJ+(in}>v (23)

and w is a vector that is perpendicular to ». The mapping function
W, can also be obtained by using Eq. (22) and changing » to ». How-

DGp
0.8
0.7
S0.6f
0.5}
0.4

03:....|....|....|....|....:

o 100 200 300 400 500
iteration number

(a)
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ever, the mapping functions fail to produce the projected lattices
due to irregularities in the optimized orientation (see Fig. 9 (b)
and (e)). In order to create a locally continuous vector field, we
adapted the vector field combing suggested in [35]. In this proce-
dure, we start with an element in the lower left corner, the element
is added to the visited element vector (i), the adjacent element (e)
with minimum x, (see Fig. 7) is selected, and the following function
is calculated for four possible frame orientations (j), including
0,7, /2, —1/2):

R =Y (1-wv.v)

1

(24)

The best frame orientation occurs at minimum of R.. The ele-
ment (e) is then added to the visited vector and the next adjacent
element is considered. While following this procedure does not
ensure that singularities are prevented, they occur only in the void
or solid region and not in the area with intermediate density for
the test cases considered in this research. After combing procedure,
the mapping functions are obtained using Eq. (22) and the homog-
enized design is projected using Eq. (21). The projected design for
the periodicity parameter A = 0.065 is shown in Fig. 10 (a). Post-
projection treatment must be implemented to ensure the manufac-
turability of the optimized designs. Details of the post-processing
framework are discussed in our previous work [15]. A summary
of the process is outlined here. The process consists of five steps:
1) implementing the minimum feature size; 2) enforcing the den-
sity threshold; 3) imposing the density boundary; 4) removing
small holes; and 5) eliminating floating members and smoothing
boundaries. Within the first step, the cell size is defined based on
the modified periodicity (tr = Ae=” [3]), which is plotted in
Fig. 10 (b). Cells smaller than 2hp, (hmin = 0.3A is selected for
the L-bracket projected designs) are identified and two conditions
are used to ensure that all features are greater than the minimum
threshold (hpyin). Small cells (t; < 2h,,;,) in the region p < 0.5 are
removed (1 — h, = 0). The small cells that fail that condition are
made solid (1 — h, = 1). The Heaviside filter is then applied to
the material indicator value ¢ eliminating some of the floating
members at low density regions. Fig. 11 (a) shows the resulting
design. The second step modifies the thicknesses of the features
in the t; > 2h,;;, region based on the condition that if p > p,;, (for
a given density threshold p,,,) and t¢h, < hyn, then t¢hy, is set equal
to hpin. Otherwise, the member is removed. The thicker members
among the small cells at the center left of the design in Fig. 11
(b) compared to Fig. 11 (a) are visible. The boundaries of the pro-
jected design might exhibit gaps for some periodicities. In the third
step, this issue is addressed, and the boundaries are preserved. The
density distribution is modified by setting regions with p > 0.7 to
1 and superimposing them on the design in step 2. Consequently, a
thick boundary is seen in Fig. 11 (c). In the fourth step, the small
regions are filled to guarantee manufacturability and improve
structural performance. For this effect, the analog lattice is thresh-
olded with hy,;, and superimposed on the design from the previous

12 T T T T
11E E
10F E
9 . =
o 8F E
&7 -
g 5b ]
ISy 3
3 -
2 E
8 § PN SNT STT [NTT ST T NT SY TNS N S TS T AT H  t
0 100 200 300 400 500
(b) iteration number

Fig. 8. (a) Volume fraction and (b) maximum failure index convergence histories for the design shown in Fig. 9 (a).
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24
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Fig. 9. Optimized stress-constrained design: (a) material distribution;
distribution; (e) orientation; and (f) failure index (F;).

(@)

Fig. 10. The projected (a) stress-constrained design and (b) feature size for
A = 0.065.

(b)

step (Fig. 11 (c)). The complement of the superposition is parti-
tioned into regions. Regions for p > p,, with inscribed circles smal-
ler than hp, of the diameter are filled. This produces the shape
shown in Fig. 11 (d). In the last step, the closed holes inside the
design are filled temporarily and their complement is divided into
two regions: the solid and void. The shapes of these regions are
created using Delaunay triangulation. Adjusting the triangulation
factor produces smoother boundaries and exposes vertices inside
the boundaries of the regions. These vertices are added to the
regions, eliminating floating members. The complement of the
shape is taken and the interior holes remain unfilled (Fig. 11 (e)).
Several iterations might be required to remove all of the floating
members. To produce a smoother shape, the boundary points cre-
ated using a non-uniform rational basis spline (NURBS) are added
to the projected design. Finally, the projected design is imported
into MeshLab and is further smoothed using Taubin Filtering with
45 smoothing steps (Fig. 11 (f)). As will be shown later, the out-
lined post-processing may increase the volume of the optimized
structure.

In addition to the stress-constrained design with A = 0.065
(Fig. 11 (f)), the post-processed projected stress-constrained design

10

0.0

®

(b) orientation; and (c) failure index (F.). Optimized compliance-based design: (d) material

with a larger periodicity (A = 0.13) is obtained and shown in
Fig. 12 (a). The post-processed projected compliance-based design
with A = 0.065 is also shown in Fig. 12 (b). The post-processed
projected designs are analyzed using ANSYS for the same loading
and constraint conditions as the optimization model. The failure
index for the three designs is shown in Fig. 13 (a)-(c). The small
cells in the stress-constrained design for A = 0.065 produce a more
uniform stress distribution than those in the design for A = 0.13.
The maximum stresses of the projected stress-constrained designs
are distributed over the central boundary of the L-shape. In con-
trast, the compliance-based design has a high stress concentration
at the sharp middle corner that leads to premature yield. The
results demonstrate the effectiveness of stress-constrained
optimization.

The compliance and failure indexes are reported in Table 5.
Upon comparing Table 5 to Table 4, it is observed that post-
treatment decreases the compliance by 29% and 25% for the
stress-constrained and compliance-based designs, respectively.
This difference is explained by the 17% and 26% increases in the
volume fractions of the stress-constrained and compliance-based
designs, respectively.

6. Experimental evaluation of lattice structures and solid
isotropic materials with penalization designs

The second test case considered in this research is the single-
edge notched bend problem. Figure 14 shows the dimensions
and boundary conditions of the SENB test case. The thickness of
the structure is 20 mm. The notch causes stress concentration at
its tip. The distributed load (F =240 N/mm) is applied over
6 mm in the middle of the top surface. A region with an area of
12 x 6 mm? near the applied load is excluded from the design
domain. The domain is discretized using 62,580 elements. A length
parameter of r; =3 mm is selected. As in the previous case, the

maximum of the projection parameter is f=r¢/v3l, with
Il = 0.04, and ten regional stress constraints and a p-mean param-
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Fig. 11. Projected design: (a) after implementing the minimum feature size; (b) after increasing the thicknesses of members where p > p,,; (c) after superposing the density
boundary; (d) after small regions have been filled; (e) without floating members; and (f) with smoothed boundaries.

(®)

Fig. 12. Post-processed projected designs produced via (a) stress-constrained
optimization with A = 0.13 and (b) compliance-based optimization with A = 0.065.

eter of p = 10 are selected. The optimized material distributions for
the compliance-based and stress-constrained designs are shown in
Fig. 15, and the corresponding volume fraction, specific stiffness,
and yield load are reported in the homogenized design section of
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Table 6. The reported effective specific stiffness (K.s) is obtained
from K. = £, where § is the deflection at the top region where

Vpo
the load (F) is applied. The post-processed lattice structures are
shown in Fig. 16 (a) and (c). The minimum manufacturable feature
size iS hpmi = 0.8 mm. Some of the small holes in the post-
processed designs are filled and the walls thickened to comply
with the minimum manufacturable feature size. This leads to a
considerable increase in the volume fraction (V) as reported in
the projected design section of Table 6. The effective stiffnesses
and yield loads for the projected designs are also reported in
Table 6. As shown in the table, in the case of the compliance-
based design, the specific stiffnesses of the homogenized and pro-
jected designs differ by 15.6% because the projected model has a
larger volume fraction that reduces the specific stiffness consider-
ably. The increased volume has a less adverse effect on the specific
stiffness of the stress-constrained design.

The test case is also optimized using a solid isotropic material
with penalization (SIMP) method. In SIMP, the elastic modulus is
related to the density using a power law in order to penalize the
intermediate density and restrict the design space to obtain a

0.0

Fig. 13. Failure indexes for the three optimized designs: (a) a stress-constrained optimized design with A = 0.065; (b) a stress-constrained optimized design with A = 0.13;

and (c) a compliance-optimized design with A = 0.065.
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Table 5
The volume fraction, compliance, and failure index for post-treated L-bracket designs.
Designs Vs SE (Ncm) max(F,)
Stress-constrained, A = 0.065 39.2 20 0.9
Stress-constrained, A = 0.13 394 20 0.9
Compliance-based, A = 0.065 423 15 2.1
180

60
24

12

Fig. 14. The SENB test case with dimensions in mm.

A ®

solid-void design. Details of the SIMP method with stress con-
straint implementation are discussed in Ref. [8]. A compliance-
based design and a stress-constrained design were generated using
the SIMP topology optimization. The SIMP designs are shown in
Fig. 16 (e) and (g). The volume fractions, effective stiffnesses, and
yield loads of the SIMP designs are reported in Table 7.

Figure 16 shows the failure index distribution for a load of
1440 N. As in the optimization model, the region near the load
application (blue rectangle) is neglected in the stress analysis. Con-
centrated stress is eliminated in the stress-constrained models,
which exhibit more uniform stress distributions throughout the
structure. The stresses on the SIMP stress-constrained design
(Fig. 16 (f)) are uniformly high throughout the structure, while
the lattices in its homogenized counterpart (Fig. 16 (b)) seem to
provide low stress and good load transfer from load application
to support through the solid regions. The latter design exhibits

(@)
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high stresses mostly at the bottom bulky region and the inner sides
of its legs. The compliance-based designs yield considerably sooner
than the stress-constrained designs due to high localized stresses
in the notch and at the inner sides of the legs (Fig. 16 (d) and
(h)). These results are expected since the stress constraint is not
implemented in the compliance optimization approach. The
homogenization-based, compliance-based design also exhibits sig-
nificantly high stresses on its thin, outer members (Fig. 16 (d))
since they are quite thin and play an important role in transferring
the load to the supports.

Three specimens for each optimized configuration were addi-
tively manufactured using a PA12 printer with multi jet fusion
(MJF) technology. The models were tested experimentally in an
MTS system with a 50 kN load cell. Three modifications are intro-
duced to the designs to make them experimentally reliable (see
Fig. 17 (a), (c), (e), and (g). To allow more surface area for the roller
constraints and prevent the supports from sliding off the rollers,
the lower supports are extended. The first set of tests reveals that
the top of the model tends to slide off to the side (Fig. 18). To
address this rigid translation, a semi-circular crown is added such
that the top roller can fit inside while remaining as centered as
possible throughout the test. The described modifications are
responsible for the increased volume fractions among the printed
designs in Table 6 and Table 7. Due to these alterations, Table 6
and Table 7 distinguish between optimized and printed models.
It is also observed that the support legs, especially those of the
stress-constrained designs, rotate too easily as the load increases.
Thus, the models fail to reproduce the desired boundary condi-
tions. A thick aluminum plate is placed between the parts and
the support rollers, as shown in Fig. 17. However, the
homogenization-based, compliance-based design is tested without
the plate since the portion of its bottom region near the constraints
is low and would hit the plate at high loads. For these reasons, a
rotation was verified for this sample, as will be discussed later.

The displacements were measured using DIC. Symmetry was
assumed and the two DIC cameras were focused on one side of
the structure to magnify the field of view and increase the resolu-
tion. This was especially important for lattice structures with smal-
ler members. Figure 19 (a) shows the applied force per volume

(b)

Fig. 15. Optimized (a) stress-constrained and (b) compliance-based designs.

Table 6
Yield loads (F) and stiffnesses (K.;) for homogenization-based designs.

Designs Optimized Design Printed Design

Homogenized design FEA for projected design % diff FEA Experim. % diff
Homogenization-based, stress-constrained design
Vg 22.9% 28.0% 30.4% 30.4%
F(N) 1440 1440 0.00 1350.00 1451.05 7.22
S(mm) 3.30 2.72 19.27 2.43 239 1.29
Keer (N/mm) 1905.52 1890.76 0.78 1831.37 1993.95 8.50
Homogenization-based, compliance-based design
\' 22.9% 28.5% 29.7% 29.7%
F(N) 360.00 370.18 2.79 420.00 415.00 1.20
S(mm) 0.63 0.60 3.40 0.72 0.78 6.95
Kegr (N/mm) 2515.28 2151.57 15.59 1949.77 1797.12 8.15

12
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(h)

Fig. 16. SENB-optimized designs and failure index distributions at 1440 N: (a) and (b), the homogenization-based stress-constrained design; (c) and (d), the homogenization-
based compliance-based design; (e) and (f), the SIMP stress-constrained design; and (g) and (h), the SIMP compliance-based design.

Table 7
Yield loads (F) and stiffnesses (K,y) for SIMP designs.

Designs Optimized Design Printed Design

FEA FEA Experim. % diff
SIMP stress-constrained design
\' 19.9% 22.1% 22.1%
F(N) 1440.00 1425.00 1360.00 4.67
§(mm) 3.52 3.35 3.21 4.26
Kees (N/mm) 2056.77 1924.17 1916.31 0.41
SIMP compliance-based design
' 21.8% 24.6% 24.6%
F(N) 458.60 590.00 645.00 8.91
S(mm) 0.87 0.86 0.83 3.62
Kees (N/mm) 2432.96 2786.93 3159.03 12.52

fraction versus the vertical displacement per unit of structure
height (H) for the four samples. The yield loads (F) for the experi-
mental evaluations reported in Table 6 and Table 7 are determined
from the 0.2% offset line of the curve presented in Fig. 19 (a).

The experimental and computational displacement contours at
yield are shown in Fig. 19 (b)-(i). The two sets of contours for each
design are in good agreement and the computational model pre-
dicts a slightly higher maximum displacement than is observed
experimentally. However, the homogenization-based,
compliance-based design seems to be an exception. For this model,
the experimental displacements are higher than the computational
displacements. This might indicate that the real model is less con-

13

strained and rotates more than is predicted via FEA. Another rea-
son for this discrepancy might be that bending of the real sample
is not perfectly symmetric.

As shown in the printed design computational and experimen-
tal results in Table 6, the homogenization-based, stress-
constrained design exhibits an enhanced yield load compared to
the compliance-based design. Both the yield load and specific stiff-
ness for the stress-constrained design are similar to those of the
homogenized and projected designs. Overall, this design provides
a higher ultimate strength than the other three designs (Fig. 19
(a)). As the load increases, some of its thin walls deflect, buckle,
and ultimately break (Fig. 17 (b)). The homogenization-based,
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(e)

(h)

Fig. 17. Designs produced via additive manufacturing: the homogenization-based, stress-constrained design (a) before and (b) after testing; the homogenization-based,
compliance-based design (c) before and (d) after testing; the SIMP stress-constrained design (e) before and (f) after testing; and the SIMP compliance-based design (g) before

and (h) after testing.

Fig. 18. A three-point bending test showing a sample sliding off the rollers.

compliance-based design has the lowest stiffness and strength of
the four designs. It exhibits high plasticity and deforms consider-
ably before some of its thin members buckle (Fig. 17 (d)). Although
the computational model exhibits some deformation among the
thin walls, it predicts yield due to a high stress concentration at
the point where the bottom supports touch the rollers. This design
has low stiffness because its supports rotate (see Fig. 17 (d)) since

14

no plate is used. FEA of the homogenization-based, compliance-
based design shows that the stiffness would be closer to that of
the SIMP compliance-based design (2678.5 N/mm instead of the
1949.8 N/mm shown in Table 6) if no rotation was allowed. This
demonstrates that similar specific stiffnesses can be achieved using
the SIMP and homogenization methods for the same boundary
conditions.

Upon comparing the printed design experimental and computa-
tional results reported in Table 6 and Table 7, it can be seen that
the stress-constrained lattice and SIMP designs exhibit similar
specific stiffnesses. Both the experimental (Fig. 17 (f)) and compu-
tational models of the SIMP stress-constrained design demonstrate
yield due to bending. The specific stiffnesses of the two models are
in good agreement and differ by less than 1%. Experimentally, the
model deflects more on one side (Fig. 17 (f)) despite the effort
made to center it during test preparation. Comparison of the
printed and optimized models in Table 7 indicates similar specific
stiffnesses and yield loads. This occurs because the supports are
thin and compliant and extending them for testing did not produce
significant effects.
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Fig. 19. Three-point bending results: (a) the force (per volume fraction) versus DIC vertical displacement (per unit of structure height) plot. Displacement contour plots [mm]
for the: (b) experimental and (c) computational homogenization-based, stress-constrained design; (d) experimental and (e) computational homogenization-based,
compliance-based design; (f) experimental and (g) computational SIMP stress-constrained design; and (h) experimental and (i) computational SIMP compliance-based

design.
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The experimental and computational SIMP compliance-based
designs yield expectedly due to high stress concentrations at the
notch as the load increases (Fig. 17 (h)). The bulky bottom supports
provide more stability and better load bearing, resulting in better
stiffness than other models, especially relative to the stress-
constrained designs in which the long, thin supports tend to
buckle. The FEAs of the printed and optimized designs indicate that
the modifications made to the SIMP compliance-based design to
make it testable affect its yield load and stiffness. The experimental
model is 13% stiffer than computationally predicted. This might
indicate that the boundary conditions applied in the FEA model
do not fully resemble the real boundary conditions. That is, the alu-
minum plate provides a much stiffer contact than predicted com-
putationally. The printed designs also have higher yield loads
since their bulky supports become even stronger when additional
material is added.

Overall, the experimental and computational models are in
good agreement with the maximum 12.5% difference in the stiff-
ness of the SIMP compliance-based design. This difference can be
attributed to the difficulty of applying perfectly symmetric con-
straints and loading conditions experimentally and the difficulty
of reproducing the experimental boundary conditions via FEA.

7. Conclusions

The implementation of stress constraints in topological and ori-
entation optimization of lattice structures was discussed in this
article. The effective properties were calculated using the numeri-
cal homogenization method. The results were validated experi-
mentally and then utilized in the optimization algorithm.
Compliance-based and stress-constrained optimization algorithms
were developed and homogenized designs were obtained. These
designs were projected to generate optimized lattice structures.
An advantage of the de-homogenization methodology is that opti-
mization can be performed efficiently using a coarse mesh and
high-resolution lattice structures can be obtained via projection
onto a fine mesh. Two case studies were considered to demon-
strate the feasibility of the proposed method. For the first case,
the L-shaped bracket, it was observed that the implementation of
stress constraints during the optimization process resulted in
removal of material at the re-entrant corner and a more uniform
failure index distribution. For the SENB test case, the
homogenization-based stress-constrained and compliance-based
designs were compared to those obtained using SIMP. The two
stress-constrained designs exhibited similar structural perfor-
mance; the two designs had similar stiffnesses and yield strength.
Comparison to the compliance-optimized design indicated that
stress-constrained optimization is effective in inhibiting yield but
compromises stiffness. Experimental evaluation of the optimized
designs showed that the additively manufactured models could
reach the yield strength determined via the optimization algo-
rithm. However, the experimental results also demonstrated the
adverse effects of enforcing a minimum manufacturable feature
size. This increases the volume fraction and thus decreases the
specific stiffnesses of the lattice structures.

Both the computational and experimental results indicate the
importance of including buckling constraints in future studies. As
shown in the SENB compliance-based design, thin members are
susceptible to buckling. Depending on the minimum member
thickness, this may occur before the yield stress is reached.
Another important observation is that while we did not intend to
obtain coated structures with infill lattices, the optimized designs
resemble them due to the use of a minimum manufacturable fea-
ture size and a material indicator variable to address stress singu-
larities. The implementation of stress constraints to obtain coated
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structures and comparison of their performances to those reported
in this article is the subject of future research. Future research also
includes extension of this framework to 3D lattice structure
designs.
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